Stochastic convective parameterization

J. David Neelin and Johnny W.-B. Lin*

Dept. of Atmospheric Sciences & Inst. of Geophysics and Planetary Physics, U.C.L.A. *CIRES, Boulder, CO (now U. Chicago)

- Moist convective parameterizations represent ensemble mean effects of sub-grid scale motions on Reynolds-average large-scale as deterministic function of the large-scale variables
- For a domain \sim (200 km)² x (20 minutes) the sample of deep convective elements is not large \supset variance in average
- Probability distribution of convective heating, etc. at typical grid cell/time step can impact large scales
- Mimic these physical effects by stochastic representation

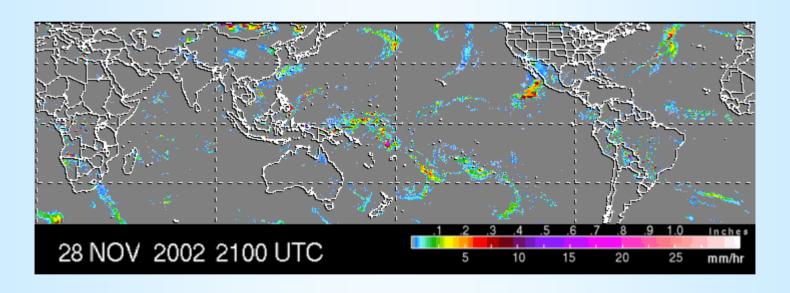
Rainfall from the TRMM-based merged data (3B42RT)

Weekly accumulation

TRMM - Merged (3B42RT) Rainfall Accumulation for Nov. 28 - Dec. 5 2002 3Hr Rainfall for Dec. 1 2002 1500UTC

Rain rate from a 3-hourly period within the week shown above

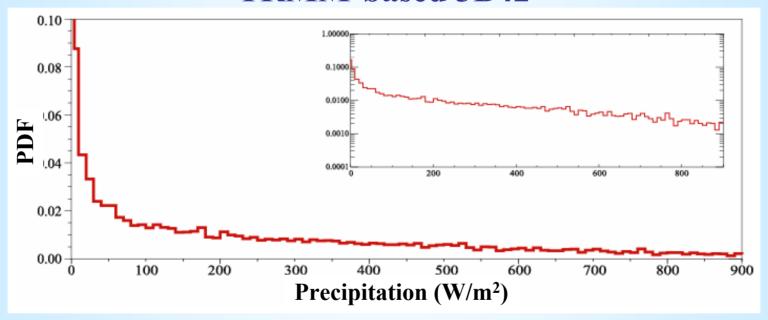
Rainfall animation from the TRMM-based merged data (3B42RT)



3 hour rainfall over one week (Nov. 28-Dec. 5, 2002)

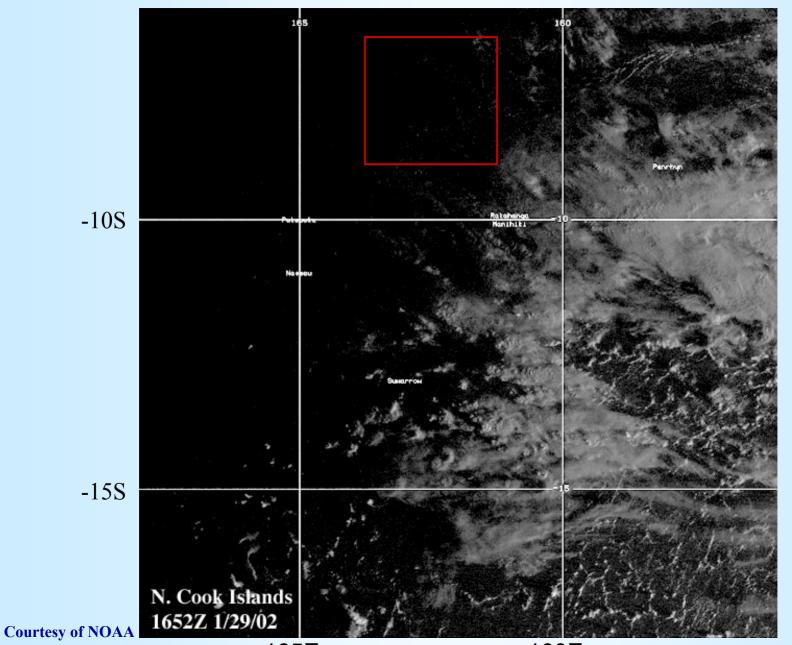
Probability density function of daily precip. in west Pacific warm pool

TRMM-based 3B42



• 150-152E, 6.5-8.5S

Visible image – Western Pacific 1652Z



<u>START</u>

165E

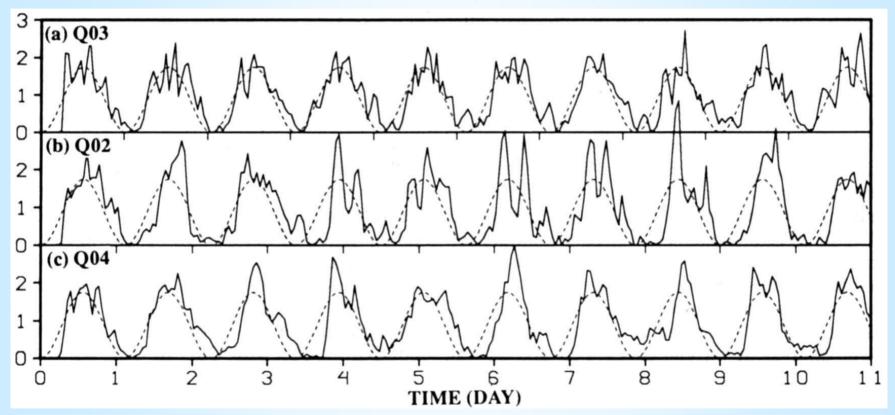
160E

Approaches to stochastic convective parameterization

- Empirical: Directly control statistics of the overall convective heating; specify distribution as function of model variables, with dependence estimated empirically.
 - Related to hydrology & remote sensing literature but heating/precipitation has strong feedbacks with large-scale flow.
 - •Example using "empirical lognormal scheme" in QTCM (Lin & Neelin 2002, JAS).
- **▶** "Physics-Motivated": Stochastic processes introduced within framework of convective parameterization, informed by physics relevant to unresolved variance.
 - Distribution is a testable outcome of the postulated physics.
 - •Example using "CAPE scheme" in QTCM (Lin & Neelin 2000, GRL).
 - •Modifications to existing Zhang-McFarlane scheme in CCM3 (Lin & Neelin 2003, GRL).
- Related work: Buizza et al 1999, Khouider and Majda (2001) Mesoscopic CIN; Khairoutdinov and Randall (2001), Grabowski (2001) "Super parameterization"

