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Abstract 

The tropical precipitation-moisture relationship, characterized by rapid increases in 
precipitation for modest increases in moisture, is conceptually recast in a framework 
relevant to plume buoyancy and conditional instability in the tropics. The working 
hypothesis in this framework links the rapid onset of precipitation to integrated buoyancy 
in the lower troposphere. An analytical expression that relates the buoyancy of an 
entraining plume to the vertical thermodynamic structure is derived. The natural variables 
in this framework are saturation and subsaturation equivalent potential temperatures, 
which capture the leading order temperature and moisture variations respectively. The 
use of layer averages simplifies the analytical and subsequent numerical treatment. Three 
distinct layers: the boundary layer, the lower-free troposphere and the mid-troposphere 
adequately capture the vertical variations in the thermodynamic structure. The influence 
of each environmental layer on the plume is assumed to occur via lateral entrainment, 
corresponding to an assumed mass flux profile. The fractional contribution of each layer 
to the mid-level plume buoyancy, i.e. the layer weight, is estimated from TRMM 3B42 
precipitation and ERA-I thermodynamic profiles. The layer weights are used to “reverse-
engineer” a deep inflow mass flux profile that is nominally descriptive of the tropical 
atmosphere through the onset of deep convection. The layer weights—which are nearly 
the same for each of the layers—constitute an environmental influence function and are 
also used to compute a free tropospheric integrated buoyancy measure. This measure is 
shown to be an effective predictor of onset in conditionally averaged precipitation across 
the global tropics—over both land and ocean.  
 

1. Introduction 
Conditional instability of the environment lies at the basis of moist convection, but 

quantifying the environmental influence on convection is a nontrivial exercise. An 
increase in tropospheric water vapor generally favors tropical convection (Sherwood 
1999, Redelsperger et al. 2002, Chaboureau	et al. 2004, Sherwood et al. 2004, Jensen 
and Del Genio 2006, Myoung and Nielson-Gammon 2010, Waite and Khouider 2010), 
but water vapor is only one among several influencing environmental factors. Moreover, 
the chaotic nature of convection renders its relationship to the environment non-unique. 
The use of statistics such as conditional means of convection-related quantities rather 
than individual convective events, however, can help elucidate the typical relationship to 
the environment. The statistics can in many ways be extremely revealing, as exemplified 
by the striking relationship between convection—represented by precipitation—and 
environmental moisture: rapid non-linear increases of precipitation with increases in 
atmospheric moisture content (Bretherton et al. 2004). A series of works (Peters and 
Neelin 2006, Peters et al. 2009, Neelin et al. 2009) have explored and documented the 
fine-scale (near instantaneous, ≤0.25° grids) precipitation-moisture relationship, along 
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with related statistics that arise when examining the probability distributions of 
precipitating and non-precipitating points, precipitation accumulation and cluster sizes. 
These statistics are collectively termed the convective transition statistics. The rapid 
increase in conditional precipitation is hereafter termed the precipitation onset. The onset 
is also observed in other related variables such as cloud top heights (Del Genio et al. 
2012a). The observed precipitation onset can also be envisioned as the statistical 
representation of the precipitation increases associated with an ensemble of individual 
convective systems (Masunaga 2012), with organized convective systems contributing 
more to the rapid precipitation increases. 

The proposed physical argument for the precipitation onset is buoyancy-centric. 
Holloway and Neelin, 2009 (hereafter HN09) showed using a steady-state entraining 
plume model that for environmental moisture values at and beyond precipitation onset, 
the entraining plumes are positively buoyant near the freezing level. The implication is 
that if a convective entity—often represented by a bulk-entraining plume—can survive 
mixing in environmental air and reach the freezing level, the subsequent buoyancy 
increases offered by the latent heat of fusion and smaller stratification in the upper 
troposphere will lead to strong precipitation. The tropical precipitation-moisture 
relationship is therefore primarily viewed as a precipitation-buoyancy relationship arising 
from the strong increase in convective rain. This buoyancy-centric view, however, does 
not directly account for frontal precipitation or stratiform rain (Houze 1997, Schumacher 
and Houze 2003), even though the latter is undoubtedly associated with the occurrence of 
buoyant convective rain.  

Neelin et al. 2009 found, over the tropical oceans, that the bulk environmental 
moisture value associated with onset is sensitive to column-averaged tropospheric 
temperature (𝑇)—a warmer troposphere will show onset at a higher value of column 
water vapor (CWV). Empirical evidence therefore suggests that two bulk thermodynamic 
variables—CWV and 𝑇—are sufficient to capture the variability in the shape of the 
precipitation onset curve across the tropical oceans. These bulk variables were primarily 
chosen as measures of convenience to capture the leading vertical thermodynamic 
structure. The efforts of this study will help interpret their behavior in a buoyancy-based 
framework, while taking higher order variations in the vertical structure into account.  
 The study of convective transition statistics has shown substantial utility in both 
mechanistic and diagnostic studies. For instance, recent works (Hannah et al. 2016, Allen 
and Mapes 2017) have suggested that the Lagrangian tracking of the CWV field can aid 
in interpreting salient synoptic variations in the tropics. Another avenue of research, 
directly relevant to this study is the question of entrainment, which can be found in the 
earliest treatises on the subject (Austin 1948, Houghton and Cramer 1951, Morton et al. 
1956, Asai and Kasahara 1967). A satisfactory understanding and modeling of 
entrainment, has however, been problematic (see de Rooy et al. 2013 for a review) with 
well-documented consequences of ill-constrained entrainment on GCM simulations (see 
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Del Genio et al. 2012b for a review). Models are unduly sensitive to the value of 
entrainment that can compromise their ability to reproduce convective variability across 
time-scales ranging from sub-daily (Derbyshire et al. 2004; Jensen and Del Genio 2006; 
Wu and Del Genio 2010) to intraseasonal (Tokioka et al. 1988; Hannah and Maloney 
2011) to even inter-annual (Neale et al. 2008). Agreement between convective transition 
statistics in models and observations is also sensitive to the assumed entrainment—a fact 
used to constrain its vertical profile and magnitudes in GCMs (Sahany et al. 2012, Kuo et 
al. 2017).  

Observational studies of mesoscale convective systems (MCS, Houze 2004) 
provide another plausible pathway to constraining entrainment profiles, particularly with 
respect to deep, organized convection. Conceptual models and schematic depictions 
encapsulating decades of field observations describe thick or deep inflow layers (~ 5 km) 
feeding the convective portion of the MCS (Zipser 1977, Ferrier and Houze 1988, Pandya 
and Durran 1996, Kingsmill and Houze 1999a, Mechem et al. 2002 etc). These studies 
suggest that the idea of deep inflow of environmental air into the convective entity 
provides a conceptual springboard to begin describing environmental interactions with 
organized tropical convection. The deep inflow would naturally be relevant to the study 
of convective transition statistics, given that the precipitation onset is indeed a signature 
of organized convection (Masunaga 2012, Ahmed and Schumacher 2015).  

This deep inflow approach was implemented in simple steady-state plume models 
(HN09, Schiro et al. 2016—hereafter SN16), replacing traditional mixing assumptions 
such as non-entraining or constant mixing plumes. These studies showed that the simple 
plume models are adept at qualitatively linking CWV values to the precipitation onset if 
the lateral entrainment is replaced with a prescribed environmental deep inflow: a 
constantly increasing mass-flux with height (from the surface to the mid-troposphere). 
This paradigm of entrainment is consistent with the updraft (or an ensemble of updrafts) 
interacting with an inflow of air that can include a coherent, organized component, 
instead of merely incorporating peripheral environmental air through small-scale 
turbulence. The convective transition statistics thus have potential to contribute 
constraints for reworking some of the basic assumptions about entrainment, as currently 
implemented in cumulus parameterization schemes.  
 The convective transition statistics over the tropical oceans have received much 
attention in the preceding decade, with only few recent investigations of these statistics 
over tropical land. Ahmed and Schumacher 2017, using satellite and reanalysis data, 
showed that land regions, during daytime, precipitation can attain onset at smaller column 
saturation fraction values than oceans, though they did not explore the 𝑇 dependence. 
This tendency for precipitation onset in drier conditions over daytime land was also 
reported in Schiro (2017) who cautioned that vertical moisture variations over land could 
sometimes produce the same effect. Motivated by these apparent land-ocean differences, 
we will explore how they can be reconciled in a buoyancy-based framework, with our 
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efforts directed towards a consideration of the vertical thermodynamic structure. 
 The use of the bulk plume model—with the environmental influence determined 
by a deep layer of inflow—provides a physically intuitive path to relating convective 
transition statistics with its thermodynamic environment. This model will therefore be 
used to derive analytical expressions for plume buoyancy. We will employ θe (equivalent 
potential temperature)-based variables in constructing the expression for plume 
buoyancy. θe -based variables are more useful than moisture and temperature when 
expressing the approximate conservation properties of the bulk plume  The 
environmental influence on the plume properties is expressed through an “influence 
function”. Our expression for buoyancy creates a framework for empirically estimating 
this influence function. The application of this framework to the more reliable tropical 
oceanic observations (on account of uncertainties in surface emissivity over land, Prigent 
et al. 2006) yields an estimate of the influence function, whose validity is subsequently 
tested through application on tropical land data. Our results primarily emphasize the 
vertical parsing of the thermodynamic structure, but we find encouraging evidence that 
vertical averages from a few layers are sufficient to describe the convective transition 
statistics over both land and ocean.   
 The primary goal of this manuscript will be to introduce a buoyancy-based 
framework to interpret the known properties of the precipitation onset—including its 
CWV and 𝑇 dependence—by incorporating information about the vertical 
thermodynamic structure. The data used for empirical analysis is described in Section 2. 
The influence function framework that relates precipitation onset to the environmental 
thermodynamic structure is introduced in Section 3. Within this physical hypothesis, 
instead of postulating an environmental influence function—in terms of weightings for 
each layer—and doing a forward calculation for buoyancy, section 4 asks the reverse 
question of what layer weights would be consistent with the observed precipitation onset. 
This empirical derivation of layer weights acts as a “reverse engineering” of the structure 
of the influence function. Section 5 presents the onset curves conditioned on a measure of 
buoyancy, contrasting it to convective transition statistics using bulk measures of CWV 
and (𝑇). A discussion of the results and concluding remarks are provided in Sections 6 
and 7 respectively. 
2. Data  

