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Key Points.

© Power-law ranges in precipitation autocorrelation re-
flect emergent behavior from exiting and reentering the
precipitating regime

© Dry-spell processes play a key role in producing the
inter-event correlations that control long precipitation
autocorrelations

© Precipitation time series can be viewed as spike trains
with short events and long dry spells

° Index terms: 3354 Precipitation, 3270 Time se-
ries analysis, 3371 Tropical convection, 3265 Stochas-
tic Processes, 3235 Persistence, memory, correlations,
clustering

Abstract:

Temporal precipitation autocorrelations drop slower than
exponentially at long lags, and there is a range from tens to
thousands of minutes where it is relevant to ask if a scale-
free process might underlie the long autocorrelations. A
simple stochastic model in which precipitation appears as
variable-length spikes provides a reasonable prototype for
this behavior. In both observations and the model, sep-
arating the component of the autocorrelation within wet
events from the inter-event contribution suggests long auto-
correlation behavior is primarily associated with the latter.
When precipitation spikes are short compared to dry events,
a true power law is obtained with analytical exponent —0.5
and precipitation autocorrelation is determined by dry-spell
model parameters. In more realistic cases, wet-spell termi-
nation is also important. Although a variety of apparent
power law exponents can be obtained for different parame-
ters, the fundamental long-lag process appears to be that of
the inter-event correlation.
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1. Introduction

Single-column temporal autocorrelations in tropical pre-
cipitation data decay much more quickly than column-
integrated water vapor [Holloway and Neelin, 2010] yet si-
multaneously display slower than exponential decay at lags
of tens to thousands of minutes. Ranges of scale-free, power-
law behavior in spatial autocorrelation have been noted in
studies of tropical convective onset that examine statistics
motivated by the analogy to critical phase transitions [Pe-
ters and Neelin, 2006]. Temporal precipitation autocorrela-
tions exhibit a power law-like form at subhourly to multi-day
lags, so a natural question is whether their slow decay can
be explained by a temporal analog to the scale-free range in
spatial precipitation autocorrelations.

Because the transition into and out of strong convection
occurs on time scales of minutes to days, time series and
models with high temporal resolution are important for un-
derstanding the transition to strong convection and precip-
itation statistics that arise from it. Work on simple sta-
tistical models of precipitation (sometimes called weather
generators) has historically focused primarily on daily pre-
cipitation [Wilks and Wilby, 1999]. Temporal autocorre-
lations in daily precipitation models are typically assumed
negligible [Katz, 1977; Buishand, 1977; Foufoula-Georgiou
and Lettenmaier, 1987], and the timescales are too long
for our application. Adaptations of daily weather genera-
tors based on Markov chains for hourly precipitation data
[Katz and Parlange, 1995] rely on tuning transition prob-
abilities to fit observations and are somewhat difficult to
interpret physically. Other sub-daily precipitation models
are physically based but primarily address subgrid scale
variations in more complex models (e.g. Lin and Neelin
[2000]; Majda and Khouider [2002]), or model multiple air
columns (e.g. Khouider et al. [2010]; Hottovy and Stech-
mann [2015]) or advection processes through dry spells with
eventual condensation (e.g. Pierrchumbert [1998]; Galewsky
et al. [2005]; O’Gorman and Schneider [2006]; Pierrehum-
bert et al. [2007]; Sukhatme and Young [2011]; O’Gorman
et al. [2011]). In this study, we use a first-passage-time
model developed by Stechmann and Neelin [2014] (hereafter
the SN14 model) that produces single-column precipitation
data with sub-minute granularity and is based on simple
physical assumptions about the relationship between col-
umn water vapor and precipitation near the transition to
strong convection.

In what follows, we first establish a set of connections be-
tween temporal autocorrelations in observational data and
the SN14 model (Section 2). Next, we focus on long lags,
where the slower-than-exponential decay appears (Section
3), and develop an analytically accessible model idealiza-
tion for long-range autocorrelations (Sections 4 and 5.1).
Finally, we use the idealization to analyze the SN14 model
autocorrelation (Section 5.2). We conclude by discussing
the relationship between autocorrelation behavior and vari-
ous atmospheric processes.
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2. Autocorrelations from Observations and
Simple Models

First, we compare temporal autocorrelations in observa-
tional tropical precipitation records and in the SN14 model.
For a time series P, with overall mean p and overall variance
o2, we calculate its autocorrelation at lag 7 as

(P, — 1) Pt+f—u)

(1)

H'Mz

In brief, precipitation autocorrelations in observations and
the SN14 model contain several key similarities: they de-
cay slower than exponentially and have apparent power law
ranges with similar apparent exponents.

