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Global warming scenarios: IPCC* 2007 & ~2013   

Inputs for Coupled Model Inter-Comparison Project (CMIP) 3 & 5 for 
*Intergovernmental Panel on Climate Change Assessment Reports 4 & 5 
Historical period est. observed greenhouse gas + aerosol forcing, 
followed by “Representative Concentration Pathway” (RCP) 
 



Global warming as simulated in climate models ~2007 
• Global avg. sfc. 

air temp. change 
  (ann. means rel. 

to 1901-1960 base 
period) 
 

• Greenhouse gas + 
aerosol forcing: 
Est. observed, 
followed by  

  SRES A2* 
scenario (inset) in 
21st century 

*SRES: Special Report on Emissions Scenarios 
A2: uneven regional economic growth, high income toward non-fossil, population 15 billion 
in 2100; similar to an earlier “business-as-usual” scenario “IS92a” 
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Global warming as simulated in climate models CMIP5 
• Global avg. sfc. 

air temp. change 
  (ann. means rel. 

to 1961-1990 base 
period) 
 

• Greenhouse gas + 
aerosol forcing: 
Est. observed 
followed by 
RCP8.5 from 2005 

*Representative Concentration Pathway specified: not full Earth System Model, i.e., carbon 
cycle feedbacks etc. not active in runs shown here 
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Surface air 
temperature 

change for three 
models*  

2080-2099 
annual avg.  

(rel. to 1961-90) 
 CMIP5 

NCAR- 
CCSM4 

IPSL- 
CM5A-R 

MRI- 
CGCM3 

*Unexplained acronyms 
denote climate model names 



• Severe problems with model disagreement on precipitation 
change at regional/seasonal scales, markedly so in tropics 

• some agreement on large-scale or amplitude 
• Poor simulation of El Niño remote precipitation anomalies 
• Sensitivity to differences in model parameterizations 
• Teleconnections of errors in other parts of the climate 

system to influence edges of convection zones/storm tracks 
 

 

Examples and issues with precipitation simulation: 
global warming, El Niño… 

e.g., IPCC 2001, 2007; Wetherald & Manabe 2002; Trenberth et al 
2003; Neelin et al. 2003; Maloney and Hartmann 2001; Joseph 
and Nigam 2006; Biasutti et al. 2006; Dai 2006; Tost et al. 2006; 
Bretherton 2007, Frierson, ...  



July 
 

January  
 

Precipitation: climatology (CMAP*: 1979-2008) 

Note intense tropical 
moist convection zones 
(intertropical convergence 
zones) 
 

Later: 4 mm/day contour as  
indicator of precip. climatology 
*CPC Merged Analysis of Precipitation (CMAP) 



Observed (CMAP) and CMIP3 coupled models 4 
mm/day precip. contour 

June - August 
 precipitation climatology 

December-February 
precipitation climatology 

 

 Coupled simulation climatology (20th century run, 1979-2000) 

CPC Merged Analysis of Precipitation (CMAP) 

Neelin, 2011,Climate Change and Climate 
Modeling  Cambridge UP 



Observed (CMAP) and CMIP5 coupled models  
4 mm/day precip. contour 

June - August 
 precipitation climatology 

December-February 
precipitation climatology 

 

 Coupled simulation climatology (20th century run, 1979-2005) 

Coupled Model Intercomparison Project  (CMIP5) 

Analysis: J. Meyerson 



IPCC 2007 multi-model, annual mean 
precipitation change (2080-2099 relative to 1980-1999) 

High latitudes 
wetter  

Subtropics  
dryer/expand  

Deep tropics  
wetter 

Stippled where 80% of the models agree on sign of the 
mean change.  Note typical magnitudes <0.5mm/d. 

