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Despite the importance of uncertainties encountered in climate
model simulations, the fundamental mechanisms at the origin
of sensitive behavior of long-term model statistics remain unclear.
Variability of turbulent flows in the atmosphere and oceans ex-
hibits recurrent large-scale patterns. These patterns, while evolv-
ing irregularly in time, manifest characteristic frequencies across a
large range of time scales, from intraseasonal through interdeca-
dal. Based on modern spectral theory of chaotic and dissipative
dynamical systems, the associated low-frequency variability may
be formulated in terms of Ruelle-Pollicott (RP) resonances. RP res-
onances encode information on the nonlinear dynamics of the
system, and an approach for estimating them—as filtered through
an observable of the system—is proposed. This approach relies on
an appropriate Markov representation of the dynamics associated
with a given observable. It is shown that, within this representa-
tion, the spectral gap—defined as the distance between the sub-
dominant RP resonance and the unit circle—plays a major role in
the roughness of parameter dependences. The model statistics are
the most sensitive for the smallest spectral gaps; such small gaps
turn out to correspond to regimes where the low-frequency vari-
ability is more pronounced, whereas autocorrelations decay more
slowly. The present approach is applied to analyze the rough pa-
rameter dependence encountered in key statistics of an El-Niño–
Southern Oscillation model of intermediate complexity. Theoretical
arguments, however, strongly suggest that such links between
model sensitivity and the decay of correlation properties are not
limited to this particular model and could hold much more generally.

climate dynamics | Markov operators | parametric dependence |
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Sensitive behavior of long-term general circulation model
(GCM) statistics is attracting increased attention (1–3), but

its origin and fundamental mechanisms remain unclear. These
sensitive-behavior issues are of practical, as well as theoretical,
importance in climate dynamics and elsewhere (4). For some
GCMs, involving millions of variables, circumstances have been
found where certain climate observables vary smoothly through
a plausible parameter range (5) or where linear response theory
applies over some range (6). On the other hand, this may not
hold for every observable or parameter, and concerns arise re-
garding the role of some type of “structural instability” in sen-
sitive parameter dependence (1, 2, 4).
The low-order Lorenz (L63) model (7) illustrates some of

the relevant issues. Various statistics exhibit linear dependence
over a broad range of parameters for which the dynamics is
chaotic (e.g., figure 2 of ref. 8). The statistics’ linear dependence
coexists here with structural instability of this model’s global
attractor, as small variations in the parameters cause a plethora
of topological changes (9). In particular, the unstable periodic
orbits that appear or disappear as a parameter changes may only
have a negligible effect on the model’s physical invariant measure
(see below), if their period is longer than the decorrelation time
of the dynamics.
In general, the role played by a system’s mixing and harmonic

properties on the nature of its response has been only partially
addressed. Only very specific results exist, in the deterministic
setting, to support the idea that linear response of the long-term

statistics (and of local variations of physical measures) may still
hold in the absence of (topological) structural stability (10). For
stochastic systems, more general results have been obtained
(11), but it is still a challenge to relate the size of the parameter
interval over which linear response may hold to the system’s
mixing properties. Conditions for smooth but nonlinear response
(e.g., quadratic) or else for rough parameter dependence—with
many highly local variations in response over a given parameter
interval—to occur are also poorly known.
To help us understand the circumstances in which one may

expect one type of behavior rather than the other, we cast here
this problem in a theoretical framework based on the modern
spectral theory of dynamical systems (10, 12–19). The approach
is illustrated on an El Niño–Southern Oscillation (ENSO) model
of intermediate complexity. The model is governed by a system
of coupled partial differential equations (PDEs), and it exhibits
different degrees of roughness in its parameter dependence in
different regimes. The relationship of statistics such as the
power spectrum to dynamical features known as Ruelle-Pol-
licott (RP) resonances (20–22) is outlined below and suggests
the usefulness of estimating these resonances—despite the
challenge of doing so in high-dimensional systems. To do so, we
introduce here a unique approach that estimates these reso-
nances as filtered through an observable chosen from the
simulated scalar time series. This approach allows us to shed
light on subtle relationships between the nonlinear mixing rate in
the system’s phase flow and the nature of the parameter de-
pendence of its long-term statistics.

Intermediate ENSO Model and Its Key Properties
The intermediate-complexity ENSO model examined in this
study is the Jin-Neelin (JN) model (23) forced by the seasonal
cycle. The way we include the latter differs from the one used
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in ref. 24, but the main dynamical features are preserved (SI
Text). The dynamics and thermodynamics of the resulting forced
JN (fJN) model are based on those of the coupled ocean-
atmosphere model of Cane and Zebiak (CZ) (25).
The fJN model’s main ingredients are the following. Its oceanic

component is made up of two parts. The vertical-mean motions
above the thermocline are governed by linearized shallow-
water equations—forced by the wind stress—on an equatorial
β-plane. The resulting currents drive an advection equation
that describes the sea-surface temperature (SST) field at the
Earth’s equator. The atmospheric component is a Gill-type
model for the wind-stress anomaly field, which establishes a
diagnostic relation (i.e., one with no time derivative present)
between the latter and the SST anomalies. The magnitude of
the wind stress anomalies controls the coupling between the
oceanic and atmospheric components (SI Text).
We consider here, following ref. 23, a standard truncated ver-

sion of this model, summarized in SI Text. The resulting numerical
version has slightly more than 400 degrees of freedom: a modest
number compared with a GCM but still a challenge for the
study of statistical properties within the framework of transfer
operator theory as presented elsewhere (12, 15, 17, 18, 26, 27).
The nonlinear interaction of the seasonal cycle in the fJN

model with internal variability leads to a rich variety of dynam-
ical behavior, from frequency-locked regimes to chaotic ones
via a quasi-periodic route (24); the latter recalls the overlapping
of Arnol’d tongues occurring in the CZ model (28). The internal
variability arises through Hopf bifurcation when the basic state
is steady (23), whereas in the fJN model, it arises via desta-
bilization of a basic cycle of a 1-y period.
For a fixed coupling between the oceanic and atmospheric

components, we analyze the response of various statistics to
changes of a key model parameter δ. This parameter affects
the travel time of the equatorially trapped waves (23, 24) that
play an essential role in ENSO dynamics; it can yield significant
changes in the Floquet spectrum of the linearized model (23).
Here we examine regimes at strong nonlinearity over a modest
range of δ (roughly 7% change) that nonetheless exhibit strong
changes in various statistics of the simulated temperatures TδðtÞ

averaged over a Central Pacific region along the equator referred
to as Niño-3.

Parameter Dependence in the fJN Model
We begin by reporting two distinct types of parameter depen-
dence (Figs. 1 and 2) with respect to small changes of the same
primary parameter δ. For two different regimes, long model runs
are produced to obtain these results over a fine δ grid: for each
δ= 0:905+ ð j− 1ÞΔδ with Δδ= 3× 10−4 and j∈ f1; . . . ; 201g, an
8,800-y-long run is generated and sampled every 2 wk. The
distinction between the two types of regimes is monitored by δs;
this parameter varies from zero to unity, and it controls the
intensity of the anomalous surface-layer currents as a function
of the wind stress anomalies (SI Text). When δs is close to unity,
i.e., in the case of strong surface-layer feedback, stronger vertical
and advection anomalies add to the rate of SST change (24).
Fig. 2 illustrates the δ dependence of the power spectrum of

the Niño-3 SSTs. In the lower panel, for δs = 0:1, a clear broad
peak corresponds to a quasi-quadriennial (QQ) oscillation around
0.25 cycles/y (29) that occurs for most δ values. The upper
panel, for δs = 0:95, does not exhibit such a pronounced, broad
interannual peak over the δ interval of study. For reasons that
will become obvious later, we call the regime that corresponds to
δs = 0:95 rapidly mixing and the one that corresponds to δs = 0:1
slowly mixing. For the moment, we can roughly say that these
attributes are chosen in agreement with the decay rate of the
autocorrelation function (ACF) of TδðtÞ, which is typically faster
for δs = 0:95 than for δs = 0:1.
In both regimes and for 0:905≤ δ≤ 0:965, Figs. 1 and 2 illus-

trate the presence of δ intervals where chaos occurs, interleaved
with intervals of periodicity, in agreement with the Arnol’d-
tongue scenario noted above (24). Fig. 1 B and D demonstrates
that in the slowly mixing case and on chaotic subintervals, sudden
changes are manifested in the statistical moments of TδðtÞ; these
changes may be relatively large within chaotic regimes (cyan dots
in Fig. 1). At the same time, Fig. 1 A and C shows that nearly
linear or, at least, smooth δ dependence takes place in the
presence of chaos for the rapidly mixing case, except from jumps
at transitions to periodic regimes. An exception occurs in a small
range near the relative δ change value of 1 in the SD (Fig. 1A);
this will be clarified in the penultimate section.
A more detailed inspection of the δ dependence of the statistics

shown in Fig. 1 reveals interesting similarities with the δ de-
pendence of the power spectrum plotted in Fig. 2. In the rapidly
mixing case, the δ dependence of the power spectrum shown in
Fig. 2A is rather smooth for the chaotic regions, as observed in
Fig. 1 A and C, where the (narrow band) peaks are slightly
modulated in magnitude across the δ interval of study. In the
slowly mixing case—where the broad-band QQ peak is strongly
modulated in magnitude and characterized by a rough δ de-
pendence—striking correspondences are found between the
changes of the SD shown in Fig. 1B and those of the QQ peak
magnitude shown in Fig. 2B. This correspondence is natural given
that the QQ peak captures much of the variance in this case.
Given this illustration of rough and not-so-rough parameter

dependence within chaotic regimes, one is led to ask whether
dynamical systems theory may help us clarify the relationship to
broad-band energetic peaks and the rate of decay of correlations
associated with these. Obviously this question is not limited to
the fJN model and concerns chaotic dynamical systems in gen-
eral. We recall first the relevant elements of the theory of RP
resonances before presenting the main new ingredients, i.e., the
Markov representations that will be used to provide concrete
steps toward answering this question.