Vertical profiles of temperature and specific humidity, surface variables including 
surface pressure, 2 meter temperature and dew point temperature were all obtained from 
the European Center for Medium Range Weather Forecast (ECMWF) Interim Reanalysis 
(ERA-Interim; Dee et al. 2011), 4 times daily at 0.25 degree grid spacing for a period 
spanning from September 2001 to December 2014. Concurrent values of precipitation 
were obtained from version 7 of the 3B42 Tropical Rainfall Measuring Mission (TRMM) 
Multi-Satellite Precipitation Analysis (TMPA) product (Huffman et al. 2007), also 



	 6	

available at a 0.25 degree resolution. The ERA-I data was processed and re-gridded to 
match the precipitation dataset.  

The tropical oceanic regions were divided into four major basins: Indian Ocean 
[45E - 100E, 25S - 25N; 100E - 125E, 25S - 5S], Western Pacific Ocean [105 - 125E, 5S 
- 15N; 125E - 180E, 25N - 25S], Eastern Pacific Ocean [180 E - 100 W, 25S - 25N; 
100W - 70W, 25S - 10N] and the Atlantic Ocean [70W - 15E, 25N - 25S]. The tropical 
land regions were divided into seven major regions: India [ 75E -90E, 5N - 25N ], East 
Asia  [105E - 125E, 15N - 25N], Maritime Continent [95E - 145E, 10S - 10N], Australia 
[125E - 145E, 20S - 10S], South America [75W - 50W, 10S - 10N], Argentina [75W - 50 
W, 25S - 15S] and West Africa [17W - 10 E, 0 - 15N]. The land regions typify different 
regimes of tropical continental convection (Xu and Zipser 2012), but are not seasonally 
distinguished in this study. Note that a land-sea mask was applied to ensure that selected 
grid points in the specified intervals did not contain data from both land and ocean.  

The remote sensing based estimates of both precipitation and CWV—which rely 
on passive microwave imagers—suffer from greater uncertainty over land than over 
oceans, owing to uncertainties in the estimates of the background surface emissivity 
(Prigent et al. 2006, Tian et al. 2014). The satellite radiances are not assimilated into the 
ERA-I dataset over land and the moisture field is therefore less constrained by 
observations; the possibility that some of the land-ocean differences in the convective 
transition statistics reported in this study originate from this instrument uncertainty over 
land is a noteworthy caveat. We performed a comparison between CWV values from 
ERA-I and those from tropical Atmospheric Radiation Measurement (ARM) ground 
sites. These sites included one land site in Manacapuru, Brazil (part of the Green Ocean 
Amazon (GoAmazon2014/5) field campaign; Martin et al. 2016) and two oceanic sites in 
the tropical Western Pacific: Nauru and Manaus. We found that over these three sites, the 
ERA-I moisture values and the resulting precipitation curves validated fairly well (see 
Supplement: Figures S1, S2 and S3). 

 
3. The environmental influence function  
 Both HN09 and SN16 used a steady-state deep-inflow plume model to show that 
there is a strong correlation between freezing-level buoyancy and the CWV value around 
which the in situ precipitation shows onset. The results from both these studies suggest 
that a plume rising out of the boundary layer that can survive dilution and reach the 
freezing level will develop to be strongly buoyant in the upper troposphere. This is due to 
contributions from the latent heat of fusion, as well as smaller values of static stability in 
the upper troposphere. Both these studies also demonstrated the utility of diagnosing the 
amount of environmental air entering the plume (the inflow) at each level from vertical 
gradients in an assumed mass-flux profile.   
 The actual nature of entrainment into the plume requires some elaboration. 
Entrainment is often partitioned into dynamic and turbulent forms, with the former 
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denoting the flux of environmental air into the cloud that must satisfy mass-continuity in 
the presence of vertical motions, while the latter is attributed to small-scale turbulence on 
the cloud-edge (e.g. Houghton and Cramer 1951, Asai and Kasahar 1967, Masunaga and 
Luo 2016 etc.) This partition, in some sense is artificial, since both turbulent and dynamic 
forms of entrainment can cause an increase in mass-flux with height and therefore 
collectively satisfy mass continuity. Morisson 2017, for instance, found that the dynamic 
and turbulent modes of entrainment are tightly linked. In our framework, we are looking 
to quantify the influence of the environmental air on plume properties, such as buoyancy.  
We are not interested in the modes of the environmental air transfer—dynamic or 
turbulent—per se. We now introduce the different measures of buoyancy that will feature 
in this study. 
 
3.1 Quantifying environmental influence on convection 

Consider a steady-state bulk plume with a property that is conserved in the 
updraft, φu . Assume that the corresponding environmental value  !ϕe  interacts with the 
plume through an influence function I(z, z ') , such that ϕu (z)  at any vertical level z can 
be written as: 

 
φu (z) = I(z, z ') !φe(z ')dz '

0

z

∫  
	
   (1) 

In this formulation  !ϕe at any level z '  can affect the plume property at level z ; I(z, z ')  
can therefore be thought of as a Green’s function (Larson 1997). I(z, z ')  incorporates 
modes of environmental influence on the plume: turbulent and dynamic entrainment and 
detrainment. To simplify the physical interpretation, we now outline the connection to 
mass flux and the traditional entrainment parameter. Under certain simplifying 
assumptions: 

I(z, z ') = 1
M (z)

∂M (z ')
∂z '

    (2) 

where M (z)  is the vertical mass flux at level z. I(z, z ') , as defined in (2) would 

correspond to what is traditionally termed dynamic entrainment. In this definition, 

dynamic entrainment is the only pathway through which the environment influences the 

plume, though other forms of interaction (turbulent entrainment, detrainment etc.) can be 

incorporated at the expense of analytical simplicity. For the case (2), (1) can be written 

as: 

 
 
φu (z) = 1

M (z)
∂M
∂z '
!φe(z ')dz '

0

z

∫     (3) 
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Note that the differential form of (3) is: 

 
 

∂(Mφu )
∂z

= ∂M
∂z
!φe   (4) 

As we are not considering detrainment and turbulent entrainment, we can re-write (4) as: 

 
 

∂φu (z)
∂z

= −ε(φu (z)− !φe(z))   (5) 

where	ε = 1
M (z)

∂M (z)
∂z

	is the entrainment. (5) is the standard entraining plume equation 

(Betts 1975, Jakob and Siebesma 2003, Siebesma et al. 2007) ,which is the starting point 
for several works that study the influence of lateral mixing on plume properties. (5) is 
also valid when both detrainment and entrainment are accounted for (e.g. see the 
derivation in Masunaga and Luo, 2016). It is worth noting potential advantages of using 
the integral form (3) over the differential form (5). In (5), the plume property at level z  is 
dependent only on the local mixing coefficient, ε  — implying that all of the mixing is 
local and complete. On the contrary, the use of I(z, z ')  in (3) makes it clear that the 
entrained environmental air at level z does not have to undergo local mixing, but can mix 
anywhere in the levels between z  and z ' . Moreover (5) implies that ϕu  should be 
differentiable at all points in the vertical, making the estimation of entrainment 
problematic if the vertical mass flux profile is noisy. The expression in (3), on the other 

hand, allows one to smooth over noisy profiles of ∂M
∂z

 to produce more robust values for 

ϕu (z) .  
Note that the non-local view of mixing as captured by I(z, z ')  is also embodied in 

the transilient matrix (Stull 1993, Larson 1997, Romps and Kuang 2011) that seeks to 
represent the fractional mass contribution of every level in a column to every other level 
in matrix form.  

