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• Moist convective parameterizations represent ensemble 
mean effects of sub-grid scale motions on Reynolds-
average large-scale as deterministic function of the large-
scale variables

• For a domain ~(200 km)2 x (20 minutes) the sample of 
deep convective elements is not large Â variance in 
average 

• Probability distribution of convective heating, etc. at 
typical grid cell/time step can impact large scales

• Mimic these physical effects by stochastic representation



Rainfall from the TRMMRainfall from the TRMM--based merged data based merged data 
(3B42RT)(3B42RT)

Weekly 
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Rain rate from a 
3-hourly period 
within the week 

shown above



Rainfall animation from the TRMMRainfall animation from the TRMM--based merged based merged 
data (3B42RT)data (3B42RT)

3 hour rainfall over one week (Nov. 28-Dec. 5, 2002) 

STARTSTART
From Goddard Space Flight Center (GSFC), Huffman, 2002.
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Approaches to stochastic convective parameterizationApproaches to stochastic convective parameterization
¾Empirical: Directly control statistics of the overall convective  

heating; specify distribution as function of model variables, 
with dependence estimated empirically.
• Related to hydrology & remote sensing literature but
heating/precipitation has strong feedbacks with large-scale flow.
•Example using “empirical lognormal scheme” in QTCM (Lin & Neelin
2002, JAS).

¾“Physics-Motivated”: Stochastic processes introduced within 
framework of convective parameterization, informed by 
physics relevant to unresolved variance.
•Distribution is a testable outcome of the postulated physics.
•Example using “CAPE scheme” in QTCM (Lin & Neelin 2000, GRL).
•Modifications to existing Zhang-McFarlane scheme in CCM3 (Lin & 
Neelin 2003, GRL).

• Related work: Buizza et al 1999, Khouider and Majda (2001) Mesoscopic CIN; 
Khairoutdinov and Randall (2001), Grabowski (2001) “Super parameterization”



XuXu, Arakawa and Krueger 1992, Arakawa and Krueger 1992
Cumulus Ensemble Model (2Cumulus Ensemble Model (2--D)D)

Precipitation rates
Imposed large-scale forcing (cooling & moistening)

Experiments: Q03 512 km domain, no shear
Q02 512 km domain, shear
Q04 1024 km domain, shear



Xu et al (1992) Cumulus Ensemble Model Xu et al (1992) Cumulus Ensemble Model 
CloudCloud--top temperaturestop temperatures

No shear With shear



Temperature Temperature TT and Moisture and Moisture qq equationsequations



Moist convection interacting with largeMoist convection interacting with large--scale dynamicsscale dynamics

•• Convective QuasiConvective Quasi--
Equilibrium:Equilibrium:
Fast convective motions 
reduce Convective 

Available 
Potential Energy (CAPE)
¾ Constrains temperature 

through deep column
¾ Baroclinic pressure 

gradients

•• Gross moist stability Gross moist stability 
at large scalesat large scales

Refs: Arakawa & Schubert 1974; 
Emanuel et al 1994; Neelin & Yu 1994; 
Brown & Bretherton 1997; Neelin & 
Zeng 2000



Winter 1984 Observed DCH* Variance [(K/day)Winter 1984 Observed DCH* Variance [(K/day)22]]
(period >10 days)(period >10 days)

*DCH = deep convective heating Ricciardulli & Garcia 1999



Winter 1984 Observed DCH Variance [(K/day)Winter 1984 Observed DCH Variance [(K/day)22]]
(period 2(period 2--10 days)10 days)

Ricciardulli & Garcia 1999



Winter 1984 observed estimate of deep convective heating Winter 1984 observed estimate of deep convective heating 
(DCH) variance [(K/day)(DCH) variance [(K/day)22] (period 6 hours] (period 6 hours--2 days)2 days)

Ricciardulli & Garcia 1999



Winter 1984 Modeled DCH Variance [(K/day)Winter 1984 Modeled DCH Variance [(K/day)22]]
(period >10 days)(period >10 days)

CCM3 using Zhang-McFarlane convective parameterization

Ricciardulli & Garcia 1999



Winter 1984 Modeled DCH Variance [(K/day)Winter 1984 Modeled DCH Variance [(K/day)22]]
(period 2(period 2--10 days)10 days)