RP Resonances and Decay of Correlations
In this section, we give a brief introduction to the spectral theory
of dissipative dynamical systems (DDSs) (10, 12–19) while fo-
cusing on chaotic behavior. The next sections will show that this
theory—when combined with appropriate Markov representa-
tions—provides a powerful set of concepts and tools that help us

A B

C D

Fig. 1. Relative changes in percentage for the SD and skewness of Niño-3
SSTs with respect to variations in δ; the reference value is taken as
δ0 = 0:905. A and C correspond to the rapidly mixing regime, δs = 0:95; B
and D correspond to the slowly mixing regime, δs = 0:1. In each of these
panels, the chaotic (periodic or quasi-periodic, respectively) behavior is
represented by red (or black) dots. In D, two consecutive cyan dots represent
local changes in the skewness from about 9.5% to 13.5%, for corresponding
variations in δ of less than 0.06%.
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understand and quantify the occurrence of rough parameter de-
pendence in complex systems, as illustrated in the previous section.
To simplify the presentation, let X =Rd be a Euclidean vector

space of dimension d, subject to a one-parameter group of smooth
transformations fStgt∈R, associated with the flow of a smooth but
nonlinear system of ordinary differential equations, given by _x=
FðxÞ. The main objective of the spectral theory of chaotic DDSs is
to study the evolution of probability laws induced by St instead of
studying individual trajectories that exhibit chaotic behavior.
This objective is achieved by examining the family of Perron–

Frobenius operators. Such a family fLtg, also known as transfer
operators (12, 15, 17, 18, 26, 27), acts on probability measures ν
and it is given by

LtνðEÞd ν
�
S−1t ðEÞ

�
; [1]

for any measurable set E⊂X . It gives the measure with respect
to ν of the ensemble of points in X that occupy E at time t. Note
that sometimes Ltν is denoted by ðStÞ*ν, i.e., the pushforward of
the measure ν by St.
Under mild assumptions on F and ν, it can be shown that Ltν

is in fact a weak solution η emanating from ν at t = 0, in the
Schwartz sense of distributions, of the transport equation

∂tη+ divðηFÞ = 0; [2]

on ½0;∞Þ×X , where the operator div is the divergence operator on
X. In parallel, the study of the evolution of densities associated with
ν with due attention to the proper functional spaces in which these
densities live (10, 12–19), is of prime importance for the theory.
It can be proven for hyperbolic dynamical systems and it is

observed experimentally for many others (15, 30, 31) that a
common feature of DDSs is the transformation of the initial
Lebesgue measure m0 into a measure Ltm0 that has still a finite
density with respect to m0 but that exhibits finer and finer
structure, as time t evolves. Asymptotically, an invariant mea-
sure μ of Sinai-Ruelle-Bowen (SRB) type is generally reached
(15, 30) as t→ +∞. This measure is physical in the sense that
h f iμd

R
X fdμ = lim

L→∞
1
L

R L
0 f ðStxÞdt for m0, almost all x ∈ X , and

any sufficiently smooth observable f : X →R. This property is
often referred to as the chaotic hypothesis that, roughly
speaking, expresses an extension of the ergodic hypothesis to non-
Hamiltonian systems (31).
Such a measure μ is typically singular with respect to m0 while

exhibiting smooth density in the expanding directions, or un-
stable manifolds, whose Haussdorf dimension is strictly less than
d. In other words, the initial measure m0 flows into microscopic
scales of vanishing volume, whereas on the macroscopic scale, μ,
supported by the unstable manifolds, is the only information
from m0 that remains visible after the dynamics acted over an
infinite amount of time.
For Anosov flows (14), one considers functional spaces B that

capture such stretching and contracting effects of the dynamics
and can then prove that the SRB measure μ may be equivalently
characterized as the stationary solution of Eq. 2. In ref. 14, it is
then shown that the related statistical properties of the flow are
accurately described by the spectral properties of the transfer
operators acting on B. Moreover, fLtgt≥0 is a strongly continuous
semigroup in B, uniformly bounded in t, and its generator is
given by A · = − divð·FÞ, where F is the vector field generating
the Anosov flow. As a consequence, the spectrum of A is con-
tained in the left-half complex plane, fz∈C :ReðzÞ≤ 0g, and its
resolvent RðzÞ= ðzId−AÞ−1—which determines the spectral prop-
erties of A—is a well-defined bounded operator on B that
admits, for all f ∈B and z∈C with ReðzÞ> 0, the following in-
tegral representation:

RðzÞf =
Z∞
0

e−ztLt f   dt: [3]

It can then be proven that the spectrum of the generator A on
B consists only of isolated eigenvalues of finite multiplicity
within a strip −γ <ReðzÞ≤ 0, for some γ > 0 that depends on the
stretching and contracting rate of the dynamics (14); the rest of
the spectrum is continuous and located in fz∈C :ReðzÞ≤ − γg.
In addition, the eigenspace associated with the null eigenvalue is
spanned by the set of SRB measures; this set is reduced to only
one such measure provided the zero is simple. We assume hence-
forth that the latter is the case, and μ will always refer to this
unique SRB measure.
The extension of such rigorous results to other classes of

chaotic DDSs is still a major challenge. However, a widespread
conjecture is that the global picture is relevant to most chaotic
DDSs. In other words, the spectrum σðAÞ of A· = − divð·FÞ on
some appropriate functional spaces B for such a system consists
always of the disjoint union of a continuous part and a discrete
part. These two are called, respectively, the essential spectrum
σessðAÞ, and the point spectrum σpðAÞ (13). When the existence
of a (unique) SRB measure μ is assumed, classical function
spaces, such as L1

μðXÞ or L2
μðXÞ, are suitable (17, 18).

In the interesting cases, i.e., when the point spectrum is not
trivially reduced to f0g, it is typically located in a vertical strip of
the complex plane whose points are known as the RP resonances
(20–22). These resonances give precise information on correla-
tion decay and on the power spectrum. We describe this in-
formation via formal mathematical arguments, referring to the
specialized literature for their rigorous treatment.
Note first that, by making the change of variables y= StðxÞZ

Lt f · g  dμ=
Z
f · g ∘ St   dμ; [4]

where f · g denotes the product map xXf ðxÞgðxÞ. This equation
results from the general change-of-variables formula

R
gdððStÞpνÞ=R

g ∘ Stdν, with dν= fdμ (32). Here the actionLtf ofLt on the density
f with respect to μ is defined by LtfddððStÞ*νÞ=dμ, the Radon-
Nykodim derivative of Ltν with respect to μ (17, 18) (see also SI Text).

Fig. 2. δ-Parameter dependence of the power spectrum of the Niño-3 SSTs
for the rapidly mixing regime (Upper; δs = 0:95) and the slowly mixing one
(Lower; δs = 0:1). For presentation purposes, the interval 0:957≤ δ≤ 0:965,
where the dynamics is periodic, is removed from the lower panel, whereas
it is included for the rapidly mixing regime, where it corresponds to cha-
otic dynamics.
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If we assume, without loss of generality, that f and g have a
vanishing μ-ensemble mean, i.e., h f iμ = hgiμ = 0, then the right side
of Eq. 4 denotes the correlation function ρf ; gðtÞ=

R
f · g ∘ St   dμ.

From the physical property of the SRB measure μ, this function
equals for almost all x∈X , the more familiar cross-correlation
coefficient at lag t, given by Cf ; gðtÞ= lim

L→∞
1
L

R L
0 f ðSsðxÞÞgðSt+sðxÞÞds.