Xu, Arakawa and Krueger 1992 Cumulus Ensemble Model (2-D)

- Precipitation rates
- ---- Imposed large-scale forcing (cooling & moistening)



Experiments: Q03 512 km domain, no shear

Q02 512 km domain, shear

Q04 1024 km domain, shear

Temperature T and Moisture q equations

$$(\partial_t + \mathbf{v} \cdot \nabla)T + \mathbf{\omega}\partial_p \mathbf{s} - \partial_p \mathbf{R} + \partial_p \mathbf{S} - \partial_p \mathbf{F}_{SH} = \mathbf{Q}_c \qquad \begin{array}{c} \text{convective} \\ \text{heating} \end{array}$$

$$vertical \ velocity \qquad Fluxes: \ longwave \ radiation(R), \ solar(S) \\ \text{sensible}(SH), \ latent \ heat}(L)$$

$$(\partial_t + \mathbf{v} \cdot \nabla)q + \mathbf{\omega}\partial_p q - \partial_p \mathbf{F}_L = \mathbf{Q}_q \sim moisture \ source/sink$$

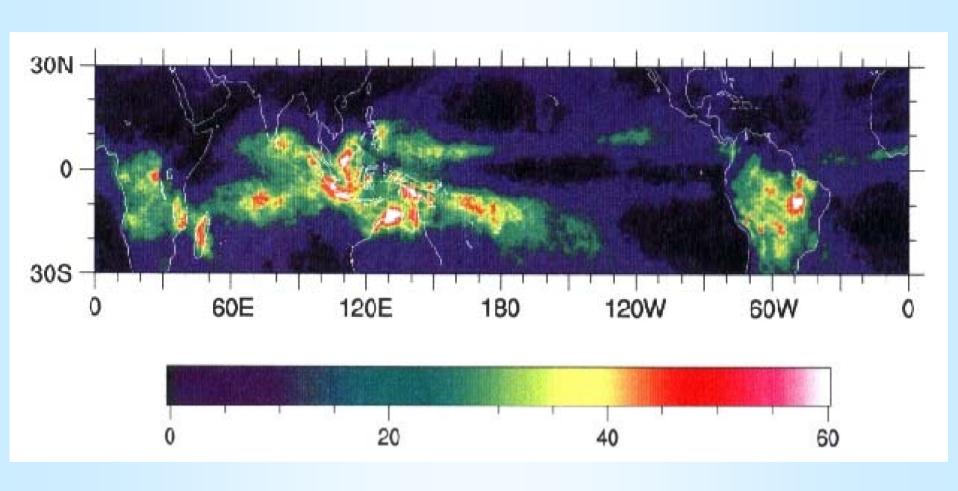
Energy constraint in vertical integral ()

$$\langle Q_c \rangle = -\langle Q_q \rangle$$

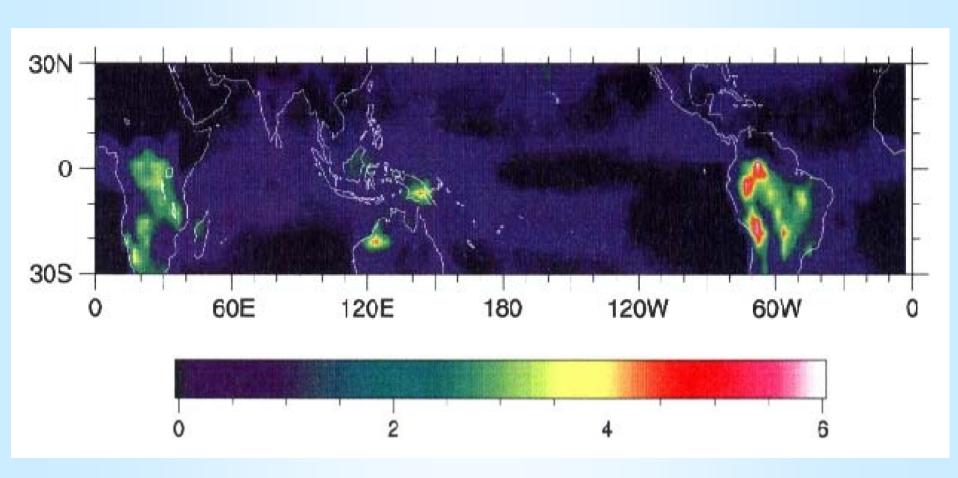
(Moist static energy equation)

$$\langle (\partial_t + \mathbf{v} \cdot \nabla)(T + q) \rangle + \langle \omega \partial_p h \rangle - F_{net} = 0$$
Transport of moist static energy by divergent flow into column makes (measure of divergence) and static energy the static energy into the static energy that $\mathbf{v} = \mathbf{v} + \mathbf{v} +$

Winter 1984 observed estimate of deep convective heating (DCH) variance [(K/day)²] (period 6 hours-2 days)