CCM3 using Zhang-McFarlane convective parameterization

Ricciardulli & Garcia 1999



Winter 1984 Modeled DCH Variance [(K/day)Winter 1984 Modeled DCH Variance [(K/day)22]]
(period 6 hrs(period 6 hrs--2 days)2 days)

CCM3 using Zhang-McFarlane convective parameterization

Ricciardulli & Garcia 1999



Tropical OLR Spectral Power ÷ Background Tropical OLR Spectral Power ÷ Background 
(Symmetric)(Symmetric)

Wheeler & Kiladis, 1999



Stochastic forcing of intraseasonal variance in linearized Stochastic forcing of intraseasonal variance in linearized 
P.E. model with BettsP.E. model with Betts--Miller convective schemeMiller convective scheme

Spatially & temporally white noise in thermodynamic Eqn.
Yu & Neelin, 1994



QuasiQuasi--equilibrium Tropical circulation model:equilibrium Tropical circulation model:
Primitive equations projected onto vertical basis functions from 

convective quasi-equilibrium analytical solutions
for Betts-Miller (1986) convective scheme, accurate vertical 

structure in deep convective regions for low vertical resolution
baroclinic instability crudely resolved

1.5min/yr on a Pentium 4 at 5.6x3.75 degree resolution
GCM-like parameters but easier to analyze
Radiation/cloud parameterization:Radiation/cloud parameterization:

Longwave and shortwave schemes simplified from GCM schemes 
(Harshvardhan et al. 1987, Fu and Liou 1993)

deep convective cloud, CsCc fraction param. on precip
Simple land model:Simple land model:

1 soil moisture layer; evapotranspiration with stomatal/root 
resistance dep. on surface type (e.g., forest, desert, grassland) 

low heat capacity; Darnell et al 1992 albedo



QTCM v1.0 OLR PSD ÷ Background (7.5NQTCM v1.0 OLR PSD ÷ Background (7.5N--7.5S)7.5S)

Analysis following Wheeler & Kiladis (1999) LNZ00



QTCM v1.0 OLR Anomaly [W/mQTCM v1.0 OLR Anomaly [W/m22] (January] (January––June)June)

Phase speed:  5–10 m s-1

LNZ00



QTCM v1.0 OLR Anomaly [W/mQTCM v1.0 OLR Anomaly [W/m22] (July] (July––Dec.)Dec.)

Phase speed:  5–10 m s-1

LNZ00



QTCM v1.0:  850 hPa Zonal Wind PSDQTCM v1.0:  850 hPa Zonal Wind PSD
Zonal Wavenumber 1 (7.5NZonal Wavenumber 1 (7.5N--7.5S) [m7.5S) [m22 ss--22 day]day]

Control run
EWF suppressed
Extratropical disturbances suppressed
EWF and extratropical disturbances suppressed



Excitation from MidExcitation from Mid--Latitude StormsLatitude Storms

January 6 (Year 2) precipitation (W/m2) in QTCM1 v1.0



Empirical approach Empirical approach stochstoch. convective . convective param’nparam’n..
• Deterministic Betts-Miller parameterization gives convective 

heating Qc as
Qc

BM  ∝ τc
-1R(C1)

− where R(x) = x, x > 0; = 0, x ≤ 0, τc is convective timescale, C1 a measure of CAPE 
(Convective Available Potential Energy; depends on moisture and temperature).

• Calculate Qc
BM , but then choose Qc as a random number 

from distribution. Distribution parameterized on Qc
BM (e.g., 

ensemble mean ∝ Qc
BM) so changes with time.

• Vertically integrated heating = precipitation (in Wm-2) so use 
precipitation data to estimate.

