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Abstract 

Techniques of numerical bifurcation theory are used to study stationary and periodic 
solutions of an intermediate coupled model for tropical ocean-atmosphere interaction. The 
qualitative dynamical behavior is determined for a volume in parameter space spanned by 
the atmospheric damping length, the coupling parameter, the surface layer feedback 
strength and the relative adjustment time coefficient. Time integration methods have 
previously shown much interesting dynamics, including multiple steady states, eastward- or 
westward-propagating orbits and relaxation oscillations. The present study shows how this 
dynamics arises in parameter space through the interaction of the different branches of 
equilibrium solutions and the singularities on these branches. For example, we show that 
westward-propagating periodic orbits arise through an interaction of two unstable stationary 
modes and that relaxation oscillations occur through a limit cycle-saddle node interaction. 
There are several dynamical regimes in the coupled model which are determined by the 
primary bifurcation structure; this structure depends strongly on the parameters in the 
model. Although much of the dynamics may be studied in the fast-wave limit, it is shown 
that ocean wave dynamics introduces additional oscillatory instabilities and how these relate 
to propagating oscillations. 

I.  Introduct ion 

One  of  the  most  s tr iking examples  of  how coup led  processes  be tween  a tmo-  
sphe re  and ocean  in t roduce  t e m p o r a l  var iabi l i ty  on d i f fe ren t  t ime scales  is the  
i n t e r annua l  c l imate  var iabi l i ty  in the  equa to r i a l  Pacific,  pa r t i cu la r ly  the  phe-  
n o m e n o n  known as El N i f i o - S o u t h e r n  Osci l la t ion  (ENSO) .  This  osci l la t ion influ- 
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ences climate on a global scale, for instance causing drought over some areas and 
enhanced precipitation over others. An extensive treatment of ENSO literature 
and a physical description of the phenomena have been given by Philander (1989), 
and possible multiple time scales associated with this variability have been dis- 
cussed by Rasmusson et al. (1990). 

The underlying physics causing this variability has been the subject of many 
theoretical studies. The main problem is to determine how the time scale(s) is 
related to individual and essentially coupled processes in the equatorial atmo- 
sphere and ocean. One of first models by which the variability was reasonably 
simulated was that of Zebiak and Cane (1987). Without anomalous external 
forcing, this coupled model produced recurring warm events that were irregular in 
both amplitude and spacing, but favoured a 3 -4  year period. Zebiak and Cane 
(1987) indicated three main ingredients of interannual variability: instability of 
some background state, equilibration of the anomalies (mainly as a result of the 
thermal structure of the ocean) and a time delay between dynamical changes in the 
eastern ocean and the associated large-scale wind response. 

Instabilities of a spatially constant climatology in a simple model of the coupled 
ocean-a tmosphere  were subsequently analysed by Hirst (1986, 1988). Either for a 
periodic basin or a bounded ocean basin, free equatorial waves (Kelvin and 
Rossby) can be destabilized through coupling. The importance of linear wave 
dynamics was later on further explored (Schopf and Suarez, 1988; Suarez and 
Schopf, 1988; Battisti and Hirst, 1989), leading to the delayed action oscillator 
model (Schopf and Suarez, 1990). In this metaphor for ENSO dynamics, the key 
element is the time delay (and thereby a delayed feedback) caused by ocean wave 
transit effects in a closed basin. Both stability studies and studies on the delayed 
feedback were later extended using more detailed models (Hirst and Lau, 1990; 
Cane et al., 1990; Wakata and Sarachik, 1991; Miinnich et al., 1991). 

In all these studies, processes determining the sea surface temperature (SST) 
were assumed to occur at a much faster time scale than those associated with wave 
dynamics (the fast SST limit, 6 ~ oo). Neelin (1991), however, showed that interan- 
nual oscillations can occur even when ocean wave time scales are very fast 
compared with those determining the SST field (the fast-wave limit, 8 ~ 0). It 
appears that SST (or thermal) modes (which decay when there is no ocean 
dynamics) are modified through ocean-a tmosphere  dynamics and can be destabi- 
lized through coupled processes. 

The connection between modified ocean basin modes and SST modes was 
explored in a three-part study by Jin and Neelin (1993a,b) and Neelin and Jin 
(1993), using an equatorial strip approximation for the SST equation. They studied 
the stability of a prescribed steady (one-way flux corrected) climatology, resembling 
observations. It appears that in the area in parameter  space most in agreement 
with observational values, there is a merger of a stationary growing SST mode and 
one of the oscillatory modes originating from wave dynamics. In this way, the 
spatial structure of the most unstable mode is inherited from the SST mode, 
whereas ocean dynamics controls to a certain extent the period of oscillation. 
Interestingly, the stationary SST mode can be continuously 'deformed'  to the 
fast-wave limit and can be studied therefore much more efficiently. This suggests 
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that much of the dynamical behavior found in the fast-wave limit carries over (at 
least at strong coupling) to a regime where wave time scales are important. 

The nonlinear behavior of the model in the fast-wave limit was explored by Hao 
et al. (1993). The dominant dynamics is controlled by three dimensionless parame- 
ters: the dimensionless atmospheric damping length e a which influences the phase 
difference between sea surface temperature and wind response, the strength of the 
surface layer feedback (6s) through vertical velocities and the coupling parameter 
/z controlling the strength of the wind stress-surface layer and wind stress-ther- 
mocline feedback. For the weakly nonlinear case, Hao et al. found regimes where 
multiple steady states exist and regimes with eastward-propagating orbits (owing to 
thermocline feedback) and westward-propagating orbits (owing to upwelling feed- 
back). At strong coupling, relaxation oscillations are found, where the flow evolves 
slowly during the warm phase and passes relatively quickly through the cold phase. 
The relaxation oscillations seem very robust features and have also been found in 
hybrid coupled general circulation models (GCMs) (Neelin, 1990b). 

In this paper, techniques of numerical bifurcation theory are used to map the 
structure of the equilibrium solutions of the model of Hao et al. (1993). Standard 
terminology from bifurcation theory is used throughout the text; useful background 
references are Chow and Hale (1982) and Guckenheimer and Holmes (1983). 
Where space permits, elaboration is provided for less common terms. The aim of 
these explorations is to show how behavior in each part of parameter space is 
related to behavior in other parts. For instance, as the coupling coefficient is 
increased, the coupled system can go unstable either to a stationary mode (giving a 
transcritical bifurcation) or to an oscillatory mode (Hopf bifurcation). These are 
codimension one bifurcations, as they fundamentally involve only a single parame- 
ter. By tracing how each of these bifurcations evolve as a second parameter (such 
as 8s or ~a) is changed, it is possible to understand how two stationary instabilities 
are connected to an oscillatory instability in neighboring regions. Such connections 
at intersections of paths of codimension one bifurcations fundamentally involve 
two parameters and are known as codimension two bifurcations. These form the 
boundaries of qualitative different dynamical behavior in parameter space 
(Guckenheimer and Holmes, 1983). Locally around these singularities more com- 
plicated behavior (torus bifurcations or relaxation oscillations) may occur. 

After presenting the model in Section 2, Section 3 presents results in the 
fast-wave limit which outline the connections between regimes with zonally propa- 
gating SST anomalies and regimes with multiple stationary solutions. The relation 
between relaxation oscillations and multiple stationary solutions is discussed in 
Section 4. Section 5 examines the connection to regimes with realistic time scales 
of ocean dynamics, with conclusions and discussion in Section 6. 

