
A method for computing horizontal pressure-gradient force in an

oceanic model with a nonaligned vertical coordinate

Alexander F. Shchepetkin and James C. McWilliams
Institute of Geophysics and Planetary Physics, University of California at Los Angeles, Los Angeles, California, USA

Received 3 July 2001; revised 20 August 2002; accepted 5 September 2002; published 20 March 2003.

[1] Discretization of the pressure-gradient force is a long-standing problem in terrain-
following (or s) coordinate oceanic modeling. When the isosurfaces of the vertical
coordinate are not aligned with either geopotential surfaces or isopycnals, the horizontal
pressure gradient consists of two large terms that tend to cancel; the associated pressure-
gradient error stems from interference of the discretization errors of these terms. The
situation is further complicated by the nonorthogonality of the coordinate system and by
the common practice of using highly nonuniform stretching for the vertical grids, which,
unless special precautions are taken, causes both a loss of discretization accuracy overall
and an increase in interference of the component errors. In the present study, we design a
pressure-gradient algorithm that achieves more accurate hydrostatic balance between the
two components and does not lose as much accuracy with nonuniform vertical grids at
relatively coarse resolution. This algorithm is based on the reconstruction of the density
field and the physical z coordinate as continuous functions of transformed coordinates with
subsequent analytical integration to compute the pressure-gradient force. This approach
allows not only a formally higher order of accuracy, but it also retains and expands several
important symmetries of the original second-order scheme to high orders [Mellor et al.,
1994; Song, 1998], which is used as a prototype. It also has built-in monotonicity
constraining algorithm that prevents appearance of spurious oscillations of polynomial
interpolant and, consequently, insures numerical stability and robustness of the model
under the conditions of nonsmooth density field and coarse grid resolution. We further
incorporate an alternative method of dealing with compressibility of seawater, which
escapes pressure-gradient errors associated with interference of the nonlinear nature of
equation of state and difficulties to achieve accurate polynomial fits of resultant in situ
density profiles. In doing so, we generalized the monotonicity constraint to guarantee
nonnegative physical stratification of the reconstructed density profile in the case of
compressible equation of state. To verify the new method, we perform traditional idealized
(Seamount) and realistic test problems. INDEX TERMS: 4255 Oceanography: General: Numerical

modeling; 4528 Oceanography: Physical: Fronts and jets; 4271 Oceanography: General: Physical and chemical

properties of seawater; 4532 Oceanography: Physical: General circulation; KEYWORDS: sigma-coordinate

pressure-gradient error, compressibility of seawater, high-order, monotonic interpolation, adiabatic differencing
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1. Introduction

[2] Discrete approximation of horizontal pressure-gra-
dient force (PGF) topography-following coordinates has
been a long-standing problem in atmospheric and oceanic
modeling [Gary, 1973; Mesinger and Arakawa, 1976;
Janjic, 1977, 1998; Mesinger, 1982; Arakawa and Suarez,
1983; Mesinger and Janjic, 1985; Michailovich and Janjic,
1986; Blumberg and Mellor, 1987; Haney, 1991; Mellor et
al., 1994, 1998; Stelling and van Kester, 1994; Song and
Haidvogel, 1994; Lin, 1997, 1998; Slordal, 1997; Song,

1998; Song and Wright, 1998; Kliem and Pietrzak, 1999].
The main difficulty is attributed to hydrostatic inconsistency,
i.e., failure of the discretized PGF to vanish in the case when
isopycnals are horizontal. This effect causes spurious geo-
strophically balanced flows, which in oceanic model appli-
cations may be as large as 10 cm/s or more, degrading the
quality of the solution beyond an acceptable limit. The
problem arises from the deviation of quasi-horizontal coor-
dinates from either geopotential or isopycnal surfaces, so
that the PGF in the momentum equations appears in the form
of two large terms which tend to cancel each other,
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where P is pressure, r0 = const is mean density in a
Boussinesq approximation, and z is vertical coordinate in
nontransformed (i.e., physical) space. Subscript z in @/@xjz
means that the associated partial derivative is computed
with respect to a constant geopotential surface, z = const,
and a similar subscript s means that the differentiation is
performed along the transformed coordinate surface, s =
const.
[3] In the present study we are not limited to the tradi-

tional s-coordinate,

z x; y;sð Þ ¼ h x; yð Þ � f sð Þ; �1 � s � 0; ð1:2Þ

where h(x, y) is oceanic bottom depth, and f (s) is a mo-
notonic mapping function independent of horizontal co-
ordinates that controls vertical-coordinate (hence grid)
stretching. Instead we assume that the three-dimensional
mapping function z = Z(x, y, s, t) is both monotonic (i.e., @Z/
@s > 0) and nonseparable, while usually
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Moreover, it is assumed that (1.1) may be stiff in the sense
that
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which indicates that special precautions need to be taken to
avoid loss of accuracy (We will use the terminology of s-
coordinate and s-modeling throughout this paper in a broad
sense referring to the whole class of models with a
nonaligned vertical coordinate).
[4] P is computed from the hydrostatic equation,

P x; y; zð Þ ¼ g

Zz
z

r x; y; z0ð Þdz0; ð1:5Þ

where r(x, y, z) is density; z is free-surface elevation; and g
is gravitational acceleration. One might be tempted to
replace (1.1) with
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and discretize it in a straightforward way using second-order
averaging and differencing operators. This was shown to be
prone to hydrostatic consistency error [cf. Mesinger and
Arakawa, 1976], caused mainly by the vertical averaging of
P and horizontal averaging of r in (1.6) in order to colocate
them with horizontal velocity components on a staggered
grid.
[5] Practical experience has resulted in essentially two

approaches to overcome this problem:
1. In each vertical column compute a set of values of

pressure Pkþ1
2
l naturally located halfway between the density

points on a staggered vertical grid; then for each two

neighboring columns, interpolate this P field to an appro-
priate common geopotential level; and then subtract the
interpolated values. Note, that after computation of P, the
density field rk does not participate in any further
computation. Obviously, in this approach the two terms in
(1.1) become inseparable. The different methods of this
family may vary in details of the choice of the common level
as well as interpolation technique, which is linear in most
cases [Janjic, 1977; Arakawa and Suarez, 1983; Lin, 1997]
or parabolic [Michailovich and Janjic, 1986]. Overall, the
overwhelming majority of atmospheric models use schemes
belonging to this class.
2. Following Blumberg and Mellor [1987] and Song

[1998], equations (1.1)–(1.5) are first transformed into
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where the expression in square brackets is similar to (1.1),
except that P is replaced with r. Equation (1.7) is then
discretized in a manner similar to that described above,
except that now vertical integration becomes the second step
rather than the first and P never appears explicitly in the
model. Because of the form of (1.7), these methods are often
referred as density-Jacobian, opposite to the pressure-
Jacobian family described above. The PGF schemes in two
commonly used terrain-following oceanic models (POM and
SCRUM) belong to this class (POM—Princeton Ocean
Model [Blumberg and Mellor, 1987]; SCRUM—S-Coordi-
nate Rutgers UniversityModel [Song and Haidvogel, 1994]).

[6] Song [1998] and Song and Wright [1998], argue that a
density-Jacobian method is inherently more accurate than a
pressure-Jacobian. Indeed, it is easy to see that, if the basic
second-order approximations (2-point differencing, interpo-
lation and trapezoidal integration) are used and if r is a
linear function of z, then the error of a density-Jacobian
method vanishes identically, while a linear r corresponds to
a quadratic P; therefore, discretizations based on a linear fit
for P [cf. Janjic, 1977, 1998; Lin, 1997] are not able to
capture this correctly resulting in hydrostatic error for this
particular profile. On the other hand, Lin [1997], argues that
it is advantageous to discretize PGF using a finite-volume
method. An attractive feature of this approach is that the
discretized PGF naturally appears in flux-divergent form,
which makes the proof of momentum and bottom-torque
consistency [cf. Arakawa and Suarez, 1983; Song and
Wright, 1998] simple. There is no obvious way to cast a
density-Jacobian scheme into the form of a difference of P
fluxes. This conflict between accuracy and conservation
properties of s-coordinate PGF schemes is not unnoticed in
the literature [e.g., Beckmann and Haidvogel, 1993; Song
and Wright, 1998]. It is also not surprising that oceanic
models tend to use density-Jacobian, while atmospheric
models use pressure-Jacobian. In comparison with the
atmosphere, the ocean is often more strongly stratified,
and the stratification is much more spatially variable: it is
not unusual to see a change of Brunt-Väisäla frequency by
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two orders of magnitude throughout a vertical column.
While most of the vertical density gradient in atmospheric
models is due to the compressibility effect, which may be
absorbed by special mapping techniques as well as by the
choice of vertical coordinate system (e.g., pressure instead
of geopotential [Arakawa and Suarez, 1983]), the relative
complexity of the equation of state for seawater makes such
procedures much harder in oceanic models, shifting the
priority toward an accurate representation of r(z) profiles
and a preference for the density-Jacobian.
[7] The high-order PGF schemes available to date follow

the path of straightforward discretization of (1.6) using a
spectral method in the vertical direction in combination with
either conventional or compact forth-order finite differences
and interpolations in the horizontal [McCalpin, 1994] or
spectral in combination with compact differencing up to
sixth-order accuracy [Chu and Fan, 1997, 1998]. The
approach relies exclusively on the smallness of the trunca-
tion errors of the elementary discretizations (computation of
the first derivative and midpoint interpolation), which is
justifiable only when the density field is smooth on the grid
scale. This is reasonably successful for idealized test prob-
lems, but practically useless for real-world simulations
where fields are not smooth on affordable grids. A com-
prehensive comparison of performance of schemes available
to date may be found in the work of Kliem and Pietrzak
[1999] for various test problems. Although one might argue,
that the analytical density profiles used in this reference are
discontinuous in the first derivatives, and therefore the
posedness of the problem is prejudicial against high-order
methods, their inherent nonrobustness is consistent with the
more general experience in realistic basin-scale simulations,
resulting in the fact that, to our best knowledge, to date none
of such simulations were performed using PGF scheme of
higher than the basic second-order accuracy.
[8] In the present study we describe the symmetry proper-

ties of the second-order density-Jacobian scheme and ana-
lyze sources of numerical errors. We then seek a high-order
accuracy extension to this method which retains most of the
symmetries and is both accurate and robust in situations
where r changes sharply from one grid point to another with
nonuniformly stretched grids. The methodology we employ
is based on the reconstruction of both r and z as continuous
functions of the transformed coordinates, which are then
analytically integrated along the contours bounding the grid
cells surrounding the velocity components. Since, in this
approach, all steps after r reconstruction are exact (since r is
treated as a continuous analytical function), the resultant
algorithm can be equivalently reformulated in either Jaco-
bian (1.7) or s-coordinate primitive form (1.6) (reflecting the
fact that these two are equivalent at the level of continuous
equations), which in effect disproves the long-standing belief
that a Jacobian formulation is inherently more accurate.

2. Second-Order Density Jacobian

[9] The density-Jacobian discretization is based on a
continuous expression for the PGF,

�@P

@x

����
z

¼ �rsg
@z
@x

� g

Zz
z

J r; zð Þds; ð2:1Þ

where

J r; zð Þ ¼ @r
@x

����
s

@z

@s
� @r

@s

@z

@x

����
s

; ð2:2Þ

z is free-surface elevation, rs is density at the surface, and g
is acceleration of gravity. POM/SCRUM use the most
straightforward second-order accuracy method to approx-
imate (2.2),

��x�s J r; zð Þ ¼ 1

4
r1 þ r2 � r3 � r4ð Þ½ z2 � z1 þ z4 � z3ð Þ

� r2 � r1 þ r4 � r3ð Þ z1 þ z2 � z3 � z4ð Þ�; ð2:3Þ

where placement of values with indices 1, 2, 3, 4 is shown
in Figure 1 (Here we follow notation of Song [1998].
Equation (5) from Mellor et al. [1994] becomes equivalent
to (2.3) after it is recognized that zi,k = Hisk in their
notation.). Since (2.3) treats r and z in a symmetric way, it
has the property of antisymmetry,

J r; zð Þ ¼ �J z; rð Þ; ð2:4Þ

and, obviously, it vanishes identically if r is a linear function
of z.
[10] This discretization can be rewritten in four algebrai-

cally equivalent forms:

1. ‘‘Diagonal’’ Jacobian:

��x�s J r; zð Þ ¼ 1

2
r2 � r3ð Þ z4 � z1ð Þ½ þ r1 � r2ð Þ z2 � z3ð Þ�;

ð2:5Þ

2. Horizontal (along-geopotential) differencing of r
linearly interpolated or extrapolated within each vertical
column to a common level z*:

��x�s J r; zð Þ ¼ A rL* � rR*

� �
; ð2:6Þ

Figure 1. An elementary computational stencil of POM
density Jacobian.
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where

A ¼ �x
z2 � z1 þ z4 � z3

2
ð2:7Þ

is the area of trapezoidal element (z1, z3, z4, z2),

rL*¼
r1 z2 � z*
� �

þ r2 z* � z1
� �

z2 � z1
rR*¼

r3 z4 � z*
� �

þ r4 z* � z3
� �

z4 � z3
;

and

z* ¼ z4z2 � z3z1

z4 � z3 þ z2 � z1
; ð2:8Þ

which coincides with the level of intersection of diagonals
of trapezoidal element (Figure 1). This choice of z* also has
the property,

z* � 1
2
z1 þ z2ð Þ

z2 � z1
¼

1
2
z3 þ z4ð Þ � z*
z4 � z3

; ð2:9Þ

which implies that offsets from midlevel to z* are
proportional to grid-box height in each vertical column of
r locations. The possibility to rewrite (2.3) into (2.6)–(2.8)
indicates that, unlike what Mellor et al. [1994, 1998] and
Song [1998] stated, Jacobian formulation by itself does not
offer any relief from violation of hydrostatic consistency
condition [Haney, 1991] when

rx ¼
z4 þ z3 � z2 � z1

z4 � z3 þ z2 � z1
> 1 ð2:10Þ

becomes greater than one and vertical interpolation of r
turns into extrapolation. However, this choice of z* delays
this moment as much as possible among all possible
schemes using the stencil shown in Figure 1, since
proportionality (2.9) makes the transition from interpolation
to extrapolation occur at the same time for both left and
right vertical columns at r locations. (Any choice of z*
other than (2.8) would cause the transition to occur earlier
at one end.) Note that violation of the hydrostatic
consistency criterion (2.10) does not mean immediate
hydrostatic instability because after vertical integration of
J (r, z) is performed, the overall PGF scheme retains
positive definiteness in sense that the addition of a positive
r perturbation at any point on one side and above the
velocity point at which the PGF is evaluated always causes
an increment in PGF directed away from that side, as it
should be; instead it merely degrades the accuracy of the
scheme. Another consequence of (2.9) is the effect of
cancellation of hydrostatic error if either z2 = z3 or z1 = z4
[cf. Mellor et al., 1998]; in this case, z* is equal to common
value of z2 = z3 or z1 = z4, and r interpolation to z*
becomes exact. This property is also obvious from the
diagonal form (2.5).
3. ‘‘Pseudo-flux’’ form:

��x�s J r; zð Þ ¼ F21 þ F42 � F43 � F31; ð2:11Þ

where

F21 ¼
r1 þ r2

2
z2 � z1ð Þ

F42 ¼
r2 þ r4

2
z4 � z2ð Þ

F43 ¼
r3 þ r4

2
z4 � z3ð Þ

F31 ¼
r1 þ r3

2
z3 � z1ð Þ;

ð2:12Þ

are called fluxes because they are shared by two grid
elements adjacent either in horizontal or vertical direction.
This form is not equivalent to a true finite-volume flux
form [Lin, 1997], where the net force applied to a control
volume element around velocity point is expressed as sum
of P fluxes applied to all facets of the element; e.g., (2.11)–
(2.12) does not have property that summation of PGFs
applied to adjacent velocity elements can be expressed in
terms of integral along the outer surface enclosing all
elements included into summation. The rewriting of (2.3)
into (2.11) is a discrete analog of Green’s theorem,ZZ