• Issues: probability of zero precip., relation of variance and 
mean, tail, numerical impacts, estimation from data that 
includes effects of large-scale, …

• Real issue: Feedback from large-scale alters distribution



““Empirical lognormal” schemeEmpirical lognormal” scheme

Qc = αξtQc
BM with cap on extreme values (50,000 Wm-2!) for 

numerical reasons. α for sensitivity testing (rescales τc
-1)

ξt = εξξt-1 + (1 – εξ)yt with εξ chosen such that autocorrelation 
time τξ ≈ 20 min., 2 hr., 1 day

• y from mixed lognormal after Kedem et al (1990)

• Cumulative distribution function P(y>ý) = PoH(ý) + (1 – Po)F(ý) 
Po probability of zero precip., H Heaviside function

• F (ý,µ,σ) lognormal

• Parameterize Po = exp(-µpQc
BM)

• For E(y) = 1, µ = ln(1/(1-Po)) – σ2/2, and set σ = 4 because gives 
“plausible” variance to mean relation & numerical reasons 
(Short et al 1993 σ ≈ 1; higher σ gives higher variance for same 
mean and Po).



Observed daily precipitation: Observed daily precipitation: Fraction of zero Fraction of zero 
precip days Pprecip days Poo vs. mean precip Qvs. mean precip Qcc

• Fit: Po = exp(-µpQc)

Microwave sounding unit (MSU) ocean region daily data (Jan 1979-Dec  1995). 
Annual mean used as mean.

LN02



PDF of daily precip: Observed vs. QTCMPDF of daily precip: Observed vs. QTCM
with empirical lognormal stochastic Qwith empirical lognormal stochastic Qcc

Region of frequentfrequent
convection

(in equatorial 
Western Pacific)

Region of infrequentinfrequent
convection
(in tropical 

Southeastern Pacific)

LN02



QTCM with empirical lognormal (QTCM with empirical lognormal (αα = 1) stochastic = 1) stochastic 
convective parameterization. Equatorial lowconvective parameterization. Equatorial low--level level 

zonal wind (uzonal wind (u850850) power spectrum for wave number 1) power spectrum for wave number 1

LN02



QTCM  OLR PSD ÷ Background (7.5NQTCM  OLR PSD ÷ Background (7.5N--7.5S)7.5S)

τξ = 20 min

τξ = 2 hrs

τξ = 1 day

Empirical lognormal 
scheme

Analysis following Wheeler 
& Kiladis (1999)



LargeLarge--scale dynamics reduces sensitivity of scale dynamics reduces sensitivity of climclim..

Control

α = 1
(Similar to 
deterministic case 
with τc=2*11)

α = 11
(Not a factor of 11 
different)

Qc = αξQc
BM

LN02

January 
Precipitation



Variance of daily mean precipitation from Variance of daily mean precipitation from 
observations (MSU)observations (MSU)

LN02



Model dynamics can increase or Model dynamics can increase or decreasedecrease precipprecip. . 
variance relative to “no dynamics” case variance relative to “no dynamics” case 
((QQcc

BMBM from from climclim. input to . input to stochstoch. scheme). scheme)

No dynamics 
case

α = 11
τξ = 1 day

α = 11
τξ = 1 day



QTCM with QTCM with αα = 11 empirical lognormal stochastic = 11 empirical lognormal stochastic 
convective parameterization. Equatorial lowconvective parameterization. Equatorial low--level level 

zonal wind (uzonal wind (u850850) power spectrum for wave number 1) power spectrum for wave number 1

LN02



PhysicsPhysics--motivated approach, example in QTCMmotivated approach, example in QTCM
Stochastic “CAPE scheme”Stochastic “CAPE scheme”

• Betts–Miller
Qc ∝ τc

-1R(C1)
− Qc convective heating, τc time scale
− C1 a measure of CAPE, R(x) = x, x > 0; = 0, x ≤ 0
• Retain physical postulates but assume CAPE Gaussian 

about mean -1Qc ∝ τc R (C1 + ξ)
− ξt = εξξt-1 + zt

• Choose εξ such that autocorrelation time of CAPE 
random process τξ = 20 min, 2 hr, 1 day. 

