North American Climate in CMIP5 Experiments. Part I: Evaluation of 20th Century Continental and Regional Climatology

Justin Sheffield*, Andrew Barrett, Brian Colle, D. Nelun Fernando, Rong Fu, Kerrie L. Geil, Qi Hu, Jim Kinter, Sanjiv Kumar, Baird Langenbrunner, Kelly Lombardo, Lindsey N. Long, Eric Maloney, Annarita Mariotti, Joyce E. Meyerson, Kingtse C. Mo, J. David Neelin, Sumant Nigam, Zaitao Pan, Tong Ren, Alfredo Ruiz-Barradas, Yolande L. Serra, Anji Seth, Jeanne M. Thibeault, Julienne C. Stroeve, Ze Yang, and Lei Yin

J. Climate, 26, 9209-9245, doi:10.1175/JCLI-D-12-00592.1, 2013.
Paper (8 MB).
Supplemental material (2 MB).

Abstract:
This is the first part of a three-part paper on North American climate in CMIP5 that evaluates the historical simulations of continental and regional climatology with a focus on a core set of seventeen models. We evaluate the models for a set of basic surface climate and hydrological variables and their extremes for the continent. This is supplemented by evaluations for selected regional climate processes relevant to North American climate, including cool season western Atlantic cyclones, the north American monsoon, the US Great Plains low level jet, and Arctic sea ice. In general, the multi-model ensemble mean represents the observed spatial patterns of basic climate and hydrological variables but with large variability across models and regions in the magnitude and sign of errors. No single model stands out as being particularly better or worse across all analyses, although some models consistently outperform the others for certain variables across most regions and seasons, and higher resolution models tend to perform better for regional processes. The CMIP5 multi-model ensemble show a slight improvement relative to CMIP3 models in representing basic climate variables, in terms of the mean and spread, although performance has decreased for some models. Improvements in CMIP5 model performance are noticeable for some regional climate processes analyzed, such as the timing of the North American monsoon. The results of this paper have implications for the robustness of future projections of climate and its associated impacts, which are examined in the third part of the paper.

Citation: Sheffield, J. and coauthors, 2013: North American Climate in CMIP5 Experiments. Part I: Evaluation of 20th Century Continental and Regional Climatology. J. Climate, 26, 9209-9245, doi:10.1175/JCLI-D-12-00592.1.


Acknowledgments. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The authors acknowledge the support of NOAA Climate Program Office Modeling, Analysis, Predictions and Projections (MAPP) Program as part of the CMIP5 Task Force.


© Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyrights@ametsoc.org.