A

J r; zð Þ dx ds ¼
I

r k; lð Þdl; ð2:13Þ

or, more simply, ZZ
A

@r
@x
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z

dx dz ¼
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r dz; ð2:14Þ

where k is the unit vector pointing in positive z-direction
(upward) and l is unit vector along the contour of trapezoidal
element. Equations (2.11)–(2.12) can be viewed as trape-
zoidal rule approximation to (2.14), which leads to graphical
explanation of leading-order hydrostatic error second-order
Jacobian resulting from terms associated with second vertical
derivative of r (Figure 2).
4. s-Coordinate primitive form:
Since F21 and F43 involve points only within their

respective vertical columns and, since during vertical sum-
mation of J (r, z) cancellations occur such that only the first
and the last vertical fluxes are present in the resultant
expression for PGF, one can rearrange the order of operation
of vertical integration and horizontal differencing and
evaluate P at all ri,k locations first, using

Pi;k ¼ Pi;N þ g
XN�1

k 0¼k

ri;k 0 þ ri;k0þ1

2
zi;k0þ1 � zi;k0
� �

; ð2:15Þ

then

� @P
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¼ Pi;k � Piþ1;k

�x
� g

ri;k þ riþ1;k

2
� ziþ1;k � zi;k

�x
: ð2:16Þ

This shows that density Jacobian is just a special form of
straightforward discretization of s-coordinate PGF that
naturally appears to be in the form of a P derivative along a
s surface and compensating hydrostatic term, which is the
product of r and coordinate slope (A B-grid version of
(2.15)–(2.16) appears in the work ofGerdes [1993], which in
effect brings that study into the framework discussed here.).
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In (2.15) Pi,N is pressure in the middle of the topmost grid
box, where a special formula must be used (similarly, PGF at
the topmost grid box cannot be computed via regular
Jacobian scheme because this would require values of r
above or at the surface that are not available). POM/SCRUM
simply use the nearest available value ri,N,

Pi;N ¼ gri;N zi � zi;N
� �

; ð2:17Þ

which is equivalent to the assumption that r is vertically
uniform within the topmost grid box. In terms of the resultant
PGF at the topmost grid box, this assumption neglects the
hydrostatic compensation term, effectively neglecting the s-
coordinate slope within the topmost grid box. A more
accurate treatment of the topmost grid box is given by (A21)
in Appendix A.
Representation of (2.3) in pseudo-flux form (2.11)–(2.12)

and in s-coordinate primitive form opens the possibility to
proof that a model which uses this PGF discretization and a
second-order centered advection scheme for the density
equation is energetically consistent in the sense that it
conserves exactly the sum of discrete kinetic and potential
energy [Song and Wright, 1998]. This property is often
invoked as useful for long-term stability of integration. The
practical usefulness of this property, as well as the possibility
to extend its proof to higher orders of accuracy, will is
discussed later.

3. Weighted Jacobian of Song [1998]

[11] Song [1998] proposes replacing equal-weight vertical
averages in (2.3) with weighting according to

��x�s J r; zð Þ ¼ 1

2
ar1 þ br2 � ar3 � br4ð Þ½ z2 � z1 þ z4 � z3ð Þ

� r2 � r1 þ r4 � r3ð Þ az1 þ bz2 � az3 � bz4ð Þ�; ð3:1Þ

where a and b 
 1 � a are chosen from the condition that
the scheme is able to produce exact dynamic PGF at the
location

zC ¼ z1 þ z2 þ z3 þ z4

4
ð3:2Þ

if r is a bi-linear function of x and z. This choice results in
a ¼ 1

2
� �; b ¼ 1

2
þ �, where

� ¼ z4 þ z3 � z2 � z1ð Þ z4 � z3 � z2 þ z1ð Þ
8 z4 � z3ð Þ z2 � z1ð Þ ; ð3:3Þ

which is (2.15) from Song [1998], rewritten in our notation.
[12] The weighting (3.1) destroys the antisymmetry prop-

erty (2.4) of the original Jacobian, as well as the possibility
to rewrite it into diagonal, pseudo-flux, and sigma-coordi-
nate primitive forms. Hence, it is no longer possible to
prove energetic consistency in a manner similar to Song and
Wright [1998]. Also lost is the property of hydrostatic error
cancellation when z2 = z3 or z1 = z4. However, the property
of zero error if r is linear function of z is maintained.
Examination of (3.3) reveals that the scheme is equivalent to
(2.6)–(2.8), when z* is replaced with zC, the derivation of
which is evident from Figure 3.
[13] In retrospect one can conclude that the original

equally weighted Jacobian evaluates the horizontal (along-
geopotential) r gradient exactly at level z*, which is the level
of intersection of diagonals, if r is a bilinear function of x and
z. Therefore, contrary to the claim of Song [1998], weighted
Jacobian does not offer any theoretical advantage over the
standard Jacobian in the case where a more general r
perturbation is present; instead, these two schemes corre-
spond to just two ad hoc choices for the common level z* (or

Figure 3. Explanation of Weighted Jacobian of Song
[1998]: at each side density is interpolated or extrapolated
linearly toward common level zC, which is chosen to be at
the midlevel, after which the interpolated values are
differenced horizontally.

Figure 2. Explanation of appearance of hydrostatic error
of second-order density-Jacobian scheme: equations (2.12)
assume that density is distributed linearly along each edge
of the trapezoidal element shown on the left. If, in contrast,
density is a quadratic function of z shown as smooth curve
on the right, the trapezoidal segments do not coincide with
the true profile leading to a noncancellation error which
appears as the difference between dark and light shaded
areas, which is the difference of areas left from the solid and
dashed thick lines respectively. (Note that error cancels out
if z2 = z3, despite the fact that there are still errors of integral
approximation along each side taken separately.)
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zC) to which r is interpolated before horizontal differencing,
and they both are exact in special cases described above.

4. Sensitivity to Choice of z*: Seamount Test
Problem

[14] One might guess that the difference between stand-
ard and weighted Jacobians is minor, because it is nothing
more than a particular choice of the common level z*, and
neither one has obvious advantage. It turns out that this is
not the case, and the choice of z* produces a significant
effect in practice. To illustrate this we set up a seamount test
problem and run test cases corresponding to different
choices of common level according to

zg ¼ 1� gð Þz* þ gzC ; ð4:1Þ

where g = {0, 0.1, 0.2, . . . 0.9, 1}; if g = 0, the scheme is
equivalent to the original Jacobian, while if g = 1, it
becomes the weighted Jacobian. The seamount problem set
up is similar to that of Beckmann and Haidvogel [1993],
Chu and Fan [1997], Mellor et al. [1998], and Song [1998],
with a few exceptions specified below.
[15] The bottom topography is defined as

h x; yð Þ ¼ D0 � H exp
x2 þ y2

L2

� �
ð4:2Þ

where D0 = 5000 m is the depth far away from the seamount;
H = 4500 m and L = 40 km are the seamount height and
width, respectively; and the model domain is 320 � 320 km
wide and has horizontal boundary conditions of periodicity
in x and walls in y. An f-plane approximation is made with
Coriolis frequency 10�4s�1. The uniform horizontal grid
resolution for the base case is 48 � 48, implying 6.7 km
grid spacing. The vertical resolution for the base case is 11
nonuniformly spaced s-levels generated by the transforma-
tion [Song and Haidvogel, 1994],

Z x; y;sð Þ ¼ shmin þ C sð Þ h x; yð Þ � hminð Þ; ð4:3Þ

where

C sð Þ ¼ 1� qbð Þ sinh qsð Þ
sinh qð Þ þ 1

2
qb

tanh q sþ 1=2ð Þ½ �
tanh q=2ð Þ � 1

� �
;

�1 � s � 0 is discretized uniformly, and q and qb are two
nondimensional parameters controlling the vertical coordi-
nate stretching. In all calculations performed here we use
values q = 3, qb = 0 and hmin = 500 m, which results in
violation of hydrostatic consistency (2.10) with a max-
imum value

rmax ¼ 2:4 ð4:4Þ

(this is comparable to, but somewhat smaller than that
used by Song [1998] and Mellor et al. [1998]). A vertical
cross section of the grid and distributions of rx and
geometric parameter defined by (3.3) are shown in Figure
4. Since is well correlated with rx, it is naturally expected
that method of Song [1998] deviates most from the
original Jacobian where rx is the largest. Figure 4 also

shows that in such places biases from equal weighting in
(3.1) may be significant, especially where vertical inter-
polation turns into extrapolation. To examine further this
correlation we note that

�

rx
¼ z4 � z3ð Þ2� z2 � z1ð Þ2

8 z4 � z3ð Þ z2 � z1ð Þ ¼ �z2R ��z2L
8�zR�zL

; ð4:5Þ

where �zL and �zR are grid-box heights on the left and
right sides of the trapezoidal element. In the case of a
separable s-coordinate, these two are proportional to total
depth D, hence

�

rx
¼ D2

R � D2
L

8DRDL

� 1

2
� DR � DL

DR þ DL

¼ 1

2
rD; ð4:6Þ

where the approximation is valid as long as DR � DL �
DR + DL. The expression on the right is recognized as the
topographic-stiffness ratio [Beckmann and Haidvogel,
1993] which relates change in topography per horizontal
grid point to locally averaged depth. Since this ratio
proportionally decreases with increase of horizontal
resolution and rx stays the same as long as refinements
of vertical and horizontal grids are proportional, one can
see that decreases with grid refinement, which means that
coefficients of weighted Jacobian asymptotically converge
to that of the original one. This also means that in the
seamount experiments, extreme values of � occur on the
coarsest grid and decline with refinement.

Figure 4. Vertical cross section of grid for the seamount
test problem. On the left half of the plot, elements where
hydrostatic consistency criterion is violated are shaded
according to their value of rx defined by (2.10), and color
scheme below (with corresponding values shown above
color bar). Shading on the right half of the plot shows
values of geometric parameter � defined by (3.3).
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[16] The initial r profile is defined by

r zð Þ ¼ 3e z=d; �h x; yð Þ � z � 0; ð4:7Þ

where, as in the more oceanographically realistic study of
Beckmann and Haidvogel [1997], we chose d = 500 m
which results in twice as steeper stratification of r in
comparison with previous idealized studies cited above.
Equation (4.7) results in a Burger number,

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh ��r=r

p
fL

� 9:81 � 5� 103 � 3=103ð Þ1=2

10�4 � 40� 103
� 3:1; ð4:8Þ

which is a typical midrange value among those used by
Beckmann and Haidvogel [1993] and Mellor et al. [1998].
[17] A horizontal Laplacian viscosity is set to 50 m2/s in

all calculations presented here. This value is chosen to be
comparable with that used in realistic simulations at similar
resolution, and it is 40 times smaller that reported by Mellor
et al. [1998], and 10 times smaller than by Song [1998].
Vertical viscosity, and horizontal and vertical diffusivities
for tracers are all set to zero.
[18] Tracer advection (here for r) is discretized using

monotonized, fourth-order, centered scheme, i.e., in order
to compute advective flux at the velocity component loca-
tion uiþ1

2
;j;k , we use an interpolation scheme,

riþ1
2
;j;k ¼

ri;j;k þ riþ1;j;k

2
�
driþ1;j;k � dri;j;k

6
; ð4:9Þ

where dri,j,k is mean slope defined at the location of ri,j,k
using a harmonic average,

dri;j;k ¼
2�riþ1

2
;j;k�ri�1

2
;j;k

�riþ1
2
;j;k þ�ri�1

2
;j;k

; ð4:10Þ

if �riþ1
2
;j;k and �ri�1

2
;j;k have the same sign and

dri;j;k ¼ 0; ð4:11Þ

if the signs are different, and

�riþ1
2
;j;k ¼ riþ1;j;k � ri;j;k ð4:12Þ

are elementary differences of r. Obviously, if (4.10) is
replaced with algebraic mean of �ri�1

2
;j;k and �riþ1

2
;j;k , then

(4.9) becomes equivalent to a more familiar fourth-order
interpolation scheme,

riþ1
2
;j;k ¼

�ri�1;j;k þ 7ri;j;k þ 7riþ1;j;k � riþ2;j;k

12
: ð4:13Þ

The use of (4.10) guarantees that the averaged value of
slope never exceeds twice the smaller of the two adjacent
elementary differences. It also makes the interpolated value
�riþ1

2
;j;k be always between ri,j,k and ri+1,j,k regardless of

sharp changes in the slope of the interpolated field [cf. van
Leer, 1977]. In places where the advected field ri,j,k is
sufficiently smooth, these consecutive differences are

comparable, and the difference between algebraic and
harmonic means disappears, making the scheme behave
like a fourth-order accurate scheme. In the next section we
will discuss the effect of using harmonic averaging in more
detail. The r advection used here is nondissipative, since
neither explicit diffusion nor an upstream-biased advection
scheme is used.
[19] The present setup differs substantially from all sim-

ilar previous studies in two aspects:
1. We do not subtract any background r(z) profile when

computing PGF; rather the full in situ r is used.
2. Our primary criterion in evaluating the results is not the

initial hydrostatic error, but rather long-term behavior of the
solution. Therefore we carry out all our test runs to relatively
large time of 6 months, which is sufficient to ensure that
there is no further error growth (typically the duration of the
test runs was 5, 10, 20 and 30 days in the previous studies
cited here).
[20] In our seamount experiments we compute time

histories of the following quantities:
kinetic energy,

Ekin ¼
1

2V
X
i;j;k

�V iþ1
2
;j;ku

2
iþ1

2
;j;k

h
þ�V i;jþ1

2
;kv

2
i;jþ1

2
;k

i
; ð4:14Þ

barotropic kinetic energy fraction,

fbar ¼ Ebar=Ekin; ð4:15Þ

where Ebar is barotropic kinetic energy,

Ebar ¼
1

2V
X
i;j

�V iþ1
2
;j�u

2
iþ1

2
;j

h
þ�V i;jþ1

2
�v2
i;jþ1

2

i
; ð4:16Þ

maximum velocity,

Vmax ¼ max uiþ1
2
;j;k ; vi;jþ1

2
; k

n o
ð4:17Þ

maximum barotropic velocity,

hV imax ¼ max �uiþ1
2
;j;�vi;jþ1

2

n o
; ð4:18Þ

maximum baroclinic velocity,

V � Vh ij jmax¼ max uiþ1
2
;j;k � �uiþ1

2
;j;

n
vi;jþ1

2
;k � �vi;jþ1

2

o
: ð4:19Þ

(In (4.14)–(4.19) above �V i;j;k ;�V iþ1
2
;j;k ; and �V i; jþ1

2
;k are

control volumes of r and velocity component grid boxes,

V ¼
X
i;j;k

�V i;j;k ð4:20Þ

is total volume of the domain,

uiþ1
2
;j ¼

1

�V iþ1
2
;j

XN
k¼1

�V iþ1
2
;j;kuiþ1

2
;j;k

�vi;jþ1
2
¼ 1

�V i;jþ1
2

XN
k¼1

�V i;jþ1
2;k
vi;jþ1

2;k

ð4:21Þ
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are barotropic velocity components, and

�V iþ1
2
;j ¼

XN
k¼1

�V iþ1
2
;j;k �V i;jþ1

2
¼
XN
k¼1

�V i;jþ1
2
;k ð4:22Þ

are barotropic control volumes.)
[21] From our experiments we find four of these quanti-

ties, Ekin, fbar, Vmax, and jV �hV ijmax, as the most informa-
tive, Figure 5 Behavior of the remaining Ebar and hV imax

qualitatively follow Ekin and Vmax, hence we chose not to

report them. We might also report on the baroclinic part of
kinetic energy,

Ebcn ¼
1

2V
X
i;j;k

�V iþ1
2
;j;k uiþ1

2
;j;k � �uiþ1

2
;j

� �2�
þ�V i;jþ1

2
;k vi;jþ1

2
;k � �vi;jþ1

2

� �2�
; ð4:23Þ

but it is redundant with (4.14) and (4.16), since Ebcn ¼
Ekin � Ebar.