Using Eq. 3, one can rewrite the Fourier transform of ρf ; gðtÞ,
given by ρ̂f ; gðωÞd

R∞
0 ρf ; gðtÞe−iωtdt, as

ρ̂f ; gðωÞ=
Z∞
0

e−iωt
�Z

Ltf · gdμ
�
dt =

Z �Z∞
0

e−iωtLtfdt

�
gdμ

=
Z
gRðiωÞfdμ:

[5]

The meromorphic extension into the complex plane of ρ̂f ; gðωÞ,
via Eq. 5, tells us that the poles of the resolvent RðiωÞ—which
correspond to the RP resonances—introduce singularities into
the complex Fourier transform, where ω∈C is a complex fre-
quency. These poles will manifest themselves in the power spec-
trum as peaks that stand out over a continuous background at
frequency ξ, if the corresponding RP resonances with imaginary
part ξ are close enough to the imaginary axis. The continuous
background has its origin in the continuous part of σðAÞ.
Note that the position of the poles depends only on the system

considered, whereas their residues depend on the observable
monitored (21). As a result, some peaks in the power spectrum
may disappear from observable to observable, depending on
how large or small their residues may be. Ruelle (21, 22) and
Pollicott (20) introduced this description of RP resonances as
poles in the meromorphic extension of ρ̂f ; gðωÞ that are responsible
for bumps in the power spectrum; they also connected these
resonances to the decay rate of correlations.
The latter connections, between RP resonances and correla-

tion decay, are subtler and closely related to the model flow’s
relaxation toward the SRB measure μ as t→ +∞. If 0 is the only
eigenvalue of A on the imaginary axis, the system is mixing, and
the existence of a gap between 0 and the rest of the spectrum
σðAÞ governs the rate of convergence of Ltm toward μ. The size τ
of this gap is given by τ=minfjReðλÞj; λ∈ σðAÞ=f0gg> 0.
More precisely, in such a case, one can prove that, for any

probability measure ν that has density ψ with respect to the
Lebesgue measure and for all suitably chosen test functions φZ

φ  dðLtνÞ=
Z

φ  dμ+Oðe−τtÞ: [6]

The main step in establishing Eq. 6 is to prove the existence of
the spectral gap τ > 0; remaining steps rely on the inversion of
Eq. 3 and the properties of the resolvent RðzÞ 20. Furthermore,
because

R
φ  dðLtνÞ=

R
ψ ·φ ∘ St   dm0 and hψim0

= 1, one obtains
from Eq. 6 that

��R ψ ·φ ∘ St   dm0 − hψim0
hφiμ

��→ 0 at the exponen-
tial rate τ. Thus, the spectral gap τ controls the decay of correla-
tions, when the system is initiated out of the SRB equilibrium μ.
These arguments can be made rigorous in the context of

Anosov flows (19), but, in general, the decay of correlations
can be subexponential. This situation arises when the RP reso-
nances are arbitrarily close to the imaginary axis. If τ > 0, and the
discrete spectrum is nontrivial, RP resonances lead to modu-
lations in the decay of correlations, which correspond to peaks
in the power spectrum.
Thus, RP resonances provide powerful theoretical tools to

describe the variability in time of the system’s flow, in terms of
spectral properties of the operator A· = − divð·FÞ, where F is
the nonlinear vector field that generates the flow. Key features of
this variability include peaks in the power spectrum and the
decay rate of correlations.

The original treatment of RP resonances (20, 22) was based,
in fact, on a different approach, which used Markov partitions
of the dynamics (15). The spectrum σðLtÞ of Lt—which lives
within the unit disk—was analyzed, rather than that of A, in
the left-half plane. However, similar results relating the RP
resonances to the decay of correlations and to the power spec-
trum were established. We preferred to follow here the frame-
work of ref. 14 because of its connections with the fundamental
Eq. 2, whose analysis may benefit from PDE techniques (33) and
the spectral theory of semigroups and their generators.
The latter theory offers conceptual advantages for describing

the relations between the RP resonances and the decay of cor-
relations on one hand and the power spectrum on the other.
Nevertheless, for practical purposes, the approximation by a
discrete time Markov process from a sequence of observations
of the dynamics may be used to provide estimates of the (fil-
tered) RP resonances when for instance the direct computation
of σðAÞ is out of reach for large systems such as considered in
this article. Such an approach is described below.

Estimating RP Resonances from Observables
In a low-dimensional phase space, Markov partitions provide
natural tools to study the spectral properties of A or Lt, the latter
being approximated by a stochastic matrix P in the case of maps
(26, 27). In essence, Ulam-type methods approximate the dy-
namics in phase space by a Markov chain whose transition
probabilities are estimated from many simultaneous iterations of
the map of interest over a large ensemble of initial data (26, 27).
This approach can be rigorously justified for a large class of
expanding or Anosov maps (27), and it can be used in the nu-
merical estimation of RP resonances for low-dimensional models
(34), although some drawbacks may arise in applications (35).
In a large-dimensional phase space, such as the one where the

fJN model’s dynamics takes place, with d ’ 400, the Ulam ap-
proach becomes computationally intractable. A cheaper and
less ambitious approach consists of taking a single observable
h and, instead of trying to approximate the full transfer operator
Lt, seek a decomposition of the autocorrelation function asso-
ciated with h from a long simulation into a sum of complex
exponentials. In principle, this gives the positions of the RP
resonances corresponding to nonvanishing residues associated
with h. Padé approximation or Prony’s method are typically used
(36). The main drawback of these techniques lies in the number
of exponentials to be fitted to the signal, which may lead to an
inaccurate estimation of RP resonance (35).
We propose here an intermediate approach based on suffi-

ciently long model runs that exploit Ulam’s ideas but apply them
to a Markov operator T (17) that acts on a space of functions
that depends only on the observed variables. As we will show,
this operator T is rigorously associated with the full transfer
operator L of the dynamics, given an observable h and the
physical measure μ of the underlying map. The operator T can
then be approximated by a stochastic matrix P, which is esti-
mated by computing a classical maximum likelihood estimator
(MLE) (37), P̂, from the sequence of observations fxngdfhðxnÞ :
n= 1; . . . ;Ng.
When this sequence is long enough, the eigenvalues of P̂

provide crucial information about, and actual estimates of, the
dominant RP resonances, as filtered by h, i.e., the resonances
that correspond to nonvanishing residues and yield the largest
contributions to the power spectrum of h (SI Text). Clearly, the
more delicate point is the existence of such an operator T, which
we show hereafter for a broad class of chaotic systems. Details of
a more practical nature about the approximation of T then
follow and are applied to the fJN model. Finally, note that our
approach is complementary to the one in ref. 38 for Hamiltonian
systems; the latter focuses on the related but distinct question of
identifying metastable features of the dynamics.

Markov Operators from Observables of Chaotic Systems. In this section,
we consider discrete dynamical systems given by xn+1 = Fðxn; unÞ,
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where xn ∈X =Rd, and un is assumed to be a periodic forcing of
period m. We assume furthermore that Sn; p—the solution op-
erator that evolves the system from its state at time p to its state
at time n—is well defined for any p ≤ n and that the semigroup
property Sn; q = Sn; p ∘ Sp;q holds for all q ≤ p ≤ n.
Chaotic behavior is synonymous here to the existence of a

unique time-dependent, necessarily m-periodic SRB measure μn,
which attracts the Lebesgue measure in a pullback sense, i.e.,
ðSn; pÞpρ→ μn as p→ −∞, where ρ is the Lebegue measure (39).
The latter property is assumed to hold in the absence of chaos
as well, e.g., for a global limit cycle or for a quasi-periodic
behavior. Note that in the presence of a positive Lyapunov
exponent, due to a theorem of Ledrappier and Young, one
can ensure the existence of such SRB measures by perturbing
the governing evolution equations with an appropriate noise
of very small intensity (39).
For simplicity, we denote now by S the map Sm;0 whose iter-

ations give the states of the system at any integer multiple of the
period m of the forcing. This map is a called the time-m map. By
using an analog of Eq. 1 for discrete time, a transfer operator L
can be associated to S. By m-periodicity and from our assump-
tions on Sn; p, the dynamical system generated now by S possesses
μd μm as an SRB measure. We consider the system in this sta-
tistical equilibrium and define L acting on densities f with respect
to μ by Lf d dLν=dμ for any f ∈L1

μðXÞ such that dν= fdμ.
Let A be the (compact) support of μ and define the transition

probability pðC;DÞ for the map S of reaching the Borel set D of
A from the Borel set C of A by

pðC;DÞd
μ
�
C
T  S−1D

�
μðCÞ =

hLχC; χDi1;∞
μðCÞ ; [7]

where χA is the characteristic function of set A, and the
latter equality results from Eq. 4, where h f ; gi1;∞d

R
f · gdμ

for f ∈L1
μðXÞ and g∈L∞

μ ðXÞ. We now state the main result
on which we will rely to explain the puzzling parameter de-
pendence of the fJN model pointed out in Fig. 1 (SI Text).

Theorem A. Let h : X →Rp be a continuous observable of the dy-
namical system generated by S, with p < d. Assume that S possesses
a unique physical measure μ with support A. Let V be the set hðAÞ
and mdhpμ be the pushforward of μ by h. Then there exists a
Markov operator T acting on L1

mðVÞ such that TχV = χV and such
that, for any Borel sets E and F of V

hTχE; χFi1;∞ =mðEÞp
�
h−1ðEÞ; h−1ðFÞ

�
: [8]

The proof of this result is a consequence of the general dis-
integration theorem of measures, from which T can be con-
structed explicitly (SI Text). From Eq. 7, we see that L determines
the transition probabilities for any pair (C, D) of Borel sets, and
conversely, Eq. 8 shows that, when restricting the transition
probabilities pðC;DÞ to pairs of the form ðh−1ðEÞ; h−1ðFÞÞ, the
Markov operator T determines these exactly.
In general, the latter pairs run across a coarser family of

subsets than the former, being a sub-σ-algebra of the Borel
sets. We may thus say that T characterizes a coarse-graining—
induced by the observable h—of the actual dynamics, along
with its transitions. At the same time, the operator T given by
theorem A offers a natural way to represent rigorously the
sequence of observations fhðxnÞ : n= 1; . . . ;Ng as a finite-size
sample of the discrete-time Markov process associated with T
(SI Text, corollary B). In brief, theorem A provides a rigorous
basis for the assertion that the simple fact of observing a deter-
ministic system allows us to represent the unobserved variables
as noise (SI Text). The theory of Markov process can thus shed
considerable light on the spectral properties of L filtered by h, as
we illustrate in the next sections.