2.1.

The observational precipitation data used in this paper are
from 1 minute average optical gauge time series recorded on
Manus and Nauru Islands. The Manus time series contains
data from August 27, 2004 to September 14, 2012, and the
Nauru time series contains data from September 15, 2003
to November 19, 2011. To reduce seasonal effects, autocor-
relations were computed in 3-month nonoverlapping win-
dows (corresponding to December-February, March-May,
June-August, September-November seasons, excluding par-
tial segments at the start and end of each time series) and
averaged at each lag over all segments. Additional data
analysis details are given in the SI.

Observations

The Manus and Nauru autocorrelation functions are shown
in Figure 1. Holloway and Neelin [Holloway and Neelin,
2010] previously identified an apparent power law range
with an estimated exponent of -0.85 in the autocorrelation
of the Nauru optical gauge data. The Nauru autocorrela-
tion is reproduced in Figure 1b along with a plot of the
autocorrelation of the Manus optical gauge data (Figure
la). Short-lag exponential fits to autocorrelation functions
(shown as dot-dashed lines in the figures, with time scales
21 and 15 min. respectively) confirm that, at long lags, the
Nauru and Manus autocorrelations decay slower than ex-
ponentially. Both autocorrelations contain ranges in which
the decay is roughly power law with apparent exponents be-
tween —0.7 and —1.1. The autocorrelations for lags longer
than about 1 day exhibit more complex behavior including
small apparent peaks, but it is the overall background de-
cay that is of interest here. Removing diurnal cycles from
the observational time series had a negligible effect on their
autocorrelations, as detailed in the S.I. At longer lags, sea-
sonal signals affect the observational autocorrelations. In
particular, the Nauru autocorrelation plateaus at long lags
if the autocorrelation is calculated for the entire time series
rather than seasonal segments. The autocorrelations for the
full Nauru and Manus time series are given in the S.I. in
Figure S1.

2.2. Model

The SN14 model is a first-passage-based two state model for
the evolution of column water vapor (CWYV) ¢(¢) and pre-
cipitation. The behavior of CWYV is governed by a set of
stochastic differential equations:

dg

prli E. + Doé  if non-precipitating (2)
d .
EZ — —P,+ Dié if precipitating. (3)

FE. and P. are constant and represent small-scale moisture
fluxes. Forcing by large-scale moisture convergence is rep-
resented by a white noise term with variance D? in the
non-precipitating state and variance D? in the precipitating
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state. Precipitation begins in the SN14 model when CWV
rises above a critical value g., and precipitation ceases when
CWYV falls below a second critical value gnp < g.. We use b
to denote ¢. —gnp. The precipitation produced by the model
is 0 in the non-precipitating state and P in the precipitat-
ing state.

Precipitation statistics in SN14 model share key similarities
with observations. In particular, the SN14 model produces
dry-spell duration, wet-spell duration, and event size prob-
ability density functions (PDFs) that are power laws with
exponential cutoffs. Cutoff locations are set by time scales
that depend on model parameters:

2

tsw = b—g (wet-spell short-t cutoff) (4)
2D?
2

trw = 21521 (wet-spell long-t cutoff) (5)
W2

tsq = 57 (dry-spell short-t cutoff) (6)
0
2

tra = 2520 (dry-spell long-t cutoff). (7)

The dry-spell duration PDF is

tsa dtsa ( tSd) ( t > —3/2

) =4/ 22 _ 5 — )
pro(t) — exp < ™= > exp L) exp =y

(8)

The PDFs for wet-spell durations and event sizes likewise
have a t~%/2 power law and differ only in the location of the
exponential cutoffs and in the normalization constant. The
SN14 model also produces mean precipitation pickup and
a precipitation variance spike for ¢ near the critical value
for onset. SN14 model time series were generated using the
Euler-Maruyama method [e.g. Higham, 2001]. Details of the
simulations and autocorrelation computations are given in
the SI.

