Mechanisms limiting the poleward extent of summer monsoon convective zones

J. David Neelin and Chia Chou

Dept. of Atmospheric Sciences & Inst. of Geophysics and Planetary Physics, U.C.L.A.

- Seasonal movement of deep convection zones over continents
- Dynamical mechanisms mediating land-ocean contrast?
- Given the large insolation extending poleward over continents, why do deep convection zones not extend farther poleward?
- Do mechanisms affecting convection zones differ from continent to continent?
- Intermediate atmospheric model coupled to a mixed-layer ocean and simple land model
- Focus on dynamical aspects, less on surface type
- No-topography case emphasizes ocean-land contrast

Dynamics of summer monsoon convective zones

J. David Neelin and Chia Chou*

Dept. of Atmospheric Sciences & Inst. of Geophysics and Planetary Physics, U.C.L.A. *Now at Academia Sinica, Taiwan

- Seasonal movement of deep convection zones over continents
- Dynamical mechanisms mediating land-ocean contrast?
- Given the large insolation extending poleward over continents, why do deep convection zones not extend farther poleward?
- Do mechanisms affecting convection zones differ from continent to continent?
- Intermediate atmospheric model coupled to a mixed-layer ocean and simple land model
- Focus on dynamical aspects, less on surface type
- No-topography case emphasizes ocean-land contrast

Wind-based definitions of monsoons

Khromov (1957); from Ramage (1971)

Latitude-height cross section at 90E from Bay of Bengal across Tibetan Plateau (shaded regions are rising motion)

From Yanai et al. (1992)

Seasonal precipitation minus Annual Average

Seasonal percentage of annual precipitation

Quasi-equilibrium Tropical circulation model:

- Primitive equations projected onto vertical basis functions from convective quasi-equilibrium analytical solutions
- for Betts-Miller (1986) convective scheme, accurate vertical structure in deep convective regions for low vertical resolution
- baroclinic instability crudely resolved
- less than 5min/yr on a Sun 2 at 5.6x3.75 degree resolution
- GCM-like parameters but easier to analyze

Radiation/cloud parameterization:

- Longwave and shortwave schemes simplified from GCM schemes (Harshvardhan et al. 1987, Fu and Liou 1993)
- deep convective cloud, CsCc fraction param. on precip

Simple land model:

- 1 soil moisture layer; evapotranspiration with stomatal/root resistance dep. on surface type (e.g., forest, desert, grassland)
- low heat capacity; Darnell et al 1992 albedo

- * Primitive equations projected onto vertical basis functions from quasi-equilibrium based analytical solutions
- for Betts-Miller (1986) convective scheme, accurate vertical structure in deep convective regions for low vertical resolution

Neelin & Zeng; Zeng et al 2000

Xie - Arkin Precipitation climatology 1982 -1997

QTCM1 Precipitation climatology 1982-1997 clrad1 cloud-radiation package

QTCM1 Precipitation (daily)

ENSO Composite (DJF)

ENSO Composite (JJA)

Observed climatology January

Precipitation Xie - Arkin 40NEQ40S40S40S40S90E18090W0

Net flux into atmosphere

Low-level wind

QTCM climatology January (coupled to a mixed-layer ocean)

Precipitation

Net flux into atmosphere

Low-level wind

Observed climatology July

Precipitation

Net flux into atmosphere

Low-level wind

Observed net flux into atmosphere and net surface flux

QTCM climatology July (coupled to a mixed-layer ocean)

Precipitation

Net flux into atmosphere

Low-level wind

Observed climatology January

Observed climatology July

Temperature *T* and Moisture *q* equations

Energy constraint in vertical integral $\langle \rangle$ $\langle Q_c \rangle = -\langle Q_q \rangle$

Moist convection interacting with large-scale dynamics

Convective Quasi-Equilibrium:

Fast convective motions reduce Convective Available Potential Energy (CAPE)

- Constrains temperature through deep column
- Baroclinic pressure gradients
- Gross moist stability at large scales

Refs: Arakawa & Schubert 1974; Emanuel et al 1994; Neelin & Yu 1994; Brown & Bretherton 1997; Neelin & Zeng 2000

QTCM coupled to mixed-layer ocean, Idealized continent case

- Perpetual equinox
- Zero ocean heat transport
- Saturated soil moisture
- Constant albedo (0.3 land/ocean)
- Only deep convective cloud and Cs/Cc interactive