IPCC 4th Assessment Report (WG1 2007, chpt 10; A1B Scenario) 



Fourth Assessment report models 
• Data archive at Lawrence Livermore National Labs, 

Program on Model Diagnostics and Intercomparison 
• SRES A2 scenario (heterogeneous world, growing 

population,…) for greenhouse gases, aerosol forcing 

Precipitation change: HadCM3, Dec.-Feb., 2070-2099 avg minus 1961-90 avg. 

4 mm/day 
model  
climatology 
black 
contour for 
reference 

mm/day 

Neelin, Munnich, Su, Meyerson and Holloway , 2006, PNAS 

CMIP3 



NCAR_CCSM3 
JJA Prec. Anom. 

CMIP3 



CCCMA 
JJA Prec. Anom. 

CMIP3 



CNRM_CM3 
JJA Prec. Anom. 

CMIP3 



CSIRO_MK3 
JJA Prec. Anom. 

CMIP3 



GFDL_CM2.0 
JJA Prec. Anom. 

CMIP3 



GFDL_CM2.1 
JJA Prec. Anom. 

CMIP3 



UKMO_HadCM3 
JJA Prec. Anom. 

CMIP3 



MIROC_3.2 
JJA Prec. Anom. 

CMIP3 



MRI_CGCM2 
JJA Prec. Anom. 

CMIP3 



NCAR_PCM1 
JJA Prec. Anom. 

CMIP3 



MPI_ECHAM5 
JJA Prec. Anom. 

CMIP3 



CMIP5/IPCC 5th Assessment report models 
• Representative Concentration Pathway RCP 8.5 (akin to 

CMIP3 A2 scenario) for greenhouse gases, aerosol forcing 

Precipitation change: HadCM3, Dec.-Feb., 2070-2099 avg minus 1961-90 avg. 

4 mm/day 
model  
climatology 
black 
contour for 
reference 

Analysis: J. Meyerson 
mm/day 

CMIP5 NCAR Community Climate System Model 



BCC-ESM1-1 
JJA Prec. Anom. 

CMIP5 Beijing Climate Center, China 



CanESM2 
JJA Prec. Anom. 

CMIP5 Canadian Center for Climate Modelling and Analysis, Canada. 



CCSM4 
JJA Prec. Anom. 

CMIP5 NCAR Community Climate System Model 



CNRM-CM5 
JJA Prec. Anom. 

CMIP5 Centre National de Recherches Mereorologiques/ Centre Europeen de 
Recherche et Formation Avancees en Calcul Scientifique, France. 



CSIRO-MK3 
JJA Prec. Anom. 

CMIP5 Commonwealth Scientific and Industrial Research Organization, Aus. 



GISS-E2-R 
JJA Prec. Anom. 

CMIP5 Goddard Institute for Space Studies 



INMCM4 
JJA Prec. Anom. 

CMIP5 Institute for Numerical Mathematics, Russia. 



IPSL-CM5A 
JJA Prec. Anom. 

CMIP5 Institut Pierre Simon Laplace, France. 



MRI-CGCM3 
JJA Prec. Anom. 

CMIP5 Meteorological Research Institute, Japan 



NORESM1-M 
JJA Prec. Anom. 

CMIP5 Norwegian Climate Center, Norway 



Mechanisms & constraints from moisture/energy budgets 

Moisture budget for perturbations 

0.    At global scale neglect transport P' E', set by surface 
energy balance  small increase   (e.g., Allen & Ingram 2002,…) 

0.1 Warmer temperatures & Clausius-Clapeyron  q' tends to 
increase [Interplay with convection and dynamics   q' ] 

<>= vertical average; q' specific humidity; ' denotes changes 

P'      = – <`v ·  q' >
Upped-ante 

– <`q ·v' >
Convergence Fb 

+ E' +… 
Evap 

– <q' · `v >
Rich-get-Richer Precip 



Mechanisms & constraints from moisture/energy budgets 

“Rich-get-richer mechanism*” 

Subtropics: low-level divergence 

 so q' increase  Precip decrease 

 