At suitable parameter settings, SN14 precipitation auto-
correlations are similar in key ways to autocorrelations of
observational precipitation data. Figure 1c displays the au-
tocorrelation of SN14 precipitation data for one such param-
eter setting: P, = 10 mm h™!, E, = 0.3 mm h™!, D? = 64
mm? h™*, D = 8 mm? h™?}, ¢. = 65 mm, and g, = 62
mm. An exponential fit to short lags (with time scale 13
min.) confirms that, like the observational autocorrelations,
the SN14 model autocorrelation decays slower than expo-
nentially. Furthermore, the SN14 autocorrelation for these
parameter settings has an approximately power law range
with an apparent exponent similar to that seen in observa-
tional autocorrelations.

3. Intra- and Inter-Event Contributions to
Autocorrelations

We now ask: to what extent do different subprocesses con-
trol the decay in precipitation autocorrelations? To distin-
guish between wet-spell subprocesses (represented by P, and
D? in the SN14 model) and dry-spell subprocesses (repre-
sented by E. and D in the SN14 model), we employ an
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intra-/inter-event decomposition of the precipitation auto-
correlation.

The intra-event component R, (7) of an autocorrelation is
the contribution to the autocorrelation from pairs of points
inside the same precipitation event. Let X (t,t +7) = 1 if
no data points for times in the range [¢,¢ + 7] have precip-
itation rates of less than 0.3 mm/h, and 0 otherwise. Then
the intra-event autocorrelation is

Ra(1) = % Z X(ti,ti + 1) (Pt;; B (Pry+r — 1) (9)

The inter-event component R,(7) is the contribution from
all other pairs of points:

o2

R.(7) = % 3 (1= X(ti ti +7)) (P, — 1) (Prrpr — 1)

(10)

For Manus and Nauru, we calculated an overall autocorrela-
tion decomposition by splitting the time series into 3-month,
nonoverlapping seasonal segments as in section 2.1, calcu-
lating R, (7) and R, (7) for each segment, and averaging at
each T over every segment’s R, and R,. The SI contains
additional details about the methods used to calculate au-
tocorrelation decompositions.

The intra-event component of a precipitation autocorrela-
tion decomposition is a clear measure of the extent to which
correlations from within a single precipitation event con-
trol the overall autocorrelation. The inter-event component
contains contributions from pairs of points in different wet-
spells, in different dry-spells, in the same dry-spell, and split
between a wet-spell and a dry-spell. For us, the key attribute
of the inter-event autocorrelation is that it represents an
autocorrelation that is controlled largely by dry-spell pro-
cesses.

Plots of Rq(t) and R.(t) are shown in Figure 1 for Manus
(d), Nauru (e), and the SN14 model (f). Observed decom-
positions from Manus, Nauru, and the SN14 model share
several key characteristics. First, the intra-event component
dominates at short lags. Second, there is an overlap region
at intermediate lags where both intra- and inter-event com-
ponents make significant contributions to the overall auto-
correlation. Finally, the inter-event component dominates at
long lags. In the model, those ranges appear to be set by the
cutoffs given in Equations 4-7. The intra-event component
dominates approximately between the wet-spell short-time
cutoff and the wet-spell long-time cutoff, and the inter-event
component dominates approximately between the dry-spell
short-time cutoff and the dry-spell long-time cutoff. Appar-
ent power law ranges appear initially in the overlap region
and persist into the region in which the inter-event compo-
nent dominates. The most important features are that the
intra-event component decays quickly at long lags and that
long range power law correlations within both observed time
series are controlled by inter-event interactions.

Because of the substantial similarities between the auto-
correlations and autocorrelation decompositions in obser-
vations and the SN14 model, the SN14 model provides a
prototype with which to study the processes that produce a
slower than exponential decay in observed autocorrelations.
The model is not without limitations; in particular, it does
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not have synoptic, intraseasonal or seasonal variations, and
thus the autocorrelation at intraseasonal lags has a relatively
simple cutoff that terminates the approximate power law
range. However, focusing on the inter-event component of
the model autocorrelation component provides insight into
the degree to which scale free behavior produces the slower
than exponential decay.

4. Parameter Dependence and Limiting
Cases of the SN14 Model

In this section, we establish that approximate power law
ranges appear in model output autocorrelations for a vari-
ety of model parameters and then introduce a limiting case
that isolates the inter-event contribution to the overall au-
tocorrelation and displays true scale free behavior at the
expense of some realism.