Figure 5. Time histories of net kinetic energy Ekin; fraction of barotropic kinetic energy Ebar/Ekin;
maximum velocity Vmax; and maximum baroclinic velocity jV � hVijmax for a coarse-resolution
Seamount test problem on a (48 � 48 � 11 grid) for different values of weighting parameter g. Solid lines
are for 0 � g � 0.5, dashed are for g > 0.5. Bold lines are for g = 0 (POM Jacobian), g = 1 (weighted
Jacobian of Song [1998]) and g = 0.5 (‘‘optimum’’ weighting). Note that baroclinic velocity error is
relatively insensitive to the choice of g, and after long-term integration the error becomes predominantly
barotropic.
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[22] Since ideally the fluid should remain at rest, values
above zero should be interpreted as due to numerical errors,
Figure 5 leads to the following observations:
1. The overall level of error after long time exceeds by at

least one order of magnitude the initial hydrostatic PGF
error (measured by holding the r field at its initial state and
then running the model in a so-called diagnostic regime,
resulting in velocity field geostrophically balanced with
spurious PGF).
2. The long-term error is predominantly barotropic, with

90% of total kinetic energy. Compared to barotropic energy,
the energy of the baroclinic component (not shown) and
maximum baroclinic velocity error show lesser sensitivity to
the choice of z*. Furthermore, evolution of baroclinic error
shows evidence of advective compensation [Mellor et al.,
1998], so that after initial growth it reaches a maximum and
then relaxes to a smaller level. No such compensation
occurs for the barotropic error measures.
3. The results show a major sensitivity to the choice of

z*, with total velocity error differences among the cases as
much as factor of 4 and error kinetic energy one order of
magnitude.
4. g = 0.5, which corresponds to the ‘‘half-and-half’’

blend of standard and weighted Jacobians, clearly shows the
optimum levels of error by all measures.
[23] The first remark partially explains the fact that many

attempts to introduce better PGF schemes failed to produce
a practically useful result: most of the effort was spent in
trying to improve accuracy of hydrostatic balance, while the
error level in realistic simulations is controlled primarily by
the behavior of the whole model, including not only PGF,
but also tracer advection scheme, forms of diffusivity, and
viscosity operators.
[24] This might suggest that the solution to the PGF error

dilemma lies in the consideration of energetic consistency,
which links the design of PGF discretization with the form
of advection scheme for tracers [Mesinger and Arakawa,
1976; Janjic, 1977; Arakawa and Suarez, 1983; Michailo-
vich and Janjic, 1986; Song and Wright, 1998] (Song and
Wright [1998], contains proof of energetic, momentum, and
bottom torque consistency for the standard Jacobian only.
No such proof is available for the weighted Jacobian.). This
consideration appeals to the fact that in a stratified fluid r is
redistributed predominantly by vertical velocity, and since
vertical velocity is obtained from divergence of horizontal
velocities, which in turn is controlled by the horizontal PGF,
failure to obtain cancellation of potential and kinetic energy
conversion terms (the ‘‘omega-alpha’’ terms [Janjic, 1977])
for the discretized of r and momentum equations may cause
computational instability (In the case of linearized momen-
tum equations, the only mechanism for changing r is due to
interaction of background stratification and vertical velocity.
This is often the dominant mechanism in the general case
too.). As the result, the discrete computation of P from r is
linked with vertical interpolation of r to compute vertical
advective fluxes. This relation exists in any model, includ-
ing those with a z-coordinate. However, in addition to that,
due to coordinate slopes in a s-model, there is a similar link
between midpoint interpolations of r in along-s directions
in PGF and horizontal advection schemes (cf. (A.13) in
Appendix A). However, experience to date shows that in
practice an energetically consistent pair of PGF and advec-

tion schemes can be easily defeated in terms of error level
by an energetically nonconsistent pair (e.g., Beckmann and
Haidvogel [1993], as well as experience reported here).
Another difficulty here is that analytical proof of energetic
consistency is possible only for relatively simple schemes
for advection and PGF, and for idealized linear Equation of
State of seawater.
[25] The existence of g corresponding to the minimal

error and optimality of the half-and-half blend is very
striking, especially after similar behavior was observed in
different model configurations (e.g., Figure 6, where grid
resolution is doubled in comparison with Figure 5, and g =
0.5 still maintains its one-order-of-magnitude edge over g =
0 or 1). After discovering this phenomenon, practical
oceanic modelers did not waste any time in search for its
explanation before putting it to use, making it by far the
most heavily used PGF scheme in the SCRUM/ROMS
community (ROMS—Regional Oceanic Modeling Sys-
tem.). Yet, it has to be emphasized that this choice has no
mathematical foundation and is purely empirical in its
nature, for example there is no reason to expect that g =
0.5 will be universally optimal for any combination of
stratification, bottom topography and grid resolution.

5. A Density-Jacobian With Monotonized Cubic
Polynomial Fits

[26] Sensitivity to the choice of z* as well as consider-
ation of alternative forms of density Jacobian lead us to a
conclusion that all means to solve the s-coordinate PGF
problem, while staying within the second-order accurate
methods, have been exhausted without producing a decisive
result. In this section we seek an extension of the Jacobian
scheme to higher orders of accuracy. As shown before, the

Figure 6. Time history of total energy Ekin for Seamount
test problem on 96 � 96 � 22 grid (all conditions are the
same as in Figure 5, except the grid resolution).
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original second-order Jacobian retains a high degree of
symmetry and can be equivalently represented in several
different forms. Since it is unlikely that a high-order scheme
would retain all these symmetries, different versions may be
derived depending which second-order prototype is used as
the starting point.
[27] We find that a particularly attractive path is to start

with the pseudo-flux form (2.11) stemming from Green’s
theorem (2.14). The proposed approach is based on cubic
polynomial reconstruction for z and r and subsequent
analytical integration. Therefore, our goal is to compute

�
ZZ
A

@r
@x

����
z

dxdz; ð5:1Þ

where A is the shaded area in Figure 7. This problem is
equivalent to computation of the contour integral,

�
I

rdz ¼ FXi;kþ1
2
þ FCiþ1

2
;kþ1 � FXiþ1;kþ1

2
� FCiþ1

2
;k ; ð5:2Þ

which consists of four segments, two along the side facets,

FXi;kþ1
2
¼
Zsi;kþ1

si;k

r
@z

@s
ds; ð5:3Þ

and two along the upper and lower facets,

FCiþ1
2
;k ¼

Zxiþ1;k

xi;k

r
@z

@x
dx: ð5:4Þ

In both cases integrals are understood as line integrals and
(x, s) are the transformed curvilinear coordinates onto which
the physical coordinates (x, z) are mapped. In the case where
both r and z are approximated by segments of linear
functions, analytical integration of (5.3)–(5.4) leads to
(2.11).
[28] The next possibility is to use 4-point cubic Lagrange

polynomial fit for r, which passes exactly through points
ri,k�1, ri,k, ri,k+1, and ri,k+2 (z is treated similarly), and then
integrate analytically between the points ri,k and ri,k+1:

f xð Þ ¼ f 0ð Þ þ f 1ð Þxþ f 2ð Þ x
2

2
þ f 3ð Þ x

3

6
; ð5:5Þ

where

f 0ð Þ ¼ 9

16
f1
2
þ f�1

2

� �
� 1

16
f3
2
þ f�3

2

� �
f 1ð Þ ¼ 9

8
f1
2
� f�1

2

� �
� 1

24
f3
2
� f�3

2

� �
f 2ð Þ ¼ 1

2
f3
2
� f1

2
� f�1

2
þ f�3

2

� �
f 3ð Þ ¼ f3

2
� 3f1

2
þ 3f�1

2
� f�3

2
:

ð5:6Þ

Here we introduce a local fractional coordinate
x 2 � 1

2
;þ 1

2

� �
for the distance between the points. The

coefficients (5.6) coincide with fourth-order approximations
for midpoint value f (0) and first derivative f (1) and second-
order approximations for the second f (2) and third
derivatives f (3); this is sufficient to approximate the integral,

Zþ1
2

�1
2

f xð Þdx ¼ f 0ð Þ � 1

24
f 2ð Þ; ð5:7Þ

with fourth order of accuracy. An obvious drawback of this
approach is that it is not guaranteed that the right-side limit
of the first derivative of the polynomial segment used
between points k and k + 1 matches the left-side limit of
segment between k + 1 and k + 2 (since these polynomials
are obtained from different quartets of points). We therefore
abandon the requirement that the cubic polynomial fit pass
exactly through extreme points of its stencil, and instead
demand that derivatives at x ¼ � 1

2
are equal to prescribed

values d�1
2
(whose approximation will be separately

specified). This leads to an alternative set of coefficients
for (5.5),

f 0ð Þ ¼
f1
2
þ f�1

2

2
�
d1
2
� d�1

2

8

f 1ð Þ ¼ 3
2

f1
2
� f�1

2

� �
�
d1
2
þ d�1

2

4

f 2ð Þ ¼ d1
2
� d�1

2

f 3ð Þ ¼ 6 d1
2
þ d�1

2

� �
� 12 f1

2
� f�1

2

� �
:

ð5:8Þ

It can be verified that (5.5)–(5.8) guarantees that

f � 1

2

� �
¼ fk�1

2
and

@f

@x

����
x¼�1

2

¼ d�1
2
: ð5:9Þ

Figure 7. Stencil for pressure-gradient scheme with cubic
polynomial fits. Bullets indicate r and z points involved in
computation of integral of @r

@x jz over shaded area. Because
cubic interpolation is used to reconstruct coordinate lines,
this appears to be a smooth version of Figure 1.
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[29] Substitution of polynomial fits (5.5) for both r(x) and
z(x) into integrals (5.3)–(5.4) and integration yields

Zþ1
2

�1
2

r
@z

@x
dx ¼

Zþ1
2

�1
2

r 0ð Þ þ r 1ð Þxþ r 2ð Þ x
2

2

�
þr 3ð Þ x

3

6

�

� z 1ð Þ þ z 2ð Þxþ z 3ð Þ
h x2

2

�
dx

¼ r 0ð Þz 1ð Þ þ 1

24
r 0ð Þz 3ð Þ þ 1

24
r 2ð Þz 1ð Þ þ 1

12
r 1ð Þz 2ð Þ

þ 1

320
r 2ð Þz 3ð Þ þ 1

480
r 3ð Þz 2ð Þ; ð5:10Þ

which can be used in conjunction with either (5.6) or (5.8).
[30] After substitution of expressions for r(0) . . . r(3) and

z(1) . . . z(3) via (5.8), (5.10) becomes

Zþ1
2

�1
2

r
@z

@x
dx ¼

rþ1
2
þ r�1

2

2
zþ1

2
� z�1

2

� �
� 1

10

�
dþ1

2
� d�1

2

� ��
zþ1

2
� z�1

2
�
dzþ1

2
þ dz�1

2

12

�
� dzþ1

2

�
�dz�1

2

��
rþ1

2
� r�1

2
:�

dþ1
2
þ d�1

2

12

��
; ð5:11Þ

where

d�1
2
¼ @r

@x

����
x¼�1

2

and dz�1
2
¼ @z

@x

����
x¼�1

2

: ð5:12Þ

The terms in curly brackets in (5.11) can be interpreted as
high-order correction to the trapezoidal integration rule used
in (2.11). The remarkable antisymmetry of these terms
stems from the property

Zþ1
2

�1
2

r
@z

@x
dx ¼ rþ1

2
zþ1

2
� r�1

2
z�1

2
�
Zþ1

2

�1
2

z
@r
@x

dx; ð5:13Þ

leading to exact antisymmetry of the discrete Jacobian,

J r; zð Þ ¼ �J z; rð Þ; ð5:14Þ

now extended to potentially higher orders of accuracy.
[31] The formulation of the PGF algorithm (5.2), (5.3),

(5.4), and (5.11) is now complete, with the exception that
application of (5.11) requires an estimate of derivatives
d�1

2
and dz�1

2
. These can be computed, for example, from

the condition of continuity of the second derivatives using
cubic spline formalism, which leads to a tridiagonal problem

dj�1 þ 4dj þ djþ1 ¼ 3 fjþ1 � fj�1

� �
; ð5:15Þ

where j = 1, . . ., N is either horizontal or vertical grid index.
This results in a compact fourth-order interpolation, which is
generally more accurate than conventional finite difference
methods [McCalpin, 1994; Chu and Fan, 1997] as long as
the interpolated fields are sufficiently smooth on the grid,
but, as we will soon demonstrate, it is prone to oscillations

and is not robust if there are sudden changes in gradient of
the field from one grid interval to the next. In the simplest
case derivatives dþ1

2
are estimated as finite differences,

dþ1
2
¼

fþ3
2
� f�1

2

2
¼ �þ þ��

2
; ð5:16Þ

where

�� ¼ fþ1
2
� f�1

2
and �þ ¼ fþ3

2
� f�1

2
ð5:17Þ

are the elementary differences on the left and right sides
from point fþ1

2
: Substitution of (5.16) into (5.8) leads to the

same expressions for f (0) and f (2) as in (5.6), and
consequently the same integral approximation (5.7). How-
ever, f (1) and f (3) are different; moreover, f (1) in (5.8) using
(5.16) approximates the first derivative with only second-
order accuracy, while f (3) is off by a factor of 3 in
comparison with the corresponding value from (5.6).
Although the polynomial fit defined by (5.5)–(5.16) already
produces fourth-order accuracy, it has the disadvantage of
producing spurious oscillations if the grid values are not
smooth.
[32] If alternatively to (5.16) we define

dþ1
2
¼ 2

1

�þ þ 1

��

� ��
¼ 2�þ��

�þ þ�� ; ð5:18Þ

as long as �+ and �� have the same sign, and

dþ1
2
¼ 0; ð5:19Þ

if �+�� � 0, then it is guaranteed that both dþ1
2
and d�1

2

have the same sign as fþ1
2
� f�1

2
and

dþ1
2

��� ��� < 2 �min fþ1
2
� f�1

2

��� ���; fþ3
2
� fþ1

2

��� ���n o
d�1

2

��� ��� < 2 �min fþ1
2
� f�1

2

��� ���; f�1
2
� f�3

2

��� ���n o ð5:20Þ

i.e., at least no more than 2 fþ1
2
� f�1

2

��� ��� in both cases, which
is sufficient to prove that the first derivative of cubic
polynomial fit (5.5)–(5.8),

@f

@x
¼ f 1ð Þ þ f 2ð Þxþ f 3ð Þx2

2
ð5:21Þ

maintains its sign to be the same as fþ1
2
� f�1

2
throughout the

whole interval of x within its area of definition,

fþ1
2
� f�1

2

� � @f
@x

� 0 8x : � 1

2
� x � þ 1

2
: ð5:22Þ

In its turn, it guarantees that

f�1
2
� f xð Þ � fþ1

2

or

f�1
2
� f xð Þ � fþ1

2

9=;8x : � 1

2
� x � þ 1

2
; ð5:23Þ

regardless of the values f�3
2
and fþ3

2
at the extreme points of

the stencil.
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[33] Another advantage of (5.18) over (5.16) is its ability
to ‘‘absorb’’ nonuniformity of the grid without loss of
accuracy in a manner described by Treguier et al. [1996].
Suppose that discretized field {rk, k = 1, N} is defined at
locations {rk, k = 1, N }, such that �zkþ1

2

 zkþ1 � zk 6¼

�zk�1
2

 zk � zk�1: Then the second-order accurate approx-

imation for @r/@z at location k is

@r
@z

����
z¼zk

¼
�zk�1

2

rkþ1�rk
�z

kþ1
2

þ�zkþ1
2

rk�rk�1

�z
k�1

2

�zkþ1
2
þ�zk�1

2

; ð5:24Þ

which is derived by assuming a parabolic fit for r = r(z)
(such that it produces exact values of rk�1, rk and rk+1 in
their respective locations), analytically differentiating, and
substituting z = zk. Since