2. Model formulation 

2.1. Model 

The intermediate model used in this study is similar to that used by Hao et al. 
(1993), and only the essential features are described. The ocean model consists of a 
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modified shallow water model with an embedded mixed surface layer (of fixed 
depth H 1) and an underlying shallow water layer (of mean depth H2). The zonal 
velocity field in the mixed layer u I can be written as the sum of the surface layer 
velocity u s and the mean velocity over both layers u, i.e. u 1 = u s + u. A similar 
decomposition holds for the other dependent  quantities. 

Apart  from meridional advection, two vertical processes (thermocline deviations 
and upwelling) determine the sea surface temperature T. Because the strongest 
surface temperature response to these processes is confined to a fairly narrow 
band along the equator, a simple equation for the sea surface temperature can be 
used (Hao et al., 1993): 

T t = - , T e ~ ( w l ) ( w l / I 4 ) [ T  - Ts(h)]  + Y ( - - V N ) ( 2 v N / L y ) ( T -  TN) 

- -  E T ( T  - -  W 0 )  - UlW x ( 1 )  

where • is a continuous approximation of the Heaviside function. 
The first term on the right-hand side models the heat flux owing to upwelling 

through total vertical velocity w I and approximate (over a certain depth /1)  
vertical temperature gradient ( T -  Ts(h))//-I. The subsurface temperature (T s) 
depends in a nonlinear way on thermocline deviations and is parameterized in the 
same way (see Appendix A) as done by Hao et al. (1993). The second term on the 
right-hand side of (1) represents meridional inwelling through off-equatorial (over 
a length scale Ly equal to the equatorial Rossby deformation radius) surface layer 
meridional velocity v N and temperature T N. The system can switch 'continuously' 
between upwelling and downwelling (and corresponding meridional inwelling). The 
fourth term in (1) represents Newtonian cooling with damping time scale ET; T O is 
the equilibrium temperature in absence of dynamics. The last term in (1) models 
zonal advection. 

By prescribing the velocities and the thermocline depth in the ocean (for 
instance by using climatological values) a reference steady state T is obtained from 
(1). Sea surface temperature anomalies from this reference state force an atmo- 
spheric wind field which has been described by a Gill type model (Gill, 1980), 
characterized by the velocity of the first baroclinic Kelvin mode c a and by a 
damping coefficient D M. The heating field driving the atmospheric winds is 
assumed proportional to the SST anomalies with proportionality factor a T. In the 
equatorial strip, the wind response is mainly zonal and the zonal wind field can be 
written as U = A ( T -  T), where A indicates the atmosphere model. 

The ocean in its turn is forced by this anomalous wind field, and the zonal wind 
stress is assumed proportional to the wind field U with proportionality factor y~. 
In addition, it has a forcing component , coF(x )  independent of SST changes which 
is used to generate the reference state T. With H = H 1 + H 2, the wind forcing in 
the equatorial strip is therefore given by 

" r / ( p U )  = % F (  x )  + y~U (2) 

The zonal surface layer velocity is parameterized (see Appendix A) as done by 
Hao et al. (1993), as being proportional to zonal wind stress. The other velocity 
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components are determined by continuity. The mean velocity field satisfies a 
reduced gravity model in a basin of length L on the equatorial/3-plane, character- 
ized by the velocity of the first baroclinic Kelvin mode c o and a Rayleigh friction 
coefficient a M. These equations are made dimensionless by using scales c o, L / c  o, 
HlCo/L, coLy/L ,  L, Ly, H and AT = I°C for zonal velocity, time, vertical velocity, 
meridional velocity, zonal and meridional length, thermocline depth and tempera- 
ture, respectively. In the long wave approximation, the dimensionless equations 
become 

~u t - y v  + h~ + ru = F o F ( x  ) + lxA( T;x)  (3a) 

yu + hy = 0 (3b) 

8h t + rh + (u x + vr) = 0 (3c) 

with r = a g L / c  o, F o = z o L / c  ~ and T = T - T .  The parameter /x  is the coupling 
parameter  given by/z  = ary ,  ATL2/(cgc2). The atmosphere model becomes 

A(  T ; x ) =  3 e x p ( 3 e a X ) f x l e x p ( - 3 , a S ) T ( s  ) ds 

- ½exp( -e ,X) foXeXp(eas)T(s  ) ds (3d) 

with ea = DML/C a. 
The nondimensional variable 6 is introduced to study the effect of wave time 

scales on the stability of the steady states. With the time scaling as above, 6 = 1; 
the fast-wave limit is obtained as 6 ~ 0 and the fast SST limit as 6 ~ ~. 

The steady-state mean velocity fields and thermocline displacements in (3) can 
be solved in terms of T (see Appendix A) and finally an integro-differential 
equation for the temperature deviation T from the reference state T is obtained, 
i.e. 

+u  x ) ] L  

+~,Tc~(wl) [ - a r h  + aSugAx(  T; x)  - 6slxA( T;x  ) 

- IT - T.(h)] 

+W'( - v N ) a - ' [ a s l X A ( T ;  x)  + # f F ( x ) ] ( T  - TN) } = T, (4) 

where the dimensionless parameters are defined in Appendix A. Most parameters 
in Eq. (4) will be kept constant and their 'best '  values are given in Table 1. We will 
study the solutions of the steady equation, Eq. (4), along with their linear stability 
in a four-dimensional parameter space spanned by %, /x, a s and a. The physical 
significance of these parameters is repeated for convenience: /x is the relative 
coupling coeff ic ient-- the strength of the wind stress feedback from the atmo- 
sphere to the ocean; a s is the surface layer coeff ic ient-- the ratio of the time scale 
of SST change by vertical-mean current and thermocline feedbacks to the time 
scale of SST change by coupled current perturbations associated with the active 
surface layer; % is the atmospheric damping length, relative to the zonal basin 
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Table 1 

Values of dimensional parameters for the standard case 
H I = / 4  = 50  ( m )  e T = 9 . 2 5 x  10 - 8  (s - 1 )  b w = 1.026 X 102 (s) 

H = 200 ( m )  L = 1.5 X 107 ( m )  ~'0 = 2 .667 X 10 - 7  ( m  8 - 2 )  

T o = 30  ( °C)  c a = 30 ( m  s - l )  Ts0 = 22  ( °C)  

T N = 30 ( °C)  A T  = 1 ( °C)  h o = 25 ( m )  
c o = 2 ( m  s - 1 )  D M = 5 . 0 X  10 - 6  (S -1) H *  = 30 ( m )  

aM = 1 .3X 1 0 - s  (s 1) 

Fixed dimensionless parameters in (4): 

~1  = 4 .104  ~1 = 6 .667  r/z = 0 .833 

F 0 = 1.0 a = 1.0 e = 10 - 4  

ew = 0 .694  

scale; 6 is the relative adjustment time coeff icient-- i t  measures the ratio of the 
time scale of oceanic adjustment (in the zonal direction) by wave dynamics to the 
time scale of adjustment of SST by coupled feedback and damping processes. 