Stochastic Matrices from Observations and RP Resonances. We as-
sume hereafter that an SRB measure μ exists for the time m map
S associated with the truncated version of the fJN model in X =
Rd with d= 408. The goal here is to analyze the spectrum σðTÞ of
T in L2

mðVÞ and, more specifically, its dominant contributions.
To approximate the dominant part of σðTÞ, we use a Galerkin
procedure on a uniform grid of the one-dimensional set V =
hðAÞd

SM
k=1 Jk.

The eigenvalue problem Tψ = λψ is projected onto the problem
TMv= λv in the subspace spanned by fχ1; . . . ; χMg. The entries of
the M ×M matrix TM are given by Tkl;M = hTχk; χliðmðJkÞÞ−1 =
pðh−1ðJkÞ; h−1ðJlÞÞ, where the second equality relies on theorem A.
Thus, TM contains information about the actual transfer oper-
ator L associated with S, as induced by h, and the supplementary
coarse-graining induced by the partitioning of V.
Note that, because T is a Markov operator, its Galerkin ap-

proximation TM is a row stochastic matrix whose eigenvalues λ
satisfy jλj≤ 1. In the Hamiltonian case of ref. 38, T is self-adjoint
and therefore—as M increases, i.e., the discretization becomes
finer—one obtains immediately that the eigenvalues of TM ap-
proximate those of T. For dissipative dynamics, however, T is
typically not self-adjoint, and only the dominant eigenvalues of T
can be robustly approximated (13, 16). Fortunately, it is the latter
we are interested in here, and one can argue that the robustness
of the dominant part of the spectrum does apply to the Markov
operator T associated with the fJN model (and h) (SI Text).
For a givenM, a classical MLE, P̂N , can be used to approximate

TM from a given sequence of observations fhðxnÞ: n= 1; . . . ;Ng,
with hðxnÞ=TδðnΔtÞ being the Niño-3 SSTs. The entries of P̂N

are then simply given by the relative frequencies P̂kl = ♯fðhðxnÞ∈
JkÞ∧ðhðxn+1Þ∈ JlÞgð♯fhðxnÞ∈ JkgÞ−1, which converge to Tkl;M as
N→∞ with an error of order OðN−1=2Þ (37).
The dynamical interpretation of the Markov operator T given

by Eq. 8 and the numerical procedure described above provide
a general framework for the estimation from a time series of the
spectral gap in the RP resonances, as filtered by a particular
observable h. This spectral RP gap can be estimated from the
approximations of the dominant eigenvalues of TM , whenever
the resolution M of the range of the observations xn and the
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Fig. 3. Size τ of the spectral RP gap associated with the observable h, the
Niño-3 index from the fJN model, across the parameter range of interest:
(Upper) slowly mixing regime and (Lower) rapidly mixing regime. The fil-
tered RP resonances λ appear in the Insets: the eight leading λs are in red,
except the eigenvalue 1, which is in green. The latter corresponds here to
the invariant measure m associated with the time 6-mo map. In the slowly
mixing regime, the eight leading λs fall close to the eighth roots of unity
(26); they are associated with a near cycle of period 4 for the time 1 map,
corresponding to the QQ mode found in the fJN model for this regime
(Fig. 2).

Chekroun et al. PNAS Early Edition | 5 of 7

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321816111/-/DCSupplemental/pnas.201321816SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321816111/-/DCSupplemental/pnas.201321816SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321816111/-/DCSupplemental/pnas.201321816SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321816111/-/DCSupplemental/pnas.201321816SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321816111/-/DCSupplemental/pnas.201321816SI.pdf?targetid=nameddest=STXT


number N of observations are large enough; the statistical errors
in these approximations can be estimated by bootstrapping
arguments (SI Text). We describe next how the spectral RP
gap turns out to be an important factor in the sensitivity of the
empirical probability measure that approximates m= hpμ.

Spectral RP Gap and Sensitivity of Statistical Equilibria
An important result in the stability theory of Markov chains was
the discovery of sensitivity bounds relating the stability of a chain
and its speed of convergence to equilibrium. Going back to the
Markov representation T of the dynamics of the fJN model given
by theorem A, we take advantage of the sensitivity bounds for
Markov chains to deduce sensitivity properties of the one-di-
mensional measure m= hpμ that the observable h extracts from
the multidimensional SRB measure μ. Out of the many sensi-
tivity bounds in the literature, it is the ones in ref. 40 that are
most relevant here.
Recall first that the dual Tp of T defines a transition kernel

(41), κðx;BÞ=TpχBðxÞ, which in turn defines a Markov operator
T on measures ν on V given by T νðBÞ=

R
κðx;BÞdνðxÞ, for any

set B in the σ-algebra BðVÞ of the observed range of interest V.
The operators T and T are also linked by Tf = ðdT mf Þ=dm,
with dmf = fdm for f ∈L1

mðVÞ (SI Text). Uniform ergodicity will
be the key concept here; it means that the iterates T n of the
Dirac measures δx converge—uniformly in x—to m in total
variation (TV), i.e., there exists ρ< 1 and C<∞ such that, for
all x∈V and all n∈Z+, jjT nδx−mjjtv ≤Cρn.
We now consider perturbations P of the Markov operator T

assumed to obey uniform ergodicity. The main result of ref. 40
stipulates that, if uniform ergodicity holds, then the invariant
measure ~m, associated with the Markov operator ~T dT +P,
satisfies the sensitivity bound

���� ~m−m
����
tv ≤

 
θCðρÞ+C

ρθCðρÞ

1− ρ

!
jjPjjdγðρ;CÞjjPjj; [9]

where k ·k is the operator norm associated with the total variation
norm k ·ktv on measuresm in V (40). In Eq. 9, θCðρÞ is the smallest
integer greater than or equal to −logðCÞ=logðρÞ, and C≥ 1 (40).
The smallest ρ for which geometric ergodicity holds is called the

rate of mixing ρm of the Markov chain. For any fixed C≥ 1, γðρ;CÞ
grows superlinearly to infinity as ρ→ 1, allowing in principle
a large difference between m and ~m, even for perturbations P
that are relatively small, as measured by jjPjj: The dependence on
C is much weaker, with γðρ;CÞ increasing with C, but at a sub-
linear rate. The size of γðρ;CÞ is thus strongly controlled by ρm.
These results from ref. 40, together with theorem A, allow us

to state—for the map S with SRB measure μ, as considered in
the previous section—that if the associated Markov operator T
is uniformly ergodic, then the slower the mixing rate of T , i.e.,
the closer ρm is to 1, the larger we may expect the sensitivity of
m= hpμ to be to perturbations of the system. From the dynamic
interpretation of RP resonances, we conclude that regimes cor-
responding to slow decay with pronounced modulations—when
observed through a given observable h—favor rough param-
eter dependence for the statistics built on h. These theoretical
predictions are confirmed for the fJN model by the numerical
calculations that follow.

Spectral RP Gap for the fJN Model and Sensitivity
Recall that when the state space is finite and 1 is the unique,
simple eigenvalue of a stochastic matrix P on the unit circle, then
the mixing rate appearing in Eq. 9 is equal to λ2, the sub-
dominant eigenvalue of P (42). When μ is mixing, it can be shown
that TM is irreducible and aperiodic, which in turn makes TM
uniformly ergodic (27) such that Eq. 9 can be applied to TM . We
adopt the strategy described above to estimate the gap τ= 1− jλ2j
between the unit circle and the subdominant eigenvalue λ2 of TM
and to provide a confidence interval associated with this estimate
for each value of δ.
Fig. 3 illustrates the use of the spectral gap to quantify the weak

and strong mixing regimes discussed earlier. When the gaps ob-
served in the chaotic regimes are compared between the case
δs = 0:95 (Lower) and δs = 0:1 (Upper), we find— for each δ of
interest—that the gap is typically smaller in the latter case than in
the former. As a result, a higher sensitivity of the statistics is
expected to occur in the case δs = 0:1 according to theorem A and
Eq. 9. Recalling the results of Fig. 1, we see that the numerical
results in Fig. 3 along with their theoretical interpretations are in
very good agreement with the experiments where the highest
roughness in the δ dependence was observed for the case δs = 0:1.
Even the small regime of sudden changes in SD noted near relative
δ-values of about 1 in Fig. 1A is consistent with the local decrease
in the gap observed in Fig. 3 (Bottom panel), allowing higher
sensitivity to occur locally in δ. Confidence intervals for these
results are provided in the SI Text, supporting their robustness.
From the combination of the theory and numerical results, we

infer that the occurrence of rough parameter dependence in the
slow mixing case, where the QQ mode is the most energetic, is
not a coincidence. This case corresponds to RP resonances that
are closer to the imaginary axis than in the rapid mixing case.
According to the sensitivity bound of Eq. 9 applied to the
Markov representation of the dynamics provided by theorem A,
this offers a favorable ground for sensitive behavior to occur.

Concluding Remarks
This study is a first step in understanding the relationship between
the time variability of a dissipative chaotic system and the pa-
rameter dependence of its long-term statistics. The relationship
between these two aspects via the theory of RP resonances—
and the data-based Markov representation developed in this
article—opens up a wide range of possible investigations.
In this respect, other interesting Markov representations that

have been used in climate dynamics (43–49) might benefit from
the framework of RP resonances, given their natural connection
with the underlying nonlinear dynamics. In particular, applying
RP resonances to the interpretation of metastability and flow
regimes in connection to the LFV observed in geophysical flows
(1, 44, 45, 50) and their possible role in parameter sensitivity, as
well as in linear response theory in the presence of noise (11),
are fascinating areas for further exploration.
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SI Text
We provide in this SI Text complementary material about (i) the
Markov representation obtained in Theorem A and the corre-
sponding numerical results for the forced Jin-Neelin (fJN) model
and (ii) the physical formulation of the latter model.