@r
@z

����
z¼zk

¼
@r=@sjs¼sk

@z=@sjs¼sk

; ð5:25Þ

(5.16) leads to

@r
@z

����
z¼zk

¼
rkþ1 � rk
� �

þ rk � rk�1ð Þ
�zkþ1

2
þ�zk�1

2

; ð5:26Þ

which is only first-order accurate because it evaluates the
derivative at the location (zk+1 + zk�1)/2 rather than the
desired zk. Similarly, (5.25) in conjunction with (5.18) leads
to

@r
@z

����
z¼zk

¼
�rkþ1

2
�rk�1

2
�zkþ1

2
þ�zk�1

2

� �
�rkþ1

2
þ�rk�1

2

� �
�zkþ1

2
�zk�1

2

; ð5:27Þ

where �zkþ1
2
and �rkþ1

2
¼ rkþ1 � rk are elementary differ-

ences of z and r respectively. For the purpose of analysis of
(5.27) we assume that field r = r(z) is locally represented as
the sum of linear background and small perturbation,

r zð Þ ¼ azþ r0 zð Þ; ð5:28Þ

and prove that under such conditions (5.27) agrees with
(5.24) within second-order accuracy.
[34] Substitution of (5.28) into (5.24) yields

@r
@z

����
z¼zk

¼ aþ
�zk�1

2
@r0

kþ1
2

þ�zkþ1
2
@r0

k�1
2

�zk�1
2
þ�zkþ1

2

; ð5:29Þ

where we have introduced

@r0
kþ1

2
¼

�r0
kþ1

2

�zkþ1
2

¼
r0kþ1 � r0k
�zkþ1

2

: ð5:30Þ

[35] Substitution of (5.28) into (5.27) yields

@r
@z

����
z¼zk

¼ aþ
�zkþ1

2
�r0

k�1
2

þ�zk�1
2
�r0

kþ1
2

�zkþ1
2
�zk�1

2

(
þ

�r0
kþ1

2

�r0
k�1

2

a�zkþ1
2
�zk�1

2

)

1þ
�r0

kþ1
2

þ�r0
k�1

2

a �zkþ1
2
þ�zk�1

2

� �
24 35;,

ð5:31Þ

so far without any approximation. Now we assume that the
second term in square brackets is much smaller than the
preceding 1 and apply a Taylor expansion,

1

1þ x
¼ 1� xþ x2 � . . . ; ð5:32Þ

retaining only linear terms with respect to �r0:

@r
@z

����
z¼zk

¼ aþ
�zkþ1

2
�r0

k�1
2

þ�zk�1
2
�r0

kþ1
2

�zkþ1
2
�k�1

2

�
�r0

kþ1
2

þ�r0
k�1

2

�zkþ1
2
þ�zk�1

2

þ O �r0

a�z

� �2
 !

¼ aþ @r0
k�1

2
þ @r0

kþ1
2
�
@r0

kþ1
2

�zkþ1
2
þ @r0

k�1
2

�zk�1
2

�zkþ1
2
þ�zk�1

2

þ O @r0

a

� �2
 !

; ð5:33Þ

which then can be easily transformed into (5.29). In its turn,
this verifies that harmonic averaging of elementary
differences (5.18) results in second-order accurate evalua-
tion of the first derivative on a nonuniform grid as long as
the approximated function is smooth in the sense that
change of its first derivative within two consecutive unequal
grid intervals is small relative to the derivative itself.
[36] Cubic spline (5.15), algebraic (5.16), and harmonic

(5.18) averaging require boundary conditions for the inter-
polated fields, since their respective formulas cannot be
applied near the boundaries directly. These boundary con-
ditions arise from the need to use an extended stencil (in
comparison with basic second-order schemes) and are
essentially artificial; this is a common problem for high-
order discretizations. In principle, these boundary condi-
tions can be avoided by shortening the stencil near the
boundary, which is equivalent to lowering the order of
accuracy there. Lateral boundaries present somewhat lesser
difficulty since one often applies Neumann (no-normal-
gradient) conditions to the elementary differences ri+1,j,k �
ri,j,k on the coast line, which are typically implemented via
an appropriate masking rules for a coast line of arbitrary
shape. These boundary conditions are physically justifiable
even in a stratified case, if it is implied that the correspond-
ing differences zi+1,j,k � zi,j,k also vanish, hence differencing
of r is horizontal, and no-normal-gradient is physically
consistent with no-flux lateral boundary conditions for heat
and salt. Vertical boundaries are more difficult to treat,
especially near the bottom, because grid resolution is often
coarse, and physically justifiable conditions are elusive. In
this case an extrapolation rule must be used near the
boundary.
1. Neumann: @f/@s = 0 at locations corresponding to

sNþ1
2
and s1

2
, i.e., on the physical boundaries of the domain,

which are at half-intervals outside fN and f1, respectively,

dN ¼ 6

5
fN � fN�1ð Þ � 7

15
dN�1 ð5:34Þ

d1 ¼
6

5
f2 � f1ð Þ � 7

15
d2: ð5:35Þ
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2. Linear extrapolation: @2f/@s2 = 0 at locations of fN
and f1),

dN ¼ 3

2
fN � fN�1ð Þ � 1

2
dN�1 ð5:36Þ

d1 ¼
3

2
f2 � f1ð Þ � 1

2
d2; ð5:37Þ

where we have assumed that all quantities on the r.h.s. are
known.

The use of (5.34)–(5.35) is justified only if Neumann
boundary conditions are physically justified; otherwise,
the use of (5.34)–(5.35) can be interpreted as formal
reduction of order of accuracy (to the first order) near the
boundary. Similarly, (5.36)–(5.37) is equivalent to assump-
tion of a linear distribution of the interpolated field within
the grid box adjacent to the boundary, which is formally
second-order accurate. In principle, formally more accurate
extrapolation formulas can be derived; however, according
to our practical experience, going beyond second-order
accuracy near the boundary makes the resultant algorithm
extremely nonrobust in the case of coarse resolution. Note
that harmonic averaging (5.18) guarantees that

dN�1j j < 2 fN � fN�1j j; ð5:38Þ

and that dN�1 has the same sign as fN � fN�1. Therefore
(5.36) guarantees that (1) dN always maintains the same sign
as both fN � fN�1 and dN�1, and (2) dN does not exceed
3
2
( fN � fN�1), regardless of nonsmoothness of grid data

within the three points adjacent to the boundary.
[37] Figure 8 compares density profiles r(z) reconstructed

by the three interpolation methods discussed here for the
case of step-like profile. As expected, on a hydrostatically
inconsistent grid, interpolation along s-slope results in
greater vertical distances between grid points (Figure 8,
second column), making it more difficult for the interpola-
tion scheme. As the result, spline and algebraic averaging
tend to oscillate, while harmonic averaging produces a
robust (though not very accurate) monotonic profile.

5.1. Density-Jacobian Algorithm

[38] We summarize the proposed algorithm as the follow-
ing sequence:
1. Compute and store in provisional arrays elementary

vertical differences of �ri;kþ1
2
¼ ri;kþ1 � ri;k and �zi,k+1

2¼ zi;kþ1 � zi;k for all k = 1, . . ., N � 1.
2. Compute di,k and dzi,k, which are harmonic averages of

�ri;k�1
2
and �zi;k�1

2
respectively, using (5.18) for all k = 2,

. . ., N � 1.
3. Apply boundary conditions at top and bottom to d and

dz using an appropriate extrapolation rule, say (5.36)–
(5.37). (Once computation d and dz is complete, provisional
variables �r and �z are no longer needed and may be
discarded).
4. At the upper half of top-most grid box, compute and

store in a provisional array,

FXi;Nþ1
2
¼ ri;N þ 1

2
zi � zi;N
� � ri;N � ri;N�1

zi;N � zi;N�1

� �
zi � zi;N
� �

(derived from the assumption of a linear profile for r within
the upper half of the top-most grid box), after which
compute and store

FXi;kþ1
2
¼

Zx;sð Þi;kþ1

x;sð Þi;k

r
@z

@s
ds ¼

ri;kþ1 þ ri;k
2

zi;kþ1 � zi;k
� �

� 1

10
di;kþ1 � di;k
� �

zi;kþ1 � zi;k �
dzi;kþ1 þ dzi;k

12

� ��
� dzi;kþ1 � dzi;k
� �

ri;kþ1 � ri;k �
di;kþ1 þ di;k

12

� ��

Figure 8. Comparison of three interpolation methods for a
step-like profile: upper row—both z and r are interpolated
as functions of s or x using cubic (5.15); black dots
correspond to the actual data points; solid curves represent
interpolated profiles, and dashed—the exact profiles.
middle row—local cubic polynomial based on algebraic
averaging of elementary differences (5.16). bottom row—
using harmonic averaging (5.18). Left column—interpola-
tion in vertical direction; right column—interpolation
along s-slope across the location of extreme rx in Figure
4 resulting in a more concentrated placement of points near
the bottom, where s-surfaces tend to be more horizontal, but
effectively coarser resolution near the thermocline; the
uppermost data point on the profile corresponds to the
horizontal location above the top of Seamount.
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for k = 1, . . ., N � 1. (Once all FXs are computed, d and dz
may be discarded).
5. Compute and store elementary differences along s-co-

ordinates, �0riþ1
2
;k ¼ riþ1;k � ri;k and �0zi+1

2
;k = zi+1,k � zi;k

Apply masking rules to them similar to rules for horizontal
velocity components;
6. Compute d0i,k and dz

0
i,k, which are harmonic averages of

�ri�1
2
;k and�zi�1

2
;k respectivelyusing (5.18). (Once this step is

performed, discard�0r and�0z.)
7. Compute and store

FCiþ1
2
;k ¼

Rx;sð Þiþ1;k

x;sð Þi;k
r
@z

@x
dx ¼

riþ1;k þ ri;k
2

ziþ1;k � zi;k
� �

� 1

10
d0iþ1;k � d0i;k

� �
ziþ1;k � zi;k �

dz0iþ1;k þ dz0i;k
12

� ��
� dz0iþ1;k � dz0i;k

� �
riþ1;k � ri;k �

d0iþ1;k þ d0i;k
12

� ��
for all k = 1, . . ., N.
8. Finally, assuming that FCiþ1

2
;Nþ1 
 0; compute

�AJ iþ1
2
;kþ1

2
¼ FXi;kþ1

2
þ FCiþ1

2
;kþ1 � FXiþ1;kþ1

2
� FCiþ1

2
;k ;

and perform its vertical integration

��x
@P

@x

����
z

� �
iþ1

2
;k

¼ �g
XN
k0

AJ iþ1
2
;k 0þ1

2
; ð5:39Þ

for all k = N, N � 1, . . ., 1 (starting from top and proceeding
downward), after which all FXs and FCs may be discarded
(This algorithm is known as prsgrd32.F in the ROMS
code.). (Since sums in (5.39) for different k can be
computed recursively, there is no need to store AJ iþ1

2
;kþ1

2

in a temporary array.)

5.2. Sigma-Coordinate Primitive Form

[39] As with the second-order Jacobian, this algorithm
can be algebraically transformed into a s-Coordinate prim-
itive form which resembles (1.1). This implies that the Pi,k

field is computed first at all ri,k points by means of vertical
integration,

Pi;N ¼ g ri;N þ 1

2
zi � zi;N
� � ri;N � ri;N�1

zi;N � zi;N�1

� �
zi � zi;N
� �

;

and

Pi;k ¼ Pi;kþ1 þ g
ri;kþ1 þ ri;k

2
zi;kþ1 � zi;k
� �

� g

10
di;kþ1 � di;k
� �

zi;kþ1 � zi;k �
dzi;kþ1 þ dzi;k

12

� ��
� dzi;kþ1 � dzi;k
� �

ri;kþ1 � ri;k �
di;kþ1 þ di;k

12

� ��
for all k = N � 1, . . ., 1 going downward, after which

��x
@P

@x

����
z

� �
iþ1

2
;k

¼ Pi;k � Piþ1;k � g � FCiþ1
2
;k ; ð5:40Þ

whereFCiþ1
2
;k is computed the same way as in the previous

section (This algorithm is known as prsgrd32A.F in the
ROMS code.).
[40] Note that FCiþ1

2
;k has obvious similarity with the

second term in the r.h.s. of (1.6), and within second-order
accuracy it is interpreted simply as the product of r and
local slope of s-coordinate. The more accurate fourth-order
scheme (5.40) computes FCiþ1

2
;k as the integral of the last

term in (1.6) along the lower facet of curvilinear trapezoidal
element shown as the shaded area in Figure 7. Although it
produces a result algebraically identical to the algorithm
described in the previous section, the present form offers
some technical advantages by eliminating the need to store
FCiþ1

2
;k in provisional arrays, since no differencing of FCs is

present in (5.40). This results in a more compact code
overall.

6. Further Seamount Tests

[41] Figure 9 shows time histories of all six error meas-
ures defined above in a format similar to Figure 5 Among
the previously tested schemes we retain for comparison are
the original g = 0 (labeled as POM), the optimal density-
Jacobian with g = 0.5, and the Lin [1997], finite-volume
method. We include two versions of our proposed schemes,
one using harmonic averaging of elementary slopes (labeled
Cubic H in Figure 9) and one using algebraic averaging
(labeled Cubic A). At coarse resolution Cubic H shows the
lowest error by all measures with a substantial edge. At the
same time, Cubic A and g = 0.5 results are comparable,
consistent with the previous experience that straightforward
attempts to increase the order of accuracy of the scheme do
not produce any actual gain in accuracy under realistic
simulation conditions like those in the present test problem.
Note that the vertical grid spacing in Figure 4 reaches 1200
m near the bottom, which exceeds the e-folding scale of 500
m for the initial r(z) in (4.7); similarly, in places with
extreme values of rx = 2.4, the vertical distance between
consecutive grid points along s-coordinate lines may reach
800 m. In both cases the consecutive differences of r in
(5.16) may be different by more than a factor of three,
which unavoidably causes oscillation of cubic interpolant
and a corresponding increase of error of the PGF scheme. In
contrast to Cubic A, harmonic slope averaging (5.18) used
by Cubic H effectively suppresses oscillations, resulting in
smallest error on the coarse grid.
[42] In comparison with g = 0 and g = 0.5, Cubic H and

Cubic A produce somewhat smaller error in the barotropic
mode relative to total kinetic energy (cf. panels Ebar=Ekin

and hV imax, especially in the fine resolution case where
Ebar=Ekin falls below 40%). This is encouraging because
erroneous barotropic flow does not have tendency to
decrease due to advective compensation mechanism [Mellor
et al., 1998], which makes it potentially more dangerous
type of error in comparison with the baroclinic one.
[43] Our results for improved PGF accuracy invite com-

parisons with the previously published ones [Beckmann and
Haidvogel, 1993, 1997; McCalpin, 1994; Chu and Fan,
1997, 1998; Mellor et al., 1998; Song, 1998]. Doing so,
however, is difficult because despite the similarity of the
problem set up, crucial differences remain, and we find that
the results are highly sensitive to values and forms of
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viscous operators used, topographic roughness parameters
rD (4.6), differences in vertical grid stretching resulting in
different extreme values of rx (2.10), many of which are not
reported in the original papers. Producing such a compre-
hensive comparison is beyond the scope of this study, and
we just restrict ourselves here to demonstrating the sensi-
tivity of the velocity error to the value of the horizontal
viscosity; see Figure 10, where in all cases we use the Cubic
H PGF scheme. As expected, increase of horizontal vis-
cosity results in the decrease of erroneous velocity ampli-
tude; however most of the sensitivity occurs at early times,
where the error can be easily reduced by an order of
magnitude by choosing viscosity well within the range of

that is reported in the literature cited above. Long-term error
exhibits a somewhat weaker sensitivity, and increasing
viscosity does not decrease the error as much as at early
times. We believe that this is partly attributable to the form
of discretized viscous operator, which itself can produces
spurious currents. (In all computations presented here we
used a lateral viscous operator in form of symmetric stress
tensor, Shchepetkin and O’Brien [1996], which is also
similar to that of POM, but not of Beckmann and Haidvogel
[1993, 1997] and McCalpin [1994].)
[44] In all cases the levels of energy are at least one order

of magnitude higher than that of geostrophically balanced
flow caused by the hydrostatic error produced by initial r

Figure 9. Same as Figure 5, but for a different set of pressure-gradient schemes. Cubic H–method
described in the previous section using (5.11) as integration rule with harmonic averaging of elementary
slopes by (5.18); Cubic A–the same as Cubic H, but harmonic averaging is replaced with algebraic mean
(5.16); POM-POM scheme (same as g = 0); g = 0.5-optimum ‘‘half-and-half’’ blend of standard and
weighted Jacobians; Lin97–Lin’s [1997] finite-volume method ( pressure Jacobian scheme). Note that
maximum velocity error Vmax is outside the plotted range for Lin97.
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field, which supports a primarily dynamic cause for the
errors shown in Figures 5 and 9.