2.2. Basic states, linear stability and numerical methods 

The reference state T(x)  is obtained by putting T = 0 and prescribing F(x) in 
(4). In this way, the reference state is a one-way flux corrected climatology and the 
equation determining this state is 

al(X)Y' + d , ( x ) T  = dz (x  ) (5) 

where the coefficients al(x) ,  dl(X) and dz(x)  are given in Appendix B and the 
prime denotes differentiation to x. As a boundary condition, we assume no heat 
flux through the western boundary; hence T'(0) = 0. As done by Hao et al. (1993), 
we take for F(x) 

F(x)  = 0.6{0.12 - cosZ[(x -xo)~'/(Zxo) ] }, x 0 = 0.57 (6) 

2 0  , , , , , , ; , , , . . . . . .  3 1  

I 0 - ~ ~  i 3 0 h o J29 T 
2 8  

- 1 0  

2 7  

- 2 0  2 6  

- 3 0  2 S  

- 4 0  2 4  

i i 1 5 0  I l l i ' l l I l ] l l ' 2 3  

0 0.2 0.4 0.6 0.8 
X 

Fig.  1. Climatological temperature T (dotted line) and thermocline field 1] (continuous line) obtained 
with standard values of parameters. 
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The climatology 6 ,  T-) is shown in Fig. 1 for the standard values of the parameters 
as in Table 1. Upwelling occurs over most of the basin except on a small interval 
near the western boundary. The thermocline is shallow at the east and larger than 
the equilibrium value in the west. This gives a moderate cold tongue in the eastern 
part of the basin; the climatology is similar to that computed by Hao et al. (1993). 

To study the linear stability of a particular basic state T(x),  we consider 
deviations from this basic state through 

T ( x , t )  = T(x) + ~(x,t) (7) 

with similar expressions for the other ocean and atmosphere dependent  quantities. 
Substitution into the governing equations leads to the evolution equations for the 
disturbances, i.e. the integro-differential equation for 7~(x, t) becomes 

Tt(x,  t) = a ( x ) f i ( T ; x ,  t) + y ( x ) h ( T ; x ,  t ) - e w ( x ) T ( x ,  t) 

+ ~ 6 s b ( x ) A ( T ; x  , t ) - t ~ 6 u c ( x ) . 4 x ( T ;  x, t) 

- t) (8) 

where the coefficient functions b(x), y (x )  and ew(x) are given in Appendix C. The 
linearized equations around the basic state T(x) admit solutions 7~(x, t) = 7~(x)e ~r, 
A(7~; x, t )=~4(T;  x)e '~t, etc. The solutions fi and h at the equator can be 
expressed in terms of T using Green's functions (Neelin and Jin, 1993). In this 
way, (8) leads to an eigenvalue problem with eigensolution (tr, T). 

The steady equation (4) is discretized on a regular grid which leads to a system 
of nonlinear algebraic equations. The bifurcation package AUTO (Doedel, 1980) is 
used to trace branches of steady states as one of the parameters is varied. The 
AUTO package is also used to solve the eigenvalue problem (8). Details on the 
implementation in AUTO are provided in Appendix D. 

3. Results: fast-wave limit (~ ~ 0) 

The fast-wave limit is not the most realistic part of the parameter  space, as time 
scales of subsurface dynamical adjustment in the ocean are assumed to occur very 
fast. However, it serves as a good place to begin unravelling many aspects of the 
bifurcation diagram. Stationary states are the same as in the full model, and a good 
prototype is provided for oscillations which have propagation of anomalies of SST, 
wind, currents, etc., along the equator. In the following sections, we focus on the 
ways in which the topology of the bifurcation diagram as a function of coupling 
changes when other parameters are varied and how this can be used to make sense 
of connections among different regimes of behavior. One recurring theme is the 
way that pairs of stationary modes in one part of parameter  space evolve into 
oscillatory modes in neighboring regions, a process sometimes referred to as mode 
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competition (Golubitsky et al., 1988, Chapter XIX). Implications of these connec- 
tions are further discussed in Section 6, along with a recapitulation of physical 
processes associated with these mergers. 

(a) 
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o.s ~ p I 
0.4 
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0.2 L PI J 
i T ~ ~ ~  H 

0.1 . . . .  i I 
0 0.5 "1 1.5 2 2.5 

6 
S 

(b) 

~ = 1.0 
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-0 .5  P2 

-1 

-I.5 I PI 

0 0.2 0.4 0.6 0.8 1 
X 

(c) 

/ i 

-0 .5  

0 0.2 0.4 0.6 X 0.8 1 

Fig. 2. (a) The  paths  of  primary bifurcation points in the (6 s, /~) plane (T, transcritical bifurcation 
points; H, Hopf  bifurcation points) for e= = 0. (b) SST anomaly as a function of longitude for 
eigenfunctions at neutral  stability for ~s = 1.0 at locations P1 and P2 indicated in (a). (c) SST anomaly 
for the complex eigenfunction (two phases of the westward-propagating oscillation) at neutral  stability 

at Point A in (a). 
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3.1. Connection between stationary and westward-propagating modes, % = 0 

The simplest case to consider is e a = 0, which corresponds to a broad scale 
atmospheric response to SST anomalies. The paths of primary bifurcation points in 
the (Ss, ~)  plane are shown for E a = 0 in Fig. 2(a). Here  'pr imary '  refers, through- 
out the text, to bifurcations from the climatological state (shown in Fig. 1). Up to 
8 s = 1.8, the first two primary bifurcation points are transcritical (T). For instance, 
at 8 s = 1, the climatology is unstable to one stationary mode (a real eigenvector) 
for /x >/~(P1) but unstable to two stationary modes for /~ > ~(P2). The spatial 
patterns of both modes are shown in Fig. 2(b) (at the points P1 and P2)- For larger 
8 s, a Hopf  bifurcation (H) is the first primary bifurcation. For instance, at 6 s = 2.5, 
the climatology is unstable to an oscillatory mode for /z  > tz(A). This is a complex 
eigenvector of which the structure is shown in Fig. 2(c). It propagates westward 
with time because the maximum westerly wind response is to the left of the 
maximum (positive) SST anomaly. These mechanisms have been discussed in more 
detail by Hao et al. (1993). At the transition near  8 s = 1.9, one of the stationary 
modes becomes the real part  and the other mode the imaginary part  of this 
complex eigenvector; this merger  of two stationary modes to produce oscillatory 
behavior is an example of mode competition (Golubitsky et al., 1988). 

There is a small region in 8s (approximately from 8s = 1.9 to 6~ = 2.0) where 
three singularities occur in a small interval of ~. In this region, the frequency 
associated with the complex pair of eigenvalues which crosses the imaginary axis 
(at H) goes to zero with increasing p~. Of  the remaining two unstable modes, one 
of them stabilizes in the first transcritical bifurcation but destabilizes again at the 
second. The other mode remains unstable with increasing #. 

In correspondence with Fig. 2(a), the bifurcation picture for e a = 0, 6~ = 1.0 in 
Fig. 3 shows two transcritical primary bifurcation points, P1 and P2. On the vertical 

T ,~ 
E C  4 

/ ~ 
4 I" i 

, + 

÷ 

3 P P , 
0 ~ i + Zm ++ ~ 

F 1 2/A ++ ~ = 1.0 
- 2 ~ "I, / H I ~ -- 

\ /  ~ = o.o 
a 

0 0.2 0.4 0.6 0.8 1 

Fig. 3. Bi furcat ion picture for  % = 0, (~s = 1.0. On the vertical axis, the temperature TEC = T(x = 0.7) is 
plotted. Cont inuous (dashed) lines indicate stable (unstable) branches. L, L imi t  points; P, transcrit ical 
pr imary bifurcations; H, H o p f  bifurcations. 
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Fig. 4. (a) Spat ial  s t ructure o f  per tu rba t ion  tempera ture  f ie ld T,  thermocl ine displacement h and w ind  
field A at Point 1 in Fig. 3. (b) Same as (a), but at Point 2. (c) Spatial structure of the total fields T, h 
and T s at Point 2 in Fig. 3. (d) Same as (a), but at Point 4. (e) Same as (b), but at Point 4. 
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axis, the temperature TEC = T (x = 0.7) of an index point situated in the eastern 
central Pacific, is plotted. This is a useful indicator of the dynamics, because the 
different branches are easily distinguished. However, when branches intersect 
(using this indicator) there is not always a singularity. Therefore,  markers along the 
branch indicate singularities (solid squares for a transcritical bifurcation, solid 
triangles for a Hopf bifurcation and solid circles for a limit point) on branches. At 
points marked with open squares, solutions are presented in subsequent figures. 
Solid (dashed) lines indicate stable (unstable) steady states. The plus signs indicate 
the number of eigenvalues with a positive real part. 