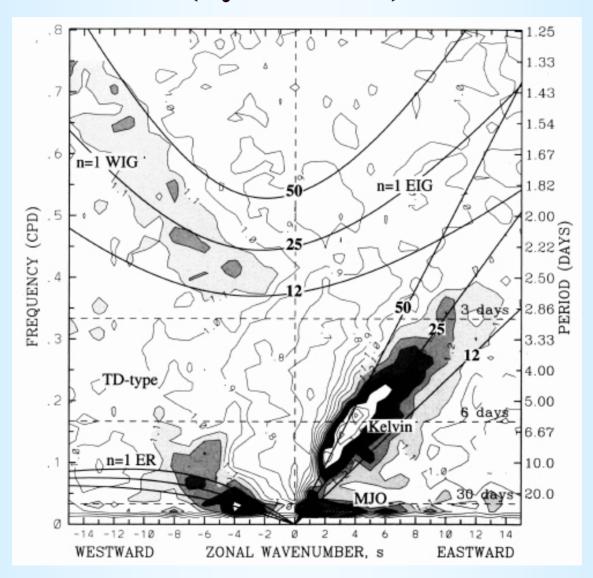


Winter 1984 Modeled DCH Variance [(K/day)²] (period 6 hrs-2 days)

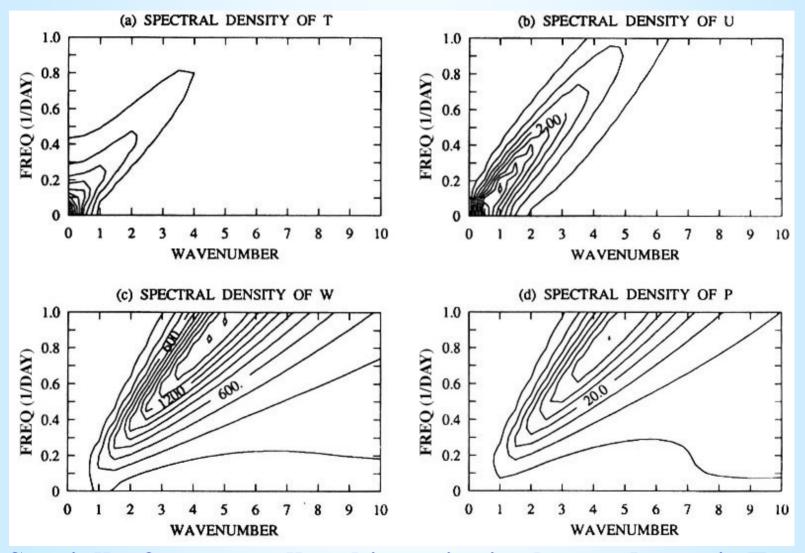


CCM3 using Zhang-McFarlane convective parameterization

Tropical OLR Spectral Power + Background (Symmetric)



Stochastic forcing of intraseasonal variance in linearized P.E. model with Betts-Miller convective scheme



Spatially & temporally white noise in thermodynamic Eqn.

Quasi-equilibrium Tropical circulation model:

Primitive equations projected onto vertical basis functions from convective quasi-equilibrium analytical solutions

for Betts-Miller (1986) convective scheme, accurate vertical structure in deep convective regions for low vertical resolution

baroclinic instability crudely resolved

1.5min/yr on a Pentium 4 at 5.6x3.75 degree resolution

GCM-like parameters but easier to analyze

Radiation/cloud parameterization:

Longwave and shortwave schemes simplified from GCM schemes (Harshvardhan et al. 1987, Fu and Liou 1993)

deep convective cloud, CsCc fraction param. on precip

Simple land model:

1 soil moisture layer; evapotranspiration with stomatal/root resistance dep. on surface type (e.g., forest, desert, grassland)

low heat capacity; Darnell et al 1992 albedo

Empirical approach stoch. convective param'n.

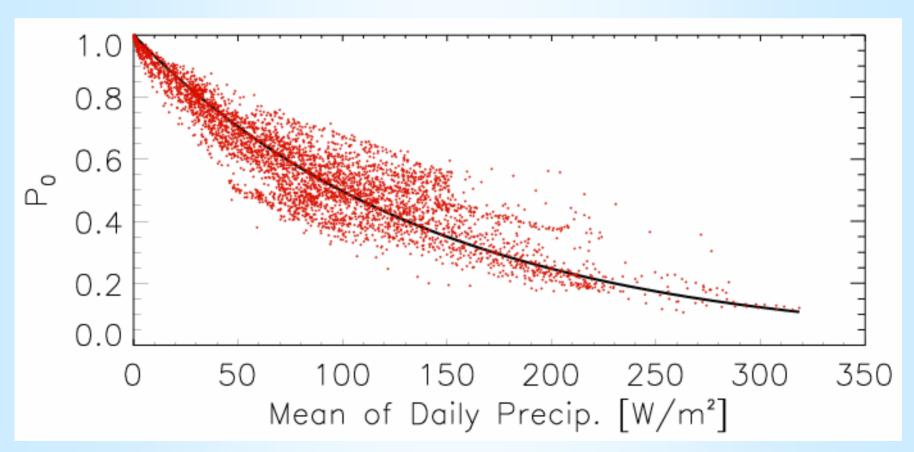
- Deterministic Betts-Miller parameterization gives convective heating Q_c as $Q_c^{BM} \propto \tau_c^{-1} R(C_1)$
- where R(x) = x, x > 0; = 0, $x \le 0$, τ_c is convective timescale, C_1 a measure of CAPE (Convective Available Potential Energy; depends on moisture and temperature).
- Calculate $Q_{\rm c}^{\rm BM}$, but then choose $Q_{\rm c}$ as a random number from distribution. Distribution parameterized on $Q_{\rm c}^{\rm BM}$ (e.g., ensemble mean $\propto Q_{\rm c}^{\rm BM}$) so changes with time.
- Vertically integrated heating = precipitation (in Wm⁻²) so use precipitation data to estimate.
- Issues: probability of zero precip., relation of variance and mean, tail, numerical impacts, estimation from data that includes effects of large-scale, ...
- Real issue: Feedback from large-scale alters distribution

"Empirical lognormal" scheme

- $Q_c = \alpha \xi_t Q_c^{BM}$ with cap on extreme values (50,000 Wm⁻²!) for numerical reasons. α for sensitivity testing (rescales τ_c^{-1})
- $\xi_t = \varepsilon_{\xi} \xi_{t-1} + (1 \varepsilon_{\xi}) y_t$ with ε_{ξ} chosen such that autocorrelation time $\tau_{\xi} \approx 20$ min., 2 hr., 1 day
- y from mixed lognormal after Kedem et al (1990)
- Cumulative distribution function $P(y>y) = P_0H(y) + (1 P_0)F(y)$ P_0 probability of zero precip., H Heaviside function
- $F(y,\mu,\sigma)$ lognormal
- Parameterize $P_0 = \exp(-\mu_p Q_c^{BM})$
- For E(y) = 1, $\mu = \ln(1/(1-P_0)) \sigma^2/2$, and set $\sigma = 4$ because gives "plausible" variance to mean relation & numerical reasons (Short et al 1993 $\sigma \approx 1$; higher σ gives higher variance for same mean and P_0).

