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ABSTRACT 15	

The total amount of precipitation integrated across a precipitation feature 16	

(contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of 17	

the aggregate size of the disturbance, expressed as the rate of water mass lost or latent 18	

heat released, i.e. the power of the disturbance. The probability distribution of cluster 19	
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power is examined over the Tropics using Tropical Rainfall Measuring Mission (TRMM) 20	

3B42 satellite-retrieved rain rates and global climate model output. Observed 21	

distributions are scale-free from the smallest clusters up to a cutoff scale at high cluster 22	

power, after which the probability drops rapidly. After establishing an observational 23	

baseline, precipitation from the High Resolution Atmospheric Model (HIRAM) at two 24	

horizontal grid spacings (roughly 0.5 and 0.25°) are compared. When low rain rates are 25	

excluded by choosing a minimum rain rate threshold in defining clusters, the model 26	

accurately reproduces observed cluster power statistics at both resolutions. Middle and 27	

end-of-century cluster power distributions are investigated in HIRAM in simulations with 28	

prescribed sea surface temperatures and greenhouse gas concentrations from a “business 29	

as usual” global warming scenario. The probability of high cluster power events increases 30	

strongly by end-of-century, exceeding a factor of 10 for the highest power events for 31	

which statistics can be computed. Clausius-Clapeyron scaling accounts for only a fraction 32	

of the increased probability of high cluster power events. 33	

34	
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 34	

1. Introduction 35	

Extremes of precipitation intensity are projected to change across all global 36	

warming scenarios in the Coupled Model Intercomparison Project Phase 3 (CMIP3) and 37	

CMIP5 experiments (Tebaldi et al. 2006; Kharin et al. 2007, 2013; O’Gorman and 38	

Schneider 2009; Sillmann et al. 2013a,b). Tebaldi et al. (2006) review historical and 39	

future simulations from a suite of 9 coupled global climate models across multiple 40	

emissions scenarios, finding a clear signal of increased precipitation intensity emerging 41	

by end-of-century over the globe. Kharin et al. (2007 and 2013) also analyze a suite of 42	

coupled climate models for consistency in projections of extreme precipitation spanning 43	

the CMIP3 and CMIP5 experiments, finding shorter wait times for extreme precipitation 44	

events by end-of-century relative to historical climate, and that the intensity of extreme 45	

precipitation events increases at a rate of 6% per ° C of warming across both CMIP3 and 46	

CMIP5 experiments. Additionally, Sillmann et al. (2013b) find that several metrics of 47	

precipitation extremes increase proportional to warming.  48	

Uncertainties regarding changes in precipitation extremes emerge in both 49	

observations (e.g., Easterling et al. 2000; Alexander et al. 2006; Kharin et al. 2007, 2013; 50	

Lenderink and van Meijgaard 2008; Allan et al. 2010) and in global-scale simulations of 51	

extreme precipitation in recent climate and future climate (e.g., Tebaldi et al. 2006; 52	

Kharin et al. 2007, 2013; Allan and Soden 2008; Allan et al. 2010; Sillmann et al. 53	

2013a,b). Kharin et al. (2007) hypothesize that, over the Tropics, uncertainty in simulated 54	

extreme precipitation results from limitations in the representation of associated physical 55	

processes in climate models. Additionally, simulated precipitation extremes from an 56	
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ensemble of 19 CMIP3 models are lower than observed precipitation extremes from 57	

1987-2004 (Allan and Soden 2008). Chen and Knutson (2008) note that when 58	

considering extreme precipitation events, modeled precipitation should be analyzed as 59	

areal averages versus point estimates. At regional scales, a survey of climate model 60	

studies using multiple approaches (e.g., multi-model ensembles, downscaling) suggests 61	

that projected changes to extreme precipitation event frequency and intensity also exhibit 62	

large regional variability (e.g., Beniston et al. 2007; Kay and Washington 2008; 63	

Seneviratne et al. 2012; Vizy and Cook 2012; Haensler et al. 2013; Stocker et al. 2013; 64	

Barros et al. 2014; Sylla et al. 2015).  65	

Characterizing changes in the frequency and intensity of organized convection, 66	

including in tropical cyclones, is important because of their potential socio-economic 67	

impacts. Many studies into tropical cyclone changes under global warming suggest that 68	

overall global tropical cyclone frequency will decrease by end-of-century (e.g., Emanuel 69	

et al. 2008; Knutson et al. 2008, 2010, 2013; Bender et al. 2010), though tropical cyclone 70	

intensity is projected to increase, both measured by higher rain rates and hurricane 71	

category (e.g., Webster et al. 2005; Emanuel et al. 2008; Gualdi et al. 2008; Knutson et al. 72	

2008, 2013; Bender et al. 2010). Changes in tropical cyclone intensity under global 73	

warming are further investigated in climate model simulations by Knutson et al. (2013), 74	

