The role of vegetation-climate interchange and Interannual variability in shaping the African Savanna

Ning Zeng and J. David Neelin
J. Climate, 13, 2665-2670, 2000.

Paper (PDF 209Kb)
© Copyright 2000 by the American Meteorological Society.

Abstract. Using a coupled atmosphere-land-vegetation model of intermediate complexity, the authors explore how vegetation–climate interaction and internal climate variability might influence the vegetation distribution in Africa. When the model is forced by observed climatological sea surface temperature (SST), positive feedbacks from vegetation changes tend to increase the spatial gradient between desert regions and forest regions at the expense of savanna regions. When interannual variation of SST is included, the climate variability tends to reduce rainfall and vegetation in the wetter regions and to increase them in the drier regions along this gradient, resulting in a smoother desert- forest transition. This effect is most dramatically demonstrated in a model parameter regime for which multiple equilibria (either a desertlike or a forestlike Sahel) can exist when strong vegetation–climate feedbacks are allowed. However, the presence of a variable SST drives the desertlike state and the forestlike state toward an intermediate grasslike state, because of nonlinearities in the coupled system. Both vegetation and interannual variability thus play active roles in shaping the subtropical savanna ecosystem.

Citation. Zeng, N. and J. D. Neelin, 2000: The role of vegetation-climate interaction and interannual variability in shaping the African Savanna. J. Climate, 13, 2665-2670.

Acknowledgments. This research was supported by NSF Grant ATM-9521389, NOAA Grant NA86GP0314, and a grant to NZ from ICTP/ENEA, Italy.


© Copyright 2000 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyrights@ametsoc.org.