The observation-like model autocorrelation shown in sec-
tions 2 and 3 was produced using model parameters that
set the event duration cutoffs at tg,, = 4.2 min, t,, = 76.8
min, tsq = 33.8 min, and ¢ty = 10,670 min. That auto-
correlation is reproduced in Figure 2a. Fixing ts.,, and in-
creasing (resp. decreasing) the other cutoffs stretches (resp.
compresses) the autocorrelation without removing the power
law range and without significantly altering the qualitative
properties of the autocorrelation decompositions (see Figure
2a-c). However, changing cutoff locations does not preserve
the apparent exponents of power law ranges. Generally,
moving the cutoffs closer together increases the apparent
exponent, and moving the cutoffs farther apart decreases
the apparent exponent. (Details about exponent estima-
tions and parameter settings for Figure 2 are given in the

SI)

In all of Figures 2a-c, the intra-event component of the
autocorrelation decays quickly and power law ranges are
produced in large part by the inter-event component. Al-
though the inter-event autocorrelation appears to be the
primary long-lag process, it is not immediately obvious to
what extent it is a scale-free process for realistic parame-
ters. The presence of a power law with an exponent that
is invariant with cutoff locations is a defining characteristic
of a scale-free process [e.g., Peters and Neelin, 2009], but in
these figures, moving the event duration cutoffs affects the
apparent exponent of the power law range.

Lastly, consider a limiting case of the SN14 model that iso-
lates the inter-event component. Fixing tg.,, and tsq at the
values for Figure 2a and bringing tr., close to ts, removes
most of the overlap region and produces an apparent power
law range entirely dominated by the inter-event component.
Taking trq out to long lags extends the power law; once trq4
is sufficiently large, the exponent of the power law stabilizes
near —0.5 (see Figure 2d). This well-separated case is the
only case that we found that yields numerical results that
are consistent with true scale freedom. An analytic theory
for scale freedom in this limiting case is developed in the
next section.

5. Point-process Idealization

In numerical experiments, precipitation autocorrelations in
the SN14 model have power laws with stable exponent —0.5
when (i) precipitation events are short compared to dry
spells and (ii) dry spell cutoffs are well separated. An ana-
lytic argument that supports the numerical experiments can
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be can be developed by considering a point-process idealiza-
tion of the SN14 model. This idealization treats precipita-
tion events as single points in time with infinitely large pre-
cipitation rates. Additional details about its development
are given in the SI. We will show that in this limit, the be-
havior of the model depends only on dry regime parameters
E. and DZ.

5.1. Spike Trains, Point Processes, and Precipitation

Durations of observed precipitation events are on average
significantly shorter than the durations of intervening dry-
spells [Pierrehumbert et al., 2007; Peters et al., 2010; Deluca
and Corral, 2014]. Time series with short-duration events,
or “spike trains”, are common in studies of neuron dynam-
ics, where high-potential periods in a neuron are short com-
pared with intervening periods at the neuron’s resting po-
tential [see e.g. Gerstner and Kistler, 2002], and calculating
autocorrelations of neuronal spike trains can be done by ap-
proximating the spike trains as temporal point processes,
i.e. as sums of Dirac deltas.

A point-process idealization of the SN14 model, where pre-
cipitation time series become sums of Dirac deltas

P(t)=b> 5t —t), (11)

is useful for studies of long-range autocorrelations in precip-
itation time series. Additional details about the idealization
are given in the SI. Figure 3 shows sample precipitation
time series from observations at Manus and Nauru, from
a run of the full SN14 model, and from a run of the SN14
point-process idealization (with spikes scaled to 10 mm hfl).
Over 30 day periods (shown on the main axes), individual
precipitation events in the observed time series appear rea-
sonably spike-like, and the time series from the full SN14
model is virtually indistinguishable from the spike train ide-
alization. Over 1000 minute periods (shown in inset plots),
the limitations of the spike train idealization are obvious:
both observed time series and full SN14 time series contain
precipitation events of substantial duration. Beyond these
time scales, the point-process idealization appears to be a
valuable tool for studying medium-to-long-range autocorre-
lations in precipitation data.