7. Effect of Seawater Compressibility

[45] Most previously known PGF schemes, including
standard and weighted Jacobians, Lin 97, etc, are linear
algorithms in the sense that an additive change to a given set
of density values {rk} causes an additive change in the
reconstructed profile P [rk] and the pressure gradient,

@P
@x

r 1ð Þ
i;j;k þ r 2ð Þ

i;j;k

h i
¼ @P

@x
r 1ð Þ
i;j;k

h i
þ @P

@x
r 2ð Þ
i;j;k

h i
; ð7:1Þ

where {r(1)i,j,k} and {r(2)i,j,k} are two arbitrary sets of grid-box
values. This property is a basis for the common practice in
s-modeling of subtracting a predefined background strat-
ification from in situ r in order to reduce PGF errors.
However, the property (7.1) is no longer valid for algo-
rithms which use monotonicity constraints, such as (5.18),
and, as we will see, adding or subtracting an arbitrary
background r profile may significantly degrade the accu-
racy of computation of PGF. Nonlinear monotonicity con-
straints usually detect and prevent situations where the
derivatives of the reconstructed interpolants have the oppo-
site sign to the difference of the nearest adjacent grid point
values. Taking into account the compressibility of seawater
causes difficulty because the only physically meaningful
principle of monotonicity here is positive gravitational
stability of a stratified fluid, which is not equivalent to
maintaining the sign of the derivative of the reconstructed in
situ r profile.

[46] The Equation of State (EOS) for seawater, e.g.,
Millero et al. [1980], is usually written as

r ¼ r T ; S;Pð Þ; ð7:2Þ

where r, T, S and P are in situ density, temperature, salinity,
and pressure respectively. This equation was reformulated
by Mellor [1991] and Jackett and McDougall [1995] to
allow input of potential temperature, salinity, and depth
instead of P,

r ¼ r q; S; zð Þ; ð7:3Þ

which is more suitable for use in oceanic models because
potential temperature (not in situ temperature) and salinity
are the advectively conserved quantities. Replacement of in
situ P by depth effectively neglects the effects of
baroclinicity due to compressibility in computation of r
by replacing g

R
rd z with gr0z. The resultant difference is

formally within the accuracy of the Boussinesq approxima-
tion and is acceptably small for any realistic oceanographic
situation. In the case of an incompressible EOS,

r ¼ r q; Sð Þ; ð7:4Þ

the monotonicity constraint of the reconstruction algorithm
guarantees that if all differences,

rk � rkþ1 
 r qk ; Skð Þ � r qkþ1; Skþ1ð Þ > 0; k ¼ 1; . . . ;N � 1

ð7:5Þ

are positive, then the reconstructed profile is also every-
where positively stratified. This can no longer be guaranteed
if EOS includes compressibility. The discretized (7.3) is

rk ¼ r qk ; Sk ; zkð Þ k ¼ 1; . . . ;N ; ð7:6Þ

while the compressible analog of the stability condition
(7.5) translates into

r qk ; Sk ; zkþ1
2

� �
� r qkþ1; Skþ1; zkþ1

2

� �
> 0; k ¼ 1; . . . ;N � 1;

ð7:7Þ

where differencing is performed in an adiabatic fashion,
since rðqk ; Sk ; zkþ1

2
Þ and rðqkþ1; Skþ1; zkþ1

2
Þ are brought to the

common level of zkþ1
2
; which in the simplest case is equal to

1
2
(zk + zk+1). Because of this feature (7.7) is not equivalent to

just

rk � rkþ1 > 0; k ¼ 1; . . . ;N � 1 ð7:8Þ

where rk are computed by (7.6). In fact, because of
compressibility,

rk � rkþ1 > r qk ; Sk ; zkþ1
2

� �
� r qkþ1; Skþ1; zkþ1

2

� �
;

there is the possibility that the r.h.s. can become negative
while the l.h.s. remains positive.
[47] To address this problem we decompose the EOS [cf.

Jackett and McDougall, 1995],

r ¼ r1 q; Sð Þ
1þ z=K q; S; zð Þ ; ð7:9Þ

Figure 10. Sensitivity of Ekin to viscosity. Labels n = 25,
50, . . ., 1600 at the end of each curve indicate value of
viscosity in m2/s. Diagnostic-in this test run density field
was kept constant, resulting in flow geostrophically
balanced with spurious pressure gradient. This error level
provides comparative measure of the error in hydrostatic
balance for the initial density field. Grid resolution is 48 �
48 � 11.
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where r1(q, S ) is the density at the pressure of 1 atmosphere
(i.e., z = 0) and K(q, S, z) is the bulk secant modulus, which
takes compressibility into account. Both r1(q, S ) andK(q, S, z)
are approximated by polynomial fits of q, S, S1/2, and z.
Furthermore, (7.9) may be rewritten as

r ¼ r0 þ r01 q; Sð Þ
1þ z= K0 þ K 0 q; S; zð Þð Þ ; ð7:10Þ

where r0 and K0 are the leading-order, constant terms in the
original polynomial fits for r1(q, S ) and K(q, S, z). Since r

0
1(q,

S, z)� r0 = 999.84 kg/m3 and K0(q, S, z)� K0 = 190,925 m,
as well as z�K0 for any reasonable depth within the range of
0–11,000 m, one can expand (7.10) in a Taylor series,

r ¼ r0 1� z

K0

þ z

K0

� �2

þ . . .

" #
þ r01 1� z

K0

þ . . .

� �

þ r0K
0

K0

z

K0

þ K 0 þ zð Þ2

K2
0

þ . . .

" #
: ð7:11Þ

The first term on the second line is the usual baroclinic r
perturbation, while the first term on the third line is the
leading-order contribution to PGF due to the joint effect of
compressibility and baroclinicity (commonly known as
thermobaricity). All terms on the first line depend on z only,
and, therefore, they should not contribute to PGF; however,
as we will demonstrate, they turn out to be a major source
of PGF error in s models. In principle, both second-order
Jacobian and our new scheme produce zero error, if density
is a linear function of z (such as the leading term on the first
line of (7.11)), but the remaining terms are nonlinear and

their polynomial fits are not exact, resulting in nonzero PGF
error.
[48] To illustrate the severity of the problem we set up a

Seamount test problem in which temperature and salinity
are set to be uniform, q = 4
C and S = 33%, and r is
computed using the full EOS (7.9); thus, r is a function of z
only and varies only due to compressibility. The results are
shown on Figure 11, in a format similar to Figure 5 The
overall level of errors is comparable with that on Figures 5–
9 for similar algorithms and resolutions, with some qual-
itative differences in spatial distributions and temporal
behavior of this new type of error, resulting in a maximum
erroneous velocity of 2 and 5 cm/s for coarse-resolution
implementations of the g = 0.5 and Cubic H schemes,
respectively. This indicates that the inclusion of compressi-
bility in the straightforward way most likely causes more
inaccuracy in the velocity field due to s-coordinate PGF
errors than the inaccuracy caused by unphysically neglect-
ing compressibility effects altogether (i.e., using just r1(q, S)
instead of r(q, S, z) from (7.9) for the purpose of PGF
computation). The problem is further aggravated by the fact
that there is no advective compensation mechanism [cf.
Mellor et al., 1994] for this kind of error, resulting in an
erroneous velocity field determined purely from geostrophic
balance with hydrostatic PGF error generated by nonlinear
terms on the first line of (7.11). If the Coriolis frequency is
set to zero (as on the Equator), there is nothing to balance
the erroneous PGF and the model becomes unstable. Unlike
the case of Figure 5, now we do not observe any significant
sensitivity to the choice of reference level z* (see (4.1), nor
do we see any significant growth of energy of the barotropic
mode.
[49] To cure this problem, one must somehow exclude the

large terms in (7.11), which are functions of z only [cf.
Mellor et al., 1994; Dukowicz, 2001]. Thus, within the

Figure 11. Time history of kinetic energy Ekin and maximum velocity error Vmax for Seamount test
problem with uniform temperature and salinity (q = 4
C and S = 33%) using full, nonlinear compressible
EOS 1. Two upper curves labeled Cubic H and g = 0.5 correspond to the resolution of 48 � 48 � 11, grid
points, while two lower curves are for the doubled resolution of 96 � 96 � 22.
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accuracy of the Boussinesq approximation and for the
purpose of PGF computation, we therefore can use a
simplified equation of state,

r ¼ r01 q; Sð Þ þ r0K
0 q; S; zð Þ � z
K2
0

; ð7:12Þ

which still retains a nonlinear dependency of r on T and S.
Alternatively, one may subtract

rbak zð Þ ¼ r0
1þ z=K0

ð7:13Þ

from (7.10), which, after cancellation of all large terms
yields,

r ¼ r01 K0 þ K 0ð Þ K0 þ zð Þ þ r0K
0 � z

K0 þ K 0 þ zð Þ K0 þ zð Þ ; ð7:14Þ

which can be used as an alternative to (7.10) without any
EOS approximation at all. Furthermore, one can absorb
further leading terms depending only from z into K0 in
(7.13), K0 = K0

(0) + K0
(1)z + K0

(2)z2, which produces an even
more accurate cancellation of the vertical r gradient due
solely to compressibility.
[50] A r field computed by (7.12) or (7.14) can be

considered to be the dynamically relevant density, since it
retains only terms which have a nontrivial contribution to the
PGF. In both cases an effort has been made to remove the

dominant terms which cause the distinction between adia-
batic (7.7) and in situ (7.8) r gradients, and therefore they are
more appropriate for use in a monotonicity-preserving recon-
struction algorithm. To demonstrate the practical consequen-
ces of replacing (7.10) with (7.12) and (7.14), we compute r
using the realistic data shown on the left in Figure 12 using
incompressible EOS (7.4) and three different versions for
treatment of compressibility, (7.9), (7.12), and (7.14). In this
example the vertical gradient of in situ r is at least one order
of magnitude greater than the adiabatic gradient below z =
500 m depth. Although reasonably close in the upper 500 m,
vertical derivatives of the newly introduced quantities may
differ significantly from the desired adiabatic derivative in
the abyssal part and may even have a different sign, which
makes them unsuitable for the use in a monotonicity-pre-
serving reconstruction algorithm (The fact that it is impos-
sible to define a field whose spatial derivatives are equivalent
to adiabatic derivatives of in situ r (i.e., a globally defined
potential density) is discussed by Jackett and McDougall
[1995]. They show that ‘‘potential density’’ may be defined
only locally in the context of adiabatic differentiation.).
[51] The fundamental limitation of the techniques

described thus far is that they rely upon additive cancella-
tion of errors by subtracting an a priori chosen function of z
from r, which is assumed to be close enough to the actual in
situ r. Hence, errors may be reduced significantly but not
eliminated completely, and the whole approach remains too
sensitive to the choice of global parameters such as r0, K0

(which implicitly depend on globally chosen reference

Figure 12. Left—An example of typical measured profiles of in situ temperature, salinity, and potential
density (with the effect of compressibility removed and r0 = 1000 subtracted). These profiles are
measured within CalCOFI domain off the California coast. Courtesy of John Moisan. Middle—Effect of
compressibility in different versions of EOS: thick solid line–r1–density with effects of compressibility
removed (this is the same profile on the left); thin solid line–r–density in situ using full nonlinear EOS
(7.9); dotted line–simplified EOS (7.12) with linearized compressibility effect; dashed line–-
dynamically relevant density r � rbak defined by (7.14). Right—Vertical derivatives of the corresponding
profiles in the middle computed using simple finite differences for all cases, except for in situ density r
(thin solid line), where adiabatic differencing (7.7) is used instead. Note stepped horizontal scale.
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values for potential temperature and salinity). We therefore
are motivated to develop a new EOS representation which
does not rely on such cancellation. To do this, we first note
that

@r q; S; zð Þ
@x

����
z

¼ @r
@q

����
S;z

@q
@x

����
z

þ@r
@S

����
q;z

@S

@x

����
z

; ð7:15Þ

which translates into

J r; zð Þ ¼ �aJ q; zð Þ þ bJ S; zð Þ; ð7:16Þ

where

a q; S;Pð Þ ¼ �@r
@q

����
S;P

b q; S;Pð Þ ¼ þ@r
@S

����
q;P

ð7:17Þ

are thermal expansion and saline contraction coefficients
defined (by EOS) in the usual thermodynamical sense, and
P = gr0z is hydrostatic pressure. Equation (7.16) has an
advantage over computing in situ r via EOS and then using
it to compute J (r, z) because the nonlinearity of EOS
(associated with nonlinear q- and S-dependency as well as
with compressibility) no longer contributes to errors of
hydrostatic balance in the discretized Jacobian. Equation
(7.16) generates no erroneous flow if q and S are spatially
uniform (e.g., as in Figure 11).
[52] The remaining problem with (7.16) is the fact that it

does not prevent spurious oscillations of the interpolated
potential density, even if a nonoscillatory algorithm is used
to interpolate q and S (This may occur, for example, if
gradients of q and S tend to cancel each other in the sense of
arq � br S � 0, so that a nonoscillatory interpolation
algorithm applied to q and S separately does not ‘‘feel’’ the
nonsmoothness of potential density field in a situation
where consecutive differences are much larger for q and S
than for potential density.). And it almost doubles the
computational cost, because two Jacobians are required.
To address the first issue and to mitigate the cost, we note
that the flux-difference algorithm (2.11) along with a cubic
polynomial fit (5.11) and harmonic averaging (5.18) can be
expressed entirely in terms of elementary differences of r,

di;kþ1
2
¼ ri;kþ1 � ri;k ð7:18Þ

and similar differences of r values adjacent in the horizontal
(along-s, with indices i + 1, k and i, k) and diagonal (i + 1,
k + 1 and i, k) directions. This is evident from the fact that
all terms in curly brackets in (5.11) already depend only on
such differences, and any combination of the preceding
terms—the second-order fluxes (2.12)—can be rewritten
into the diagonal Jacobian (2.5), which contains only simple
diagonal differences but no midpoint averages. Then (7.16)
can be discretized by replacing elementary r differences
with adiabatic differences,

d
adð Þ
i;kþ1

2

¼ ri;kþ1 � ri;k
% &��

ad

¼ �ai;kþ1 þ ai;k

2
qi;kþ1 � qi;k
% &

þ
bi;kþ1 þ bi;k

2
Si;kþ1 � Si;k
% &

;