The bifurcation points P1 and P2 are connected through a branch of steady 
states which is stable from PI up to the secondary Hopf  bifurcation point, H, ,  at 
/x = 0.346. The structure of the perturbation temperature field T, the thermocline 
perturbation h and the wind field A are shown for Point 1 on this branch in Fig. 
4(a). Near P1, h is positive (negative) in the west (east), strengthening the cold 
tongue of the climatology. The total fields are still very similar to the climatology 
as shown in Fig. 1, as the amplitude of the perturbation is small. 

At Point 2 on the lower branch in Fig. 3, the perturbation fields and the total 
fields T, h and T, are given in Figs. 4(b) and 4(c). With increasing coupling, the 
(positive) maximum of the wind perturbation shifts to the west. This is accompa- 
nied by a westward shift of the maximum of vertical perturbation downwelling, and 
thus the (negative) mimimum of the temperature perturbation also shifts westward, 
whereas a (positive) maximum of T develops in the easternmost part of the basin. 
Although it is not clear exactly why, it is notable that at the Hopf  bifurcation, the 
thermocline perturbation becomes positive in the eastern part of the basin (Fig. 
4(b)). The subsurface temperature is increased, and hence the temperature in the 
eastern part of the basin is increased (Fig. 4(c)). 

The first upper branch in Fig. 3 is unstable from P1 up to the limit point L~ but 
thereafter stabilizes with increasing coupling and remains stable certainly up to 

= 1.0. The most unstable temperature perturbation at Point 3 on this branch has 
the same spatial structure as that in Fig. 4(a), but opposite sign. It is positive over 
most of the basin except in the east, with westerly winds tending to deepen the 
thermocline in the east and to reduce upwelling. Again, the total fields are similar 
to that in Fig. 1. 

For larger coupling, these feedbacks increase until the total temperature field T 
approaches the equilibrium temperature T o (Figs. 4(d) and 4(e)). As the value of Iz 
at L1 is smaller than that at P1, there exists a stable steady state already below the 
critical value (the value where instability occurs) of the coupling. Hence, a small 
region of subcritical instability exists where the climatology can change to another 
steady state through finite amplitude perturbations, although it is linearly stable. 
The upper branch from P2 in Fig. 3, corresponding to a T positive (negative) in the 
middle (east) of the basin, remains unstable. 

The path of the Hopf  bifurcation labelled H 1 in Fig. 3 (with associated 
frequency u) and the limit point L~ are shown as a function of IZ and ~s in Fig. 
5(a). The path through H~ intersects the double zero singularity with zero fre- 
quency (as shown in Fig. 2(a)) and thus connects up to the branch of primary Hopf 
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Fig. 5. (a) Paths o f  secondary singularit ies (H, H o p f  bi furcat ion point; L, l imit point)  in the (6s, /x)  plane 
for  % = 0 added to paths o f  pr imary singularit ies (as in Fig. 2(a)). The frequency v o f  the H o p f  
bi furcat ions for  6s < 1.8 is also shown (values given on r ight ordinate). (b) Bi furcat ion picture for  

6 s = 2.5, % = 0. 

bifurcation points at larger 8s. In this way, oscillatory instabilities of the steady 
states on the (cold) branch P1-H1 relate to those of the flux corrected climatology. 
As we know from Fig. 2(a), the westward-propagating instabilities of the flux 
corrected climatology are associated with an increasing competition of the two 
unstable modes (corresponding to the eigenvectors at P1 and P2) as 8s is increased. 
Fig. 5(a) indicates that steady states on the cold branch (which depend on 
coupling) go unstable to oscillatory instabilities at smaller values of 6s, but the 
relationship of oscillatory and stationary instabilities (the mode competition) is the 
same. 

Because the limit point L 1 still exists for 8 s > 1.86, the warm (near equilibrium) 
state remains stable in a parameter  regime where the original climatology would 
only go unstable through oscillatory instabilities. To clearly demonstrate this, the 
bifurcation picture for e a = 0.0, ~s = 2.5 is presented in Fig. 5(b). The appearance 
of the isolated branch in Fig. 5(b) is interesting because steady-state switching 
occurs even though there is no stationary bifurcation at all. 

A branch of stable supercritical periodic orbits is found near the point A in Fig. 
2(a) at/~s = 2.5. The spatial structure of the SST anomaly on this orbit is shown in 
Fig. 6. The maximum field value and the period of the oscillation are given in the 
caption. The oscillation is nearly standing in the central part of the basin, whereas 
there is slight westward propagation in the east. The anomaly extends nearly over 
the whole basin. The spatial structure of the modes which span the orbit are those 
in Fig. 2(c). 

The branch of periodic orbits coming from the (subcritical) Hopf  bifurcation H1 
in Fig. 3 is unstable. The spatial structure of the orbit is similar to that in Fig. 6; 
the maximum amplitude is slightly shifted to the west. Hence, as the periodic 
orbits go through the double zero singularity near /~s = 1.9 in Fig. 5(a), the Hopf  
bifurcations go from supercritical to subcritical with decreasing 6 s and therefore 
the periodic orbits become unstable. Periodic westward-propagating orbits only 
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Fig. 6. Time longitude structure of the SST anomaly for the periodic orbit (period p = 2.91 year) at 
Point A in Fig. 2(a) (e, = 0, t5 s = 2.5). Contour values are scaled with respect to SST maximum, 
Tm = 8.99X 10 1. 

arise through instability of  the climatology at large ~ ,  i.e. th rough surface-layer 
feedback. 

3.2. D e p e n d e n c e  o n  a t m o s p h e r i c  d a m p i n g  p a r a m e t e r  e a 

H a o  et al. (1993) also found eas tward-propagat ing instabilities for vanishing 
zero surface layer feedback ( 6  s = 0) at larger ca. In this section, the zonal scale 
characterizing the nonlocal  a tmospheric  response is varied (by varying e a) to see 
how the eas tward-propagat ing oscillatory instabilities arise. Ano the r  point  of  study 
is whether  the mode  compet i t ion as demons t ra ted  in the previous section between 
stationary instabilities leading to westward-propagat ing oscillatory instabilities is 
robust. 

The  pr imary bifurcation structure of  Fig. 2(a) remains qualitatively the same up 
to e~ -- 1.25 (Fig. 7(a)). A second set of  modes  now becomes  unstable at higher 
coupling. At  this value of  e~, the two sets of  modes  do not  interact. The  set seen at 
lower coupling (Iz ~< 1 in Fig. 7(a)) is the same as that  of  Fig. 2(a); the second set 
has similar behavior  with stationary modes  at lower 6 s combining to give oscillatory 
(westward-propagat ing)  solutions at larger ~s. At  larger e~, they do interact and 
give the picture of  Fig. 7(b) at e~ = 1.75. The upper  stationary branch from the 
second set now connects  to the upper  stationary branch of  the first set at a double 
zero singularity. At  even larger ea, also the lower branches  of  both modes  connect  
in a double  zero singularity giving the picture for e a = 2.5 in Fig. 7(c). At  e~ = 2.5, 
oscillatory instabilities take over at small 6s and the regime where  the two steady 
modes  are most  unstable is restricted to a small interval in 6 s. For  intermediate  6 s, 

the pr imary bifurcation point  is transcritical, whereas  the second one is a H o p f  
bifurcation. At  even larger 6s, the H o p f  bifurcation crosses the transcritical one 
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Fig. 8. Bifurcation pictures (notat ion as in Fig. 3). (a) For  e a = 2.5 and 6~ = 1.0. (b) for e a = 2.5 and two 
values of  ~, (0.0 and 0.1). 

and becomes the first primary bifurcation. A Hopf-steady-state interaction 
(Golubitsky et al., 1988) occurs at about 8s = 2.78, /z = 0.95. Locally around this 
codimension-two singularity, torus bifurcations can be expected (Langford, 1979). 
These were indeed found at /z values slightly higher than that at the singularity. 
The quasi-periodic solution (where the periodic orbit coming from the first Hopf  
bifurcation is modulated by a lower frequency) turned out to exist only over a very 
small interval of coupling. Although it illustrates that quasi-periodic behavior can 
exist in the fast-wave limit, it is exotic and will not be discussed further. 