Villarini et al. (2014), and Wehner et al. (2015). Decreases in the total number of tropical 75	

cyclones but increases in intense tropical cyclones in future climate under global 76	

warming are described in Knutson et al. (2013) and Wehner et al. (2015). Rainfall rates 77	

associated with tropical cyclones are projected to increase (Knutson et al. 2013; Villarini 78	

et al. 2014; Wehner et al. 2015), scaling with the Clausius-Clapeyron (CC) relationship in 79	
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some regions (Knutson et al. 2013; Villarini et al. 2014), but exceeding results expected 80	

under CC-scaling near centers of tropical cyclones (Knutson et al. 2013; Wehner et al. 81	

2015). More generally, changes in convective organization, as noted in observations by 82	

Tan et al. (2015), may be important to changes in precipitation extremes. 83	

Work to better understand processes of convective organization (e.g., Leary and 84	

Houze 1979; Houze 1982; Houze 1989; Mapes and Houze 1993; Houze 2004) in current 85	

climate includes studies of the self-aggregation of tropical convection over smaller 86	

domains (e.g., Bretherton et al. 2005; Muller and Held 2012; Khairoutdinov and Emanuel 87	

2013; Wing and Emanuel 2014; Wing and Cronin 2015). The aggregation of convection 88	

into clusters has been shown to be sensitive to: hydrometeor parameterization (Bretherton 89	

et al. 2005); Coriolis forcing (Bretherton et al. 2005); low cloud distribution (Muller and 90	

Held 2012); SST changes (Khairoutdinov and Emanuel 2013); and advection of moist 91	

static energy (Wing and Cronin 2015). Additionally, Wing and Emanuel (2014) note that 92	

processes that initiate the aggregation of convective cells into clusters (e.g., atmospheric 93	

water vapor absorbing shortwave radiation, surface heat flux) are different than processes 94	

that maintain aggregation once it has already occurred (e.g., longwave radiation 95	

feedback). Cluster aggregation processes at smaller scales appear to continue into 96	

idealized large domains in modeling studies (Holloway et al. 2012; Bretherton and 97	

Khairoutdinov 2015; Arnold and Randall 2015).  98	

Observational studies of tropical precipitation clusters over large domains include 99	

Mapes et al. (2009), Peters et al. (2009, 2010, 2012), Wood and Field (2011), and Skok et 100	

al. (2013). In Skok et al. (2013), space-time clusters are defined to analyze precipitation 101	

statistics associated with tropical cyclones, using satellite-retrieved precipitation 102	
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estimates from the Tropical Rainfall Measuring Mission (TRMM-3B42). Mapes et al. 103	

(2009) examines cluster lifecycle and size distributions using IR and scatterometer data 104	

sets over the Tropics, noting that small clusters with brief lifespans constitute the vast 105	

majority of oceanic storm clusters. Wood and Field (2011) and Peters et al. (2009, 2010, 106	

2012) analyze storm cluster organization using a variety of observational datasets, noting 107	

that probability distributions of cluster cloud area (Peters et al. 2009; Wood and Field 108	

2011), precipitation integrated across contiguous precipitating clusters (cluster power, 109	

Peters et al. 2012) or precipitation accumulations, i.e. precipitation integrated across 110	

temporal events (Peters et al. 2010) follow a long, scale-free power law, with a distinct 111	

cutoff, i.e. a more rapid drop in frequency of occurrence, at large cluster area and high 112	

power. Cluster power behavior above the cutoff is different than behavior below the 113	

cutoff, in part because different physical processes drive daily tropical convection and 114	

tropical cyclones (Peters et al. 2012). Furthermore, Peters et al. (2012) noted that tropical 115	

cyclones provide significant contributions to the tail in the large event regime. Neelin et 116	

al. (2017) find changes in end-of-century precipitation accumulations, especially for 117	

changes in probability of the very largest accumulations. This is associated with the form 118	

of the distribution, and in particular with the physics that determines how the cutoff scale 119	

changes with warming, motivating examination here of analogous behavior for spatial 120	

clusters. 121	

There is a need for the validation of rainfall simulations in climate models, 122	

especially extreme events in quantities likely important for changes under global 123	

warming, such as measures of organized convection. Distributions of precipitation 124	

integrated across a cluster over the Tropics are thus examined here for the first time as i) 125	
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a potentially useful measure both as a metric of model simulation in current climate and ii) 126	

as a measure of changes in tropical disturbances in simulations of future climate. This 127	

integrated precipitation can be described as cluster power (defined here as the 128	

instantaneous latent heat release integrated over a cluster of contiguous precipitating grid 129	

cells). Distributions and tail sensitivity to the most powerful storm clusters at a global 130	

scale are examined in satellite observations with full spatial coverage and compared to 131	

climate model simulations for the first time, examining the relationship between cluster 132	

power and rain rate across a global domain. We first establish an observational baseline 133	

using satellite-retrieved precipitation data to test its usefulness for comparison to climate 134	

model output at two resolutions. Second, we assess how reliably a high resolution climate 135	

model can simulate historical cluster power distributions. Lastly, we apply output from 136	

future runs of the same model to examine mid- and end-of-century simulated cluster 137	

power distributions, quantifying the influence of global warming on cluster power 138	

behavior. These results for a high-resolution model set the stage for further examination 139	

of lower resolution coupled models from the CMIP5 archive in Part II. 140	

 141	

2. Data and Methods 142	

Satellite-retrieved rain rate data from the Tropical Rainfall Measuring Mission 143	