ð7:19Þ

which are harmonically averaged in amanner of (5.18), hence
enforcing the nonoscillatory property of the cubic interpolant
(5.11) and maintaining the sign of the stratification.
[53] The algorithm just described bypasses computation

of r completely at the expense of the need to compute two
fields, a and b as functions of q, S, and z. Although it does
not involve any approximation to EOS, the passive com-
pressibility terms (cf. (7.11)) are ‘‘differentiated out’’ at the
stage of replacing rin situ with a and b. The computational
cost is still very high, in part because of extra work the
modified PGF algorithm due to replacement of elementary r
differences with adiabatic ones via (7.19), and, more sig-
nificantly, in the EOS part, where the cost is doubled
because both a and b are approximately as expensive as
rin situ. Therefore, we seek practical simplifications that
efficiently capture the dynamical effects of compressible
EOS. We first note that (7.10) can be approximated by an
expansion [cf. Sun et al., 1999],

r q; S; zð Þ ¼ r01 q; Sð Þ þ
Xnmax

n¼1

qn q; Sð Þ � zn; ð7:20Þ

with, in principle, an arbitrary accuracy, depending on the
value of nmax, and (7.12) can be viewed as the simplest
truncation with nmax = 1. A detailed assessment of the
accuracy of this truncation relevant to the PGF computa-
tion—i.e., the ability to produce accurate a and b—is given
in Appendix B. We furthermore note that for each n taken
separately,

J qnz
n; zð Þ ¼ @

@x
qnz

nð Þ @z
@s

� @z

@x
@

@s
qnz

nð Þ

¼ @qn
@x

zn
@z

@s
� zn

@z

@x
@qn
@s

¼ zn � J qn; zð Þ; ð7:21Þ

hence,

J r q; S; zð Þ; zð Þ ¼ J r01 q; Sð Þ; z
� �

þ
Xnmax

n¼1

zn � J qn q; Sð Þ; zð Þ; ð7:22Þ

which can be used as an alternative to (7.16) or to the
straightforward computation of PGF from in situ r. On the
other hand,

zn � J qn; zð Þ ¼ J qn;
znþ1

nþ 1

� �
; ð7:23Þ

so instead of first computing in situ r [or any substitute
quantity for it in the framework of (7.12)–(7.14)] and then
using it for computation of horizontal r gradient, we can
directly compute the contribution from each individual qn
term in J (r(q, S, z), z).
[54] A remarkable consequence of (7.23) in the case n = 1

is that a linear combination of discrete Jacobians,

J q1z; zð Þ ¼ 1

3
J q1z; zð Þ þ J q1; z

2
� �' (

; ð7:24Þ

vanishes identically if q1 itself is a linear function of z, even
if both Jacobians in the r.h.s. fail to vanish if taken
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separately. This leads to a replacement of pseudo-fluxes
(2.12) with

F 00 0 ¼ r001 þ r01
2

þ q001
2z00 þ z0

6
þ q01

z00 þ 2z0

6

� �
z00 � z0ð Þ;

where prime and double prime stand for the corresponding
pairs of indices 21, 42, 43, and 31 in (2.12) (An identical
result may be obtained by analytical integration of quadratic
fit [q0 (z00 � z) + q00 (z � z0)] z/(z00 � z0) over the interval from
z0 to z00.). The resulting scheme produces no PGF error, not
only if r is a linear function of z (as in the case of second-
order Jacobian), but also if q1 is linear in z, hence in situ
density r1 + q1z is quadratic in z, even though we use the
same 2 � 2-point stencil of the second-order scheme. This
property is especially valuable since most of the PGF errors
associated with compressibility occur in the abyss, where
one cannot rely solely on the order of accuracy of the PGF
scheme because the vertical resolution is typically quite
coarse there.
[55] We now describe modifications to the Cubic H

algorithm in the case of compressible EOS (7.20) that
prevent spurious negative stratification due to oscillation
of cubic polynomial fits for r. For the sake of simplicity and
computational efficiency we restrict ourselves to the choice
of nmax = 1 (The method described here can easily be
generalized to the case of nmax > 1 in EOS (7.20) by
computing elementary adiabatic differences and the com-
pressible term in (7.26) via

d
adð Þ
i;kþ1

2

¼ r01 i;kþ1 � r01i;k þ
Xnmax

n¼1

qni;kþ1 � qni;k
� �

� zi;kþ1
n þ zi;k

n

2

and

d
0ð Þ
i;j ¼

Xnmax

n¼1

qni;k � nzn�1
i;k

@z

@s

����
i;k

:

To illustrate the practical accuracy of this choice, we note
that the adiabatic derivative of (7.20) (cf. (7.7)) with respect
to transformed coordinate s (similarly x) is

@r q; S; zð Þ
@s

����
ad

¼ @r01 q; Sð Þ
@s

þ
Xnmax

n¼1

zn
@qn q; Sð Þ

@s
; ð7:25Þ

where the contribution of all terms under summation is
expected to be much smaller than the leading term on the
r.h.s. This is manifested by the fact that these terms are
responsible for the difference between the thick and thin
solid lines in the right panel of Figure 12, and these two
lines are very close to each other. This leads to the
approximation of adiabatic differences (7.19) with

d
adð Þ
i;kþ1

2

¼ r01i;kþ1 � r01 i;k þ
zi;kþ1 þ zi;k

2
q1i;kþ1 � q1 i;k
� �

which in turn can be used to estimate in situ r derivatives at
the nonstaggered locations,

@r
@s

����
i;k

¼
2d

adð Þ
i;kþ1

2

� d adð Þ
i;k�1

2

d
adð Þ
i;kþ1

2

þ d
adð Þ
i;k�1

2

þ q1i;k
@z

@s

����
i;k

; ð7:26Þ

which are needed by (5.11) in order to compute pseudo-
fluxes using cubic polynomial fits. The first r.h.s. term is
harmonically averaged adiabatic differences of r. As in the
case of (5.18)–(5.19), this term is reset to zero if d

adð Þ
i;kþ1

2

and
d

adð Þ
i;k�1

2

have opposite signs. Since the same harmonic
averaging algorithm is used for both vertical and horizontal
(along s) directions, different signs may occur even if the
stratification is positive everywhere. (The expressions for
adiabatic differences in the horizontal direction are exactly
the same as the vertical ones, except that the index i gets
increments ±1, while the index k is kept constant.) The
second term in the r.h.s. of (7.26) is proportional to the
gradient of r caused by compressibility and P changes in a
neutrally stratified fluid. This adiabatic gradient separates
positive and negative stratification, so that replacing the
harmonic averaging (5.18) with (7.26) changes the mono-
tonicity constraint (5.20) into

d
0ð Þ
i;k � di;k � d

0ð Þ
i;k þ 2d

or

d
0ð Þ
i;k � di;k � d

0ð Þ
i;k � 2d

or

d
0ð Þ
i;k � di;k � d

0ð Þ
i;k þ 2d

or

d
0ð Þ
i;k � di;k � d

0ð Þ
i;k � 2d

ð7:27Þ

where di,k is the in situ r derivative, di,k
(0) 
 q1i,k@z/@s,

d ¼ minmod di;k�1
2
� d

0ð Þ
i;k ; di;kþ1

2
� d

0ð Þ
i;k

� �
and the function minmod is equal to the smallest of its
arguments by absolute value, if all of them have the same
sign, or zero, if the signs are different.
[56] The new compressible EOS PGF scheme differs

from the original Cubic H scheme only in the procedure
of computing r derivatives via harmonic averaging of
adiabatic differences (7.26), while all subsequent steps in
the algorithm remain the same. This method has the
following properties:
1. PGF error due to compressibility of seawater with

uniform q and S has been eliminated completely, regardless
of particular choice of reference values r0, K0, etc. Hence, it
is not necessary to repeat the experiment of Figure 11 using
the new approach;
2. Unlike r(q, S, z), both r01(q, S) and q1(q, S), do not

explicitly depend on z which allows us to split the derivative
of in situ r into adiabatic and compressible parts. Hence, a
straightforward application of harmonic averaging (5.18) to
the adiabatic term guarantees positive stratification along
the interpolated profile as long as the discrete values are
positively stratified.
3. The computational cost of this new PGF scheme and

the associated EOS does not exceed significantly the cost of
the original Cubic H scheme and EOS.

8. Realistic Tests for the Atlantic Ocean

[57] In order to illustrate the practical effects of the new
PGF scheme and alternative treatment of compressibility,
we include results from several realistic Atlantic Ocean
simulations. The model bathymetry shown in Figure 13 is
the same as in the work of Haidvogel et al. [2000], with 3/4
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degree spatial resolution and S-coordinate stretching param-
eters J = 5, Jb = 0.4, and hmin = 200 m, which translate into
a maximum topographic ‘‘r-factor’’ of 0.195 and a max-
imum s-grid stiffness ratio of rx = 3.82. Hence, despite its
relatively smooth appearance, this model topography causes
a strong violation of the hydrostatic consistency criterion
and a relatively large change of bottom depth per horizontal
grid interval compared to common s-modeling practices.
The test results reported here may be also considered as
verification of robustness of the newly designed algorithm
with respect to coarse vertical resolution and a nonsmooth r

field, which has been recognized as a major concern for
PGF schemes with higher than second-order accuracy
[Kliem and Pietrzak, 1999].
[58] For the flat-stratification test problem, the wind stress

and surface heat and fresh-water fluxes are set to zero, and
we choose a horizontally uniform potential temperature
profile (in 
C),

q ¼ 0:2þ 6 exp �jzj=2500f g þ 20 exp �jzj=250f g ð8:1Þ

and a uniform salinity S = 35%. The amplitude and e-
folding scales for this profile are representative of an
instantaneous profile in a selected location in the tropical
Atlantic (where, as we will see, the largest PGF errors
occur), rather than basin-scale averaged profile. We believe
that this is more appropriate, since PGF errors are
controlled by local profiles, while a horizontally averaged
profile tends to be much smoother. (For a similar test,
Mellor et al. [1994] chose an e-folding scale of 1000 m,
which is also comparable with horizontally averaged
profiles reported by Haidvogel et al. [2000].) A comparison
of our idealized profile with measurements is shown in
Figure 14. Note that our profile has comparable abyssal
stratification, thermocline depth, and steepness of transition
from the abyss to the thermocline. The advection scheme
for material tracers is 4th-order, centered, and with
harmonic averaging of elementary differences—similar to
that for the Seamount problem. There is no material
diffusion of any kind, neither vertical, horizontal, nor
implicit via upstream-biased advection. A 4th-order cen-
tered scheme is used for momentum advection. The
horizontal viscosity is 500 m2/s.
[59] The flow pattern after a 60-day spin up using POM

Jacobian (g = 0) and realistic EOS with compressibility
turned OFF is shown in the top-left panel of Figure 15. We
find that the maximum errors for this test problem (as well

Figure 13. Model Bathymetry for a 3/4 degree-resolution
Atlantic Ocean simulation.

Figure 14. Potential temperature cross-section at 30
W: left—from Levitus data; right—profile (8.1)
for flat stratification tests. In both cases the contour interval is 1
C.
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the other tests reported later) occur between depths of 1000
to 1500 meters, so we choose 1500 meters as the represen-
tative level to display. The error pattern on the top-left panel
is typical for s-models. It is characterized by spurious flow
along topographic slopes especially near the Equator. The
error is around 3 cm/s near the Gulf-Stream area and off the
North-American coast. We see a visualized mid-Atlantic
ridge, closed circulation in the Caribbean abyss, and strong
jets along the Equator. The largest errors occur off the
Brazilian coast near Equator, 15 cm/s, which is not surpris-

ing, since stronger currents are required to achieve geo-
strophic balance with a given spurious PGF at lower
latitudes. The weighted g = 0.5 scheme produces compara-
ble, but approximately 40% larger, currents and an overall
similar error pattern in this test (Figure 15, top right).
Remarkably, the direction of spurious currents is reversed
in comparison with the g = 0 results. Varying the weighting
factor reveals an optimal choice of g = 0.21 for minimum
mean error. This is similar to the Seamount problem experi-
ments, except that here the optimal value is different,

Figure 15. Spurious currents from a flat-stratification, pressure-gradient error test problem for a realistic
bathymetry Atlantic Ocean model configuration after 60 days of simulations, starting from rest initial
condition. In all three cases shown here, EOS compressibility effects were turned OFF completely by
setting rin situ (q, S, z) = r1(q, S ); Velocity scale is in cm/s; vectors with magnitude smaller that 0.05 cm/s
are not shown. Top–left—POM Jacobian (g = 0); Top–right—g = 0.5-scheme; Note that for g = 0 and
0.5 flow directions are opposite near Brazilian coast, where the largest errors occur. Lower–left—Cubic
H pressure-gradient algorithm.
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indicating that there is no universally optimal choice.
Finally, the Cubic H scheme (Figure 15, lower left) results
in a dramatic decrease of errors and an overall change in the
error pattern. It is no longer possible to see coherent currents
along topographic slopes and mid-Atlantic ridge. The larg-
est errors still occur near Equator, but now the flow pattern
there has a more random character.

[60] Turning compressibility back ON causes a dramatic
increase of errors almost everywhere, which is manifested by
appearance of currents along topographic slopes (Figure 16,
top left). Although still, with somewhat smaller amplitude,
the compressible Cubic H errors are more comparable with
that for the second-order g = 0 and g = 0.5 schemes, rather
than for the Cubic H case shown in the previous incompres-

Figure 16. The same as in Figure 15, except that now Cubic H-family algorithms are used in
combination with different treatment of compressibility: top–left—EOS (7.9) retaining all nonlinear
compressibility terms; top-right-same as on the left, but most of the passive vertical density gradient is
removed by subtracting r0/(1 � 0.1jzj/K00) resulting in (7.14); lower–left—modified Cubic H algorithm
in combination with EOS split into incompressible and compressible parts r = r1(q, S, z) + q1(q, S, z)jzj,
thus allowing computation of derivative of density via harmonic averaging of adiabatic differences
(7.26); lower–right—control experiment where EOS is the same as on the left, but r1 and q1 terms are
combined at the stage of computation of in situ density, which is then used in the original nonsplit version
of Cubic H. This is equivalent to just linearization of compressibility effects.
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sible Figure 15. Again, the most significant errors occur near
the Equator. There is no advective compensation mechanism
for PGF errors generated by a vertical r profile due to
compressibility of seawater with uniform q, S. Consequently,
this kind of error may be balanced only by Coriolis or viscous
forces. Subtraction of the dominant part of the mean passive
compressibility term, r0/(1 � jzj/K00), reduces the error to
some extent, but it fails to produce any significant benefit in
the Equatorial region (Figure 16, top right). On the other
hand, splitting EOS into an incompressible part and a term
proportional to depth (7.20) and computing derivatives of r
via harmonic averaging of adiabatic differences (7.26) avoids
any noticeable increase of error associated with compressi-
bility (Figure 16, lower left).
[61] One might suggest that this reduction of error, in

comparisonwith a straightforward computation of PGF using
in situ r, is explained mainly by the effective linearization of
compressibility effects in the first-order truncation of (7.20)
with nmax = 1. To explore this possibility, we made an
alternative calculation in which we used the same EOS, r =

r1(q, S ) + q(q, S ) � z (cf. (7.20) with nmax = 1), but now the
r1 and q1z terms were combined into in situ r, which is then
used in the original Cubic H scheme. The result is shown in
Figure 16, lower right. Although the level of error there is
slightly smaller than when using full nonlinear EOS (cf.
Figure 15, lower right), it is closer to it than it is to the
results with the split or incompressible EOS (i.e., Figure 16,
lower left, or Figure 15, lower left). Since the two compres-
sible algorithms here differ only in the computation of r
derivatives-specifically the choice of the reference gradient
considered ‘‘neutral’’ by the monotonicity-enforcement
algorithm, (7.27) versus (5.20)—this indicates that the main
influence on the PGF error is this feature, not the lineariza-
tion of the compressibility terms in EOS. Despite the
striking similarity of incompressible Cubic H errors (Figure
15, lower left) and compressible, split-EOS (7.26), Cubic H
errors (Figure 16, lower left), these two methods actually
produce quite different solutions under conditions of real-
istic temperature, salinity and forcing, where, in addition to
small hydrostatic error, the scheme should be accurate in the

Figure 17. (a) Near-surface currents time-averaged over 6-month period after 3-year spin up of North-
Atlantic model simulation starting from Levitus climatological initial conditions and running under
realistic wind and thermodynamic forcing, using modified Cubic H + (7.26) pressure-gradient algorithm
and split EOS (7.20) with nmax = 1 (same combination as on lower-left panel of Figure 16). (b) The same,
except that now compressibility terms are turned OFF. Although qualitatively similar in its main features,
energetics and maximum values of velocity to the case shown in Figure 17a, this solution is characterized
by approximately 40% weaker, and prematurely separating, Gulf Stream, and a spurious east-bound
current near Azores heading toward the Gibraltar.