5.2. SN14 Point Process Autocorrelation

An analytical technique for calculating the autocovariance
of a temporal point process is presented in Gerstner and
Kistler [2002]. Here, it is used along with asymptotics to
derive a true power law with exponent —0.5 in the autoco-
variance of the SN14 point-process idealization. This section
contains a summary of our results; a more detailed deriva-
tion is given in the SI.

For the SN14 point-process idealization (11), its autocovari-
ance R.(7) has a Fourier transform of

- b? 1+ p(w) b?
R. = i — +2
@)= Vs { =) | M isatia

See, e.g., Gerstner and Kistler [2002] for a derivation. Here,
p(w) denotes the Fourier transform of the interspike interval
distribution and R denotes the real part of a complex vari-
able. For the SN14 model, the interspike interval is governed
by the dry-spell duration PDF p:o(t) given in Equation 8,
and its Fourier transform is

S5(w). (12)

s = [/ - v ay
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[see e.g. Johnson et al., 1994]. Note that because the wet-
spell cutoffs are implicitly taken small relative to the dry-
spell cutoffs, the spike train idealization depends only on
dry-spell parameters, i.e., only the dry-spell cutoffs appear
in Equations 12 and 13.

Our asymptotics proceed by assuming sufficient separation
between dry-spell cutoffs tsq and trq and examining the
regime where trq4 is large relative to w™ ! and tsq 1s small
relative to w™!. This corresponds roughly to the properties
of the cutoffs in the limiting case presented in Section 4. It
is also a regime in which scale-free behavior is expected: if
tsw, tLw, and tsq are all very small and trq is very large,
there is a large range of lags that should not be influenced
by any time scale.

Under these assumptions, it can be shown that

plw) =1+ (1 —14)v2tsqw, (14)
including the leading-order term 1 and the next-order term
(1 —4)v/2tsqw. Inserting this form of p(w) into (12) leads to

2
R.(w) = biw_lﬂ,
2t%dt[,d

w > 0. (15)

See the supplement for a derivation. Performing an in-
verse Fourier transform using Equation 15 shows that for
sufficiently separated tsq and trq, the autocovariance of
the SN14 point-process idealization contains a range with
aT /2 power law:

2 172

R.(7) = b?
)~

+C, tsa << T <<traq. (16)

The exponent of this power law is consistent with the re-
sults of the numerical experiments described in Section 4,
and the presence of an analytic power law for lags that are
very different from any time scale indicates that power laws
in the autocovariance of the SN14 point-process idealization
are produced by scale free behavior.

6. Concluding Discussion

Examining precipitation temporal autocorrelations in the
range of lags at which slower-than-exponential decay ap-
pears, the overall behavior in tropical observed time series
is reasonably reproduced in the simple SN14 model. In this
system, a stochastic representation of mesoscale to large-
scale moisture convergence forces column water vapor vari-
ations across a threshold for precipitation onset. Separating
the autocorrelation into a contribution from within precip-
itation events and an inter-event contribution, we find in
both observed and model time series that longer lags in the
range of interest are controlled primarily by inter-event cor-
relations.

When viewed over the time scales corresponding to those
lags, precipitation time series look like spikes separated by
long dry spells, and this can be examined as a simplifying
limit in the model. Although formally treating precipita-
tion events as spikes with infinitesimal width is not a good
approximation for autocorrelations at intermediate lags, it
allows for an analytically tractable solution for long-range
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autocorrelations with power-law decay. Under this ideal-
ization, with certain assumptions about dry spell processes,
the SN14 model displays true scale-free behavior that leads
to a power-law decay in temporal autocorrelations with ex-
ponent —0.5. While one might tend to expect precipitation
statistics to be controlled primarily by processes within pre-
cipitation events, this result suggests that the slow decay in
temporal precipitation autocorrelations is controlled primar-
ily by dry-spell processes. More generally, it draws attention
to the fact that dry spell processes can play important roles
in precipitation statistics if those statistics describe relation-
ships between distinct wet spells.

Physically, this scale-free limit with short precipitation
events occurs when variability of large- to meso-scale mois-
ture convergence is the dominant dry-spell process and mois-
ture sink by precipitation yields very short wet spells. In
realistic settings, evaporation, moisture convergence and
small-scale precipitation processes each play a role in deter-
mining behavior in both precipitating and non-precipitation
regimes. Accordingly, realistic autocorrelations are more
complex than a simple scale-free process and reflect an emer-
gent behavior from exiting and re-entering the precipitation
regime. Nevertheless, these results indicate that dry-spell
processes play a key role in the inter-event correlations that
produce slower-than-exponential decay at long lags in real-
istic precipitation autocorrelations.