 
3.2 Candidate buoyancy measures 
We start with the hypothesis that an appropriate measure of plume buoyancy can help 
relate conditionally averaged precipitation to the environmental thermodynamic 
properties. More specifically, we are interested in buoyancy measures that can potentially 
help capture the precipitation onset—or the sharp increase in precipitation with increase 
in buoyancy. For this purpose, we propose two conceptually useful candidate buoyancy 
measures: 

1. Bint , the integrated buoyancy from the top of the boundary layer to the freezing 
level. This measure is similar to an entraining Convective Available Potential 
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Energy that is used in the closure part of convective parameterization schemes 
(Zhang and McFarlane 1995) and is useful in capturing the bulk properties of the 
lower troposphere.  

2. BF , the buoyancy at the freezing level. This measure was chosen based on the 
results from HN09 and SN16, who showed that BF increased with CWV under 
appropriate mixing assumptions—potentially acting as the threshold for 
convective onset. BF explicitly clarifies that the plume is buoyant at the freezing 
level (distinguishing from circumstances where there might be high buoyancy at 
lower levels but no buoyancy at the level required for the transition to deep 
convection) 

We use these two buoyancy measures in a complementary manner.BF yields simple 
expressions that aid physical insight and parameter estimation. It also provides clarity on 
buoyancy at a vertical level appropriate to deep convection. It is used to derive 
parameters that are then tested using Bint . Specifically, we will test whether the 
conditional precipitation can be captured by a relationship of the form: 
 < P >= f (B)   (6) 
WhereB  is a candidate buoyancy measure. We anticipate that the relationship (6) will 
yield the canonical precipitation-moisture curve, when moisture acts as a proxy for the 
plume buoyancy.  
3.3 Analytical expressions for buoyancy 
We now seek to represent Bint and BF  in terms of the vertical thermodynamic structure. 
Both these measures are constrained by the freezing level that has both a physical 
justification (from the results of HN09 and SN16) and the advantage of making the 
analytical treatment easier by neglecting the ice-phase physics. The emphasis on the 
buoyancy below the freezing level does not exclude potential relations to buoyancy 
above, but is hypothesized to give the leading behavior, since the convective plume has to 
reach the freezing level for deep convection to be initiated.  

We assume that the bulk plume undergoes reversible moist-adiabatic liquid-vapor 
transformations and therefore conserves its equivalent potential temperature θe . This 
assumption breaks down in the upper levels of the heavily precipitating environments due 
to the irreversible loss of moisture. We are, however, primarily interested in the lower 
tropospheric buoyancy, below the freezing level, where the assumption of reversible 
moist adiabatic transformations is more permissible. We split the environmental 
equivalent potential temperature 

!θe into its saturated and sub-saturated components, 
representing the temperature and moisture components respectively. 

 
 

!θe = !θe
*

saturated  eq. pot. temp.
" − !θe

+

subsaturation
"   (7) 
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The subsaturation θe
+ , measured by the difference between θe  andθe

* , is the additional 
moist entropy that will bring an environment to saturation. Similar subsaturation 
measures have featured in past theoretical works (e.g. the “saturation deficit” in Raymond 
(2000) and “anomalous moisture deficit” in Kuang (2008) ). θe

+ has both temperature and 
moisture dependence, but in practice, much of its variations are controlled by moisture 
variations. Example θe

+ profiles for two contrasting environments—one dry and the other 
moist are shown in Figure 1a.  
We also define the plume buoyancy B as: 

 
 
B(z) = g θe(z)− !θe

*(z)
!θe
*(z)

⎛
⎝⎜

⎞
⎠⎟

  (8) 

The traditional formulation of buoyancy is g
Tvp −Tv
Tvp

⎛

⎝⎜
⎞

⎠⎟
, where Tvp  and Tv  are the plume 

and environment virtual temperatures respectively, so our formulation differs from the 
traditional formulation in its omission of the virtual temperature effects. 
Using (3) and (8) for ϕu = θe  and assuming zero mass flux (or influence) at the surface, 
we get an expression for the buoyancy B in height coordinates: 

 
 
B(z) = g 1

M (z) !θe
*(z)

− ∂M
∂z '
!θe

+ (z ')dz '
0

z

∫ + ∂M
∂z '
!θe
*(z ')dz '

0

z

∫
⎛

⎝⎜
⎞

⎠⎟
− g   (9) 

and a similar expression in pressure coordinates:	

 
 
B(p) = g 1

M (p) !θe
*(p)

− ∂M
∂p '
!θe

+ (p ')dp '
ps

p

∫ + ∂M
∂p '
!θe
*(p ')dp '

ps

p

∫
⎛

⎝
⎜

⎞

⎠
⎟ − g   (10) 

Where ps is the surface pressure. (10) can be expressed as: 

 
 
B(p) = g

θe
*(p)

− I(p, p ') !θe
+ (p ')dp '

ps

p

∫ + I(p, p ') !θe
*(p ')dp '

ps

p

∫
⎛

⎝
⎜

⎞

⎠
⎟ − g   (11) 

Where the I(p, p ')   is the influence function, defined here as I(p, p ') = 1
M (p)

∂M (p ')
∂p '

. 

The plume buoyancy at any level p is therefore given by vertical profile of the 
environmental θe

*  and θe
+  weighted by the influence function at all levels below p. As 

stated above, the influence function is related to the vertical mass-flux profile in presence 
of dynamic entrainment alone. So within this framework, knowledge of the influence 
function is tantamount to the knowledge of the mass-flux profile and vice-versa. 
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Any assumed mass-flux profile can be used to yield an expression for plume 
buoyancy from (11). We assume the existence of a piecewise, monotonically increasing 
mass-flux profile as depicted in Figure 1 and note that this deep inflow profile is similar 
in form to the mass-flux and vertical velocity profiles derived from tropical observations 
(LeMone and Zipser 1980, Mapes and Houze 1995, Kumar et al. 2015, Schumacher et al. 
2015; Masunaga and Luo 2016 etc.). We assume three distinct layers in the vertical to 
capture the variations in the rate of inflow with a few degrees of freedom. The vertical 
averages in each of these layers naturally emerge as the relevant variables in the 
analytical framework, associated with the piecewise linear assumption on the mass flux. 
Note that the rates of increase of mass flux in each layer are not assumed in advance — 
rather these are to be determined in the subsequent empirical analysis. 

The choice of layers in the empirical analysis should reflect physically reasonable 
considerations, both for the form of a mass flux and for the environmental variables that 
will thus be weighted. The number of vertical degrees of freedom must also be modest 
enough to be tractable for analysis with available data. The boundary layer is one natural 
distinct layer to consider. The free troposphere is further delineated into two portions, 
which will be hereby termed the lower and the middle free tropospheric layers. This 
distinction was imposed after it appeared that there exists a degree of coherence in 
vertical structure of moisture within these layers (see Supplement, Figure S4). Coherent 
variations in these layers are also seen in the tropical sounding data (e.g. see Figure 2a in 
HN09). 
Thus, our assumed deep inflow mass flux profile (Figure 1b) has the piecewise-linear 
form: 

 M (p) =
a(ps − p),  pB ≤ p < ps

a(ps − pB )+ b(pB − p),  pL ≤  p < pB

a(ps − pB )+ b(pB − pL )+ c(pL − p),  pL ≤  p < pL

⎧
⎨
⎪

⎩⎪
  (12) 

The layer interface heights pB , pL and pF represent the heights of the boundary layer, 
lower-free troposphere and the freezing level respectively. a , b  and c  here are the 
magnitudes of the mass flux gradients, representing the inflow intensity in each layer.. 
The plume buoyancy at level p can now be written in terms of layer averages: 

 
 
B(p) = g aΔpB

M (p) !θe
*(p)

!θe BL
− b
M (p) !θe

*(p)
!θe

+ (p ')dp '
p

pB

∫ + b
M (p) !θe

*(p)
!θe
*(p ')dp '

p

pB

∫ −1
⎛

⎝
⎜

⎞

⎠
⎟  

  for pL ≤ p < pB   

and	 	
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B(p) = g aΔpB
M (p) !θe

*(p)
!θe BL

− bΔpL
M (p) !θe

*(p)
!θe

+

L
+ bΔpL
M (p) !θe

*(p)
!θe
*

L

⎛
⎝⎜

− c
M (p) !θe

*(p)
!θe

+ (p ')dp '
p

pL

∫ + c
M (p) !θe

*(p)
!θe
*(p ')dp '

p

pL

∫ −1
⎞

⎠
⎟

	 (13)	

for pM ≤ p < pL 	

Where the angular brackets denote vertical averages and Δ  denotes the pressure 
thickness in each layer. One of our candidate buoyancy measures Bint  is the integrated 
buoyancy from the top of the boundary layer to the freezing level, normalized by the 
pressure thickness to retain units of buoyancy: 

 Bint =
B(p)dp

pL

pB∫ + B(p)dp
pM

pL∫
(pB − pM )

  (14) 

Two further simplifications are made to estimate Bint : 

1. 
 