− Sensitivity test and corresponds to different physics (convective cells to 
longer lived mesoscale systems)

• zt Gaussian, zero mean, s. dev. σz.
− set σz such that model matches observations in freq band (0.4, 0.5 day-1)



Observed (MSU) variance of daily mean precipObserved (MSU) variance of daily mean precip

Variance and 
spectral power in 

0.4 to 0.5 day-1

band

LN00



Observed and model power spectrum of precip at Observed and model power spectrum of precip at 
60E and 180E on the equator60E and 180E on the equator

Mid-Indian Ocean Mid-Pacific Ocean

Observed MSU
Model with stochastic precip parameterization:
τξ = 20 min
τξ = 2 hrs
τξ = 1 day

LN00



Variance of QTCM with stochastic CAPE schemeVariance of QTCM with stochastic CAPE scheme
for two values of for two values of ττξξ

σz=0.8K

σz=0.1K

LN00



Probability density function of daily precipProbability density function of daily precip
(in west Pacific, 5N)(in west Pacific, 5N)

MSU Observations Model runs

QTCM with CAPE stochastic precip. parameterization:
τξ = 20 min
τξ = 2 hrs
τξ = 1 day

LN00



Probability density function of daily precipProbability density function of daily precip
(in west Pacific, 5N)(in west Pacific, 5N)2

• Log-linear

QTCM with stochastic
CAPE scheme, τξ = 1 dayMSU Observations

LN00



Impact of CAPE stochastic convective Impact of CAPE stochastic convective 
parameterization on tropical intraseasonal parameterization on tropical intraseasonal 

variabilityvariability

LN00



PhysicsPhysics--motivated approach example in CCM3motivated approach example in CCM3
Stochastic “CAPEStochastic “CAPE--MMbb” scheme” scheme

Modify mass flux closure in Zhang - McFarlane (1995) scheme
Evolution of CAPE, A, due to large-scale forcing, F

∂tA c = -MbF
Closure

∂tA c = -τ -1A

Ö Mb = A(τF)-1 (for Mb > 0)

Stochastic modification
Mb = (A + ξ)(τF)-1

Ö ∂tA c = -τ -1(A + ξ)

i.e., same as adding stochastic component to CAPE
But posited as stochastic effect in cloud base mass flux Mb
ξ Gaussian, autocorrelation time 1day



CCM3 Test scheme for stochastic effects in vertical CCM3 Test scheme for stochastic effects in vertical 
structure of heating (VSH scheme)structure of heating (VSH scheme)

Qc(p) = Qc
ZM + (ξt − < ξt>)/∆t

• ξt Gaussian, autocorrelation time τξ = 1 day 
• White in vertical except zero vertical mean
• Convective heating only

• Simple test for potential impacts of variations in vertical 
structure
• Contrasts with CAPE-Mb scheme which has no direct 
alteration of vertical structure from ZM scheme



Variance daily precipitationVariance daily precipitation
(Microwave Sounder Unit product)(Microwave Sounder Unit product)



CCM3 variance of daily precipitationCCM3 variance of daily precipitation

Control run

CAPE-Mb scheme

VSH scheme



CCM3 Equatorial CCM3 Equatorial wavenumberwavenumber one spectral power:one spectral power:
precipitation andprecipitation and--low level windslow level winds

Precipitation
anomalies

850 hPa zonal
wind anomalies



Zonal Wavenumber

Fr
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nc
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-1

]

CCM3 OLR CCM3 OLR (7.5N(7.5N--
7.5S)7.5S) Power spectral Power spectral 

density ÷ Backgrounddensity ÷ Background

Control run

CAPE-Mb scheme

VSH scheme

Analysis following
Wheeler & Kiladis (1999)



Equatorial zonal wind at 850mb (uEquatorial zonal wind at 850mb (u850850) regressed on ) regressed on 
uu850850 avg. near 155E (10Savg. near 155E (10S--10N)10N)

Maloney and Hartmann, 2001

NCEP (Dec-May) vs.  
CCM3 with three 

deep convective 
parameterizations 
(perpetual March) 



la
g 

[d
ay

s]

Longitude [deg]

CCM3 Equatorial zonal CCM3 Equatorial zonal 
wind at 850mb (uwind at 850mb (u850850) ) 
regressed on uregressed on u850850 avg. avg. 
near 155E (10Snear 155E (10S--10N)10N)

Control run

CAPE-Mb scheme

VSH scheme



CCM3 precipitation climatology (March) vs. CCM3 precipitation climatology (March) vs. obsobs..
Maloney and Hartmann, 2001; three convective parameterizations



PrecipPrecip. power spectral density CCM3 vs. . power spectral density CCM3 vs. obsobs..
Three convective parameterizations