Convergence zones:  vice versa 

 
*(a.k.a. thermodynamic component): 

Subtropics 

Convergence zones 

Moisture budget for perturbations 
P'      = – <`v ·  q' >

Upped-ante 
– <`q ·v' >

Convergence Fb 
+ E' +… 

Evap 
– <q' · `v >

Rich-get-Richer Precip 



Center of convergence zone: 
incr. moisture

convergence  incr. precip 

The Rich-get-richer mechanism 
 

Chou & Neelin, 2004, Held & Soden 2006, Chou et al 2008 

Descent region: incr. 
moisture divergence; less 

often meets conv. threshold 



Mechanisms & constraints from moisture/energy budgets 

a. Atm. energy budget to approx. ·v'  (Chou & Neelin 2004) 

b. Neglect ·v' ,  (Held and Soden 2006; plausible for large scales) 

 ·v'  large at regional scales!  a major factor in uncertainty 

v ·  q'  in particular regions 

Averaging over larger scales, e.g., latitude bands; or a an ensemble 
of models that disagreed on location of strong convergence change 
can reduce the visibility of the convergence feedback terms 

[Regional differences] 

Moisture budget for perturbations 
P'      = – <`v ·  q' >

Upped-ante 
– <`q ·v' >

Convergence Fb 
+ E' +… 

Evap 
– <q' · `v >

Rich-get-Richer Precip 



West Coast rainfall change under global warming 

CMIP5 

DJF Prec. Anom. (2070-99)- (1961-90), RCP 8.5 scenario 

Analysis: J. Meyerson 



DJF Prec. Anom. 
CanESM2 

CMIP5 



DJF Prec. Anom. 
CCSM4 

CMIP5 



DJF Prec. Anom. 
CNRM-CM5 

CMIP5 



DJF Prec. Anom. 
CSIRO-MK3 

CMIP5 



DJF Prec. Anom. 
GISS-E2-R 

CMIP5 



DJF Prec. Anom. 
INMCM4 

CMIP5 



DJF Prec. Anom. 
IPSL-CM5A  

CMIP5 



DJF Prec. Anom. 
MRI-CGCM3 

CMIP5 



DJF Prec. Anom. 
NORESM1-m 

CMIP5 



How do the models do for El Niño/Southern 
Oscillation (ENSO)? 

• A phenomenon we can observe 

• Important for interannual prediction 

• Satellite precipitation retrievals since 1979 
• Atmospheric model component runs with observed sea 

surface temperature (SST) or ocean atmosphere models 
• Rank correlation/Regression/compositing of events based on 

an equatorial Eastern Pacific SST index “Nino3.4” 



ENSO teleconnections to regional precip. anomalies 

Su & Neelin, 2002 
See Newell and Weare (1976); Salby & Garcia 1987; Yulaeva & Wallace (1994); Wallace et al. 

(1998); Chiang and Sobel (2002); Kumar & Hoerling (2003); Su and Neelin 2003; Sperber and 
Palmer 1996, Giannini et al 2001; Saravanan & Chang, 2000; Joseph & Nigam 2006,… 

 

Tropospheric temperature anomaly 
 



Observed Nino3.4 rank correlations (Dec.-Feb.)    
CMAP 

CPC Merged Analysis of Precipitation 

Compare to preliminary results from CMIP5 models 
Analysis: B. Langenbrunner 



CMIP5 models nino3.4 rank corr. AMIP runs(Dec.-Feb.)  
CanAM4 

Canadian Center for Climate Modelling and Analysis, Canada. 

CMIP5 



CMIP5 models nino3.4 rank corr. AMIP runs(Dec.-Feb.)  
CCSM4 

NCAR Community Climate System Model 

CMIP5 



CMIP5 models nino3.4 rank corr. AMIP runs(Dec.-Feb.)  
CNRM 

Centre National de Recherches Mereorologiques/ Centre Europeen de 
Recherche et Formation Avancees en Calcul Scientifique, France. 