Markovian Dynamics from Observables. It is easier to understand
the implications of theorem A from a model reduction perspec-
tive. This perspective is formulated as corollary B below. We also
note here relationships between this framework and various
stochastic reduction procedures used so far in climate dynamics.
In particular, we describe how any discrete sequence of

observations of a given dissipative, chaotic model in discrete
time can be rigorously represented as a particular realization
of a Markov process associated with the corresponding ob-
servable h. It is shown that the associated Markov operator T,
whose existence is ensured by theorem A, characterizes a coarse-
graining—induced by the observable h in the reduced phase
space V—of the actual dynamics, along with its transition
probabilities.
The reduced Markov models acting on the state space V as-

sociated with a given observable will be shown to describe the
dynamics of the observed variables. This description is given by
Markov processes with state-dependent noise that reflects the
statistics of the unobserved variables.
We consider in this section a dissipative† discrete dynamical

system with a bounded nonwandering set Λ, given by xn+1 =
SðxnÞ, where x0 ∈X =Rd, whereas S : X →X is a diffeomor-
phism. The chaotic character of the dynamics is understood in
the sense of the existence of a unique ergodic Sinai-Ruelle-
Bowen (SRB) measure‡ μ, whose support suppðμÞ—i.e., the
smallest closed set of full measure for μ—is contained in Λ as
an invariant measure (6, remark 1.4, p 197); suppðμÞ is thus
compact because Λ is compact, and it will be denoted by A
hereafter.
In the general—i.e., not necessarily chaotic—case and in

the applications of interest here, we assume that S possesses a
unique invariant measure μ that is physically relevant in the
sense of Eq. S7. By using an analog of Eq. 1 for the discrete-time
dynamical system generated by S, a transfer operator L—acting
on probability measures ν on X—can be associated with S for any
Borel set E⊂X

LνðEÞ≔ ν
�
S−1ðEÞ�; [S1]

where S−1ðEÞ≔ fx∈X : Sx∈Eg.
For any invariant measure μ, whether physical or not, the

transfer operator L defined in Eq. S1, which acts on measures,
can be associated with another transfer operator L, via the

Radon-Nikodym derivative§ of Lν with respect to μ{; this L
acts on densities f with respect to μ, according to

Lf ≔
dLν
dμ

; [S2]

for any f ∈L1
μðXÞ such that dν= fdμ (9). Note that the Radon-

Nikodym derivative in Eq. S2 is well defined if Lν is absolutely
continuous with respect to μ; the latter condition is satisfied be-
cause ν has a density with respect to μ, and S is nonsingular with
respect to μ. Indeed, μ is an invariant measure under S, and there-
fore we naturally have that μðS−1ðEÞÞ= 0 if and only if μðEÞ= 0.
We assume that an observable h : X →Y is given, with Y a

subspace of X of dimension typically much smaller than that of
X. Having thus clarified the definitions and properties of the
objects involved in the statement of theorem A, one can now
state the following corollary:

Corollary B. Let yn ≔ hðxnÞ. For any y in V = hðAÞ, let Θy be the
subset ofA given by h−1ðfygÞ∩A, i.e., the set of z inA so that hðzÞ= y.
Then under the assumption of theorem A, the dynamics of the re-
duced (observed) variables, yn possesses the following representation.
There exists a family fMz : z∈Ag of self-mappings of Y, and a
family fνy : y∈Vg of probabilitymeasures such that suppðνyÞ⊂Θy and

yn+1 =MznðynÞ; [S3]

where fzng is a sequence of Θy-valued random elements defined on
a probability space ðΩ;F ;PÞ such that

Pðzn ∈ Bjyn = yÞ= νyðBÞ; [S4]

for any y∈V and any Borel set B∈F of Θy.
This corollary states that, although fxng is generated by iter-

ations of a deterministic map S, the sequence of observed varia-
bles fyng can be represented as a genuine realization of a Markov
chain, when S possesses a physical invariant measure in the sense
recalled in Eq. S7. The reduced dynamics given by Eq. S3 tells us
that when the chain is in the state y—i.e., when an observation
hðxÞ equals y—then the future of this state is determined by a map
Mz that depends on an unobserved variable or hidden state z;
according to Eq. S4, this hidden state is sampled from a distribu-
tion νy on Θy. In general, the νy s are different for different y. The
proof of this corollary is constructive and shows that the mapsMz,
as well as the probability measures νy, depend on both S and its
associated invariant physical measure μ (see also ref. 10).
Note that, when the evolution in time of the hidden variable z is

itself governed by a Markov chain and the observed states y are
drawn from a distribution such as Nðv;ΣÞ,k Eq. S3 could reduce

†In the sense that there exists a wandering set (1) of positive Lebesgue measure.
Such a system is, in particular, not volume preserving. Recall that a wandering set W
is defined as follows: W = fx∈X : ∃ U,  a  neighborhood  of  x,  ∃ N> 0, s:t: SnðUÞ∩U= 0=,
for n>Ng.

‡In this article, following refs. 2 and 3, a probability measure μ is of SRB type for S if it is
invariant under S, i.e., S*μ= μ; has a positive Lyapunov exponent, and the conditional
measures on the local unstable manifolds (1)—which are contained within the support of
μ, if μ is ergodic (4, theorem 3.2)—are absolutely continuous with respect to the Leb-
esgue measure on these manifolds (2, definition 6.14). In other words, for any con-
tinuous observable f, an SRB measure can be disintegrated as follows:

R
fðxÞdμðxÞ=R

WudμWðwÞRwfðyÞρw ðyÞdw ðyÞ, where Wu is the set of local unstable manifolds, dwy is
the Lebesgue measure on the local manifold w, ρw is a nonnegative density supported
by w, and μW is called the transverse measure. See ref. 5 for additional details.

§Roughly speaking, this derivative is analogous to a classical derivative in the calculus of
real variables, in the sense that it describes the rate of change of the density of one
measure with respect to another (7, 8). A Radon-Nikodym derivative arises implicitly in
the use of the Jacobian determinant in classical multivariable integration, which typically
appears after a change of variables.

{The operator L describes the action of the dynamics on densities instead of probability
measures. The Radon-Nikodym derivative with respect to μ allows one to relate these
two operators. The definition of L does not depend on the invariant measure μ. The
choice of μ determines, however, the action L, defined in Eq. S2, of the dynamics on
measures that possess a density with respect to μ. To get a meaningful action L on
densities depends therefore on how meaningful the invariant measure μ is; see Eq. S7.

kHere the mean vector v and the covariance matrix Σ of this Gaussian measure depend
typically on the observed state y (11).
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to the case of a hidden Markov model (HMM) (11). Several
possibilities for the probability laws of yn exist in an HMM
modeling perspective. The evolution of these probability laws
can, of course, be more general than the usual assumptions
used in HMM modeling.
Corollary B helps provide underpinnings for the data-inferred

conditional Markov chain approach (12–14) used in stochastic
parameterization. In this approach, the unresolved processes are
approximated by a Markov chain whose properties depend on
the state of the resolved model variables.
When the dynamics is chaotic in the sense recalled above, then

νy as defined in ref. 4 is expected to be absolutely continuous
with respect to the Lebesgue measure on the local unstable
manifolds that intercept Θy. As a consequence, νy is nonsingular
and the coarse-grained dynamics—i.e., the dynamics of the ob-
served variables yn—can be naturally interpreted as subject to a
state-dependent noise with distribution νy: Fig. S1 gives a schematic
view of the reduced dynamics governed by Eq. S3 in such a case.
Besides the works mentioned above, it is worth noting that the

mathematical formulation of reduced dynamics, as provided by
corollary B here, is consistent with other, stochastic reduction
procedures encountered in the climate dynamics literature or
related fields (15–43). Several of these works propose various
methods—data based or analytical—to construct in practice re-
duced models that include state-dependent noise (32, 37, 38)
and/or memory effects (18, 19, 25, 29, 33, 37, 38). Essentially,
most of these procedures may be viewed as approximating the
operator Mzn in Eq. S3 and νy in Eq. S4. These various ap-
proximations are discussed in further detail in ref. 10.
Remark 1. It is worth mentioning that similar Markov repre-
sentations of complex dynamics have appeared in various related
contexts, such as random billiards (44) or molecular dynamics (45,
46). In ref. 44, the mixing properties of the original system were
studied using such Markov representations, and metastability was
analyzed in refs. 45 and 46 following a similar approach. The idea
of using such representations in the sensitivity analysis of the
statistics associated with an arbitrary observable of a dissipative
(chaotic) system seems, however, to be new. Note also that, in
contradistinction from the cited works, theorem A does not rely
on assumptions regarding any randomness inherent to the dy-
namics (44), nor any kind of reversibility, such as that of Ham-
iltonian systems (45, 46). In particular, theorem A gives rise to
Markov operators T that are typically not self-adjoint for the
dissipative systems considered in this article.
Remark 2. The Markov operator T ensured by theorem A gives
the transition probabilities of the Markov process associated
with Eq. S3. This Markov operator possesses another interesting
interpretation. For a given function ψ ∈L1

mðVÞ , TψðyÞ provides
the expected value of the random variable ψðh∘S−1ðzÞÞ; when z is
drawn from h−1ðfygÞ according to the probability law νy (4). It
can be shown then — by a standard application of Jensen’s in-
equality in a probabilistic setting [8, lemma 2.5], and the fact that
μ is S-invariant—that T also defines a bounded operator on
L2
mðVÞ, with m being the push-forward** of μ by h. This

property is implicitly used in the Galerkin approximation of T
described below.