1
!θe

*(p)
 is replaced with its layer average 1

!θe
* , assuming that deviations from the 

layer average  
!θe
*  are small within each layer. 

2. 
 

!θe
# (p ')dp '

p

p#

∫  is replaced with !θe
#

LA
p# − p( ) , where θe

#  represents θe
*or  θe

+  and 

p# is the layer interface height representing pL  or  pM  and θe
#

LA
is the layer 

average. This is equivalent to assuming that the subsaturation and saturation 
variables are invariant within the layers being considered. This invariance 
assumption approximates strong linear correlations of  θe

*or  θe
+  within the layer. 

Bint can then be written as a linear combination of layer-averaged variables:

 

Bint =
g

pB − pM( ) A
!θeBL

!θeL
* + B 1−

!θeL
+

!θeL
*

⎛

⎝
⎜

⎞
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*
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+
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*
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⎜
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⎠
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+

!θeM
*

⎛

⎝
⎜

⎞

⎠
⎟ −1

⎧
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⎪
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⎫
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⎪
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(15) 
 
	(15) yields Bint as a linear combination of five different terms—involving the boundary 
layer equivalent potential temperature

 
!θeBL , the mid and lower tropospheric 

subsaturation terms (
 
!θeL

+ ,
 
!θeM

+ ) and saturation terms (
 
!θeL

* ,
 
!θeM

* ). Note that 

increases in atmospheric moisture are not enough to guarantee increases in Bint, which is 
also determined by the magnitudes of the free tropospheric temperature as well as the 
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boundary layer moist entropy. The coefficients A-E in (15) are functions of the relative 
inflow intensities and the pressure thicknesses in each layer (see Supplement). The 

relative inflow intensities take the form of ratios such as aΔpB
aΔpB + bΔpL

 and 

aΔpB + bΔpL
aΔpB + bΔpL + cΔpM

 etc., whose estimation allows us to diagnose the vertical influence 

function I(p, p ') . The next section describes how we can empirically estimate these layer 
weightings by evaluating the precipitation onset as a function of the different layer 
averages of  

!θe
+  and θed

* , which are the linear components of the integral in (11). 
 
4. Empirical estimation of the layer weights  
4.1 Use of freezing level buoyancy 
While (15) allows us to compute Bint , given an estimate of the different layer weightings, 
it is in a form that is not tractable for the estimating those layer coefficients themselves. 
So consider the alternative buoyancy measure proposed in Section 3.2:BF  , freezing-level 
buoyancy, which is given by the following expression: 

 
BF = g

1
M (p) !θe

*(p)
aΔpB !θeBL − bΔpL !θeL

+ − cΔpM !θeM
+ + d !θe

*
Deep( )− g

 (16) 
This expression is obtained directly from (13), (by substituting p=pM, the freezing level 
pressure). This expression assumes a degree of vertical coherence in the saturation 
equivalent potential temperature structure between the lower free troposphere and mid-
troposphere (as shown in Holloway and Neelin 2007) and their linear combination is 
condensed to one variable 

 
!θe
*

Deep
, which is assuming a single vertical mode of 

temperature variation in the free troposphere that tracks some of the variations in 𝑇. Note 
that in this expression, d = bΔpL + cΔpM .  

We observe that (16) is a linear combination of the inflow intensities and the 
pressure thicknesses in each layer. This form is simpler than the expression for the 
integrated buoyancy in (15), in that it directly involves the use of the layer-averaged 
inflow coefficients. As mentioned in Section 3, we expect that the freezing-level 
buoyancy BF should also be an effective discriminant in predicting the precipitation onset 
as it determines the fate of the plumes transitioning to deep convection (i.e. identifies 
plumes with adequate buoyancy to extend into the upper troposphere). There are 
exceptions to this statement, when considering the influence of the free tropospheric 
temperature variations, which we will elaborate on towards the end of this section. For 
the estimation of layer weights, we will use the conjecture that < P >= f (BF ) . 
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4.2 Precipitation onset in θe -based variables 
We first proceed by testing if the precipitation shows the same rapid increase when 
binned by the layer-averaged buoyancy-centric variables in θe -based variables, as it does 
with the bulk variables CWV and 𝑇. We first re-write the freezing level buoyancy from 
(16) in the form: 

 BF = g
aΔpB
M (pF )

θeBL −
bΔpL
M (pF )

θeL
+ − cΔpM

M (pF )
θeM

+ + d
M (pF )

θed
* −1

⎛
⎝⎜

⎞
⎠⎟

      (17) 

Where we have written the environmental layer averages without the tilde and angular 
brackets. These layer averages are also normalized by the equivalent saturation potential 
temperature at the freezing level, which eliminates the θe

*(p)  term from the denominator 
in (16).  

We bin the precipitation over each of the tropical oceans in terms of the four θe -
based variables in (16). In computing the layer averages, we adopt sigma coordinate-like 
definitions to keep track of the variable surface pressure values—especially between land 
and oceans. The boundary layer is defined as a 100 mb thick layer from the surface. The 
lower troposphere, as a 150 mb thick layer from the top of the defined boundary layer 
and the mid-troposphere as the layer that is bounded by the top of the lower-free 
troposphere and the 500 mb pressure level.  These definitions are necessary because of 
the sensitivity of the precipitation onset over land to the variations in surface pressure—
substantially arising from orography. See Supplement (Figure S4) for more information.   
In this case, the layer average of the saturation equivalent potential temperature between 
500 - 600 mb is used to normalize the variables and the resulting quantities are multiplied 
by a reference value (340 K). 
 The precipitation over the tropical oceanic basins is first binned by three of the 
four variables that were obtained from the right-hand side of the expression in (16) (θeBL ,
θeL

+ and θed
* ). To ensure adequate sampling in each ocean basin, variations of θeM

+ are 
not included in this binning procedure.  

Figure 2 shows the precipitation as a function of θeL
+ (the lower-tropospheric 

subsaturation), for roughly constant values of θed
* and θeBL .  The x-axis is reversed for 

subsaturation here and in subsequent figures so that moisture increases to the right as 
subsaturation decreases. Precipitation shows a strong increase with decrease in θeLT

+ , 
resembling the well-known precipitation-moisture curves. This result is encouraging, 
since the precipitation onset with increasing column moisture is captured with variables 
that directly relate a buoyancy measure to the environmental thermodynamic structure. 
There is also good agreement between the precipitation onset curves for the different 
tropical ocean basins, barring slight variation in the slope of the curves (e.g. in Figures 
2c, e, f, i and j).  
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4.3 Collapse procedures 
The near-uniform behavior of the precipitation onset as a function of θe-based 

variables over the different tropical ocean basins in Figure 2 suggests that all the ocean 
points can be grouped together. This unified tropical ocean sample set now yields enough 
points to bin precipitation by four variables, now including θeM

+ . Following the four-
dimensional binning, we proceed to empirically estimate values for the coefficients (
aΔpB
M (pF )

, 
bΔpL
M (pF )

 and 
cΔpM
M (pF )

) in (17) and begin by describing the procedure employed.  

To motivate the procedure, we start with the physical hypotheses that there exists 
a threshold freezing-level buoyancy for precipitation onset given by BT , such that 

increases in BF above BT  lead to strong increases in conditionally averaged precipitation. 
In other words, we assume that < P >= f (BF )  and that f  captures the strong non-
linearity associated with precipitation onset.	The expectation from the expression for BF 	
in (17) is that the various factors from different layers affecting can compensate for each 
other in reaching allowing BF  to reach the threshold for precipitation onset, BT . 
Consider a thermodynamic profile with BF =BT , where BF can be modified by changing 
any of its four components in (17). For example, assume that two of these four 
components, say θeBL  and θed

*  are held constant and only θeM
+  and θeL

+ are allowed to 

vary. Now an imposed change in the θeM
+ component, δθeM

+ will change BF . The 
conditional precipitation will still increase rapidly at BF = BT , provided that there is a 

compensating change in θeL
+ ,δθeL

+ . If we can measure the ratio of the changes in the two 

components 
δθeL

+

δθeM
+  required to produce the same precipitation-buoyancy curve, then we 

can obtain a measure of − cΔpM
bΔpL

.  

We now translate this into a more general procedure using the conditional-
average precipitation <P> dependence on the θe –based variables. Specifically, we are 
asking what shifts in one of the variables are required to compensate for changes in one 
of the others to collapse the <P> dependence as closely as possible to a single function. 
During this procedure we can also note any departures from this, and can subsequently 
test how well this procedure works overall. 