Most important from Fig. 7 is that with increasing Ca, modes originally (at 
E, = 0) from two different sets interact. The coalescence of two stationary modes 
to form an oscillatory mode in Fig. 7(c) at small 6s is noteworthy because this is an 
eastward-propagating mode, as discussed below. 

3.3. Connection between stationary modes and eastward-propagating modes 

In this section, mode competition is shown also to be the underlying structural 
relation between the eastward-propagating oscillatory instabilities and stationary 
instabilities. Figs. 8(a) and 8(b) show bifurcation diagrams corresponding to slices 
through Fig. 7(c) at two values of 6s. Fig. 8(a) shows the case that applies for 
relatively large gs, and Fig. 8(b) shows two cases near the region of eastward-prop- 
agating instabilities at low ~ .  For % = 2.5, 6~ = 1.0, it is observed from the 
bifurcation diagram in Fig. 8(a) that the first upper branch is now supercritical and 
the lower branch subcritical. Several limit points (not explicitly shown) appear on 
the branch P~-L 1, giving rise to small intervals in tz where the branch is stable. 
After the final limit point L 1 the upper branch remains stable up to the Hopf  
bifurcation point H at /~ = 1.4. The lower branch is stable from L 2 up to the limit 
point L 3 and it eventually connects up with a transcritical primary bifurcation 
point at la rger /z  (/x = 2.7). In correspondence to previous results in Hao et al. 
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Fig. 9. Time longitude structure of the SST field of the periodic orbit (period 13.3 years) at Point C in 
Fig. 7(c) (E a = 2.5, 8s = 0.0). Contours scaled as in Fig. 6, with T m = 8.71 x 10 -2. 

(1993) three stable steady states are found at this (intermediate) value of 6 s. The 
results of their ' toy model'  are basically correct, although the details on the 
secondary bifurcation structure are different. 

If 8s is decreased down to Ss = 0.525, the bifurcation pictures remain qualita- 
tively the same as that in Fig. 8(a). For 0.05 < 6s < 0.525, the picture is qualitatively 
the same as that for 6 s = 0.1 presented in Fig. 8(b). Again, both primary bifurca- 
tion points are transcritical, there is a secondary Hopf  bifurcation (H 1) at the 
upper branch and a limit point (L~) on the lower branch. The path of the Hopf  
bifurcation is connected to the eastward-propagating instabilities of the climatol- 
ogy at smaller 6 s (see Fig. 7(c)) and moves to H 2 at Ss = 0. A stable branch of 
eastward-propagating orbits arising at this point is shown in Fig. 9 (near Point C in 
Fig. 7(c)). Here,  the oscillation is nearly standing in the eastern part of the basin 
whereas it is slightly propagating in the central part of the basin. The period p 
(p  = 13.3 years) is rather large and, as expected, sensitive to the parameters in the 
subsurface temperature parameterization. As ~ ~ 0, the branch of steady states in 
Fig. 8(b) has disconnected from the climatology and (as in Fig. 5(b)) again an 
isolated branch of stable states (a cold state) appears. The connection between 
stationary and eastward-propagating orbits is therefore similar to that between 
stationary and westward-propagating orbits. The oscillatory instabilities near 6s = 0 
(Fig. 7(c)) are associated with the competition of two stationary modes which were 
most unstable at slightly larger 6s. The spatial structure of the stationary mode that 
goes unstable near the point P~ in Fig. 8(b) resembles the structure during the 
extreme phase (t = 0.2 or t = 0.7 in Fig. 9), whereas the second stationary mode 
(P2 in Fig. 8(b)) resembles the transition phase in Fig. 9. In fact, if one refers back 
to the sequence of bifurcation structures of Figs. 7(a)-7(c), the set of stationary 
modes which interact to give westward- and eastward-propagating modes, respec- 
tively, in different parameter  regimes, are related. 
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3.4. Effect of zonal advection and oceanic damping 

In this section, we present the (qualitative) changes which occur in the structure 
of the attractors when oceanic damping and zonal advection are included. This 
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gives an impression of the sensitivity of the bifurcation structures presented above. 
Zonal advection contributes to the temperature structure in two ways: through the 
mean flow (the term u T  x in (4)) and through the surface layer (the terms with 62 
and 8, in (4)). We first consider the case e,  = 2.5, 62 = 6 u = 0 with all other 
parameters,  except the damping rate r, fixed as in Table 1. Within the range of the 
parameters used, the climatology hardly changes with respect to that shown in Fig. 
1. 

The primary bifurcation structure for r =  0.1 is presented in Fig. 10(a). As 
expected, the primary bifurcation structure does not change (compared with Fig. 
7(c)) when a small amount of oceanic damping is present. Only the oscillatory 
instabilities owing to thermocline feedback (at very low 6 s) disappear, but can be 
brought back by changing the parameters in the subsurface temperature parame- 
terization. When zonal advection is added (with 6 u = 0.1 and 6F z =  0.07), the 
primary bifurcation picture changes (Fig. 10(b)) significantly compared with Fig. 
10(a), except at the larger values of 6 s. Up to 6 s --- 1.2, the first three primary 
bifurcations are transcritical and for intermediate values of 6 s the first two 
transcritical bifurcation points have merged to a Hopf  bifurcation. The transition 
between the primary bifurcation structure of Figs. 10(a) and 10(b) is clarified by 
plotting this structure at an intermediate value of 6u (Fig. 10(c)) which does have 
the same structure as Figs. 7(c) and 10(a). When 6, is increased, the branch of 
transcritical singularities interchanges (without any interaction) with the H o p f -  
transcritical structure. 

Zonal advection favours westward propagation and thereby these modes (associ- 
ated with the Hopf  bifurcation) become more unstable for larger 8,. Figs. 10(b) 
and 10(c) also explain why the Hopf-transcrit ical  interaction was found by Hao et 
al. (1993), with zonal advection excluded, and was not found by Jin and Neelin 
(1993a), who included zonal advection. It also suggests that it is wisest not to let 
either of the two surface layer feedback terms, associated with zonal and vertical 
advection, respectively, go to zero without the other; for instance, using a simple 6s 
for both keeps them in proportion. 