Observed daily precipitation: Fraction of zero precip days P_o vs. mean precip \overline{Q}_c

• Fit: $P_o = \exp(-\mu_p \overline{Q}_c)$

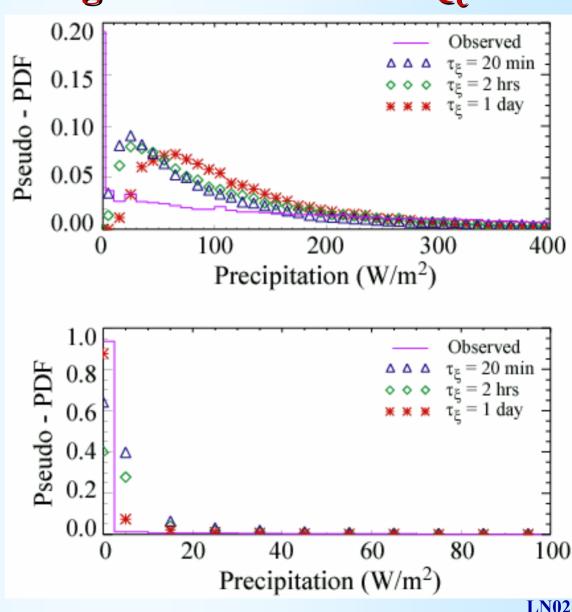


Microwave sounding unit (MSU) ocean region daily data (Jan 1979-Dec 1995). Annual mean used as mean.

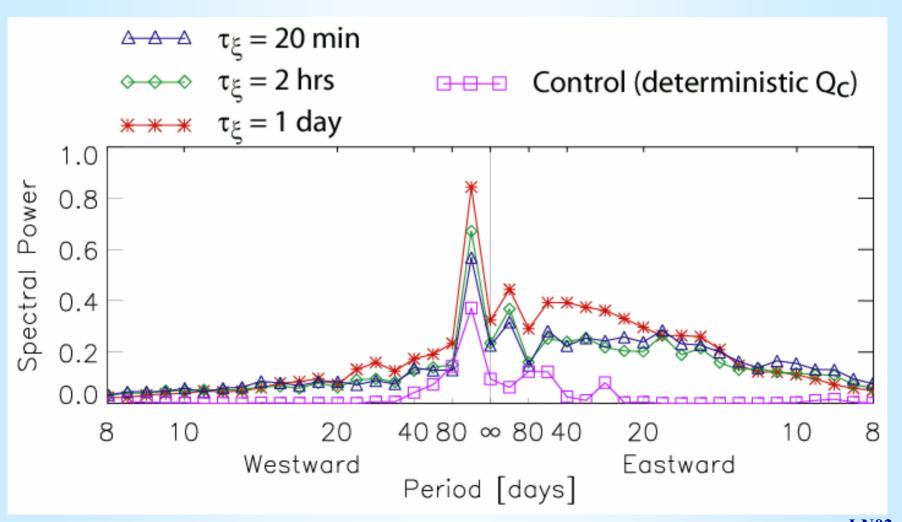
PDF of daily precip: Observed vs. QTCM with empirical lognormal stochastic $\mathbf{Q}_{\mathbf{c}}$

Region of frequent convection (in equatorial Western Pacific)

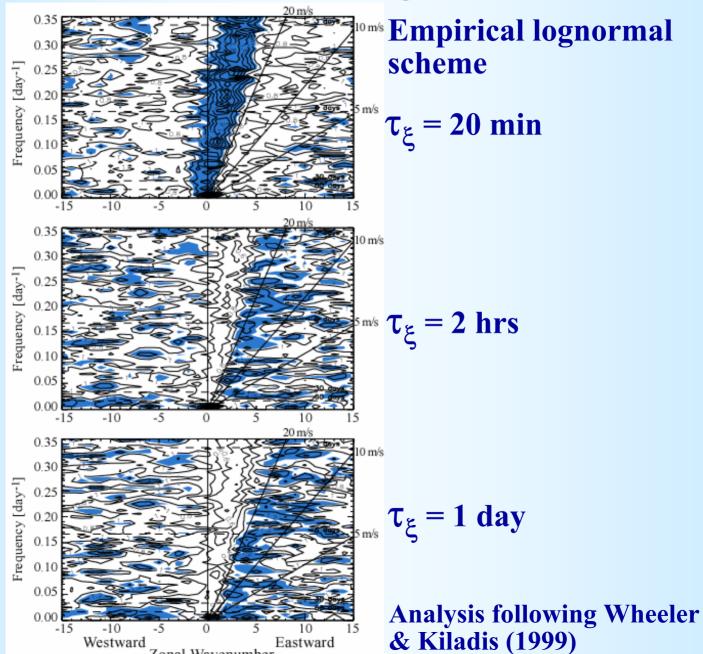
Region of infrequent convection (in tropical Southeastern Pacific)



QTCM with empirical lognormal ($\alpha = 1$) stochastic convective parameterization. Equatorial low-level zonal wind (u_{850}) power spectrum for wave number 1