CMIP5 



CMIP5 models nino3.4 rank corr. AMIP runs(Dec.-Feb.)  
CSIRO 

Commonwealth Scientific and Industrial Research Organization, Aus. 

CMIP5 



CMIP5 models nino3.4 rank corr. AMIP runs(Dec.-Feb.)  
HadGEM-A 

Met Office Hadley Centre, UK. 

CMIP5 



CMIP5 models nino3.4 rank corr. AMIP runs(Dec.-Feb.)  
INMCM4 

Institute for Numerical Mathematics, Russia. 

CMIP5 



CMIP5 models nino3.4 rank corr. AMIP runs(Dec.-Feb.)  
IPSL 

Institut Pierre Simon Laplace, France. 

CMIP5 



CMIP5 models nino3.4 rank corr. AMIP runs(Dec.-Feb.)  
MPI 

Max Plank Institute, Germany 

CMIP5 



CMIP5 models nino3.4 rank corr. AMIP runs(Dec.-Feb.)  
MRI 

Meteorological Research Institute, Japan 

CMIP5 



CMIP5 models nino3.4 rank corr. AMIP runs(Dec.-Feb.)   
NorESM1-m 

Norwegian Climate Center, Norway 

CMIP5 Analysis: B. Langenbrunner 



What is being done across the field? 

• Higher-resolution models… (no guarantee)  
• Regional models (boundary conditions from global models) 
• Multimodel ensemble means and general (vs. regional) statements 

• Large satellite data sets, field campaigns, monitoring at 
Atmospheric Radiation Measurement sites…. 

• Need to digest in ways that better constrain 
parameterizations* of moist convection at short time scales 

• Understanding of parameter sensitivity/uncertainty 
quantification;  practical means of optimizing models with 
available data 

• Alternatives to point by point multi-model ensemble mean 

*Parameterization: representation of bulk effects of small-scale phenomenon 
as a function of grid-scale variables 

 



Hypothesis for disagreement on regional scale: 

• models have similar processes for precip increases and 
decreases but the geographic location is sensitive  
…to differences in 
model clim. of wind, 
precip; convective 
closure (e.g. 
threshold)… 

• agreement on amplitude measure* 
• suggests strong regional changes are likely that are not 
reflected in multi-model averages. 

*e.g., spatial projection of precip change on each model’s own characteristic pattern 



E.g., amplitude of 
precip incr/decr 
pattern shows 

better agreement 

Neelin, Munnich, Su, Meyerson and Holloway , 2006, PNAS 

Projection of Jun-
Aug (30yr running 
mean) precip 
pattern onto 
normalized positive 
& negative late-
century pattern for 
each model 

CMIP3 

Despite disagreement on precise location, seek measures 
of extent of precip change that are more predictable 



Integrated measures of regional precip. change cont’d 

Analysis: B. Langenbrunner ; five year running mean shown for graphical clarity 

Fraction of the globe with annual precipitation that would be in highest 
5% (~20 year wet spell) during base period (1961-1990) for each model 

CMIP5 



Integrated measures of regional precip. change cont’d 

Analysis: B. Langenbrunner ; five year running mean shown for graphical clarity 

Fraction of the globe with annual precipitation that would be in lowest 5% 
(~20 year drought) during base period (1961-1990) for each model 

CMIP5 



Are there fundamental considerations in 
climate model sensitivity that techniques 

borrowed from optimization methods can 
help with? 

  

Neelin, Bracco, Luo, McWilliams, Meyerson, 2010, PNAS. 

• Precipitation parameter sensitivity a critical limitation to 
confidence levels in regional scale projections---arguably 
more important for impacts this century than climate 
sensitivity for global average temperature 

• How nonlinear is this sensitivity? E.g., convection has sharp 
threshold for onset, but climate avgs over many instances 

• Can we infer implications for the model improvement 
process and the use of multi-model ensemble averages to 
estimate projected precipitation changes? 