Figure 3a shows the precipitation as function of θeM
+  and θeL

+ , holding θeBL and 

θed
*  constant (to within binning accuracy). Note that the bin resolution is coarse for 

θeMT
+ , θed

*
 and θeBL  (2 K) and finer for θeL

+  (0.5 K); the coarse bin sizes are necessary to 
ensure that enough samples are present in each bin to yield precipitation onset. This 
binning procedure is the data analysis version of holding two variables constant, while 
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allowing the other two to vary, as described in the previous paragraph. Onset curves 
corresponding to different values of θeM

+  are marked by different colors. Note that these 
precipitation curves are variants of the canonical precipitation-moisture curves, with 
subsaturation variations acting as the surrogates for the usual moisture variation. Also 
note that weak precipitation can occur for a near–saturated mid-troposphere (θeMT

+ =1 K 

in orange and θeMT
+ =3 K in red), even when the lower-troposphere is far from saturation. 

This weak precipitation contribution is likely corresponds to the regime of large-scale 
precipitation that occurs when the midtroposphere saturates, but the lower free 
troposphere is too far from saturation to permit conditional instability. The rapid increase 
in precipitation as θeL

+  is decreased corresponds to the onset of deep convection, which 

is the object of interest here. This precipitation onset happens at higher values of θeL
+ for 

lower values of θeM
+ . This behavior is physically interpreted as increases in BF (that 

arise from a moister mid-troposphere) leading to precipitation onset in a drier lower free 
troposphere, i.e. that we have compensation between the contributions of θeL

+  and θeM
+  

in buoyancy as expected from (17). 

 To measure 
δθeM

+

δθeL
+ , we first shift all the onset curves in Figure 3a such that they 

reach a pre-determined threshold value of precipitation (0.95 mm/hr in this case) at the 
same value of θeL

+ . This threshold was empirically chosen to give the best overlap of the 
precipitation onset curves. The near collapse of the curves in Figure 3b is encouraging 
since it suggests that a single function of buoyancy can describe the behavior of 
conditionally averaged tropical precipitation. The average of these curves is shown in 
Figure 3c; the slope of the steepest part of this average onset curve is extended to zero 
precipitation to estimate a critical value of θeL

+ for which the precipitation strongly picks 
up. The critical value of pickup for each of the curves in Figure 3a is then estimated by 
simply adding their respective linear shifts to the critical value estimated for the average 
pickup curve. This critical value θeLC

+  signifies the approximate θeL
+  value at which 

precipitation onset occurs for each of the curves in Figure 3a. Figure 3d shows the shifts 
inθeL

+  in response to changing θeM
+  values exhibiting a linear relationship and yielding 

an estimate of -1.03 for the slope 
δθeL

+

δθeM
+ and therefore −

cΔpM
bΔpL

. In principle, this shift 

procedure could detect a nonlinear dependence in which the slope varied as a function of 
θeM

+ , but the emergence of the linear relationship here is consistent with the linear 
dependence derived under the assumptions of (17), at least within the range of variations 
in θeL

+  and θeM
+  considered here.  
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A similar procedure is shown in Figure 4, where θeM
+  and θed

*  are held roughly 

constant and the boundary layer component θeBL  is allowed to vary relative to θeL
+ . In 

this case,  
δθeL

+

δθeBL

= aΔp B

bΔpL
 ~ 0.88 is estimated from the linear shifts, using a precipitation 

threshold of .7 mm/hr to produce a good collapse. Using these two relative weights and 

with the knowledge that M(pF) is apΔpB + bpΔpL + cpΔpM , we estimate values for 
aΔpB
M (pF )

 

(= 0.30), 
bΔpL
M (pF )

 (= 0.35) and 
cΔpM
M (pF )

 (= 0.35). Note that these values are the 

coefficients in (17) that can be used to compute the freezing level buoyancy BF.  
Physically, these relative weightings quantify the influence of each layer to the plume 
buoyancy at the freezing level. In this reverse-engineered inflow profile, the contribution 
from each of the free tropospheric layers is nearly the same, with a slightly smaller 
contribution from the boundary layer. This inflow profile, i.e. the piecewise mass-flux 
profile using the weights derived here, is displayed in Figure 1b for a unit mass-flux at 
the freezing level. The overall result implies a relatively uniform increase in mass flux 
with height, i.e. a deep inflow, corresponding to a relatively uniform weighting of the 
contributions of each layer to freezing level buoyancy. 

We also test the sensitivity of the estimated weights to details of the binning 
procedure such as the values of the variables being held constant and the bin resolution of 
the variables. Changes in these parameters do produce variations in the computed 
weightings and the resulting influence function, but they do not greatly impact our final 
results. Figures 5 and 6, illustrate these cases. Figure 5 presents a case where a variant in 
the procedure results in a slight change in the weightings, showing the precipitation onset 
for increases in θeBL instead of decreases in θeL

+ ; the bin resolution is 0.5 K for θeBL and 2 

K for the other variables. In Figure 5, θeM
+ and θed

* are held constant, while allowing θeBL

and θeL
+ to change. Increases in the boundary layer θeBL  results in precipitation onset 

beyond an apparent threshold value with the onset occurring for smaller θeBL values in a 
lower troposphere closer to saturation, consistent with our buoyancy-based framework. 
With a precipitation threshold of 0.75 mm/hr, a linear shifting procedure, as before, 

yields a weighting of ~0.79 for 
δθeBL

δθeL
+ = bΔp L

aΔpB
, in contrast to the expected (.88)-1 = 1.13 

from Figure 4.  
 In Figure 6, we present the precipitation onset with θeL

+ and θed
*
 held constant, 

but with varying θeM
+  and θeBL . The resultant weighting for 

δθeBL

δθeM
+ = cΔp M

aΔpL
 is ~ 0.75, 
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which yields 
cΔp M

bΔpL
 ~1.05, very close to the estimate from Figure 4. The precipitation 

threshold for this shifting exercise was 0.5 mm/hr. Figures 5 and 6 therefore illustrate the 
expected range of variability from changing the bin resolution. The relative weights of 
the two free tropospheric layers remains nearly the same as before, but the weighting 
from the boundary layer has increased. This new weighting yields the following values 

for the layer weights:
 

aΔpB
M (pF )

 (= 0.39), 
bΔpL
M (pF )

 (= 0.31) and 
cΔpM
M (pF )

 (= 0.3). These 

values correspond to an inflow profile that weights the boundary layer slightly more than 
the free tropospheric layers. Because the weightings remain similar among layers, 
however, the overall result of implying a deep inflow remains. 
4.4 Free tropospheric temperature dependence 

We have thus far utilized the hypothesis that variations in freezing level buoyancy 
( BF ) capture variations in precipitation onset to derive the layer influence function. The 
weights derived in the previous section will be used in section 5 to test whether the 
integrated buoyancy ( Bint ) yields a sharp onset profile. It is worth first asking if BF by 
itself is enough to predict the precipitation onset under all conditions. If this were the 
case, then increases in free tropospheric temperature value (θed

* ) should result in 
increased values of BF, i.e. a data-derived estimate for d , should at least be positive and 
close to bΔpL + cΔpM . In Figure 7, we present a similar sequence of figures as in Figures 

3-6, but now holding θeM
+ (4 K bins) and θeBL  (2 K bin width) constant and allowing 

critical θeL
+ to shift as a function of the deep tropospheric temperature (θed

* ). We find 

that the precipitation picks up at a higher value of θeLT
+  for colder tropospheric 

temperatures, yielding a negative value for 
d

bΔpL  (-0.82). This implies that a warmer 

troposphere (compared to the freezing level temperature) requires a lower troposphere 
closer to saturation for precipitation onset. The negative sign is robust to the variations in 
the parameters like bin resolution, values being held constant etc. (not shown). This 
variation of the precipitation onset curve to changing free tropospheric temperatures 
therefore suggests that the utility of BF as a predictor of conditional precipitation is 
limited to environmental variations not involving the free tropospheric temperature. This 
allows to modify our earlier < P >  vs BF postulate and rewrite it as: 

 < P >= f (BF ) θed*  (18) 

indicating that the hypothesis linking conditional precipitation and BF is valid in the 
presence of invariant deep tropospheric temperature variations. One possible reason for 
this relationship is that increased temperature at lower levels can cause local decreases in 
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buoyancies even if (17) yields increasing buoyancies at the freezing level. The layer 
influence function, however, can be deduced from the moisture variations alone, while 
holding the magnitude of the deep temperature structure constant, as in the shifting 
procedures described in Figures 3-6. It is the simple analytical form for BF  given in (16) 
and (17) that facilitates this deduction. Bint , which is a bulk estimate of the lower-
tropospheric buoyancy is postulated to be a more robust predictor of precipitation onset 
under varying environmental conditions. 
 