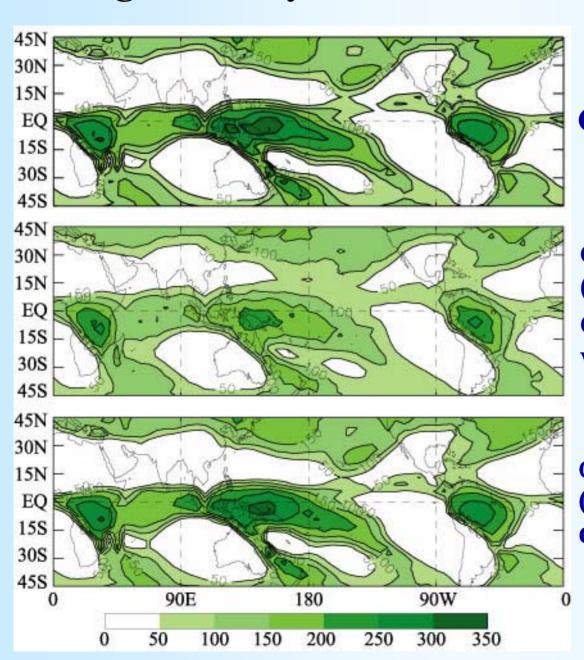


QTCM OLR PSD + Background (7.5N-7.5S)



Zonal Wayanumbar

Large-scale dynamics reduces sensitivity of clim.



$$Q_{\rm c} = \alpha \xi Q_{\rm c}^{\rm BM}$$

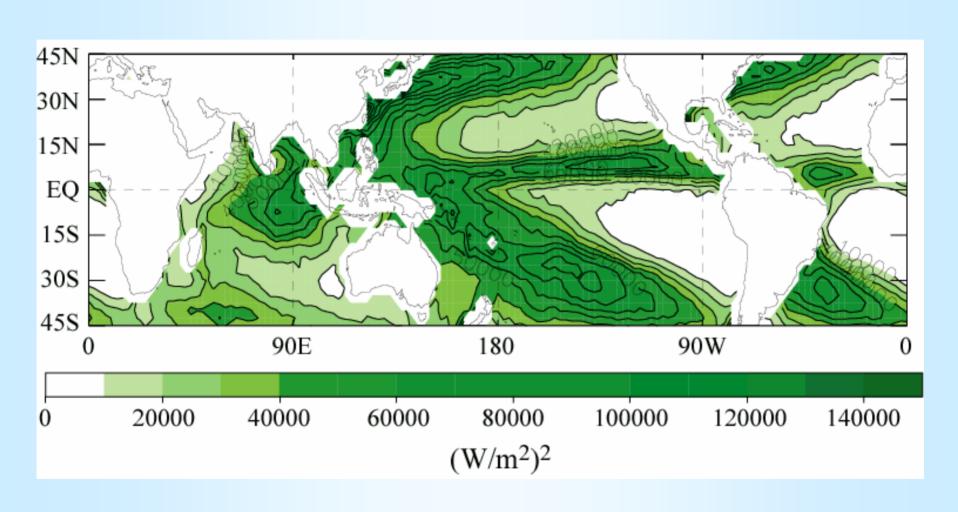
Control

 $\alpha = 1$ (Similar to deterministic case with τ_c =2*11)

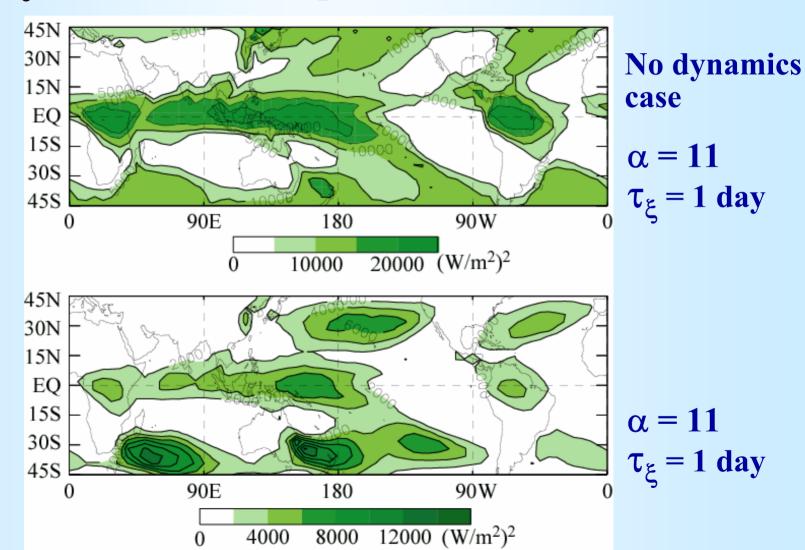
α = 11 (Not a factor of 11 different)

January Precipitation

Variance of daily mean precipitation from observations (MSU)



Model dynamics can increase or decrease precip. variance relative to "no dynamics" case (Q_c^{BM}) from clim. input to stoch. scheme)



Physics-motivated approach, example in QTCM Stochastic "CAPE scheme"

• Betts-Miller

$$Q_{\rm c} \propto \tau_{\rm c}^{-1} {\sf R}(C_1)$$

- $-Q_{\rm c}$ convective heating, $\tau_{\rm c}$ time scale
- C_1 a measure of CAPE, R(x) = x, x > 0; = $0, x \le 0$
- Retain physical postulates but assume CAPE Gaussian about mean

$$Q_{\rm c} \propto \tau_{\rm c}^{-1} {\sf R} \left(C_1 + \xi \right)$$

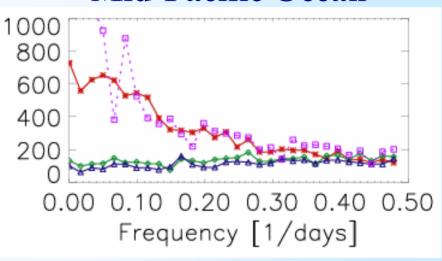
- $-\xi_{t} = \varepsilon_{\xi} \xi_{t-1} + z_{t}$
- Choose ε_{ξ} such that autocorrelation time of CAPE random process $\tau_{\xi} = 20$ min, 2 hr, 1 day.
- Sensitivity test and corresponds to different physics (convective cells to longer lived mesoscale systems)
- z_t Gaussian, zero mean, s. dev. σ_z .
- set σ_z such that model matches observations in freq band (0.4, 0.5 day⁻¹)