Precipitation sensitivity cont’d  
 

• Interest in systematic parameter sensitivity (esp. global avg 
climate sensitivity) and optimization in climate models 
(Severijns & Hazeleger 2005 Clim. Dyn., Stainforth et al. 2005 Nat., Jones et al. 
2005 Clim. Dyn., Knight et al. 2007 PNAS, Kunz  et al. 2007 Clim. Dyn., 
Jackson et al. 2008 J. Clim., Rougier et al. 2009 J. Clim.,…)  

• # parameters N can easily be >10; a priori feasible range  
• Brute force sampling at density s gives order sN problem, but 

e.g. ~N2 depending on nature of parameter dependence.  
Rough/smooth?  High-order nonlin? Irreducible imprecision? 
• Here examined in the ICTP climate model 
 

 
 

*International Centre for Theoretical Physics atmospheric general 
circulation model: ICTP AGCM; Molteni F., 2003, Climate Dyn.; Bracco et al. 
2004, Climate Dyn.) 

•  Eight Sigma-levels, spectral triangular truncation T30 ~3.75 x 3.75-degree 



Parameter dependence of RMS error* of June-Aug. precip 
as a function of cloud albedo, convective rel. hum., RHconv 

AGCM ensemble mean over 10*25-year runs,  
(with observed sea surface temp.).  
Vertical size of symbol=2*standard error of ensemble mean 
Individual ensemble members shown for RHconv 
 

*(vs. NCEP reanalysis) Neelin, Bracco, Luo, McWilliams, Meyerson, 2010, PNAS. 



Try quadratic metamodel on space of N parameters μi  for field j
 
 
 
Simple but important: linear coefficient ai(x,t) & quadratic 
coefficient bij(x,t) are spatial & seasonal fields  
•e.g. of entry-level strategy for “computationally-expensive black-
box functions” (cf. review by Shan & Wang, 2010, Struct. Multidisc. Optim.) 
•j can be a climatological field, anomaly regression, or other statistic 
from  model output. Adopt multi-objective approach (for each field). 
•Then construct objective function, e.g., rms error 
(or sq. error, spatial correlation…) with typically a spatial mean,  
jobs observed, jstd the GCM for standard parameters 
 
•First fit: ai(x,t), bii(x,t) from the 2N endpoints of the μi ranges (order N 
integrations even if add redundant points).  
•For off-diagonal bij=bji: order N2 (at least N(N-1)/2 simulations).  
 
 

1 1

N N N

std i i ij i j
i i j

a bj j   
 

    

 
1 / 22

ij  j  

Metamodel fit to param. dependence of AGCM fields 



RMS error of June-Aug. precipitation (vs. NCEP)  
as a function of cloud albedo, convective RH 

AGCM ensemble average versus linear and quadratic 
metamodels. Note negative curvature for relative humidity, due 
to ~quadratic nonlinearity in spatial field. No interior minimum 
boundary solution in constrained optimization problem 
 
 
 

Neelin et al. 2010. 



RMS error of June-Aug. precipitation (vs. reanalysis)  
as a function of convective RH but AGCM coupled to a 

mixed-layer (ML) ocean (preindustrial CO2) 

•Same properties in 
coupled model 
AGCM-ML average (250 
yrs) versus linear and 
quadratic metamodel. 
Negative curvature for 
relative humidity (assoc. 
with ~quadratic nonlinearity 
in param. dependence of 
spatial fields) as in specified 
SST case.  
Vertical size of 
symbol=2*standard error 

Neelin, Bracco, Luo,  
McWilliams, Meyerson  
2010, PNAS. 