5. The precipitation-buoyancy relationship 

The layer weightings obtained from the shifting operations using BF are used to 
estimate Bint. This section tests the relationship between Bint estimated in this manner—
over both tropical land and ocean—and conditional precipitation across both land and 
ocean in the tropics. In other words, we ask if < P >= f (Bint )  is a valid hypothesis 
governing the behavior of tropical precipitation. 

As background for evaluation in θe variables, Figure 8 shows the precipitation 
onset curves using the previously used bulk measures of CWV and 𝑇, calculated over 
seven tropical land regions and compared to the curve from the tropical Western Pacific. 
When categorized by these traditional bulk thermodynamic variables, the precipitation 
still shows a strong increase with CWV over land, but the onset occurs at smaller CWV 
values over land than ocean. Some of these differences are attributable to orographic 
precipitation—as measured by surface pressure. When the land and ocean points with 
similar values of surface pressure are used in the analysis, the land-ocean differences are 
less stark (see Supplement, Figure S5). It would, however, be theoretically satisfying if 
we can reconcile the land-ocean differences or even reproduce the precipitation onset 
curves from Figure 8 using a single variable representative of buoyancy. 

We take as our sole variable representative of buoyancy the empirically 
determined, θe -based buoyancy, Bint, computed using the reverse engineered inflow 
profile from Section 5. Among the slight variants of the inflow profiles, based on the 
details of the binning and shifting procedures noted in Section 5, we choose the profile 

reconstructed from Figures 3 and 4 (
aΔpB
M (pF )

= 0.30, 
bΔpL
M (pF )

= 0.35 and 
cΔpM
M (pF )

= 0.35). 

After substituting for coefficients A-E in (15) and calculating the other layer averaged 
thermodynamic variables from the reanalysis data, we can compute Bint for any given 
thermodynamic profile.  

Figure 9 shows the precipitation binned against Bint, for the four ocean basins as 
well as the land regions. Figure 9a shows that Bint is able to capture the onset of averaged 
precipitation over all tropical oceans. Among many encouraging features in Figure 9 is 
the sharp onset in precipitation as a function of this measure of buoyancy, with positive 
values of Bint associated with strong precipitation. Note that the y-axis in Figure 9a 
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extends to 5 mm/hr, much higher than the largest precipitation seen when binned by 
CWV and 𝑇, indicative of an even stronger relationship in terms of Bint. We note that the 
sharp increase in precipitation begins at slightly negative values of buoyancy, as will be 
discussed further below. 

Figure 9b and 9c show how the land precipitation curves onset at nearly the same 
Bint values as the oceanic curves, with sharp pickups that are generally comparable 
through the main part of the onset. We note again that the coefficients established 
empirically over the ocean are used here for the continental regions.  There are some 
discrepancies between the land and ocean curves, with the land curves typically not 
attaining as large precipitation values for high values of Bint, especially for the highly 
precipitating and sparsely sampled points, where the land regions of South American 
(S.Amer), Maritime Continent (M.Cont) and Argentia (Arg) become rather noisy. For 
West Africa (W.Afr) and India, the precipitation curves seem to attain onset at slightly 
higher values than the ocean, while Arg and S.Amer seem to do so at slightly lower 
values. Despite these minor differences, the striking nature of the land-ocean collapse 
using Bint and the sharpness of the pickup is taken to support our conjecture relating 
precipitation onset to an integrated buoyancy measure in the lower free troposphere. Even 
more encouraging is that the use of a single reverse-engineered inflow profile from over 
the tropical oceans is able to capture the precipitation onset over tropical land as well. 
This implies that the deep inflow profile is a useful conceptual tool to describe salient 
features of convection-environmental interactions across the tropical world. 

Figure 10 shows the probability density function (PDF) for Bint, much like the 
convective transition statistics generally presented for CWV (e.g. Neelin et al. 2009, Kuo 
et al. 2017). Like CWV, Bint shows sharply peaked distribution close to precipitation 
onset for both precipitating (Figure 10a) and total points (Figure 10b), at 0 m/s2, for all 
regions. Here 0.25 mm/hr is used as the threshold to identify precipitating points. Another 
universal feature of the PDF is the sharp drop in the occurrence frequency of positive Bint 
values just beyond the precipitation onset for all regions. The nearly identical 
distributions between Bint and CWV (see Figure 5 in Neelin et al. 2009) suggest that 
CWV does indeed control much of the variation in free tropospheric buoyancy as 
supposed earlier (e.g. in HN09). The PDF of Bint shown in Figure 10 suggest that 
precipitation acts to reduce positive excursions in grid-scale buoyancy—whose mean 
value is presumably set by a combination of radiative and lateral transport of heat and 
moisture. This is one manifestation of convective quasi-equilibrium (Arakawa and 
Schubert 1974) where the environmental buoyancy is destabilized by slowly-varying 
environmental processes and stabilized by rapid increases in precipitation; with the 
system self-modulated by the convective-circulation ensemble, as proposed in Peters and 
Neelin (2006).  

There is a high incidence of precipitating points over East Asia (E.Asia) for low 
values of Bint in Figure 10b. This feature disappears when only the active monsoon 



	 21	

months (June-September) are considered (not shown); this indicates that the precipitating 
points at low Bint values might represent wintertime frontal precipitation. This is also true 
for Australia (Aus) and Argentina, where the long precipitating tail at low Bint values is 
reduced when only considering austral summertime precipitation. We nevertheless retain 
all times of the year in our analysis as it bolsters the sampling; the artifacts from the 
frontal precipitation regime are only noticeable in the weakly precipitating regime. 

 
6. Discussion 
6.1 Convective transition statistics in θe -based variables 

In this study, we introduce a framework to relate precipitation to the 
environmental buoyancy.  We present two buoyancy measures ( BF and Bint ) that are 
dependent on the vertical thermodynamic structure through an empirically determined 
inflow—or a layer influence—profile. The inflow profile was estimated by positing a link 
between the conditional precipitation over tropical ocean and the freezing level 
buoyancy, BF , which we found was a useful working hypothesis in the absence of free 
tropospheric variations.  

To account for a more complete relationship between conditional precipitation 
and the environment, we computed Bint , using the layer weights estimated through BF . 
The collapse of the precipitation onset using Bint across a variety of tropical 
environments—particularly the land and ocean—provides a strong indicator that this 
quantity can capture leading behavior of precipitation-producing convection. 

Bint is calculated in a θe -based variable space, with the saturation equivalent 

potential temperature θe
*and the subsaturation, θe

+ , playing the role of temperature and 
moisture respectively. The use of Bint is appealing for a number of reasons: dependence 
on lower tropospheric thermodynamic information is consistent with the need for 
updrafts to be buoyant through this layer to reach deep convective status, and with high-
resolution modeling results demonstrating that convection is sensitive to perturbations in 
this layer (Tulich and Mapes 2010, Kuang 2010, Wang and Sobel 2012); the dominant 
relationship can be sought without complexity of freezing microphysics effects; 
furthermore, this buoyancy can be linked naturally to an updraft form that sidesteps some 
unnecessary complications of parcel lifting paradigms.  

As discussed in the Introduction, the importance of the free tropospheric water 
vapor to convection has been strongly emphasized in literature. Water vapor, however, 
must be placed in context with respect to its importance to the buoyancy—which is a 
stronger diagnostic measure of tropical convection fueled by the release of convective 
instability. The land-ocean differences in the precipitation-moisture relationship and their 
unification in buoyancy space (Figures 9 and 10) underscores this point. Water vapor 
therefore only emerges as the leading order variable, when the other implicit controls 
such as the boundary layer moist entropy and free-tropospheric stability (Back and 
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Bretherton 2009, Raymond and Flores 2016) are (relatively) unchanging. When making 
statements about buoyancy in presence of strong entrainment effects, however, the key 
question is how to quantify the dependence of buoyancy on the environment as a function 
of height. 
6.2 Empirical estimation of inflow profiles 

Most mass-flux based cumulus parameterization schemes deduce the cloud or 
cloud-ensemble mass flux from an assumed value of the fractional entrainment that is 
ultimately used to predict the precipitation. In this study, we solve the parameterization 
problem in reverse, asking what is the entrainment profile that yields a collapse of the 
observed precipitation onset across the tropics. Here entrainment is estimated in terms of 
a deep inflow of environmental air that enters the plume at every level from the surface 
up until the freezing level. In the cumulus parameterization analogy, our closure postulate 
is the linkage of conditional-average precipitation to the integrated buoyancy in the lower 
troposphere. Having derived the dependence of buoyancy on mass inflow, we proceed to 
estimate the inflow profile that yields a universal dependence on the resulting buoyancy. 
Our reverse-engineered deep inflow profile, depicted in Figure 1b, shows a steady 
increase in the mass-flux from zero at the surface. The magnitude of the inflow weights 
the influence of the environment in each layer. It is notable that the shape of this inflow 
profile is nearly unchanging for variations in environmental thermodynamic values (note 
the nearly linear variations shown in Figures 4-7). The use of a single inflow profile is 
further supported by the collapse of the precipitation statistics over tropical land in line 
with the tropical ocean statistics. 

