Land Surface Feedbacks Related to Atlantic Variability

J. David Neelin, UCLA

Collaborators: Ning Zeng, U. Maryland; Chia Chou, Academia Sinica, Taiwan; Hui Su, UCLA

•Dynamical vs. land surface factors in summer monsoons

- Land surface feedbacks in teleconnection
- Vegetation feedbacks in teleconnected variability

Factors in summer monsoon extent

Dynamic:

- "ventilation mechanism"
 - $v \cdot \nabla (q + T)$ importing low moist static energy air
- wave dynamics
 - Kelvinoid
 - Rossby-related "interactive Rodwell-Hoskins" mechanism

- Thermodynamic:
 - positive net flux (Rad + SH + Latent) into atmospheric column = TOA over land
- Land-Surface processes:
 - Albedo
 - Soil wetness/ evapotranspiration

Factors in summer monsoons

Observed climatology July

Precipitation

Net flux into atmosphere

COADS, ERBE and Darnell et al.

Low-level wind

Upper-level wind

QTCM climatology July (coupled to a mixed-layer ocean)

Precipitation

Net flux into atmosphere

Low-level wind

Upper-level wind

African region case (observed albedo) July

Precipitation

Control

Saturated soil moisture over African region

No ventilation: $v \cdot \nabla q$, $v \cdot \nabla T$ set to zero over African region

No ventilation and no β -effect: f = constant in African region (0 - 50N)

African region case (albedo set to 0.2 over land) July

Precipitation

Control

No ventilation: $v \bullet \nabla q$, $v \bullet \nabla T$ set to zero over African region

Saturated soil moisture over African region

No ventilation and no β -effect: f = constant in African region (0 - 50N)

July - Nov. 1997 observed prec. and temp. anoms

10

Teleconnections to land regions

- Increased convective heating over warm SST
- Warming spread by wave dynamics
- But longwave cooling due to T' is small; descent anomalies driven by ...?

QTCM Experiments suppressing potential mechanisms for descent anomalies

Some processes in tropical teleconnections

- Convection & I.R. Cloud-Rad. Feedbacks
 - Reduce effective static stability
 - Reduce length scale over which descent occurs
 - Tendency to increase descent anomalies
- Land-Surface Feedback Returns Flux Anomalies to Atm.
- Combined with Shortwave Cloud-Radiation Feedbacks
 - Increase effective static stability
 - Increase length scale over which descent occurs
 - Tendency to reduce descent anomalies

SACZ variability

Possibly rel. to SACZ variability of Liebmann et al 1999, Robertson & Mechoso 2000

QTCM with seasonal SST forcing Precipitation variance for DJF

(Wm⁻²)² QTCM1V2.2, 2xRes., 5yr.

Land-surface feedbacks in teleconnected SST impacts

- Charney 1975
- Folland et al 1986
- Xue and Shukla 1993
- Claussen et al 1999
- Joussaume et at 1999 -30
- Zeng et al 1999

Drying trend in the Sahel 1950s -1980s

(A) Observed
(B) Forced by SST
(C) Amplified by soil moisture and
(D) vegetation

Zeng et al 1999

- Interplay of land-surface, oceanic and atmospheric dynamical processes in monsoon circulations
- Tropical teleconnections:
 - atmospheric moist convective & wave dynamics
 - land-surface feedbacks include effects of F_s^{net}=0, soil moisture and drag
 - can modify teleconnections both locally and between ocean basins (e.g. Pacific to Atlantic)
- Vegetation feedbacks:
 - albedo feedbacks larger in low veg. regions, evapotranspiration effects larger in high veg. regions
 - veg. feedbacks can slightly amplify teleconnected effects from ocean (e.g. Sahel)
 - time scale of vegetation feedbacks can lead to distinct effects on interdecadal and shorter time scales