Observed and model power spectrum of precip at 60E and 180E on the equator

Mid-Indian Ocean

1000 800 600 400 200 0.00 0.10 0.20 0.30 0.40 0.50 Frequency [1/days]

Mid-Pacific Ocean

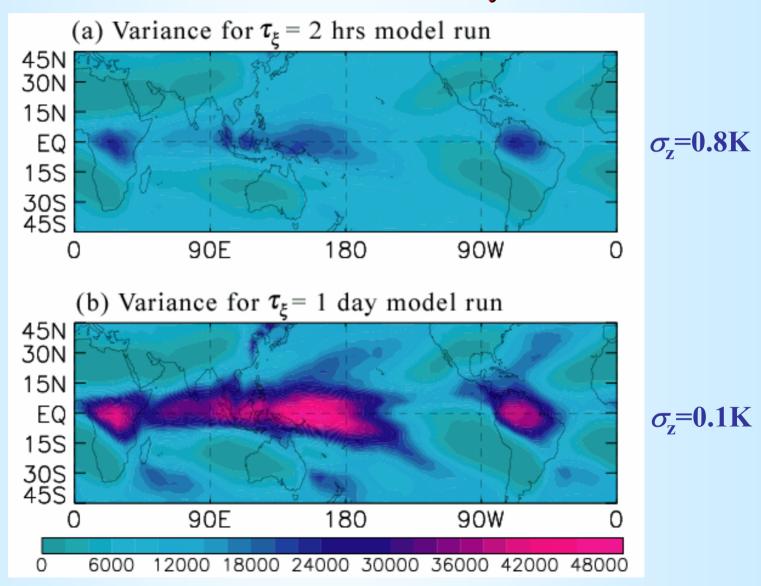


Observed MSU-----

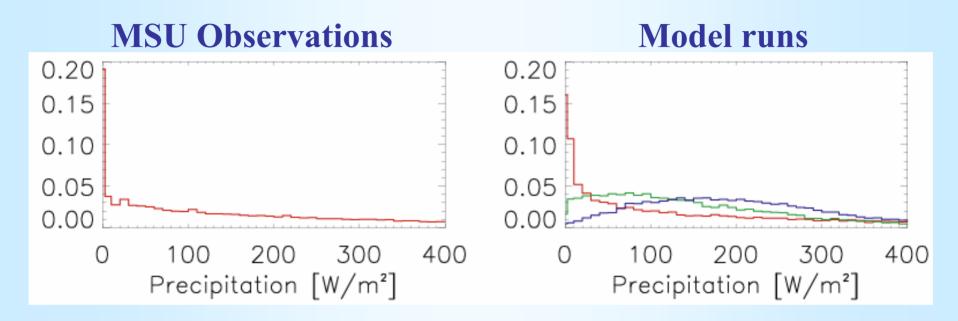
Model with stochastic precip parameterization:

$$\tau_{\xi} = 20 \text{ min} - \frac{1}{\tau_{\xi}} = 2 \text{ hrs} - \frac{1}{\tau_{\xi}} = 1 \text{ day} - \frac{1}{\tau_{\xi}} = \frac{1}{\tau_{\xi}}$$

Variance of QTCM with stochastic CAPE scheme for two values of τ_{ξ}



Probability density function of daily precip (in west Pacific, 5N)

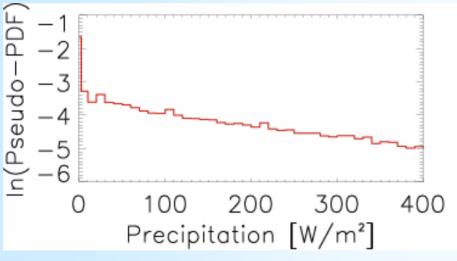


QTCM with CAPE stochastic precip. parameterization:

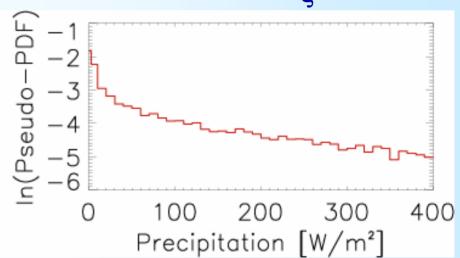
Probability density function of daily precip (in west Pacific, 5N)

Log-linear

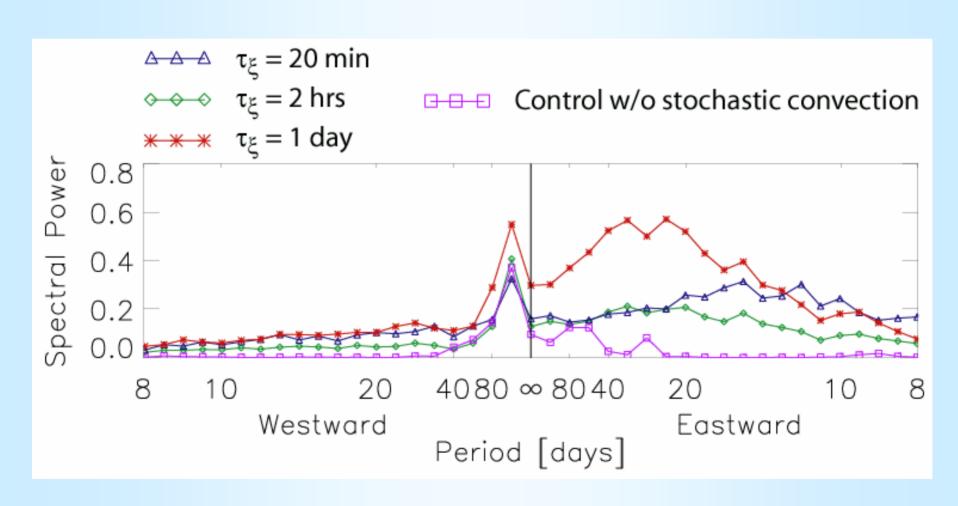
MSU Observations



QTCM with stochastic CAPE scheme, $\tau_{\xi} = 1$ day



Impact of CAPE stochastic convective parameterization on tropical intraseasonal variability