Filtered Ruelle-Pollicott Resonances. We explain below how the
Ruelle-Pollicott (RP) resonances arise naturally in the de-
composition of the autocorrelation function associated with
a given observable h. Recall first that the essential spectral radius
ρ⋆ of a bounded linear operator acting on a Banach space is the
smallest ρ> 0 so that the spectrum of the operator outside the

disk of radius ρ consists in a finite or countable set of isolated
eigenvalues of finite multiplicity (47).
Let now L be the transfer operator associated with L (Eq. S2).

Let us assume that, for some given Banach space B, the part σc of
spectrum of L outside a disk of radius θ∈ ðρ⋆; 1Þ is constituted by
a finite number of eigenvalues λi, each of finite algebraic mul-
tiplicity mi. In other words, σc is assumed to contain one or more
RP resonances and necessarily the dominant ones.
Then, relying on the spectral theory of operators in Banach

spaces [48, theorem III-6.17], it can be proved that the following
spectral decomposition of L holds:

Lnφ=
X
λi∈σc

�
ψ iL

n
i ψ

*
i φ

�
λni +RLnφ; n∈N; [S5]

where each Li is an mi-dimensional matrix in Jordan form, each
ψ i is a row vector taken from a basis of a generalized eigenspace
in B associated with the RP-resonances λi, and each ψp

i is a col-
umn vector, with the union of the latter forming a basis of the
corresponding generalized eigenspace for Lp. When σc consists
of all of the RP resonances, the operator R is the projector
associated with the essential part of the spectrum. If now there
exists C> 0 such that jjRLnjj≤Cθn, then Eq. S5 provides a de-
composition of Ln into a finite-rank operator GnðθÞ, given by the
sum over σc, and an exponentially decaying correction term RLn:
A decomposition with the aforementioned properties is known

to hold for a broad class of maps or flows on compact manifolds
(49–54). For a given observable h and a Hilbert space B=L2

μðXÞ,
to fix the ideas, it can be proved that, if Eq. S5 is satisfied with
the decay properties of RLn mentioned above, then the fol-
lowing decomposition of the autocorrelation function ρh asso-
ciated with h holds

ρhðnÞ=
X
λi∈σc

αnðhÞnmi−1λni +OðθnÞ: [S6]

Here the coefficients αnðhÞ, which depend on h, may actually
vanish for a certain observable h.
As a result, a peak in a system’s power spectrum may disappear

from observable to observable, depending on how large or small
its corresponding coefficient αn may be for that h. A striking
example of this dependence on h is apparent in both observa-
tions and simple models of glaciation cycles (55, 56): it involves
the difference between the power spectra of regional or local
temperatures—as derived from δO18 values in marine-sediment
records—and of global ice volume and atmospheric CO2 con-
centration—as derived from δO18 values and from trapped air
bubbles in ice cores. A clear instance of this difference can be
found by comparing the power spectra of regional air tempera-
ture (Fig. 2A) and CO2 concentration (Fig. 2C) in the upper
160 ky of the Vostok ice core (57) or by inspecting table 2
from ref. 58; the latter summarizes the spectral lines found to
be significant in six marine cores.
By construction, the Markov representation of the reduced

dynamics, as described by Eq. S3 in corollary B, captures exactly
the RP resonances associated with the nonvanishing coefficients
in Eq. S6. The resulting filtered RP resonances then correspond
to the eigenvalues of the operator T provided by theorem A.
When some coefficient αkðhÞ dominates the rest of the αnðhÞ s,

while the imaginary part ωk of λk is nonzero, it corresponds to a
near-cycle (54, 59) of period ω−1

k . Such a near-cycle occurs for the
fJN model in the slowly mixing regime when h is the Niño-3 index.
In that case, a near-cycle of period 4—corresponding to the quasi-
quadriennial El Niño–Southern Oscillation (ENSO) mode (60)—
can be observed from the estimation of the RP resonances (Fig. 3).
This RP interpretation for the appearance of a spectral peak, as

opposed to a sharp line, may differ from the simpler one, given in
**Recall that the push-forward of a probability measure ν by a map h : X→Y is defined

by h*νðEÞ≔ νðh−1ðEÞÞ, for any Borel set E⊂Y .
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ref. 61, as being due to a weakly unstable periodic orbit. It agrees,
on the other hand, with the idea of a “ghost limit cycle” present at
a close-by parameter value (62).

Markov Representations in Practice.Theorem A and corollary B are
particularly useful when the observable h captures certain key
dynamical features of the full dynamics†† in the reduced phase
space Y. Indeed, as illustrated in the main text and explained be-
low, theorem A allows us to justify that, in practice, the transition
probabilities associated with h can be estimated by a standard
maximum likelihood estimator (MLE) (63). More advanced es-
timation methods could be used (64) but, as shown below, an
MLE-based strategy suffices for our purpose of estimating the
leading filtered RP resonances for the time series considered in
this article.
As in the main text, we assume hereafter that a unique physically

relevant invariant measure μ exists for the nonlinear time 1 map S
associated with the truncated version of the fJN model. The time
unit is 1 y and the truncation analyzed here is d= 408.
Recall that an invariant measure μ is physical if it can be ob-

tained as a (weak) limit (65) of the empirical measure along the
orbit fSnxg, ζNðxÞ= 1

N

PN−1
n=0 ðSpÞnδx, for a Lebesgue-positive set

of initial data x; here Sp denotes the pullback operator associ-
ated with S on the space of Borel probability measures.‡‡ In
simpler terms, this property amounts to the statement

lim
N→∞

1
N

XN−1

n=0

f ðSnxÞ=
Z

f   dμ; [S7]

for all real-valued, bounded, continuous functions f on X and for
x∈BðμÞ, with BðμÞ of positive Lebesgue measure.
In this section, the index p in theorem A is taken equal to 1,§§ so

that V is a subset of the real line. Recall from remark 2 that the
operator T—provided by theorem A, as applied to this particular
time 1 map S—is a well-defined bounded operator on L2

mðVÞ.
Galerkin Approximations of Markov Operators. We follow here the
approach described in ref. 46 that we adapt to our setting. Let V
be the projection by h of the nonwandering set A. We consider,
for a given integer M, the finite state space VM associated with
the partition of V and given by

V =
[M
k=1

Uk; [S8]

where Uk ∩Ul = 0= for l≠ k: To simplify, we assume the partition
to be uniform.
Let Q be the orthogonal projection, in L2

mðVÞ, onto the space
spanned by the characteristic functions χUi

, i.e., the set of step
functions that are piecewise constant on the partioning. More
precisely, Q is defined as follows:

Qφ≔
XM
j=1

�
φ; χUj

�
m
�
Uj
� χUj

; ∀φ∈L2
mðVÞ;

where only the terms corresponding to mðUjÞ≠ 0 are taken
into account.

Let us take ψ i =
χUi

mðUiÞ; so that fψgi∈f1;...;Mg forms a basis of
probability densities. We have then that

QTQψ i =QTψ i =
XM
j=1

�
Tψ i; χUj

�
m
�
Uj
� χUj

=
XM
j=1

�
TχUi

; χUj

�
m
�
Uj
� ψ j:

Theorem A then yields

QTQψ i =
XM
j=1

p
�
h−1ðUiÞ; h−1

�
Uj
��
ψ j: [S9]

We will call QTQ a Galerkin approximation of T, which we
denote hereafter by TM . The problem of computing TM con-
sists then in determining the pðh−1ðUiÞ; h−1ðUjÞÞ coefficients in
Eq. S9 subordinated to the partition (Eq. S8). As explained
below, this Galerkin approximation can be performed, in prin-
ciple, from a time series of hðxnÞ.
Galerkin Approximation of T from a Time Series. Ideally, we should
be able to determine first the set V = hðAÞ to determine TM . In
practice, however, systems of interest have large phase space
dimension; here d= 408, and full climate models have d≥ 106:
Thus, it is difficult to directly approximate the nonwandering set
A in theorem A and thus V from its definition.
From our working assumption on the invariant μ, however, the

set V is sampled according to μ by almost{{ any arbitrary time
series of observations, fyn = hðxnÞ : n= 1; . . . ;Ng, for a given
observable h, whenever the length N of the time series is suffi-
ciently large. Recall that xn ≔Snx0, where S is the time 1 map of
our truncated fJN model, initiated in the state x0 ∈Rd; and the
dynamics of interest for us is generated by this time 1 map. For
the particular case of the Niño-3 index, we thus simply approxi-
mate V by the empirical interval ðminðynÞ;maxðynÞÞ equipartioned
as in ref. 8, for the given number N of simulated data points. In
what follows, we still denote this interval—along with its corre-
sponding partition—by V, as in ref. 8.
We saw in corollary B that the sequence of observations fyng—

extracted from a possibly chaotic regime of the fJN model—can
be rigorously interpreted as a trajectory of the Markov chain
described by Eq. S3. This observation allows justification of

p
�
h−1ðUiÞ; h−1

�
Uj
��

=P
�
y1 ∈Ujjy0 ∈Ui

�
;

because the right side is equal to hTχUi
; χUj

i=mðUjÞ, given the fact
that T is also—as explained in remark 2 above—the Markov
operator (acting on densities) associated with this Markov chain.
The theory of statistical inference for Markov processes (63) can
then be simply invoked to determine in practice the probability
transition matrix P, whose entries are given by Pðy1 ∈Ujjy0 ∈UiÞ.
In what follows, we will identify the matrix P with the finite-
dimensional linear operator TM .
For a given M, a classical MLE estimator P̂N can then be used

to approximate TM from a time series fyn : n= 1; . . . ;Ng, pro-
vided that N is large enough. A discussion of how large N needs
to be in a practical application follows below. The entries of P̂N
are then simply given by the relative frequencies

P̂ij =
♯
�ðyn ∈UiÞ and

�
yn+1 ∈Uj

�	
♯fyn ∈Uig :

These frequencies converge here to pðh−1ðUiÞ; h−1ðUjÞÞ asN → ∞,
with an error of order OðN−1=2Þ (63, 64).