35 - 24 SHCHEPETKIN AND MCWILLIAMS: PRESSURE-GRADIENT FORCE



dynamically relevant PGF. Moreover, we will see that
neglecting compressibility results in a completely wrong
dynamical response.
[62] Figure 17 shows six-month averaged, near-surface

currents from two different solutions for the Atlantic
Ocean under realistic wind stress, heat, and fresh-water
flux forcing, starting from a Levitus (q, S ) climatology and
running for a three-year spin-up period before the time-
averaging begins. The averaging period corresponds to the
spring-summer season. Unlike the flat-stratification test
problem, where there is no mixing of temperature and
salinity, the realistic simulation cannot be made without
material diffusion due to both physical and numerical
reasons. So in all the realistically forced simulations
reported here, fourth-order centered advection is replaced
with third-order, upstream-biased advection, but still with
no explicit horizontal diffusion. The KPP scheme is used
as the parameterization of the vertical mixing processes
[Large et al., 1994]. The first solution uses the modified
Cubic H PGF algorithm with harmonic averaging of
adiabatic differences (7.26) of r and split EOS (7.20) with
nmax = 1 (i.e., the same combination as for Figure 16,
lower left). This combination produces what we consider a
physically plausible result in the sense that all primary
features—such as correct Gulf Stream separation point—

are present and broadly consistent with measurements. The
second solution differs from the first one only by turning
OFF compressibility terms (the same EOS and PGF
combination as in Figure 15, lower left). Although qual-
itatively similar in its main features to the first solution,
the second solution is characterized by an approximately
40% weaker and prematurely separating Gulf Stream, as
well as a spurious eastward current near the Azores head-
ing toward Gibraltar. We do not show the near-surface
velocities from two other solutions—g = 0 and g = 0.5
schemes with EOS (7.14), which retains nonlinear com-
pressibility, but does not contain passive vertical r gra-
dient—with the exception of minor differences in Gulf
Stream separation site, these are rather similar to the first
solution in Figure 17 and interpreting their differences is
not straightforward. On the other hand, comparing the
middepth currents from all four solutions is more infor-
mative since there are larger differences (Figure 18).
Among these solutions the one on the lower–right panel,
[Cubic H + incompressible EOS], is anomalous among the
others: it has a narrower and more intense Deep Western
Boundary Current (DWBC), especially in the Gulf Stream
area; a spurious current system off coast of Portugal,
which extents toward the northwest; and a northward
current along the African coast, which is completely

b

Figure 17. (continued)
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absent on the other three solutions. Examination of tem-
perature and salinity fields (not shown here) reveals that
the spurious current off coast of Portugal is due to the
response to the Mediterranean outflow combined with
erroneous a and b because of neglect of the thermobaric
effect (In this model configuration Mediterranean outflow
is simulated by specifying point-sources in the vicinity of
Gibraltar Strait, where q, S are artificially maintained at

their climatological values.). When these two coefficients
are correct, the PGF contributions due to temperature and
salinity gradients approximately cancel each other, result-
ing in a very small PGF gradient (as occurs in the other
three solutions), hence weak geostrophically balanced
currents. In fact, under these conditions (as seen in
Appendix B), a may be off by as much as 50%, if its
compressibility dependence is neglected. As the simulation

Figure 18. Same as in Figure 17, but at depth 1500 m, instead of near-surface, and for four different
pressure-gradient algorithms: top–left—POM Jacobian (g = 0), EOS by 2; top–right—g = 0.5, same
EOS as on top-left. Note the difference in amplitude of Deep Western Boundary Current (DWBC) off
coast of Brazil; lower–left—modified Cubic H + (7.26) in combination with EOS (7.20); lower–right—
Cubic H, compressibility terms turned OFF. Note spurious northward current off coast of Portugal, which
continues toward north–west along the topographic slope. This current is due to model response to q, S of
Mediterranean outflow, and is caused by wrong temperature expansion and saline contraction coefficients
because of neglect of thermobaric effect. This current is completely absent in the other three solutions.
Also note artificially intensified and narrower DWBC in comparison with lower–left panel.
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continues, the temperature and salinity fields adjust toward
a new state, resulting in a different circulation—the narrow
jet along the coast of Portugal continuing northwestward.
This current advects the Mediterranean water northward
along the coast, ultimately maintaining a strong cross-
shore gradient, which maintains the current itself in a
‘‘self-locking’’ mechanism. No such current occurs in the
solution shown on the right. Instead there is much weaker
current going northwestward from Gibraltar, separating
from the coast at approximately 38
N, and heading toward
the west. This is the expected behavior from observations
[Haidvogel et al., 2000]. The three remaining solutions—
top left, top right, and lower left—are qualitatively similar
to each other. This indicates that they are predominantly
controlled by the underlying physics, not by their numer-
ical errors, but there are still differences worth pointing
out. The most striking distinction is the intensity of
DWBC off the Brazilian coast.
[63] POM scheme (g = 0) gives approximately twice the

peak velocity there and a noticeable increase in the energy
(indicated by the increase in RMS velocity from approxi-
mately 2.3 cm/s to 3.0 cm/s). The other two schemes—[Cubic
H + (7.26)] and g = 0.5—are quite similar by these measures.
Comparison of these results with the flat-stratification test (cf.
Figure 15) suggests that a plausible explanation of the differ-
ence between g = 0 and g = 0.5 results in Figure 18 lies in the
hydrostatic PGFerror:g=0produces southward flownear the
Brazilian coast in the flat stratification test problem, which is
in the same direction as the stronger DWBC in Figure 15. On
the other hand, the hydrostatic error of g = 0.5 is opposite to
DWBC, which is consistent with its smaller velocities in the
realistic forcing experiment. The overall sensitivity ofDWBC
to the choice of weighting parameter g is comparable to the
differences among the three major classes of models, z-,
sigma-, and isopycnic coordinate [Beckmann, 1998; Wille-
brand et al., 2001]. The DWBC results with [Cubic H +
(7.26)] are in between the other two, but closer to g = 0.5.
Besides the intensity of the DWBC, Figure 18 shows other
differences between g = 0 and g = 0.5: the appearance of
possibly spurious vortex structures off theAfrican coast in the
Gulf ofGuinea andCanary Islands, aswell as thegenerationof
Rossby waves near the Equator manifested by alternating
east-west bands in the velocity field, which are tracks of
stronger, westward-traveling vortex structures in the case of
g = 0.
[64] Making a firm conclusion about which of the three

solutions is physically the most accurate is beyond the scope
of this paper, so we merely point out that the sensitivity of the
answers to the choices among the POM Jacobian and g = 0,
. . ., 0.5 in the Song [1998] family of schemes and the
nonrobustness of the ‘‘optimal’’ choice of g in different
configurations all motivate the search for higher-order alter-
natives, such as Cubic H. We also notice that evaluating a
PGF scheme solely by its hydrostatic error, (i.e., the flat-
stratification test problem) does not necessarily guarantee an
accurate simulation in realistic cases. For example, POM
Jacobian performs better than g = 0.5 in the flat-stratification
test shown in Figure 15; however, g = 0 results in the realistic
simulation (Figure 18) has some features that seem likely to
be spurious.
[65] Our experience also shows that the straightforward

inclusion of compressibility in in situ r calculations for PGF

causes a significant increase of hydrostatic PGF error com-
pared to EOS without compressibility. This error results in
spurious currents that are the largest near the Equator, due to
the diminished Coriolis frequency there. On the other hand,
disregarding compressibility completely (motivated by the
desire to reduce PGF error) causes significant errors in
realistic simulations due to physically wrong responses of
the model to temperature and salinity forcing. Our new
method for splitting the compressibility terms allows us to
obtain physically correct responses without increase of
hydrostatic error.

9. Summary

[66] Although PGF errors can be eliminated completely
only if isosurfaces of the vertical coordinate are aligned with
either geopotential surfaces or isopycnals, these two choices
of the vertical coordinate have difficulties in accurately
representing the top and bottom boundary conditions. This
leaves s-models as preferred, if accurate topographic and
shallow-water, free-surface effects are the highest priority.
Therefore, the goal of minimizing PGF errors in s-models
remains important for oceanic modeling.
[67] An analysis of one the more successful PGF schemes

to date, the second-order Jacobian, shows that, in addition to
approximating the desired terms of the continuous equations
with second-order accuracy, it also has important symme-
tries and can be written in several alternative but equivalent
forms. The latter lead to different versions of high-order
accuracy generalizations, depending of which form is
chosen as the prototype. We find the pseudo-flux form
particularly attractive. This gives the possibility of rewriting
the Jacobian in the form of a contour integral, and we propose
a fourth-order accurate method based on this form. In doing
so we preserve the property of the original scheme that treats
r and z as functions of transformed coordinates in a sym-
metric, mutually interchangeable way. Our new approach is
based on reconstruction of r and z as continuous and
continuously differentiable polynomial functions of trans-
formed coordinates with subsequent analytical integration.
Similarly to its prototype, our new method can be equiv-
alently transformed between Density-Jacobian and s-coor-
dinate primitive forms. We analyze the causes of previous
experience of nonrobustness and limited applicability of
high-order schemes designed in the past, and we pay special
attention to the prevention of the appearance of spurious
oscillations of polynomial interpolants in the cases where r
can no longer be treated as a smooth field on the grid. We
also develop special measures to avoid loss of accuracy
associated with the use of spatially nonuniform grids that
are commonly used in oceanic modeling.
[68] Historically s-coordinate PGF errors have been

attributed mainly to hydrostatic cancellation errors. Thus,
the primary focus of many previously proposed schemes has
been to address this particular problem while much less
attention has been paid to derived conservation properties of
the discretized PGF. Our experience shows that it is not
entirely the right perspective because as the model’s r field
evolves the actual magnitude of spurious velocities may
become very much larger than that determined from geo-
strophic balance with the erroneous PGF associated with a
horizontally uniform initial density field r = r(z). Specifi-
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cally we observe significant growth of erroneous barotropic
flow in a manner previously described as ‘‘a s error of the
second kind’’ [Mellor et al., 1998].
[69] Realistic oceanic modeling requires taking into

account the compressibility of seawater. Accurate represen-
tation of this effect is especially difficult in s-models, because
the straightforward inclusion of compressibility into the EOS
causes a large, dynamically passive, background vertical
profile of in situ r associated with compressibility of seawater
with uniform temperature and salinity.Although in theory this
background profile should not generate any PGF, it is shown
to be a major source of PGF error in models due to the
combination of the usual numerical noncancellation in the
absence of compressibility (s-error) and the largeness of this
passive compressibility effect compared to the stable strat-
ification, particularly in the abyss where vertical resolution is
typically very coarse. Furthermore, this background compres-
sibility interfereswith nonoscillatory interpolation algorithms
because physically neutral stratification is no longer equiv-
alent to the absence of a vertical gradient in r. To address these
difficulties, we have devised a new treatment of compressi-
bility effects that splits r into terms evaluated at atmospheric
surface pressure and terms with compressibility, in order to
isolate the latter from adding to the PGF error as it does when
total r is used in the calculation. The new EOS formulation is
shown to be sufficiently accurate, compared to the standard
EOS formulation, for reliable usage in oceanic models.

Appendix A: On Discrete Energetic Consistency
of High-Order PGF Schemes

[70] Song and Wright [1998] (hereafter SW98), show that
the second-order equal-weighted density-Jacobian scheme
in combination with second-order, centered advection for
density guarantees exact conservation of total (kinetic +
potential) energy of the discretized system (also called
Standard Jacobian in SW98.). In this Appendix we show
that their derivation can be extended to a more general case
where two-point, linear interpolation of r in both PGF and
advection schemes is replaced with a more general, poten-
tially high-order accurate interpolation. For brevity we
present here only discrete equations. Reader should be
refered to SW98 for their continuous prototypes.
[71] Since both the original second-order and our new

scheme can be rewritten in pseudo-flux form, the x-compo-
nent of the PGF with sign and scaling as it appears in the
r.h.s. of the finite-volume momentum equation for uiþ1

2
;k is

PXiþ1
2
;k 
 �g�Hx

iþ1
2
;k

@p

@x

����
z

¼ g�Hx
iþ1

2
;k

XN
k 0¼k

FXi;k0þ1
2

�
� FXiþ1;k0þ1

2
þ FCXiþ1

2
;k 0þ1 �FCXiþ1

2
;k0

�
¼ �g�Hx

iþ1
2
;k dx

XN
k 0¼k

(
�FXk 0þ1

2

���
iþ1

2

þFCXiþ1
2
;k

�
; ðA1Þ

where dx denotes elementary 2-point differencing over one
grid interval, dxqiþ1

2
¼ qiþ1 � qi and dxqi ¼ qiþ1

2
� qi�1

2
hence

the result is always placed halfway between the points at
which the original quantity is defined. For notational sim-

plicity we also assume a Cartesian grid with �x = �y = 1,
and we omit the factor g/r0 from the definitions of PGF and
potential energy below; g�Hx

iþ1
2
;k
denotes height of control

volume element surrounding uiþ1
2
;k ; which in the simplest

case can be approximated by second-order midpoint averag-
ingg�Hx

iþ1
2
;k
¼ �Hi;k þ�Hiþ1;k

� �
=2; but in general it may be

done by an arbitrary interpolation scheme, e.g., a fourth-
order scheme. In any case �Hi;k ¼ zi;kþ1

2
� zi;k�1

2
is vertical

spacing of arbitrarily stretched vertical grid, so neither
zi;kþ1

2
6¼ zi;k þ zi;kþ1

� �
=2 nor zi;k 6¼ zi;k�1

2
þ zi;kþ1

2

� �
=2; Further in (A.1)

FX and FCX are ‘‘pseudo-fluxes’’ which in the simplest case
are computed as

FXi;kþ1
2
¼ �rsdszð Þji;kþ1

2
and FCXiþ1

2
;k ¼ �rxdxzð Þjiþ1

2
;k ; ðA2Þ

where �rs and �rx are midpoint averaged values of density. It is
implied that the surface value FCXiþ1

2
;Nþ1 
 0 in the first line

of (A.1). Model variables are placed on a C-grid and their
permissible index ranges and boundary conditions are given
by

z; ri;j;k i ¼ 1; . . . ; L j ¼ 1; . . . ;M k ¼ 1; . . . ;N

uiþ1
2
;j;k i ¼ 0; . . . ; L u1

2
;j;k ¼ uLþ1

2
;j;k ¼ 0

vi;jþ1
2
;k j ¼ 0; . . . ;M vi;1

2
;k ¼ ui;Mþ1

2
;k ¼ 0

wi;j;kþ1
2

k ¼ 0; . . . ;N wi;j;1
2
¼ wi;j;Nþ1

2
¼ 0:

ðA3Þ

[72] After substitution of (A2) into (A1), the latter
becomes equivalent to Equation (2.6) and, ultimately,
(2.22) from SW98, with the exception of the top-most grid
interval: it should be noted that Equations (2.6), (2.7),
(2.22), and (2.25) from SW98 overshoot vertical index
inside the summation by requiring values of r (b in their
notation) and z at vertical index N + 1 (via �bs

Nþ1
2

and dszNþ1
2
),

which are not available. This means that a special rule for
the computation of FXNþ1

2
is required to fix this problem. We

do not specify this rule at this moment, but assume that
PXiþ1

2
;N can be still cast in pseudo-flux form (Strictly speak-

ing this is not the case for the POM and SCRUM models.
Although to our best knowledge, the algorithm for compu-
tation of PXiþ1

2
;N has never been published in the literature, it

can be easily recovered from the code itself: PXi+1
2
;N ¼

�1
2
gg�Hx

iþ1
2
;N

zi � zi;N þ ziþ1 � ziþ1;N

� �
riþ1;N � ri;N
� �

, which
simply neglects the fact that ri+1,N and ri,N are placed at
different geopotential surfaces. (The finite-difference ver-
sion of SPEM (v. 5.1) and SCRUM have a similar treat-
ment.) Besides the usual ‘‘leak’’ of vertical stratification into
horizontal PGF, this formulation does not provide pseudo-
flux continuity between the elements N and N � 1 of the
vertical grid. In the derivation presented here we assume that
both these drawbacks are repaired.).
[73] In the following analysis we assume that instead of

using (A2), FXi;kþ1
2
and FCXiþ1

2
;k are computed by an arbi-

trary, potentially high-order accurate, interpolation method.
Another distinction from SW98 is that we do not restrict
ourselves to the case of zero free-surface disturbance,
despite the fact that (A1) does not explicitly contain the
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free-surface term PXiþ1
2
;z; as it occurs in (2.6)–(2.7) from

SW98. Below in (A21)(A22)–(A23) we also show that the
free-surface contribution can be naturally cast in flux-differ-
ence form of (A1).
[74] Multiplication of (A1) by uiþ1

2
;k and summation over

all indices i yields,XL�1
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where in order to obtain the second line from the first we
have applied summation by parts in a manner similar to the
transition from Equation (2.22) to (2.23) in SW98, where
we assume no-flux boundary conditions u1

2
¼ uLþ1

2
¼ 0; so

that the index range in the leftmost sum in the second line
can be extended as necessary to include side velocity points
(it should be noted that the expressions inside the leftmost
sum and its inner sum in the second line are now placed at
density point ri,k on horizontally staggered C-grid).
[75] After similar manipulation with PY-terms, we

derive the contribution of PGF into net kinetic energy
tendency,
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Applying discrete continuity equation
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where �Hi,j,k and levels zkþ1
2
follow evolution of free

surface,
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(hence (A.6) should be understood as the definition of
vertical velocities wi;j;kþ1

2
as the mass fluxes across moving

grid-box interfaces zi;j;kþ1
2
), the first term in the r.h.s. of (A5)

may be further rewritten as
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To derive this we have used top and bottom kinematic
boundary conditions wNþ1

2
¼ w1

2
¼ 0; and @z1

2
=@t ¼ 0 [note

that @zNþ1
2
=@t 
 @z=@t 6¼ 0 due to evolving free surface].