The result that a single inflow profile captures leading behavior of the convection-
environmental interactions also has some bearing on the entrainment assumptions usually 
employed in cumulus parameterization schemes. One class of schemes argues for the use 
of constant mixing with height (as implemented in Arakawa and Schubert 1974; Kain and 
Fritsch 1990; Zhang and McFarlane 1995 etc.). Other arguments have sought to introduce 
some vertical variation of the mixing coefficient with height, by linking the entrainment 
to the production of buoyant kinetic energy (Lin 1999; Gregory 2001; Jensen and Del 
Genio 2006, de Rooy and Siebesma 2010). Our results suggest that a fixed, judiciously 
chosen weighting, corresponding to a vertically varying entrainment inflow profile is 
effective in reproducing the onset to deep convection. The use of a fixed inflow profile 
also sidesteps the pitfalls associated with the assumptions made in a more interactive 
plume model involving the steady-state plume vertical velocity equation (de Roode et al. 
2012). 

Our framework works with the integral form of the traditional bulk plume 
equation (3), in contrast to studies working with the differential entraining plume 
equation (5). This gives our framework a slightly different physical interpretation than 
those imposing entraining plume assumptions. Our framework stresses the importance of 
the influence function (2) in affecting the plume buoyancy, while traditional entraining 
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plume studies stress the importance of the mixing coefficient. These two interpretations 
are mathematically equivalent within the framework of a well-mixed plume, although if 
the plume is not instantly mixed at each level, the integral formulation would tend to be 
more robust. For instance, the entrainment formulations obtained from studies of shallow 
convection (Siebesma 1996; Jakob and Siebesma 2003; Bretherton et al. 2004a, Siebesma 
et al. 2007) yield values that scale inversely with height. This 1/z –like profile can also be 
obtained if one were to invert our linear deep inflow profile to yield the entrainment 
coefficient. Notice however, that the physical interpretation for the existence of the 1/z-
like profile is quite different in the two cases. The shallow convection studies invoke the 
eddy mixing length scale argument (Siebesma 1996), while we base our deep inflow 
profile on tropical vertical velocity and mass-flux observations.  

Some recent idealized simulations (Romps 2010, Dawe and Austin 2011, Yeo and 
Romps 2013) have found that actual entrainment values in clouds may be much higher 
than values usually used in bulk-plume schemes and that it may be useful to distinguish 
between entrainment and updraft dilution (Hannah 2017). The high entrainment values 
obtained in these studies appear to depend on the fact that actual clouds entrain not only 
clear-air but also detritus from themselves and other clouds. These studies raise 
interesting questions about how to transfer information to the idealized world of cumulus 
parameterization, but also highlight the utility of using the influence function to 
understand environmental interaction with the plume. Our influence function subsumes 
the subgrid-scale interactions between the plume and the environment, yielding an 
estimation of only the bulk effects. As such, it directly addresses the parameterization 
problem for the linkage between the environmental θe and precipitation. Errors in our 
formulation, which interprets the influence function in terms of dynamical entrainment 
alone would affect the details of the inferred mass flux in Figure 1. However, the 
influence function itself would remain empirically valid for representing the bulk effects 
of strongly precipitating tropical convection over a variety of environments. 
6.3 Caveats and unaddressed effects: 

Our framework does not account for more complex—and perhaps higher-order—
variations in tropical convection. The single, universal Bint measure gives slightly 
imperfect collapse between land and ocean onset curves, with considerable scatter at high 
Bint values. This scatter is a potential artifact of errors in the data source or could 
represent the myriad factors that confound the study of continental precipitation such as 
soil moisture content (Betts et al. 1996, Emori 1998, Spracklen et at. 2012), orography 
(Houze 2012; Shige and Kummerow 2016) and more prominently, the daytime heating 
that produces a prominent diurnal cycle (Nesbitt and Zipser 2003, Kikuchi and Wang 
2008). Even though we implicitly capture parts of these effects (for e.g. the diurnal cycle 
and soil moisture effects using the boundary layer θe values, orography using a sigma-
like coordinate system) we still ignore other features like diurnal variations in the 
boundary layer height.  
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 Note that our buoyancy definition in (8) excludes the virtual temperature effects, 
which could potentially have sizeable impacts for the weakly precipitating points 
(Doswell and Rasmussen, 1994). Another source of discrepancy between the land and 
ocean onset curves, not included in the present framework is the explicit distinction 
between convective and stratiform precipitation (Houze 1997, Schumacher and Houze 
2003). Stratiform rain is more extensive over tropical oceans than tropical land (Houze et 
al. 2015) and its occurrence is not solely governed by buoyancy considerations. A more 
direct measure relating environmental parameters to stratiform rain could potentially 
resolve some of the discrepancy between tropical land and ocean onset curves, 
particularly at the high Bint values, seen in Figure 9. 
7. Conclusions with Implications 
We present a framework to understand the strong relationship between bulk tropospheric 
temperature and moisture variables with tropical precipitation and capture the observed 
variability in this relationship. This framework relates the buoyancy of a plume directly 
to layer averages of the appropriate thermodynamic variables below the freezing level, 
under the assumption that the environment influences the plume throught a deep inflow 
mass-flux profile. The deep inflow mass-flux profile was deduced from observations and 
was used to compute a measure of integrated buoyancy in the lower free-troposphere 
(Bint). Bint is an effective predictor of the onset in precipitation across different regimes in 
the tropics—both land and ocean—despite patent differences in their respective 
environmental conditions. The method used to reverse engineer the deep inflow mass-
flux here relies on the availability of large amounts of data. This method is an example of 
a hypothesis-based effort to probe large datasets, in contrast to big data machine-learning 
methods that are finding greater use in earth sciences.  

Convective transition statistics, being a rather robust property of tropical 
convection, have great utility in diagnosing GCMs  (Kuo et al. 2017). Bint is an inflow-
dependent property of convection, similar in form to measures of integrated buoyancy 
(cloud work function in Arakawa and Schubert 1974; CAPE in Zhang and McFarlane 
1995; Bechtold et al. 2000 etc.) generally used to treat the closure problem in 
parameterization schemes. The set of convective transition statistics involving Bint shown 
in Figures 9 and 10 should therefore be a useful target of future GCM and cumulus 
parameterization diagnostics. Other interesting diagnostic exercises with GCMs can 
involve reverse engineering the model’s precipitation onset (as in Figures 3-7) to 
understand the influence function that governs the transition to deep convection in the 
model relative to that estimated from observations.  

The ability of a simple measure like Bint to predict convective transition statistics 
without the inclusion of ice-phase physics and other intricate microphysics schemes 
bodes well for cumulus parameterization schemes, though land-ocean differences at 
higher precipitation rates might show dependence on the microphysics. Bint does not 
explicitly include triggering mechanisms such as surface eddies (given by surface 
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turbulent kinetic energy), cold pools or gravity waves. An interesting feature of the 
precipitation-buoyancy relationship is the sharp increase in precipitation for slightly 
negative Bint values. This onset at negative Bint could point to buoyancy sources 
unaccounted by Bint, which could potentially include triggers. For instance, the dynamic 
triggering of convection by cold pools (Jevanjee and Romps 2015) would not be 
accounted for in our purely thermodynamic view of buoyancy. The robustness of the 
precipitation-buoyancy relationship across the tropics, however, suggests they can be 
treated in a general framework. 

Lastly, in quantifying the utility of the vertical thermodynamic structure, three 
layer-averages in the lower troposphere are found adequate to capture the precipitation 
statistics. This finding is anticipated to find synergy with future observational efforts to 
partially resolve remotely sensed thermodynamic data in the vertical (Wulfmeyer et al. 
2015). We expect that a few coarsely resolved layers of the lower troposphere could help 
observationally constrain key environmental predictors of precipitation statistics in the 
tropics.  
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Figure Captions 
 
Figure	1:	a)	Two	example	vertical	thermodynamic	profiles	from	the	ERA-I	dataset,	
presenting	thermodynamic	information	in	θe -	based	variables.	The	red	(blue)	is	an	

example	dry	(moist)	environment.	The	solid	and	dashed	lines	indicate	θe
* 	and	θe

variables	respectively.	b)	The	vertical	structure	of	the	piecewise-linear	mass-flux	
presented	in	(12),	with	different	vertical	gradients	in	three	distinct	lower	
tropospheric	layers.	
	