Maloney and Hartmann, 2001



Percent of Percent of precipprecip. from . from mesoscalemesoscale convective systemsconvective systems
Nesbitt et al., 2002; analysis of TRMM data



Prototype for convective interaction with largePrototype for convective interaction with large--scale scale 
dynamicsdynamics

( ) uTuu uxxt ε−=∂+∂+∂ (1)

( ) RQuMTu cxsxt +=∂+∂+∂

( ) EQuMqu cxqxt +−=∂−∂+∂

(2)

(3)

Qc = ξ2τc
-1(q - T + ξ1)

CAPE ∝ q – T,       R = R − εRT,       E = εE(u)(q*(Ts) – q)
q, T projection coeffs of vertical structure



Prototype (cont.)Prototype (cont.)
Add (2) + (3)

( ) ERuMqTu xxt +=∂++∂+∂ )( (4)

M = Ms - Mq gross moist stability
Dry gravity/Kelvin wave speed ~ Ms

1/2

Moist gravity/Kelvin wave speed ~ M1/2

τc << εE
-1, εR

-1, εu
-1 Large scales: τc << L/Ms

1/2

Convective QE  q ≈ T at leading order in τc

Qc diagnostic from (1) and (4)
ξ2 irrelevant unless can deviate from strict QE
ξ1 modifies QE q ≈ T – ξ1



Summary: Empirical approachSummary: Empirical approach

• Heating strongly interacts with the large-scale.
− e.g., dynamics reduces variance relative to “no-dynamics” 

calculation in some cases and increases it in others 
−can't estimate heating probability distribution from data 

and calibrate scheme offline since dynamics so strongly 
changes properties (favors physics-motivated approach).

• Large-scale dynamics tends to adjust mean toward a 
climatology intrinsic to the model Â reduced sensitivity to 
stochastic component; preservation of mean of deterministic 
scheme not an important property of stochastic scheme.

• Intraseasonal variability can be strongly impacted by 
inclusion of stochastic component, but there is parameter 
sensitivity.



Summary: PhysicsSummary: Physics--motivated approachmotivated approach

• Even simple version, e.g., CAPE scheme, can yield 
encouraging results (incl. probability distribution of 
heating)--but there is parameter sensitivity.

• Autocorrelation time of the stochastic processes matters. 
−Longer autocorrelation time, on the order of a day, yields more 

impact and better results for the CAPE scheme example in the 
QTCM. Suggests importance of mesoscale processes?

• Stoch. forcing arising physically from small-scales can be 
a significant source of intraseasonal variability--but 
nature depends strongly on interaction with large-scale

• Variations in vertical structure yield signature more 
suggestive of dry wave types with precip. by-product



Where to go….Where to go….

• modify Relaxed Arakawa-Schubert but including 
updraft history--will this give physical basis to time 
autocorrelation and vertical variation of heating?
• evaluate buoyancy decay closure vs. “goes ‘til it can’t”
• impacts on transports, strat-trop, chemistry,…?
• “convective entities”: e.g., randomly initiated simplified 
model of mesoscale system within grid cell?

Nesbitt et al., 2002
Percent of TRMM Percent of TRMM precipprecip. from . from mesoscalemesoscale convective systemsconvective systems



Two tropical topics:Two tropical topics:
1. Stochastic deep convective 1. Stochastic deep convective 

parameterization & parameterization & 
2. Global warming drought mechanisms2. Global warming drought mechanisms

J. David J. David NeelinNeelin**

Johnny LinJohnny Lin****, , HuiHui SuSu**, and , and ChiaChia ChouChou******

*Dept. of Atmospheric Sciences & Inst. of Geophysics and Planetary Physics, U.C.L.A.
**Univ. of Chicago, ***Inst. of Earth Sciences, Academia Sinica, Taiwan

1. Moist convective parameterizations represent ensemble 
mean effects of sub-grid scale motions on Reynolds-
average large-scale as deterministic function of the large-
scale variables. Can a stochastic representation capture 
additional effects arising from small-scales?

2. Tropical regional precipitation anomalies under global 
warming, especially drought regions: mechanisms? 
Relationship to El Niño case?
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