Role of high dimensional fields in improvement challenges 

Illustrate with case* of objective 
function f, (e.g. RMS precip error)   
with standard case error jerr  
   μi f = gi + Aiiμi = 0  
       gi = 2aijerr,        
      Aii = 2(ai

2 +2 biij) 
 spatial average, metamodel 
linear coeff ai, quadratic bij. For 
simplicity neglect bij in curvature. 
  μi = -aijerr/ ai

2
If sensitivity ai  had same spatial 
pattern as the standard case 
error jerrjstdjobsthis would  
cancel the error. Instead, 
compromise between reducing 
jerr and introducing new error. 
 


Common experience: One region improves but another gets worse! 

*case of interior minimum for diagonally dominant Hessian A 



Parameter dependence for precipitation (etc) 
changes under global warming:  

Implications for multi-model ensemble average 
• Does sensitivity across the feasible parameter domain 

provide a prototype for differences among models? 
• If so, multi-model ensemble average ~ random sampling 
• If parameter dependence is linear, and distribution of 

sample points is unbiased with respect to “true” parameter 
value multi-model ensemble average should work well 

• parameter directions with (1) strong nonlinearity or (2) 
boundary optima (suggesting sampling across feasible 
range likely biased) can limit usefulness of multi-model 
ensemble average; e.g., convective rel. humidity param. 

 
 



RMS difference (vs. Rhconv=0.9)  of June-Aug. precipitation 
change as a function of convective RH for AGCM-ML  

2xCO2 minus preindustrial CO2 
AGCM ensemble average versus linear and quadratic fit. Note 
negative curvature for relative humidity, due to quadratic effects.  

Neelin, Bracco, Luo,  
McWilliams, Meyerson  
2010, PNAS. 

Global warming 
precipitation 
change parameter 
dependence 



Global warming precipitation change parameter sensitivity  
Ensemble-mean JJA 
precipitation (as a departure 
from the annual mean) for 
Conv. rel. hum. param max 
relative to the standard case 
for AGCM coupled to a mixed-
layer ocean: 
change for 2xCO2 minus pre-
industrial. 

Linear contribution 

Nonlinear contribution  

Neelin, Bracco, Luo, McWilliams, Meyerson 2010, PNAS. 



Implications for multi-model ensemble average 



Column integrated water vapor ─ observational 
estimate from microwave retrievals* 

*Satellite instruments: AMSR-E, SSMI; dynamic interpolation Wimmers & Velden (2007); 
footprint of input ~15 km; swath width ~1400 km; retrieval algorithm Alishouse et al. (1990)  

Back to fundamentals: better constraining and 

representing processes at small time/space scales 



Column water vapor from NCAR CAM4*  
at 0.125  resolution 

*National Center for Atmospheric Research Community Atmosphere Model, HOMME spectral 

element dynamical core. Courtesy Mark Taylor (Sandia NL) & Rich Neale (NCAR). 

 



Precipitation binned by column water vapor, w 

• buoyancy & precip. 
pickup at high w 
 

• Entraining 
convective available 
potential energy 
(CAPE) can match 
onset---if include 
enough turbulent 
entrainment into 
convecting parcel 
 

• w useful because 
lots of microwave 
data available… 

Neelin, Peters, Lin, Holloway & Hales,  2008, Phil Trans. Roy. Soc. A 

 

An example of quantifying convective onset: 



Transition to strong convection:   Precip. dependence on 
tropospheric temperature & column water vapor 

•Averages 
conditioned on 
vert. avg. temp. 
T, as well as w 
(T 200-1000mb from 
ERA40 reanalysis) 

•Power law fits 
above critical: 
wc changes, 
same 

•[note more data 
points at 270, 271] 

^ 

• Analysed in tropics 20N-20S 

Neelin, Peters & Hales, 2009 JAS  

E. Pacific 



Collapsed statistics for observed precipitation 

• Precip. mean & variance dependence on w normalized by 
critical value wc; occurrence probability for precipitating 
points (for 4 T values); Event size distribution at Nauru 



Tropospheric temperature T (k)                  
T   E. Pacific 
269  
270 x 
271  
272 p 
273  
274  

^ 



Tropospheric temperature T (k)                  
T   E. Pacific 
269  
270 x 
271  
272 p 
273  
274  

^ 

• Defines an empirical 
thermodynamic surface for 
the onset of strong 
convection to test models 
• Not a constant fraction of 
column saturation 



Model 

Obs 

Transition to strong convection: High-resolution global 
model (CAM3.5, 0.5°)  compared to observations (TMI) 

Sahany et al. 2011, subm. 