Physics-motivated approach example in CCM3 Stochastic "CAPE-M_b" scheme

Modify mass flux closure in Zhang - McFarlane (1995) scheme Evolution of CAPE, A, due to large-scale forcing, F

$$\partial_t A_c = -M_b F$$

Closure

$$\partial_t A_c = -\tau^{-1} A$$

$$\Rightarrow M_b = A(\tau F)^{-1} \quad (for M_b > 0)$$

Stochastic modification

$$M_b = (A + \xi)(\tau F)^{-1}$$

$$\Rightarrow \partial_t A_c = -\tau^{-1}(A+\xi)$$

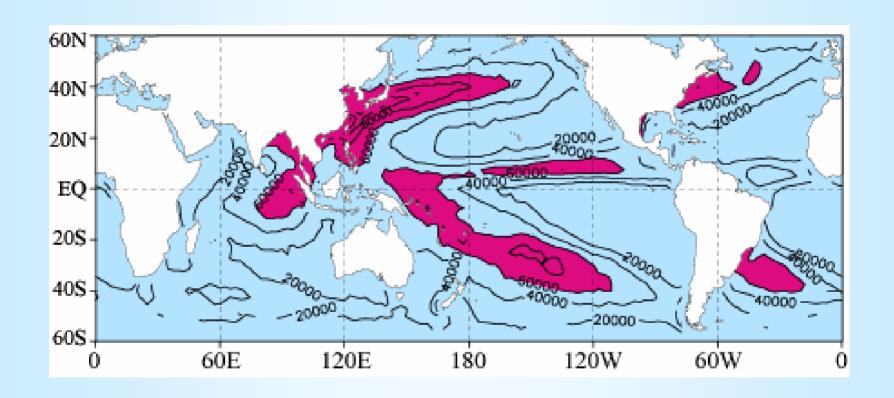
i.e., same as adding stochastic component to CAPE But posited as stochastic effect in cloud base mass flux M_b ξ Gaussian, autocorrelation time 1day

CCM3 Test scheme for stochastic effects in vertical structure of heating (VSH scheme)

$$\mathbf{Q}_{c}(\mathbf{p}) = \mathbf{Q}_{c}^{ZM} + (\xi_{t} - \langle \xi_{t} \rangle)/\Delta t$$

- ξ_t Gaussian, autocorrelation time $\tau_{\xi} = 1$ day
- White in vertical except zero vertical mean
- Convective heating only
- Simple test for potential impacts of variations in vertical structure
- Contrasts with CAPE-M_b scheme which has no direct alteration of vertical structure from ZM scheme

Variance daily precipitation (Microwave Sounder Unit product)



CCM3 variance of daily precipitation

40N

20N

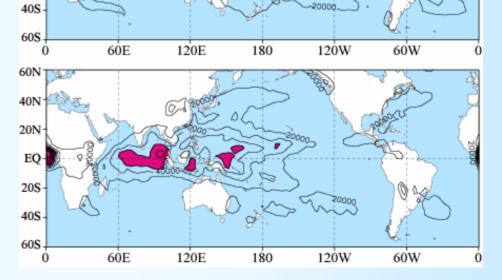
20S

Control run

20N EQ 20S 40S 60S 0 60E 120E 180 120W 60W 0

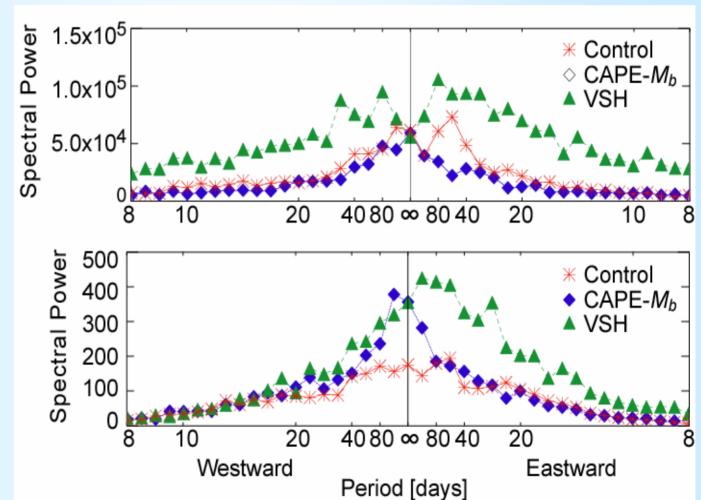
 $CAPE-M_b$ scheme

VSH scheme



CCM3 Equatorial wavenumber one spectral power: precipitation and-low level winds

Precipitation anomalies



850 hPa zonal wind anomalies

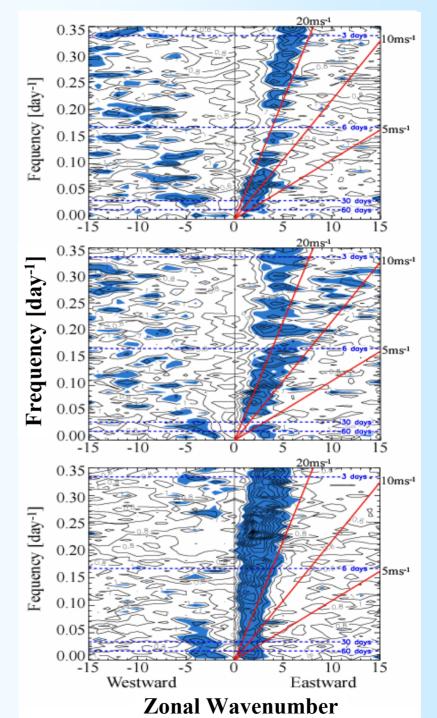
CCM3 OLR (7.5N-7.5S) Power spectral density ÷ Background