Figure	2:	TRMM	3B42	precipitation	conditionally	averaged	by	three	θe -based	
variables	from	ERA-I:	the	deep	tropospheric	saturation	equivalent	potential	
temperature	(θed

* ),	the	boundary	layer	equivalent	potential	temperature	(θeBL )	and	

the	lower-tropospheric	subsaturation	(θeL
+ ,	axis	reversed	so	moisture	increases	to	

the	right),	for	four	different	tropical	ocean	regions	(as	defined	in	Section	2).	The	θe -
based	variables	are	normalized	by	the	average	saturation	equivalent	potential	
temperature	in	the	500	–	600	mb	layer,	and	re-dimensionalized	by	a	reference	value	
(340	K).	The	precipitation	is	shown	as	a	function	of	θeL

+ 	for	different	fixed	values	of	
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θed
* and	θeBL .	In	each	column,	θeBL increases	from	the	top	to	the	bottom;	in	each	row,	

θed
* increases	from	the	left	to	the	right.		

	
Figure	3:	TRMM	3B42	precipitation,	conditionally	averaged	by	four	normalized	θe -

based	variables	from	ERA-I:	θed
* ,	θeBL ,θeL

+ 	and	θeM
+ .	(a)	Precipitation	as	a	function	

of	θeL
+ 	for	different	binned	values	of	θeM

+ ,	θe
* 	and	θeBL ,	with	the	colors	indicating	

different	θeM
+ 	values.	(b)	The	precipitation	curves	for	different	θeM

+ 	values	shifted	

such	that	they	all	reach	a	specified	threshold	(0.95	mm/hr)	at	the	same	θeL
+ value.	

(c)	The	average	of	all	the	shifted	precipitation	curves	in	(b);	the	linear	extrapolation	
identifies	the	critical	θeL

+ 	(θeLC
+ )	at	which	the	precipitation	begins	to	increase	

sharply.		(d)	The	scatter	plot	with	the	slope	of	the	linear	regression	fit,	showing	how	
θeLC

+ 	shifts	as	a	function	of	different	θeM
+ .	

	
Figure	4:	As	in	Figure	3,	but	showing	the	relative	shifts	in	θeL

+ 	for	changes	in	θeBL .		
	
Figure	5:	As	in	Figure	3,	but	showing	the	relative	shifts	in	θeBL 	for	changes	in	θeL

+ .		
	
Figure	6:	As	in	Figure	3,	but	showing	the	relative	shifts	in	θeBL 	for	changes	in	θeM

+ .		
	
Figure	7:	As	in	Figure	3,	but	showing	the	relative	shifts	in	θeL

+ 	for	changes	in	θed
* .		

	
Figure	8:	TRMM	3B42	precipitation	conditionally	averaged	by	ERA-I	CWV	and	 T̂ ,	
across	different	tropical	land	regions	(color)	and	the	tropical	Western	Pacific	Ocean	
(W.Pac;	in	black).	The	precipitation	curves	are	displayed	as	function	of	increasing	
CWV,	for	fixed	 T̂ bins.		In	each	row,	 T̂ increases	from	left	to	right.		The	different	land	
regions	are	West	Africa	(W.Afr,	@domain),	India,	East	Asia	(E.Asia),	South	America	
(S.Amer),	Aus	(Australia),	M.Cont	(Maritime	Continent)	and	Arg	(Argentina).	The	
bounds	for	the	different	regions	are	defined	in	Section	2.		
	

									Figure	9:	TRMM	3B42	precipitation	conditionally	averaged	by	Bint,	computed	from	
(16)	using	ERA-I	data	over	(a)	different	tropical	ocean	basins:	Western	Pacific,	
Indian	Ocean	(Ind.	Ocn),	Eastern	Pacific	(E.Pac)	and	the	Atlantic	(Atl)	and	different	
tropical	land	regions	referenced	against	the	Western	Pacific	Ocean	in	(b)	and	(c).		
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Figure	10:	As	in	Figure	8,	but	showing	the	probability	density	function	of	the	
precipitating	(a,b	and	c)	and	the	total	(d,e	and	f)	Bint	points.	A	threshold	of	0.25	
mm/hr	was	used	to	identify	the	precipitating	points.			
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Figures 

 

Figure	1:	a)	Two	example	vertical	thermodynamic	profiles	from	the	ERA-I	dataset,	
presenting	thermodynamic	information	in	θe -	based	variables.	The	red	(blue)	is	an	

example	dry	(moist)	environment.	The	solid	and	dashed	lines	indicate	θe
* 	and	θe

variables	respectively.	b)	The	vertical	structure	of	the	piecewise-linear	mass-flux	
presented	in	(12),	with	different	vertical	gradients	(to	be	estimated	empirically)	in	
three	distinct	lower	tropospheric	layers.	
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Figure	2:	TRMM	3B42	precipitation	conditionally	averaged	by	three	θe -based	
variables	from	ERA-I:	the	deep	tropospheric	saturation	equivalent	potential	
temperature	(θed

* ),	the	boundary	layer	equivalent	potential	temperature	(θeBL )	and	

the	lower-tropospheric	subsaturation	(θeL
+ ,	axis	reversed	so	moisture	increases	to	

the	right),	for	four	different	tropical	ocean	regions	(as	defined	in	Section	2).	The	θe -
based	variables	are	normalized	by	the	average	saturation	equivalent	potential	
temperature	in	the	500	–	600	mb	layer,	and	re-dimensionalized	by	a	reference	value	
(340	K).	The	precipitation	is	shown	as	a	function	of	θeL

+ 	for	different	fixed	values	of	

θed
* and	θeBL .	In	each	column,	θeBL increases	from	the	top	to	the	bottom;	in	each	row,	

θed
* increases	from	the	left	to	the	right.		
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Figure	3:	TRMM	3B42	precipitation,	conditionally	averaged	by	four	normalized	θe -

based	variables	from	ERA-I:	θed
* ,	θeBL ,θeL

+ 	and	θeM
+ .	(a)	Precipitation	as	a	function	

of	θeL
+ 	for	different	binned	values	of	θeM

+ ,	θe
* 	and	θeBL ,	with	the	colors	indicating	

different	θeM
+ 	values.	(b)	The	precipitation	curves	for	different	θeM

+ 	values	shifted	

such	that	they	all	reach	a	specified	threshold	(0.95	mm/hr)	at	the	same	θeL
+ value.	

(c)	The	average	of	all	the	shifted	precipitation	curves	in	(b);	the	linear	extrapolation	
identifies	the	critical	θeL

+ 	(θeLC
+ )	at	which	the	precipitation	begins	to	increase	

sharply.	d)	Scatter	plot	of	the	critical	values	with	the	slope	of	the	linear	regression	
fit,	showing	how	θeLC

+ 	shifts	as	a	function	of	different	θeM
+ .	
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Figure	4:	As	in	Figure	3,	but	showing	the	relative	shifts	in	θeL
+ 	for	changes	in	θeBL .		
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Figure	5:	As	in	Figure	3,	but	showing	the	relative	shifts	in	θeBL 	for	changes	in	θeL
+ .		



	 39	

 

Figure	6:	As	in	Figure	3,	but	showing	the	relative	shifts	in	θeBL 	for	changes	in	θeM
+ .		
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Figure	7:	As	in	Figure	3,	but	showing	the	relative	shifts	in	θeL
+ 	for	changes	in	θed

* .		
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Figure	8:	TRMM	3B42	precipitation	conditionally	averaged	by	ERA-I	CWV	and	 T̂ ,	
across	different	tropical	land	regions	(color)	and	the	tropical	Western	Pacific	Ocean	
(W.Pac;	in	black).	The	precipitation	curves	are	displayed	as	function	of	increasing	
CWV,	for	fixed	 T̂ bins.		In	each	row,	 T̂ increases	from	left	to	right.		The	different	land	
regions	are	West	Africa	(W.Afr,	@domain),	India,	East	Asia	(E.Asia),	South	America	
(S.Amer),	Aus	(Australia),	M.Cont	(Maritime	Continent)	and	Arg	(Argentina).	The	
bounds	for	the	different	regions	are	defined	in	Section	2.		
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									Figure	9:	TRMM	3B42	precipitation	conditionally	averaged	by	Bint,	computed	from	
(16)	using	ERA-I	data	over	(a)	different	tropical	ocean	basins:	Western	Pacific,	
Indian	Ocean	(Ind.	Ocn),	Eastern	Pacific	(E.Pac)	and	the	Atlantic	(Atl)	and	different	
tropical	land	regions	referenced	against	the	Western	Pacific	Ocean	in	(b)	and	(c).		
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Figure	10:	As	in	Figure	9,	but	showing	the	probability	density	function	of	the	
precipitating	(a,b	and	c)	and	the	total	(d,e	and	f)	Bint	points.	A	threshold	of	0.25	
mm/hr	was	used	to	identify	the	precipitating	points.			
 