4. Relaxation oscillations 

Nonsinusoidal oscillations that evolve very slowly during part(s) of the cycle are 
often referred to as relaxation oscillations (Grasman, 1987). Examples of interan- 
nual oscillations deforming from relatively sinusoidal oscillations at low coupling 
into relaxation oscillations with a long warm phase (or in some cases, a long cold 
phase) were found in a simple model (Hao et al., 1993) and in the hybrid coupled 
model of Neelin (1990b). An example from the hybrid coupled model may be seen 
in Fig. l l(a),  in which each cold phase is followed by a very extended warm phase. 
These results and the apparent association with multiply stationary states, were not 
previously published for lack of an adequate explanat ion--a  reasonable explana- 
tion of the bifurcation structure can now be given. 
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Fig. 11. (a)  E v o l u t i o n  o f  t he  S S T  along the equator for a run of the HCM at relative coupling coefficient 
/z = 1.1. A low-pass filter with a midpoint at 7 months has been applied. Initial condition is from the 
unstable climatological stationary point with an initial wind stress perturbation. (b)  A s  in (a) but for 
/z = 1.2 s h o w i n g  9 yea r s  o f  a 18 year run. (c) A s  in (a) but beginning f r o m  a warm initial condition. 

The model construction and the behavior which occurs at lower coupling has 
been described by Neelin (1990a), but is summarized here for reference. The 
model consists of the Geophysical Fluid Dynamics Laboratory ocean GCM, 
configured for the tropical Pacific basin coupled to a simple atmospheric model. 
Flux correction is used so there is a known climatological stationary solution 
created by spinning up the ocean with observed wind stress (Hellerman and 
Rosenstein, 1983). The atmospheric model is used as a nonlinear anomaly model 
for anomalies defined with respect to this ocean climatology. For the 'best 
estimate' atmospheric parameters, the climatology is unstable to an ENSO-like 
oscillation that is similar to the oscillation in Fig. l l (a) ,  except that the warm phase 
is not so extended. The model ENSO cycle is also unstable to higher-frequency 
(5 -6  month period) oscillations associated with coupled Kelvin waves, similar to 
those seen in Fig. l l(a). To see how the behavior evolves from simpler flow 
regimes, a relative coupling coefficient /z is defined (analogous to the coupling 
parameter used in the pre~.nt model) which artificially reduces the wind stress 
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feedback (per unit SST anomaly) from the atmospheric model. The standard value 
is defined as /~ = 1.0. For ix = 0.6, the climatology is stable, with an ENSO-like 
mode decaying. The primary bifurcation, at which this mode goes unstable, occurs 
for /z  slightly less than 0.7. For a range o f / z  above this value, a simple limit cycle 
occurs (a periodic orbit); as coupling increases the amplitude of this limit cycle 
increases, but the period and spatial structures on the orbit do not change much. A 
secondary Hopf  bifurcation gives the higher-frequency oscillation noted above, and 
the warm period already begins to lengthen by /z = 1.0. The results at coupling 
larger than standard are shown here. Fig. l l ( a )  shows the case for /x = 1.1 but 
otherwise exactly like the standard case /z = 1.0. The relaxation oscillation has a 
period of about 5 years where the warm phase of the cycle is lengthened 
considerably compared  with the cycle at lower coupling, whereas the length of the 
cold phase remains approximately the same. 

When the coupling is increased to /z  = 1.2, the ENSO-like oscillations disappear 
and are replaced by an eternal warm phase, as seen in Fig. l l (b )  for a run with the 
same initial conditions as Fig. l l (a) .  This run was continued stably in the warm 
state for another  9 years beyond what is shown. The Kelvin-wave oscillations 
continue, but now occur about the warm stationary point instead of about the 
ENSO limit cycle. The warm state is maintained by westerly wind anomalies which 
almost cancel the climatological wind stress imposed by flux correction. The 
equatorial upwelling is thus largely shut off and the eas t -wes t  thermocline gradi- 
ent tends to flatten, resulting in SST anomalies that nearly cancel the climatologi- 
cal cold tongue; these in turn maintain the wind stress. The coupled feedbacks 
thus create an alternate stationary state in which ocean dynamics are much less 
active than in the state constructed by flux-correction. Similar dynamics, but to a 
lesser degree, are found in the lengthened warm phase of Fig. l l (a) ,  which is why 
it evolves so slowly. One can also test for the existence of this warm stationary 
point at lower coupling: Fig. l l (c )  shows a case with tx = 1.1, identical to the run of 
Fig. l l ( a )  except that the initial conditions are taken from the warm state of Fig. 
l l (b) .  The warm state persists over a length of t ime which is large compared with 
the period of the limit cycle and the typical adjustment times of the system. This 
strongly suggests that the warm stationary point exists and is stable, i.e. there are 
two attractors, the warm state and the ENSO cycle for this value of coupling. 

In this section we show how such a relaxation oscillation arises dynamically 
when the thermocline feedback is dominant (small 6s). To obtain reasonable 
values of the period, the coefficients in the subsurface temperature  parameteriza-  
tion were changed to r/1 = 4, ~72 = 0.6. For 6 s = 0.5, ~ = 0.5, Ew=0.428 and 
e a = 2.5, the bifurcation diagram is shown in Fig. 12(a). This bifurcation diagram 
arises in the same way as that for S s = 0 in Fig. 8(b). A Hopf  bifurcation is present  
at g = 1.684 and a saddle node bifurcation at ~ = 2.169. In Fig. 12(b), the periodic 
orbits are shown along the branch which leads from the Hopf  to the saddle node 
by plotting the time evolution of the tempera ture  at the east coast for different /z .  
With increasing /z, the cold state becomes longer and the system evolves quickly 
through the warm state. For tz larger than the value at the saddle node, a steady 
(cold) state is reached. 
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Fig. 12. (a) Bifurcation picture for S s = 0.3, E a = 2.5, using the L 2 norm of the solution as ordinate. The 
branch marked by open circles represents a periodic orbit. (b) Time dependence of the temperature 
perturbation at the east coast for several values of/z .  

A sketch of the dynamics of this limit cycle-saddle node interaction at /x =/z c 
in phase space is presented in Fig. 13. Equilibrium points are shown as dots, the 
circle represents the limit cycle and the curves indicate trajectories. For /x </z c 
(Fig. 13(a)), only the limit cycle (arising from the Hopf bifurcation) enclosing an 
unstable equilibrium (the climatology) is present. Nearby is a region where there 

c A 

b )  ~t = Pc 

Fig. 13. Schematic diagram of the local dynamics m phase space near the saddle-node-limit cycle 
interaction at /x =/z  c. Arrows indicate direction of trajectories (with small arrows indicating slow 
regions of flow, where necessary). Dots indicate equilibria. (a)/z </zc. (b)/z =/z~. (c)/~ > /z  c. 
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Fig. 14. Plausible bifurcation picture of the dynamics explaining the relaxation oscillation in the HCM 
results as shown in Fig. 11. Curves indicate stationary solutions; line of open dots indicates oscillatory 
solutions. 

are no equilibria but the flow slows down, because other equilibria are present  at 
slightly larger values of IX. The critical structure for /x  =/x¢ is shown in Fig. 13(b), 
where the limit cycle connects to the saddle node. At slightly larger /x (Fig 13(c)) 
three equilibria appear,  of which only one is stable (the cold state), and the limit 
cycle has ceased to exist. 

Hence,  as the limit cycle increases in amplitude (with increasing /x), the length 
of the cold phase increases because of the presence of the stable steady cold 
branch at larger coupling. As trajectories pass close to this stationary point, the 
flow is necessarily slow. On the other hand, the period remains finite and the other 
(warm) phase of the oscillation is therefore relatively fast. A limit cycle-saddle 
node interaction might also explain the relaxation oscillation as presented in Fig. 
11. What  is required in addition to Fig. 12(a) is the existence of another  steady 
state at a coupling interval enclosing the limit cycle-saddle node interaction (Fig. 
14). Because of the bifurcation diagrams already encountered (see e.g. Fig. 8(a)) 
this seems reasonable. 