††For instance, the Niño-3 index used in the main text or the Southern Oscillation index
are both well-known observables that capture key features of ENSO variability.

‡‡Recall that the pullback of a probability measure ν by S is defined by S*νðEÞ≔ νðSðEÞÞ,
for any Borel set E⊂X.

§§The observable h here is the Niño-3 index, which is a real-valued function of the phase
space. {{In the Lebesgue sense.
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Leading RP Resonances from Time Series. Given a sufficiently fine
discretization of the reduced phase space V, nd a sufficiently long
sequence of observations, one could expect to get a good ap-
proximation of the full Markov operator T associated with the
observable h. In particular, its spectrum could also be expected
to be well approximated by the spectrum of TM when M is
sufficiently large. In practice, such strong convergence results
are the exception rather than the rule, and a weaker form of
convergence is expected to hold, as we explain below.
First note that, because T is a Markov operator, its Galerkin

approximation TM is a row stochastic matrix whose eigenvalues λ
lie in the unit disk, jλj≤ 1. When S is energy conserving, it can be
shown (45, 46) that T is self-adjoint in L2

mðVÞ, and as M in-
creases, i.e., when the discretization of the reduced phase space
V is refined, the entire spectrum of TM approximates the spec-
trum of T. We cannot, however, expect this to be so here, be-
cause T is typically not self-adjoint for dissipative dynamics,
which is the case for the time 1 map of any truncation of the fJN
model in certain regimes.
Indeed, as proven in refs. 47 and 66 for a broad class of dy-

namical systems, only the isolated (discrete) part of the spectrum
can be expected to be robustly approximated. These theoretical
results support the idea that the dominant part (in modulus) of
σðTÞ can be expected to be well approximated when sufficient
statistics are available for sufficiently large M.
The rate of convergence asM increases is, however, difficult to

estimate and will be addressed elsewhere. We describe for the
moment how to quantify the uncertainty in the estimation of the
dominant part of σðTMÞ, as obtained from the MLE procedure
described above.

Confidence Intervals for RP Gaps from Time Series. We now turn to
the problem of quantifying uncertainty in the estimation of theRP
gaps from the time series and of constructing associated confi-
dence intervals. For this purpose, we use a bootstrap approach (67)
adapted to our framework.
The first step consists of building other possible data sets of

the same size as the original data, by drawing with replacement
from the original data set. In our case, this is performed by
addressing, separately, each row of the transition count matrix,
C= fCijgi;j∈f1;::;Mg, with

Cij = ♯
�ðhðxnÞ∈UiÞ and

�
hðxn+1Þ∈Uj

�	
; [S10]

where Ui and Uj are sets defined in partition (8). In other
words the entry Cij gives the total number of transition sam-
ples, which—as observed through h—start in Ui and end up in
Uj; after one iteration of S or, equivalently, after one iteration
of the Markov chain given by Eq. S3.
Let ni denote the total number of transitions for row i of the

matrix C. Bootstrapping row i simply involves sampling ni tran-
sitions with replacement from the observed ni transitions. In
other words, ni draws are taken from a multinomial distribution
with a 1-by-N vector of probabilities fP̂il : l= 1; . . . ;Ng to gen-
erate a new set of transition counts for row i. Combining the re-
sults of each row forms a new transition count matrix D and thus
another possible transition probability matrix Q̂N . The collection
of bootstrapped transition matrices approximates the sampling
distribution.
From this distribution, one can assess the uncertainty of each

entry in P̂N , as estimated by the MLE procedure, as well as any
function of this matrix, like the spectral gap between 1 and the
rest of the spectrum. By computing the RP gap for each matrix in
the bootstrap set, we create a sampling distribution for RP gaps
and then compute the confidence intervals associated with this
distribution.

The corresponding results on the robustness of the spectral RP
gaps estimated from the Niño-3 index of fJN model simulations are
reported in Fig. S2 for the slowly mixing regime considered in Fig.
3. Recall that the estimates here are based on a time series of length
8,800 y, which are sampled every 6 mo***; thus, N = 17;600. The
resolution of the discretization of V is given by M = 128 bins.
The results in Fig. S2 show that the spectral RP gaps presented in

Fig. 3 are estimated quite robustly. In agreement with the theo-
retical predictions of refs. 47 and 66, the smallest RP gaps are as-
sociated in Fig. S2 with the smallest error bars. This numerical
confirmation is quite reassuring, because it guarantees that an RP
gap is best estimated at parameter values at which it is the most
important for assessing the model’s overall parameter sensitivity.

Interpretation of the Sensitivity Bound (Eq. 9). We provide here
complementary information regarding the sensitivity bound in
Eq. 9. This bound was applied to TM in the main text. The cor-
responding Markov chain acts then on a finite-state space asso-
ciated with a finite partition, as specified in Eq. S8.
When the invariant measure μ of system S is mixing, it can be

shown, using theorem A and arguments similar to those in ref.
68, that TM is irreducible and aperiodic. The theory of finite-
state Markov chains ensures then that TM is uniformly ergodic
(69, theorem 4.9).
Recall that the total variation (TV) distance between proba-

bility measures used in Eq. 9 can be defined as

jj ~m−mjjtv ≔ sup
A∈B

j ~mðAÞ−mðAÞj; [S11]

where B is the σ-algebra generated by the partition fUk : k=
1; . . . ;Mg in Eq. S8 (69, chapter 4). From ref. 11, we infer that
jj ~m−mjjtv gives the largest possible difference between the prob-
abilities that m and ~m can assign to the same event A. The total
variation (TV) distance between two probability measures is then
equal to 1 if and only if the two measures are mutually singular.
In the general case, the TV distance between two probability

measures is determined by their overlap in the following sense.
If ~m and m have densities D ~m and Dm with respect to some
common reference measure††† ν, then the following equivalent
characterization of the TV distance holds (70)

jj ~m−mjjtv =
Z
jD ~mðxÞ−DmðxÞjdνðxÞ: [S12]

Using the notion of coupling between probability distributions
(69), another interesting probabilistic interpretation can be asso-
ciated with the partition (Eq. S8): it measures how close to in-
distinguishable (8, p 34) two random variables ~y and y—generated
with invariant distributions ~m and m‡‡‡

—are, when seen through
the coarse-graining of the partition (Eq. S8) (69, proposition 4.7).
The sensitivity bound provided in Eq. 9, along with the nu-

merical estimation of the RP gaps reported there, lead then to an
interesting interpretation. For a given observable h, the smaller
the filtered RP gap of an unperturbed system S, the more the
system can be expected to have sample paths of the reduced
dynamics (3) that differ with high probability from those of the
reduced dynamics associated with a perturbed ~S. Furthermore,
the sample paths of the reduced dynamics, associated, respectively,
with S and ~S, will be distributed according to distributions
whose nonoverlapping regions are likely to become more and
more significant.

***As used for Fig. 3.
†††We can always take ν=

1
2
ð ~m+mÞ.

‡‡‡More precisely, jj ~m−mjjtv = inf {Pð~y≠ yÞ}, where ~y and y have distributions ~m and m,
respectively.
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Intermediate-Complexity ENSO Model. A brief recapitulation of
the JN model description is provided here for the reader’s con-
venience; see refs. 71–74 for details of the autonomous unforced
model and refs. 75–78 for versions including the seasonal
forcing (79).