Control run

 $CAPE-M_b$ scheme

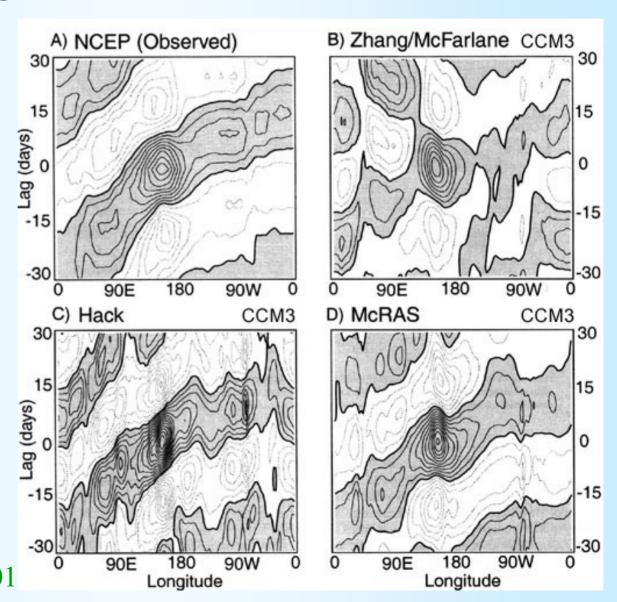
VSH scheme

Analysis following Wheeler & Kiladis (1999)



Equatorial zonal wind at 850mb (u_{850}) regressed on u_{850} avg. near 155E (10S-10N)

NCEP (Dec-May) vs.
CCM3 with three
deep convective
parameterizations
(perpetual March)



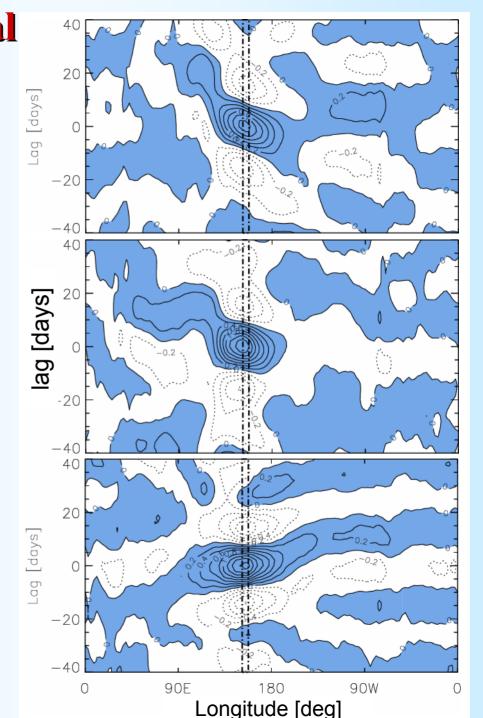
Maloney and Hartmann, 2001

CCM3 Equatorial zonal wind at 850mb (u₈₅₀) regressed on u₈₅₀ avg. near 155E (10S-10N)

CAPE-M_b scheme

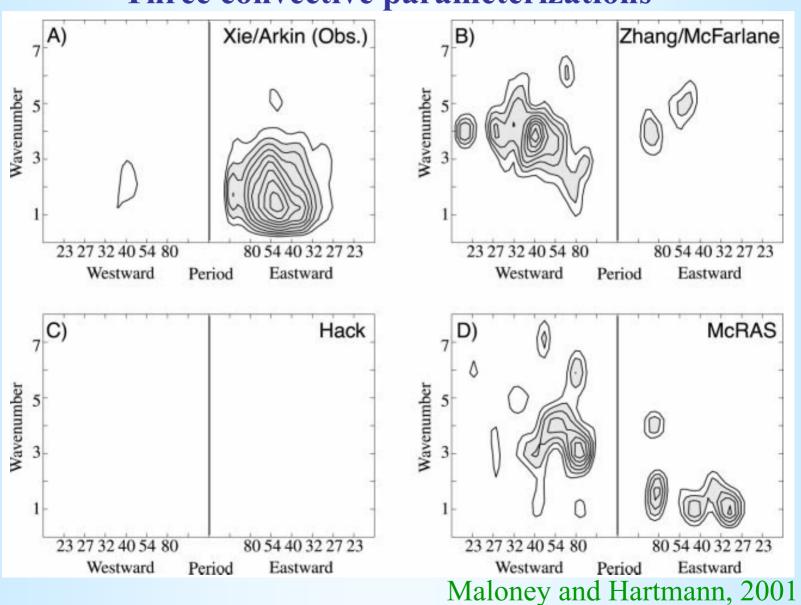
Control run

VSH scheme



Power spectral density CCM3 vs. obs.

Three convective parameterizations



Summary: Empirical approach

- Heating strongly interacts with the large-scale.
- -e.g., dynamics reduces variance relative to "no-dynamics" calculation in some cases and increases it in others
- -can't estimate heating probability distribution from data and calibrate scheme offline since dynamics so strongly changes properties (favors physics-motivated approach).
- Large-scale dynamics tends to adjust mean toward a climatology intrinsic to the model \supseteq reduced sensitivity to stochastic component; preservation of mean of deterministic scheme not an important property of stochastic scheme.
- Intraseasonal variability can be strongly impacted by inclusion of stochastic component, but there is parameter sensitivity.

Summary: Physics-motivated approach

- Even simple version, e.g., CAPE scheme, can yield encouraging results (incl. probability distribution of heating)—but there is parameter sensitivity.
- Autocorrelation time of the stochastic processes matters.
- -Longer autocorrelation time, on the order of a day, yields more impact and better results for the CAPE scheme example in the QTCM. Suggests importance of mesoscale processes?
- Stoch. forcing arising physically from small-scales can be a significant source of intraseasonal variability--but nature depends strongly on interaction with large-scale
- Variations in vertical structure yield signature more suggestive of dry wave types with precip. by-product

Where to go....

- modify Relaxed Arakawa-Schubert but including updraft history--will this give physical basis to time autocorrelation and vertical variation of heating?
- evaluate buoyancy decay closure vs. "goes 'til it can't"
- impacts on transports, strat-trop, chemistry,...?
- "convective entities": e.g., randomly initiated simplified model of mesoscale system within grid cell?

Percent of TRMM precip. from mesoscale convective systems Nesbitt et al., 2002