5. Resul ts  for ~ = 1: effects o f  ocean  wave d y n a m i c s  

We return now to the standard case in Section 3, i.e. with r = 0, 6 u = 0 and 
6F z = 0. To show how 6 4:0 affects the stability of the climatology (Fig. 1), we 
consider the simplest case E a = 0. For 6 s = 1, the growth factors 2 are shown for 
three different values of 6 in Fig. 15(a). In agreement  with Fig. 2(a), both growth 
factors are real for 6 = 0 and IZ > 0 and increase nearly linearly with/~. At  smaller 
/~, a two-degeneracy is present,  and the eigenvalues become complex conjugate. As 
soon as 6 4: 0, a two-degeneracy occurs at large tz which induces oscillatory 
instabilities at large coupling and which depends on time scales of ocean dynamics. 
This second two-degeneracy (Fig. 15(a)) shifts to smaller values of /.~ as 6 is 
increased. The range of values of /x where ocean dynamics is essential to the 
oscillations thereby becomes larger. 
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Fig. 15. (a) Growth factor A = Re(o') as a function of # for E, = 0.0, 8 s = 1.0 and three values of 6. (b) 
Same as (a) but for 6~ = 2.5. (c) Same as (a) but for 8~ = 2.l and showing only 6 = 1. 

From Fig. 2(a), we know that for 6 = 0 at larger 6 s the primary bifurcation point 
is of Hopf type (westward-propagating). As shown in Fig. 15(b), this is due to an 
upward shift of the two-degeneracy such that the oscillatory part of the branch 
becomes the primary instability. At larger Ix, the instabilities are still stationary. 
However, for 8 = 1 no stationary instabilities exist any longer in the computational 
domain. A picture of the eigenvalue branch at ~i, = 2.1 (Fig. 15(c)) shows that the 
two two-degeneracies, one associated with the westward-propagating SST mode 
and one associated with oscillation owing to wave dynamics, move to each other as 
8 s is increased. They finally merge at 6, ~ 2.3 in a three-degeneracy. At slightly 
larger 6,, the frequency associated with the oscillatory instability no longer goes to 
zero but passes through a minimum and increases again with larger Ix. The 
transition from a stationary (at 6 = 0) to a propagating regime (at 8 = 1) therefore 
occurs smoothly, e.g. at Ix = 0.5 (Fig. 15(b)); this confirms the results in Jin and 
Neelin (1993a), who explored this regime. In addition, at smaller values of Ix, the 
transition from a regime dominated by propagation to a regime where subsurface 
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memory is dominant also occurs smoothly. The eigenvector structures at both sides 
of the three-degeneracy are only slightly different. At Point 1 in Fig. 15(c), the 
structure resembles the SST oscillatory mode in the fast-wave limit (e.g. of Fig. 6). 
At Point 2, the SST pattern is fairly similar to that at Point 1, but the thermocline 
depth pattern is somewhat altered owing to the time scales of ocean adjustment. 

6. Discussion 

In this paper, we determined stable and unstable steady states of an intermedi- 
ate coupled ocean-a tmosphere  model. The types of dynamical behavior are 
basically those discussed by Hao et al. (1993) and Jin and Neelin (1993a), but the 
bifurcation pictures show exactly how this dynamics is established in parameter  
space. Complex dynamics can be understood through simpler structures by unfold- 
ing them in parameter  space. The knowledge of the unstable branches of steady 
states, which are 'hidden'  in a time-integration, is important to understand this 
dynamics. In this aspect, the results add greatly to those obtained by time 
integration. 

The climatology can become unstable at sufficiently large coupling, owing to 
both stationary and oscillatory instabilities. The results show the importance of the 
first two primary bifurcation points for the qualitative dynamics of the system. 
Because of the lack of symmetry of the system, there are generically three 
situations, T - T ,  T - H  or H - T ,  where T stands for transcritical and H for Hopf  
bifurcation points; for instance, T - H  denotes the case where the first mode to go 
unstable is purely growing, leading to other stationary solution branches through 
transcritical bifurcation, whereas at the second bifurcation oscillatory modes go 
unstable. 

If the first primary bifurcation from the climatology is transcritical, there exist at 
least two stable branches of steady states for an interval of coupling values/x. One 
of these branches is stable already for values of tx smaller than that at the primary 
bifurcation point. This implies that finite amplitude disturbances can bring the 
system into a new steady state, even though the original climatology is linearly 
stable. This type of subcritical instability is very likely to occur in more sophisti- 
cated models, because whenever a constructed climatological stationary branch 
goes unstable to a stationary mode, a transcritical bifurcation is expected generi- 
cally (owing to lack of symmetry in the vector field associated with such a model). 
Both stable steady states can be thought of as a climatology modified through 
coupling. It appears that this modification typically occurs in two ways: a shut-off 
of the cold tongue (through weakening of the upwelling and deepening of the 
thermocline in the eastern part of the basin, yielding a warm state), or a shift of 
the cold tongue to the center of the basin. 

In areas of parameter  space with a T - T  primary structure, a secondary branch 
of steady states containing a Hopf  bifurcation connects both T points. This 
behavior is typically found at small E a and small S s. The secondary Hopf  moves on 
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the primary branch either with increasing 6 s (at small Ea) or with decreasing 6s (at 
large Ca). In either case, the competition between two stationary modes, a coupling 
of two spatial degrees of freedom, is the origin of the westward- or eastward-prop- 
agating oscillatory instabilities, respectively. 

This mode competition provides an economical view of the relation between 
eastward- and westward-propagating oscillations, which occur in their respective 
parameter ranges. Only a few solution branches are involved in the structures in 
parameter  space that combine stationary modes to produce a westward-propagat- 
ing mode in one region and an eastward-propagating mode in another region. 
Thus, only a few spatial degrees of freedom are important in any one region 
(although the spatial structure of a given mode may also evolve smoothly as a 
function of a parameter, so the spatial degrees of freedom cannot be reduced a 
priori in the model). One might say that the same few modes are 'recycled' in 
different combinations according to the changes in relative importance of various 
physical processes. For instance, when the first two bifurcations are both transcriti- 
cal, the mode with the largest spatial scale is the first to go unstable, followed by 
the second mode, which has slightly smaller spatial scale and different spatial 
phase (e.g. as measured by the position of the extremum or zero crossing). In the 
case of intermediate values of S s (see Fig. 2(b)), the two competing physical 
processes are the surface-layer feedback and the thermocline feedback. Although 
both favor large-scale instabilities owing to the atmospheric response (Jin and 
Neelin, 1993a), the thermocline feedback depends on an integral over the wind 
stress and therefore favors large scales more strongly. As 6 s is increased, the role 
of the surface-layer feedbacks is enhanced and thus the second, smaller-scale 
mode catches up to the first, allowing the two spatial degrees of freedom to merge 
into a westward-propagating solution. 

This view is complementary to the discussion by Hao et al. (1993) based on the 
analogy between propagating modes in the finite basin case and those of the 
periodic basin case considered by Neelin (1991). The latter can provide physical 
intuition for the regimes where the modes are clearly propagating, but this analysis 
provides a much clearer picture of what happens in the stationary regimes in 
between. Furthermore, it permits understanding of cases where the bifurcation 
structure appears sensitive to small perturbations of the model. We provide an 
example by comparing the case where the parameter governing zonal advection is 
set to zero with the case where it is held constant while the parameter  governing 
upwelling is varied from zero to normal values. The bifurcation structure changes 
significantly with the zonal advection compared with the case without. However, 
the relation between the two cases can be understood by examining intermediate 
cases, both in terms of the interchange of solution branches and in physical terms, 
as the zonal advection maintains a westward-propagating tendency at smaller 
values of the upwelling feedback. 