Zero ocean heat transport - Idealized continent case

- Perpetual equinox
- Interactive soil moisture

 Divergence of ocean heat transport included as idealized Q flux
 Q = Qmax cos(3.5 x latitude),
 Qmax = 20 W/m (similar to observed zonal average)

Zero ocean heat transport - Seasonal cycle case

$\mathbf{Qmax} = \mathbf{20} \ \mathbf{W/m^2}$

- Interactive soil moisture
- Divergence of ocean heat transport
 Q = Qmax cos(3.5 x latitude)

$\mathbf{Qmax} = 50 \text{ W/m}^2$

- Interactive soil moisture
- Divergence of ocean heat transport
 Q = Qmax cos(3.5 x latitude)

QTCM + mixed-layer ocean - Idealized continent case

• Zero ocean heat transport

 Idealized divergence of ocean heat transport Q = Qmax cos(3.5 x latitude), Qmax = 20 W/m²

Idealized continent case

- Divergence of ocean heat transport
 Q = Qmax cos(3.5 x latitude),
 Qmax = 20 W/m²
- Saturated soil moisture case

The "interactive Rodwell-Hoskins mechanism"

- Rodwell and Hoskins (1996): imposed convective heating in Asia gives Rossby wave descent pattern to west, enhancing deserts.
- when convection is interactive: associated flow feeds back on heating, creating characteristic convection/dry region pattern
 - » we emphasize feedback (convection ⇔ baroclinic Rossby wave dynamics), hence:
 - » "interactive Rodwell-Hoskins" (IRH) mechanism

The "ventilation mechanism"

- import of low moist static energy air from ocean where heat storage opposes summer warming
- Ocean mixed-layer stores heat from large summer insolation, so atm. is not strongly heated over oceans, limits deep convection zone movement over oceans
- temperature is cooler over ocean, and moisture is lower than convection threshold over warm continent
- import to continents by wind (including upper level jets) via advection terms in temperature and moisture equations

Experiments with ventilation mechanism suppressed

- $v \bullet \nabla T$ and $v \bullet \nabla q$ set to zero in temperature and moisture equations
- Divergence of ocean heat transport Q = Qmax cos(3.5 x latitude), Qmax = 20 W/m²

Ventilation suppressed and no β -effect

- Coriolis parameter f set to constant f(13N) in northern hem. (north of 2N)
- Divergence of ocean heat transport Q = Qmax cos(3.5 x latitude), Qmax = 20 W/m²

South American region case (observed albedo) Jan

Precipitation

No ventilation: $v \bullet \nabla q$, $v \bullet \nabla T$ set to zero over South American region

Saturated soil moisture over South American region

No ventilation and no β -effect: f = constant in South Americanregion (9S-56S - 70W-20W)

North American region case (observed albedo) July

Precipitation

Control

Saturated soil moisture over North American region

No ventilation: $v \bullet \nabla q$, $v \bullet \nabla T$ set to zero over North American region

No ventilation and no β -effect: f = constant in North American region

African region case (observed albedo) July

Precipitation

Saturated soil moisture over African region

No ventilation: $v \bullet \nabla q$, $v \bullet \nabla T$ set to zero over African region

No ventilation and no β -effect: f = constant in African region (0 - 50N)

African region case (albedo set to 0.2 over land) July Precipitation Saturated soil moisture over

Control

Saturated soil moisture over African region

No ventilation: $v \bullet \nabla q$, $v \bullet \nabla T$ set to zero over African region

No ventilation and no β -effect: f = constant in African region (0 - 50N)

Refinement of experimental design

- **1.** Consistent treatment of v_{χ} :
- Irrotational (purely divergent) wind component v_{χ}
- Non-divergent wind component v_{ψ}
- > "No ventilation" = suppress $v_{\psi} \cdot \nabla T$, $v_{\psi} \cdot \nabla q$

Retains conservation property: $\int_{\text{Domain}} (v_{\chi} \cdot \nabla q + q \nabla \cdot v) dA = 0$ since $\nabla \cdot v_{\psi} = 0$

- **2.** "Partial- β " experiment :
- Retain β effect on zonal mean wind (across region)

North American region case

July Precipitation

Control

No ventilation: $v \bullet \nabla q$, $v \bullet \nabla T$ set to zero

Saturated soil moisture

No β -effect: f = constant in region

Chou and Neelin 2003

North American region case July Precipitation

No ventilation and no β-effect:

No ventilation and partial β -effect

North American region case

July Precipitation

Control

No ventilation: $v \bullet \nabla q$, $v \bullet \nabla T$ set to zero

No T ventilation

No q ventilation

North America with and without ventilation

Ventilation suppressed through May, turned on in June

Start

Asian region case – July Precipitation

Control

Saturated soil moisture

No ventilation: $v \bullet \nabla q$, $v \bullet \nabla T$ set to zero

No β -effect: f = constant

Chou and Neelin 2003

Asian region case – July

Precipitation

No ventilation and partial β-effect

Chou and Neelin 2003

8

150E

Asian region case – July Precipitation

Control

No ventilation: $v \bullet \nabla q$, $v \bullet \nabla T$ set to zero

No T ventilation

No q ventilation

African region case (observed albedo) July Precipitation Control

No ventilation: $v \bullet \nabla q$, $v \bullet \nabla T$ set to zero

Saturated soil moisture

No ventilation and no β -effect:

African region constant albedo case (0.26 over Africa) July Precipitation

No ventilation: $v \bullet \nabla q$, $v \bullet \nabla T$ set to zero

Saturated soil moisture

No ventilation and no β -effect:

Summary: (General/Idealized Continent)

Ventilation

• import of low moist static	
energy air from ocean	
where heat storage keeps coo	

- » balances heating of midlatitude continent
- » limits poleward extension of summer monsoon convection
- » produces east-west asymmetry

Soil moisture

- drying tendency in subtropical descent region
- » contributes to limiting poleward extent of convection
- » tropical continent convection disfavored

Interactive Rodwell-Hoskins mechanism • Rossby wave div/convergence pattern interacts with convection

- » eastern continent convection favored
- » western continent convection disfavored (eastern favored)

Ocean heat transport

- tropical ocean cooled by transport
- » tropical continent convection favored

Mechanisms affecting continental convective zones

Soil moisture feedbacks

Ocean heat transport out of the tropics

Ventilation and the interactive Rodwell-Hoskins mechanism

Ventilation and the interactive Rodwell-Hoskins mechanism

- Observed estimate of net energy flux Fnet into atmospheric column: positive Fnet extends much further poleward than convective zone
- Dynamical factors limit poleward extension of summer convective zone

South America

- Ventilation and interactive Rodwell-Hoskins (IRH) mechanism important
- Both affect NW-SE tilt of convergence zone
- Soil moisture feedback secondary

North America

- Ventilation strongly affects poleward extent of convergence zone
- IRH mechanism a major dynamical influence favoring dryer southwestern continent
- Ventilation by either of $v_{\psi} \cdot \nabla T$, $v_{\psi} \cdot \nabla q$ can prevent poleward extension of convergence zone

Regional summary (cont'd)

 Moisture supply not limiting if drying/cooling advection by nondivergent flow does not overcome supply by divergent flow responding to heating

<u>Asia</u>

- Ventilation stops poleward extension (esp. $v_{\psi} \cdot \nabla q$ term)
- Interactive Rodwell-Hoskins (IRH) mechanism important to interior deserts
- [tests of IRH that retain regional zonal mean show little difference so "local Hadley cell" irrelevant]

<u>Africa</u>

- Albedo effects dominate in deserts
- If albedo set to constant, dynamical effects (esp. ventilation) control poleward extent

Mechanisms affecting convective zones (S. American case)

Ocean heat transport out of the tropics

Ventilation and the interactive Rodwell-Hoskins mechanism

Summary: N. & S. America (1)

- Observed estimate of net energy flux Fnet into atmospheric column, positive Fnet extends much further poleward than convective zone
- QTCM mixed-layer ocean with Q-flux "heat transport"
- Caveats: No topography, North American precipitation imperfect

Summary: N. & S. America (2) Factors limiting poleward extension of summer convective zone:

South America

- 2 leading effects important:
- Ventilation
- Interactive Rodwell-Hoskins mechanism
- Both affect NW-SE tilt of convergence zone
- Soil moisture feedback secondary

North America

- Interactive Rodwell-Hoskins mechanism a major dynamical influence favoring dryer southwestern continent
- Soil moisture feedback and ventilation effects also substantial
- [Africa:]
- All of the above plus albedo

Monsoon talk title page

Tropical average temperature response

NSIPP moist static energy budget