Model 

Obs 

Convective onset boundary 

Transition to strong convection: High-resolution global 
model (CAM3.5, 0.5°)  compared to observations (TMI) 

Sahany et al. 2011, subm. 



CAM3.5 
entrainment 

Low 
entrainment 

Transition to strong convection:  
Obs. & model compared to simple convective plume instability 

calculation with different entrainment assumptions 

Obs 

Low values of entrainment are inconsistent with observed onset 



Transition to strong convection:  
simulation of current conditions 

Community Climate System Model 4 (CAM4, 1°)   
Historical run 1981-2000 

CAM4 Instantaneous precipitation data: R. Neale, Analysis K. Hales 
Column water vapor w (mm)                  

Conditionally avg. Precip P 
for bins of Tropospheric bulk 
temperature T (K)                  



Transition to strong convection:  
simulation under global warming 

Community Climate System Model 4 (CAM4, 1°)   
Representative Concentration Pathway run RCP8.5 2081-2100 

CAM4 Instantaneous precipitation data: R. Neale, Analysis K. Hales 

Conditionally avg. Precip P 
for bins of Tropospheric bulk 
temperature T (K)                  

Column water vapor w (mm)                  



Importance of very small scales 
• Importance of entrainment to the onset of deep convection 
• Explains the high sensitivity to free tropospheric water 

vapor (above the boundary layer) 
• Bad news: Beyond the resolution of global climate models 

anytime soon (100m vs. 100 km) 
• Good news: work for cloud resolving modelers; new  
  observations  add constraints; 
  revised model comes close 
• Bad news: interacts with  
  other poorly constrained  
  small scale processes  
cloud microphysics 

Kirshbaum 2011 



Outlook 
• The regional scale changes in the hydrological cycle are 

arguably the most important aspect of climate sensitivity 
over the 21st century 
• Reducing regional 
uncertainty remains 
challenging with the 
current set of CMIP5 
models---regions of 
agreement TBD 

• Using climate model precipitation projections: Caution on 
simple statements; measure of uncertainty on multi-model 
ensemble mean; specific model validation for key 
phenomenon in the region of interest for each member of the 
ensemble  



Outlook 
• The regional scale changes in the hydrological cycle are 

arguably the most important… Will we do any better at 
reducing uncertainty? 

Current tackling of small scale 
processes, scale interactions, 
new observational constraints, 
systematic parameter 
estimation methods,…  
seem likely to yield progress--- 
although not high precision by 
July 2012 
 



Some connections… 
•Long tails seen in the probability 
distribution of water vapor also occur for 
chemical tracers including CO2: (B. Lintner, 
B. Tian, Q. Li, L. Zhang, P. Patra, M. Chahine) 
•And surface temperature (T. Ruff) 
•Simple stochastic model Fokker-Planck 
solutions indicate processes (S. Stechmann) 
 •Nastier parameter dependence can occur (M. Chekroun et al.) 

•Do constraints on entrainment combine with new proxy 
data to resolve a surface temperature vs. glacial elevation 
conundrum at last glacial maximum? (A. Tripati, S. Sahany, D. 
Pittmann, R. Eagle, J. Eiler, J. Mitchell, L. Beaufort) 

• theory for inflow air mass interacting with convective onset 
at the margins of convection zones can be tested in models 
(H.Y. Ma, C.R. Mechoso, X. Ji) 