Ocean.The ocean dynamics is described by linear shallow-water
equations for the currents and a nonlinear equation for the sea-
surface temperature (SST). The dynamical variables are the three
velocity components, ðu; v;wÞ, and the thermocline depth anomaly
h. The parameters of the corresponding model described below
are those of table 1 from ref. 78 except for the values of δ and δs
which have been prescribed according to the experiments re-
ported in the main text, and the value of the coupling parameter
μ has been set to 1.4.
SST equation.The SST in an equatorial band is modeled as satisfying

∂T
∂t

+ u1
∂T
∂x

+HðwÞ w
H1:5

ðT −TsubðhÞÞ−Hð−υNÞ 2υNLy
ðT −TNÞ

+ eTðT −T0Þ= 0;

[S13]

where T is the temperature of the surface mixed layer, u1 (re-
spectively, w) is the zonal (respectively, vertical) velocity in this
surface layer, and vN the meridional surface current at the north-
ern boundary of the equatorial box. Symmetry of SST and anti-
symmetry of vN are assumed.
In Eq. S13, the Newtonian damping time is denoted by eT , and

its value is set at (90 d)−1, Ly denotes the width of the box, and
TN is the off-equatorial SST at a distance Ly from the equator.
The depths H1 and H2 of the two layers are taken here to be 50
and 100 m, whereas H1:5 = 75 m is the depth scale that charac-
terizes upwelling of the subsurface temperature Tsub.
An analytical, smooth version HðxÞ of the Heaviside func-

tion HðxÞ

HðxÞ=


1 if x> 0
0 if x≤ 0 ; [S14]

is used in the terms of Eq. S13 representing upstream differ-
encing of meridional and vertical advection into the equatorial-
surface strip.
The meridional velocity vN is obtained by finite differencing of

the following continuity equation:

2
vN
Ly

=
w
H1

−
∂u1
∂x

; [S15]

where w and u1 are a sum of three parts: climatological annually
varying basic state, anomalous vertical mean currents above the
thermocline obtained from shallow-water equations (Eqs. S27
and S28), and anomalous oceanic shear currents determined
from Eqs. S32, S37, and S38.
The subsurface temperature Tsub is parameterized as a nonlinear

function of thermocline depth anomaly h such that a deeper ther-
mocline is associated with warmer upwelled waters resulting in the
relation

TsubðhÞ=Ts0 + ðT0 −Ts0Þtanh
�
h+ h0
h*

�
; [S16]

where the equilibrium value T0 of SST is set at 29 °C, oce-
anic temperature at thermocline layer Ts0 = 20 8C, h0 = 40 m,
hp = 25 m.
Oceanic currents.The vertical-mean motions above the thermocline
are governed by the linearized reduced-gravity shallow-water
equations on a β-plane in the long-wave approximation

δ
∂u
∂t

− βyv+ eu= − g
∂h
∂x

+
τ

ρH
; [S17]

βyu= − g
∂h
∂y
; [S18]

δ
∂h
∂t

+H
�
∂u
∂x

+
∂v
∂y

�
+ eh= 0: [S19]

Here, τ is the zonal wind stress, ρ is the oceanic density, H =
H1 +H2 is the total depth of the two layers, and e= ð2:5 yÞ−1 is
the damping rate for the vertical-mean currents. The relative
adjustment time coefficient δmeasures the ratio of the time scale
of adjustment by oceanic dynamics to the net time scale of
SST change through the SST equation. This parameter affects
the travel time of the equatorially trapped waves produced by
the model, an essential feature in the physics of the model.
From a modeling point of view, this parameter is subject to
adjustment through a certain range associated with uncertainty
in its estimate and is therefore a natural candidate for a param-
eter dependence analysis such as performed in the main text.
The usual boundary conditions for the shallow-water equations

in the long-wave approximation are used

u= 0 at x= xE; [S20]

Z−∞
∞

udy= 0 at x= xW ; [S21]

where xE and xW locate the eastern and western boundaries,
respectively.
Given the linear change of variables

q= h+ u; [S22]

r= h− u; [S23]

the shallow-water equations can be rewritten as

�
δ
∂
∂t
+ e

�
q− yv+

∂q
∂x

+
∂v
∂y

= τ; [S24]

�
δ
∂
∂t
+ e

�
r+ yv−

∂r
∂x

+
∂v
∂y

= − τ; [S25]

yq− yr+
∂q
∂y

+
∂r
∂y

= 0; [S26]

where all of the variables are nondimensional.
A standard semispectral discretization is used, with parabolic

cylinder functions as the basis functions in latitude, leading to
a truncated model including the first Kelvin mode and the first 15
symmetric Rossby modes. Note that this represents a higher
resolution than typically used for this model (72, 75–77), where
a total of eight ocean modes were retained.
The resulting equations for the oceanic wave coefficients qn

read as follows:

�
δ
∂
∂t
+ e

�
q0 +

∂q0
∂x

= τ0; [S27]
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and for n∈ f2p;  p∈ f1; ::; 15gg,

ðn− 1Þ
�
δ
∂
∂t
+ e

�
qn −

∂qn
∂x

= nτn − ½ðn− 1Þ�1=2τn−2; [S28]

where τn is the zonal wind stress projected onto oceanic mode n,
q0 is the amplitude of the Kelvin wave, and the qn s for n=
2; 4; . . . ; 30, are the amplitudes of the first 15 Rossby waves.
The original variables h, u, and v are obtained by back trans-
formation as appropriate linear combination of qn s, thus ob-
taining thermocline depth anomalies and anomalous vertical
mean currents above the thermocline.
Equations for mean zonal currents (Eqs. S27 and S28) and SST

(Eq. S13) are numerically discretized using 24 grid points on the
equator, which gives in total ð16+ 1Þ× 24= 408 degrees of freedom.
Note that the surface layer zonal (respectively, meridional)

velocity u1 (respectively, v1§§§) of Eq. S13 is decomposed as u1 =
u+ us (respectively, v1 = v+ vs), where us (respectively, vs) rep-
resents the zonal (respectively, meridional) contribution coming
from the vertical shear currents.
The horizontal components us and vs of the vertical-shear

currents are governed by steady-state equations dominated by
damping due to interfacial stress between the layers (79)

esus − βyvs =
τH2

ρH1H
; [S29]

esvs + βyus = 0; [S30]

where es = (2 d)−1 is the damping coefficient for the shear currents.
The vertical velocity in the surface layer, w in Eq. S13, is also de-

composed asw=ws. The vertical componentws of the shear currents
can be calculated from the continuity equation using us and vs

ws =H1

�
∂us
∂x

+
∂vs
∂y

�
: [S31]

For simplicity, the three components of the shear current are
written as

us = buτ;  vs = −
Ly

2H1
bw

τ

ρH
;  ws = − bwτ+H1bu

∂τ
∂x
; [S32]

where bu ≈H2=H1es and bw ≈ ðH1=LdÞbu, and Ld is the charac-
teristic meridional length scale determined by the damping time
scale of vertical mixing: Ld ≡ es=β.

Atmosphere. The steady response of the zonal wind-stress anom-
alies τ′ to SST anomalies T′ at the equator is

τ′ðx; 0Þ= μA

"
3
2
e3eax

Z  xE

x

T′ðsÞe−3easds− 1
2
eeax

Zx

xW

T′ðsÞeeasds
#
: [S33]

Here A is an amplitude factor, ea is a Rayleigh friction due to
boundary layer turbulence, and μ is an ocean-atmosphere cou-
pling parameter.
Climatological state and coupling. The climatological basic state
with an annual cycle is constructed as a forced solution of the
uncoupled ocean model. The oceanic component is then
coupled with the atmospheric model for the deviations from
this basic state (referred to as anomalies). The following smooth
function that resembles the annually varying observed wind
stress in the Pacific along the equator is used to set up the
basic state

τ= 0:6

0:12− cos2

�
πðx− x0Þ

2x0

��
1+

1
2
sin

�
2πt
Ta

��
; [S34]

with x0 = 0:57L, where L is the basin width, and Ta = 12 mo.
The coupled system is set up using one-way flux correction (72),

with total wind stress τ given by

τ= τ+ τ′; [S35]

where the wind stress anomaly τ′ is derived from the atmospheric
response to SST anomalies T′

T′=T −T; [S36]

according to Eq. S33. The feedback between the ocean and
atmosphere takes place every time step.
Parameter δs. A relative surface-layer parameter δs, varying
from unity zero, is introduced that controls the intensity of the
anomalous surface-layer currents as a function of the wind-
stress anomalies without affecting the climatology. For sen-
sitivity studies in related systems using this parameter, see
refs. 71, 72, and 76. Here, this parameter is used at low and
high values because it turns out that the respective regimes
thus accessed are associated with different mixing properties
(within the phase space) of the system when the latter exhibits
chaotic behavior. For δs close to 0, slower decay of correla-
tions of the simulated Niño-3 index tends to occur than for
small values of δs.
The horizontal us and vs and vertical ws components from the

vertical-shear currents are then given by

us = us;  vs = vs + δsvs′;  ws =ws + δsws′: [S37]

Here us; vs;ws are the velocity components obtained by using the
climatological annually varying wind stress (Eq. S34) in Eq. S32,
whereas vs′;ws′ are shear (surface-layer) currents associated with
the anomalous coupling

ws′= − bwτ′+H1bu
∂τ′
∂x

;  vs′= − bwτ′: [S38]

Note that us does not depend on δs (77, 78), a choice made for
clarity of the physical mechanisms involved, i.e., controlling only
the strength of the anomalous surface meridional cell induced by
the wind stress anomalies.
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Fig. S1. Schematic representation of the reduced dynamics governed by Eq. S3. The reduced phase space is V =hðAÞ. The full dynamics xn+1 = SðxnÞ takes place
in A, and it supports a physically relevant invariant measure μ. The maps Mz are selected randomly depending on the observed state y. The selection of such
a map is entirely determined by the random variable z, which is drawn according to Eq. S4 from the probability measure νy on the fiber Θy of A. The fibers Θy

are represented in red, and the probability density of νy is in magenta.
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Fig. S2. Error bars on the RP gaps, as estimated in the slowly mixing regime for various values of the fJN model’s relative adjustment time coefficient δ.
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