These conclusions have some practical implications for
studies of convective parameterizations. Slower-than-
exponential decays in precipitation autocorrelations are not
products of convection alone; rather, they arise from in-
teractions between large- to meso-scale processes and the
small-scale processes, which remain poorly understood. In
the context of a general circulation model (GCM), these cor-
respond to interactions between the large-scale model and
sub-grid-scale convective parameterizations. Evaluation of
assumptions that convective parameterizations make about
these interactions is an ongoing effort in systems from single-
column models to cloud resolving models [e.g., Kuang and
Bretherton, 2006; Daleau et al., 2015]. Because precipitation
autocorrelations represent emergent behavior from the in-
teractions between convective and non-convective processes,
examining temporal precipitation autocorrelations in GCMs
under different circumstances could provide an additional
means to constrain aspects of that interaction. Furthermore,
it may be possible to extend the approach here to spatial
correlations in models like that of Hottovy and Stechmann
[2015], in existing convective parameterizations and GCMs,
or to other natural phenomena that can be represented as
point processes and produce slowly decaying temporal au-
tocorrelations.
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Figure 1. Temporal autocorrelations and autocorrela-
tion decompositions for observed precipitation time se-
ries from Manus (a,d) and Nauru (b,e) and precipita-
tion time series from an SN14 two state model simula-
tion (c,f). Note that autocorrelations and autocorrela-
tion decompositions for Manus and Nauru are averages
of autocorrelations for 3 month seasonal segments. Be-
cause of the time series length limit imposed by the use
of 3 month segments, Manus and Nauru autocorrelations
are shown only out to lags of 10* minutes. On the left,
solid black lines indicate autocorrelations after binning,
error bars show the standard error of the mean for each
bin, dashed black lines show the power laws ¢t~%7 and
t!!, and dot-dashed black lines show an exponential fit
from lag 0 to lag 10 minutes. On the right, black lines
show the full autocorrelation of the time series, blue lines
show the intra-event component, and red lines show the
inter-event component. On the lower right, dashed (resp.
solid) black ticks indicate the wet-spell (resp. dry-spell)
duration cutoffs of the two state model.
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Figure 2. Parameter dependence of the two-state model
autocorrelation. Solid black lines indicate full autocorre-
lations, blue lines indicate intra-event components, and
red lines indicate intra-event components. Dashed (resp.
solid) black ticks indicate the wet-spell (resp. dry-spell)
duration cutoffs. Dashed black lines illustrate power laws
with exponents estimated with a least squares linear re-
gression on the full autocorrelation between tsq and trq.
Relative to (a), time scales are closer together in (b) and
farther apart in (c). (d) shows a limiting case with short
wet spell time scales. Exact model parameter settings for
each figure are given in the SI.

104 10°

corr (nondim) (log scale)

corr (nondim) (log scale)



precip (mm h )

precip (mm h 1

precip (mm h )

ABBOTT, STECHMANN, NEELIN: PRECIPITATION & SPIKE TRAIN PROTOTYPES

15 @ T T T
I \ I
10 —
l } ]
0 ‘ ‘ | H J L | T ML T o I
]
5 | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4
%104
15 (b)
1] | .
1 I
10 — —
A
. || .' \ l ‘ u{\\ L \ ‘\ ’ ! P, | W
5 | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4
x10*
(©)
15 I
10
[ [ I 11
T
5 | | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4
x10*
(@
15 I
10 |
N I 1
° ]
5 | | | | | | | |
0 0.5 1 1.5 2 2.5 3 35 4
time (minutes) x104

Figure 3. Sample precipitation time series from obser-
vations at (a) Manus Island and (b) Nauru Island, from
(c) arun of the full SN14 model, and from (d) a run of the
SN14 spike train idealization. In the spike train idealiza-
tion, spikes are rescaled to 10 mm h™!. Inset plots show
details of the 1000 minute periods enclosed by boxes on
the main plots. The full SN14 time series was produced
using the same parameters as Figure 2a, and the simu-
lation that produced the spike train time series used the
same dry-spell parameters.
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