A similar connection may be made between the stationary solutions and the 
oscillatory instabilities that arise from the time scales of ocean dynamical adjust- 
ment such as those in Cane-Zebiak  type models (Zebiak and Cane, 1987; Battisti 
and Hirst, 1989). A simple structure in parameter space links the westward-propa- 
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gating SST mode, two stationary SST modes and the mode depending on ocean 
dynamics, in a manner consistent with that conjectured by Jin and Neelin (1993a). 

In areas where the primary structure is H-T,  relaxation oscillations may be 
found as an interaction between a limit cycle and a saddle node. This is a striking 
example where nearby attractors in parameter space are needed to explain the 
dynamics. In areas where the primary structure is T -H,  Hopf-steady-state interac- 
tions and (associated with them) torus bifurcations may occur. These results are 
expected to be relevant to a class of flux-corrected models, including intermediate 
models, hybrid coupled models and possibly flux-corrected GCMs. We provide an 
example with a hybrid coupled model to illustrate how complex structures analo- 
gous to those found here can influence the time-dependent solutions, even when 
the structures are not directly inferrable from the time-dependent solution alone. 
These results suggest that certain types of sensitivity in such models may be 
associated with the presence of additional stationary solutions. Furthermore, laying 
bare the structure of the stationary solutions in parameter space, and the physical 
structure of the unstable modes that gives rise to them, helps to inform our 
intuition about how plausible it is that multiple stationary states can play a role in 
the observed tropical climate system. The fact that these solutions arise as 
transcritical bifurcations, and that they modify a prescribed climate state by 
mechanisms similar to that which should maintain it in the absence of flux 
correction, led us to conjecture that they were not likely to persist when flux 
correction is relaxed, and this has turned out to be the case (Neelin and Dijkstra, 
1995). The mapping of stationary solutions presented here thus has two main 
punchlines: on the one hand, it diagnoses a complex and potentially problematic 
feature of flux-corrected models; and on the other, it provides a rather complete 
picture of how the important (and robust) oscillatory solutions connect to each 
other in these models. 
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Appendix A: Details of the coupled model and expressions of dimensionless 
parameters in Eq. (4) 

In the ocean model, the surface layer velocities u s, u N and w s are parameterized 
a s  

us = b u [ r / ( p H ) ]  

% = - b w [ r / ( p H ) ]  + H , b . ~  x [ r / ( p H ) ]  

v N = - ( L y / 2 H , ) b w [ r / ( p H ) ]  

where b, and bw are constants. The subsurface temperature is parameterized as a 
function of h as done by Hao et al. (1993), e.g. 

Ts(h)  = T~o + (T O - Tso ) t anh[ (h  + h o ) / H  *] 

where h o is some offset value, T o is the equilibrium temperature in absence of 
dynamics and er  the related damping coefficient, Tso is the subsurface tempera- 
ture for h = - h  0 and H * controls the steepness of the transition if h passes 
through - h  o. In this way, the range of the subsurface temperature is given by 
[2Ts0 - To, To]. 

The steady-state mean velocity fields and thermocline displacements in (3) can 
be solved in terms of T with the result 

h( T; x ) =  { folfl( q~)G(  T; ,~) d~f3[~b(x - 1)] 
q 

_ 

u(T;  x )  = - i  f l ( $ ~ ) G ( T ;  ~) d ~ : f z [ $ ( x -  1)1 

with G(T; x ) = F o F ( x ) + / , A ( T ;  x), ~b = - i r  and 
1/2 

fl(4~x) = sin(24Q 

f 2 ( ~ x )  = [cos(24~x)]-1/2 sin(2~bx) 

f 3 (4 'x )  = [cos(z x)] 

With the scaling as mentioned in Section 2.1, the expressions for the parameters in 
Eq. (4) are 

H1 bwco e r L  

H tQ ' c o 

H h o b.c o 
3 ~ = F 0 6 , a - ' ,  r/, = H * '  r /z= H * '  a 2 = 6 " F ° '  a . -  L 
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Appendix B: Expressions of coefficients in basic state equation, Eq. (5) 

a l ( x  ) = a 2 F ( x )  +U(X)  

dl(X ) = Ew + bl( x ) + q(  x) 

d2(x ) = ewT o + bl(x)T~[h(x)] + C,(x)TN 

with 

bl(X ) = 1(1 +tanh{e-1162FF'(x)-r-h(x)-  81F(x)]}) 

• [a82F'(x) -arTl(x)  -aS~F(  x)] 

q ( x ) =  ½{1 + tanh[e-18~F( x)]} .a-lalFF( X ) 

Appendix C: Expressions for the coefficients in the linear stability problem 

The perturbation zonal velocity u and thermocline depth h can be expressed in 
terms of the temperature perturbation T through 

{folfl(ga~)A(Z; ~) dfff3[~b(x 1)] u(T; x) = -it* 

- f x lA(T;  ~')f314'(x-~')] d~'} 

=~{fo'fl(4,;~)A(T; ;~) d~'f3[q~(x - 1)] h(T; x )  

- fx lA(T;  O f i [ 4 ' ( x - ~ ' ) ]  dff} 

where ~b = - i ( o '8  + r) and the functions fi are the same as in Appendix A. The 
coefficients in Eq. (8) are given as follows. With f (z )  = ½11 + tanh(z/e)], i f (z)  = 
(1/2E) cosh-2(z/e) and g(h) = aTJah, we define 

 l(x) = 

a3(x ) = f ' [ - a 8 1 F ( x ) ]  - 8~F(x) 

fl,( x ) = f [ 8~F( x ) ] " 8~F( x ) 

/32(x ) = T ( x )  - T  x 

a l e ( x )  

TI(X) = g [Tl(x)] 
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and the coefficients become 

 w(X) = + + 8 1 ( x )  

= • 

b ( x )  = { f [ - 6 1 F (  x)]  q'- O~3(X)} "a2(X ) -- oL-lj~2(X) 

Appendix D: Numerical details 

Both steady solutions and periodic solutions can be computed within A U T O  
(Doedel, 1980). Steady solutions T(x)  of (4) are computed as follows. On an 
equidistant grid in x, xj = ( j -  1) Ax, j = 1 , . . . , M ,  ( M -  1)Ax = 1, we let uj = 
T(xj) ,  j = 1 . . . .  , M. By evaluating Eq. (4) at each grid point we obtain a system of 
nonlinear algebraic equations GM(U, p ) =  O, with a straightforward definition of 
the mapping GM: NM× ~3___> ~M and where p = (ca, 6 s, /x) r is the vector of 
parameters.  The accuracy set in A U T O  is 

I A x l / ( 1  + I A x l )  < e  x, I a u l ~ / ( a  + I a u l ~ )  < G  

where X and u denote a (free) parameter  and the solution vector, respectively. In 
the calculations reported,  e x = e, = 10 -6 was used. 

A similar approach is taken to compute the complex growth factors o- determin- 
ing the stability of a certain steady state. If 

Tj n =  Re[/~(Xy)] and T / =  Im[/~(x~)] 

,~ = Re(o-) ,  v = Im(( r )  

then the eigenvalue problem determining the stability of the basic state can be 
written as a nonlinear system of algebraic equations Fu(Y)  = O, where 

y=(r  . . . . .  rd,  r /  . . . .  

and a mapping FM: ~ 2M + 2~  ~RM+2, for which 2M equations are obtained by 
forcing (8) at each grid point and the other two equations arise through the 
normalization of real and complex part  of the eigenvector. This system of algebraic 
equations is solved again with the A U T O  code. 
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