[76] The discretized density equation is
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where r̂x
iþ1

2
; j;k

the result of midpoint interpolation of r (to the
location of uiþ1

2
; j;k) using an arbitrary interpolation method,

which is not necessarily linear and not necessarily the same
for all directions x, y, s. Multiplying (A9) by zi,j,k and
applying summation by parts, we derive
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Also note that
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[77] Comparison of (A10) with (A5), along with (A8)
and (A11), indicates that in order to guarantee energetic
consistency,

dKE
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PGF

þ dPE
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¼ 0; ðA12Þ
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it is sufficient to ensure that
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which leads to the following set of conclusions:
1. Discrete energetic consistency can be shown if: (1)

discrete PGF scheme can be written in pseudo-flux form;
and (2) r used in PGF is the same, or linearly related to that
in the advection equation; and (3) interpolation algorithms
used in computation of pseudo-fluxes FX, FCX, and FCY
are the same as corresponding interpolations in discrete
advection for density. Details of the vertical coordinate
(such as vertical stretching or order of interpolation) to
compute g�Hx

iþ1
2
;j;k

from �Hi,j,k do not destroy the consis-
tency, as long as the same method is used in continuity,
density, and momentum equations.
2. The second-order scheme corresponds to the setting
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in (A13) (similarly in other two directions),
which is energetically consistent. Alternatively one can
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or even a more sophisticated method (e.g., using harmonic
averaging of elementary slopes to prevent spurious oscilla-
tions) and still retain energetic consistency. However, no
choice results in fourth-order accuracy for both PGF and
advection. This fundamental limitation stems from the
second-order accurate definition of potential energy,

PE ¼
ZZZ

rz dx dy dz �
X
i;j;k

ri;j;k�Hi;j;kzi;j;k : ðA16Þ

3. Violation of the pseudo-flux form in the uppermost grid
element, commonpractice of subtracting backgroundprofile r
= rbak(z) from density field before computing PGF (motivated
by the desire to reduce hydrostatic errors in PGF) aswell as the
use of nonlinear (realistic) equation of state of seawater
destroy energetic consistency [cf. Gerdes, 1993].
4. Since both sums (A14) are at least second-order discrete

approximations to the same continuous integral,Zz
�h

r
@z

@t
dz ðA17Þ

this equation already holds within the order of accuracy.
5. Assuming that zi;j;k ¼ 1

2
zi;j;kþ1

2
þ zi;j;k�1

2

� �
, the second sum

in (A14) may be rewritten as

XN
k¼1

�Hkrk
@zk
@t

¼
XN�1

k¼1

rk�Hk þ rkþ1�Hkþ1

2
�
@zkþ1

2

@t

þ 1

2
rN�HN

@zN
@t

; ðA18Þ

which suggests

FXkþ1
2
¼ rk�Hk þ rkþ1�Hkþ1

2
;

k ¼ 1; . . . ;N � 1; and FXNþ1
2
¼ rN�HN

2

ðA19Þ

to achieve exact cancellation in (A14) (This choice corre-
sponds to the finite-volume interpretation of nonuniform
vertical grid, where zi;j;k�1

2
are coordinates of grid-box

interfaces, while zi,j,k are grid-box averaged z). Unless vertical
grid spacing is uniform, this choice is different from
FXkþ1

2
¼ rk þ rkþ1

� �
�Hk þ�Hkþ1ð Þ=4 used in the original

second-order scheme. This discrepancy comes from the fact
that definition of discrete potential energy (A11) corresponds
to the assumption of a piecewise-constant distribution of r
within each vertical grid box �Hk, while second-order
Jacobian assumes linear profiles between each pair of zk and
zk+1.

[78] Equation (A13) does not restrict the algorithm for
computation of FXi;j;Nþ1

2
at the uppermost grid point. We

therefore propose the following method:

r surfð Þ ¼ rN þ rN � rN�1

zN � zN�1

zNþ1
2
� zN

� �
; ðA20Þ

where zNþ1
2

 z corresponds to free surface, after which

FXNþ1
2
¼ r surfð Þ þ rN

2
zNþ1

2
� zN

� �
; ðA21Þ

and

PXi;N ¼ g�Hx
iþ1

2
;N FXi;Nþ1

2
� FXiþ1;Nþ1

2

�
�FXCiþ1

2;N

�
; ðA22Þ

which repairs the inaccuracy of the original scheme at the
top-most grid level (e.g., PGF now vanishes identically
everywhere if r is a linear function of z). Equation (A22)
already contains the contribution due to PGF due to free-
surface disturbance: e.g., assuming that FXCiþ1

2
;N ¼

1
2
ri;N þ riþ1;N

� �
ziþ1;N � zi;N
� �

and setting r(surf )
i

= r(surf)
i+1

= ri,N =
ri+1,N = r0 results in

PXi;N ¼ g�Hx
iþ1

2
;Nr0 zi;Nþ1

2
� ziþ1;Nþ1

2

� �
¼ g�Hx

iþ1
2
;Nr0 zi � ziþ1

� �
:

ðA23Þ

[79] The usual argument in favor of using an energetically
consistent pair of PGF and advection schemes is based on
oceanic simulations being typically long-term integrations,
so that one can be fearful of accumulation of erroneous
energy conversion even when it is within the numerical
order of accuracy at each time step. However, the potential
energy defined above is computed with respect to a state
where all mass is concentrated at z = 0, i.e., the unperturbed
free surface. This state is not achievable, because PE is
defined without taking into account constraints of incom-
pressibility and Lagrangian conservation of density. A more
physically meaningful definition of potential energy is
available potential energy (APE), which respects both these
constraints. The main argument behind this concept lies in
the fact that as long as fluid parcels are move up and down
while maintaining their density, potential energy released in
such rearrangement is converted into kinetic energy, and
once a state in which each fluid parcel is in hydrostatic
equilibrium with its surrounding is achieved, no more
potential energy can be released. Although exact Eulerian

35 - 30 SHCHEPETKIN AND MCWILLIAMS: PRESSURE-GRADIENT FORCE



Figure 19. Density in situ r (left), thermal expansion a (middle) and saline contraction coefficient b
(right) as functions of potential temperature q and salinity S at four different depths z = 0, 1000, 3000 and
6000 m. Light shading indicates availability (at least one record) of water with given temperature and
salinity at each specified depth from annual database for World Ocean, Levitus 1994, while dark shading
corresponds to the area containing at least 90% of all data at specified depth. Thermobaric effect is
manifested by the change of angle of isopycnals with depth on r(q, S ) plot, left column.
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mass conservation is often imposed in oceanic models,
maintaining r for each Lagrangian parcel is usually possible
only within the numerical accuracy of the advection scheme
(With the exception of isopycnic-coordinate models, where
it can be done exactly by conserving the volume of each
isopycnal layer.). This leads to a situation in which an
energetically consistent pair does not guarantee the absence
of spurious generation of kinetic energy, because numerical
advection can alter PE and APE in a nonphysical way (via
advective errors), making it available for KE production
while maintaining KE + PE. This agrees with practical
experience to date, where one can modify either PGF or
advection independently (thus abandoning exact KE + PE
conservation) and observe an overall beneficial outcome for
the accuracy of model solution.

Appendix B: Assessment of Taylor Expansion for
Seawater Compressibility

[80] To facilitate our analysis we rewrite seawater
EOS from Jackett and McDougall [1995] (hereafter

JM95) as

rin situ q; S; zð Þ ¼ r0 þ r01 q; Sð Þ
1� 0:1z= K00 þ K 0 q; S; zð Þ½ �

¼ r0
1� 0:1z=K00

þ r01 þ
0:1z

K00 þ K 0 � 0:1z

� r01 �
r0K

0

K00 � 0:1z

� �
; ðB1Þ

so farwithout any approximation.Here r0= const,K00= const,
K0=K0

0+K1z+K2z
2,whereK0=K0(q,S),K1=K1(q,S),K2=K2(q,

K2(q, S), aswell as r
0
1 = r

0
1(q, S) are expressed in as polynomials

of powers of q,S and S1/2; z>0 is depth,which in the context of
EOS substitutes for in situ pressure P = r0g z (thus neglecting
nonuniformity of r field when computing compressibility
effects); r0 = 1000 kg/m

3 is reference density; and g = 9.81m/
s2 is acceleration of gravity. Since r01 � r0 = const with an
associated small parameter r01/r0 � 3 � 10�3, and since

0:1z; K1z � K0 
 K00 þ K 0
0; K 0

0 � K00; and K2z
2 � K1z;

ðB2Þ

Figure 20. Errors in evaluation of thermal expansion a and salinity contraction b at three different
depths, z = 1000, 3000, and 6000 m for linear (left two columns) and quadratic (right two columns)
truncations of z-series of EOS from JM95. Errors are defined as deviations of a and b from their values
computed form the original EOS (see Figure on the previous page), which are considered as ‘‘exact’’ in
this comparison. Dashed rectangle on each plot shows the domain relevance, meaning that for realistic
oceanographic conditions q and S can occur only within this rectangle at each depth z.
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the r.h.s of (B1) is dominated by its first term, r0/(1 � 0.1 z/
K00),whichdoes not contribute to thehorizontal PGF,because
it is a function of z only. The smallness of the leftmost
inequality in (B2) can be estimated from a typical value speed
of sound c of seawater,

1

c2
¼ @r

@p

����
q;S
¼ 1

r0g
@r
@p

����
q;S
� 1

r0g
� 0:1r0

K0

;

hence
0:1z

K0

¼ gz

c2
¼ 9:81 � 6� 103

15002
¼ 2:5� 10�2;

ðB3Þ

where we use z = 6000 m, and c = 1500m/s2 for this estimate.
The terms 0.1z and K1z are assumed to be of the same order.
The other two inequalities in (B2) mean that terms propor-
tional to z and z2 never dominate K0. Furthermore, K0(q, S ) =
K00 +K

0
0(q, S)� 19,092.6 + 209.8q+104.4S+ . . ., henceK0

0�
K00 = const in the sense that terms dependent on q and S never
dominate theprecedingK00; however, they are not sufficiently
small to be used in a Taylor expansion accurate enough for
practical purposes. This estimate also explains why removing
a background r(z) profile, essentially r0/(1 � 0.1 z/K00), has
only limited success in reducing PGF errors.
[81] Retaining only terms which contribute to horizontal

PGF and using the two small parameters identified above,
the Taylor series expansion of (B1) results in

r q; S; zð Þ ¼ r01 þ 0:1
r01 � r0K

0
0=K00

K00 þ K 0
0

z� 0:1 r0 þ r01
� � K1 � 0:1

K00 þ K 0
0

� �2
z2 þO z

K0

� �3
 !

¼ r01 þ q1zþ q2z
2; ðB4Þ

which has a form appropriate for computation of PGF (cf.
(7.20)). As follows from (7.15)–(7.17), for accurate
computation of horizontal r and PGF, it is sufficient that
EOS produces correct estimate for temperature-expansion a
and saline-contraction b coefficients, while in situ r is
irrelevant for this purpose. Therefore, to assess possible
errors associated with the use of (B4), we compare the a
and b it produces with the original coefficients produced by
the EOS from JM95.
[82] Properties of the original EOS from JM95 are illus-

trated in Figure 19, where rin situ, a, and b are plotted as
function of potential temperature q and salinity S at four
different depths z = 0. There is overall increase of rin situ

with depth z, and in addition to that, there is change in slope
of isopycnals with depth on the left column in Figure 19,
which is primary due to the thermobaric effect. There is a
local maximum of freshwater r at q = 4
C, z = 0, which
shifts to smaller temperature and eventually disappears with
increase of P (depth). Middle column shows a significant
dependency of a on depth; e.g., for q = 5
C and S = 33%, a
changes from 0.1 to 0.25 when z goes from 0 to 6000 m. b is
more uniform in q,S-space, with the exception of the limit of
low salinity, and it has a relatively weak dependency on
depth. As follows from Figure 19, disregarding the thermo-
baric effect completely, hence using just r01(q, S) for com-
putation of PGF, results in an underestimate of the r
gradient in the abyss by as much as 60%. Therefore, one
needs to retain terms linear and perhaps quadratic in z in
(B4). In both approximations the resulting a and b are quite

close to their values produced by EOS from JM95; so, we
show only deviations of a and b from the original ones in
Figure 20. The errors are quite significant within the whole
range of possible values of q and S, especially at maximum
depth z = 6000 m and in the limit of largest temperature and
small salinity (right-bottom corner of each plot). Indeed,
errors in a may be as large as 30%, while errors in b about
15%. Fortunately in realistic oceanographic conditions
temperature has a tendency to decrease with depth, resulting
in a much smaller range of possible values, and a similar
tendency occurs in salinity field. This fact is reflected by the
dashed rectangle on each plot in Figure 20, which outlines
the domain of relevance, meaning that nearly all realistic
combinations of q, S should occur within it, and which
shrinks with depth. Within this rectangle the errors are much
smaller, and, remarkably, its location coincides with the area
of minimal errors. The ranges of errors in a and b for q, S
within the domain of relevance are summarized in the
following table:

[83] This means that, at a maximum depth of z = 5000 m,
given characteristic values of a = 0.25 and b = 0.8, the
errors do not exceed 3% for a and 3% for b for linear
truncation and slightly less for quadratic. These estimates
can be viewed as the worst-case realistic scenario, and, as
seen from the table above, the errors are much smaller
within the upper 2500 m, which is dynamically the most
active part of the ocean. Both truncations provide viable
approximations for EOS and offer significant reduction of
errors in comparison with neglecting compressibility com-
pletely; however, the quadratic version offers no significant
improvement to justify its extra complexity.
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