(TRMM-3B42) program are used to build a baseline of cluster power behavior. Data 144	

from sensors onboard the TRMM spacecraft are merged with data from other satellites to 145	

provide gap-free TRMM-3B42 rain rate data over oceans and land, and are available 146	

beginning in 1998 (Huffman et al. 2007; TRMM 2015). These data have units of 147	

millimeters per hour and are available every three hours over a 0.250 x 0.250 latitude-148	
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longitude grid. For consistency with our comparisons in Part II, we analyze twice daily 149	

TRMM-3B42 time slices at 00 UTC and 12 UTC. To calculate cluster power, 150	

precipitating grid cells meeting a minimum rain rate threshold are first aggregated into 151	

distinct clusters. From there, cluster power is expressed as the instantaneous latent heat 152	

release integrated over a cluster in units of gigawatts by multiplying rain rates by the 153	

latent heat of condensation (2.5 x 106 J kg-1), which relates cluster power to the Earth’s 154	

energy budget. Cluster power can also be expressed equivalently in terms of a mass 155	

budget as the integrated mass of water lost per hour (kg H2O hr-1) with 1 GW equal to 156	

1.4x106 kg H2O hr-1 lost. 157	

Precipitation data from the Geophysical Fluid Dynamics Laboratory (GFDL) 158	

High Resolution Atmospheric Model (HIRAM) at two horizontal resolutions are 159	

incorporated into this study:  HIRAM-C360 (25 km) and HIRAM-C180 (50 km) (Zhao et 160	

al. 2009, 2010; Chen and Lin 2011; Held and Zhao 2011; Zhao and Held 2011, 2012; 161	

Merlis et al. 2013; Villarini et al. 2014; GFDL 2015). HIRAM output is derived from the 162	

historical Atmospheric Model Intercomparison Project (AMIP, 1979-2008) and future 163	

(SST2030, 2026-2035 and SST2090, 2086-2095) experiments, incorporating prescribed 164	

sea surface temperatures (SSTs) from the Met Office Hadley Centre Sea Ice and SST 165	

version 1.1 model (Rayner et al. 2003) for the historical period, and greenhouse gas and 166	

SST anomalies from the GFDL-Earth System Model 2 (ESM2) for future runs. 167	

Precipitation data are given at three hourly intervals in units of precipitation flux (kg m-2 168	

s-1), though to stay consistent with the TRMM-3B42 retrieval, instantaneous HIRAM 169	

cluster power snapshots from only 00 UTC and 12 UTC with rain rates meeting a 170	

minimum threshold are aggregated into distinct clusters. These clusters then have their 171	
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rate of water mass loss converted to instantaneous latent heat release, using the same 172	

method as the TRMM-3B42 dataset. Next, we compare AMIP simulation output with 173	

satellite-retrieved data to assess its accuracy in simulating historical conditions. After 174	

establishing an accurate AMIP baseline, we then use these AMIP simulations for the 175	

comparison with future climate simulations, with C360 data directly compared to 176	

observed data due to their comparable spatial resolution. 177	

 The binning procedure in building probability density functions (PDFs) for these 178	

distributions is as follows. One wants to have bin width increase smoothly as 179	

probabilities drop, for which a bin width that is approximately constant in log space is 180	

suitable. It is important also to recognize that the increments of cluster size are quantized 181	

to multiples of the minimum cluster size. To ensure that the bin spacing is consistent with 182	

this, bin widths are adjusted to the integer multiple of the minimum cluster size that is 183	

closest to the asymptotic constant bin width chosen for the upper end of the distribution. 184	

In practice, the variations in bin are small; Table 1 of the Supplementary Information 185	

shows both bin width and histogram counts Ni prior to normalization by the width of bin i 186	

and the total counts for each analysis presented. Error bars are given by ± Ni
1/2, with the 187	

same normalization as the PDF.  The minimum cluster size is set by the grid size and the 188	

minimum precipitation threshold, so the same bin boundaries apply to historical and 189	

future climate runs of the same dataset. Cluster power distributions for 1 May-30 190	

September are shown over a global tropics domain from 300S to 300N. To illustrate the 191	

extent to which cluster power behavior is influenced by domain size a northern Atlantic-192	

East Pacific domain, extending from the Equator to 300N and from 1400W across the 193	
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Americas and Atlantic Ocean to 00E, is shown in the Supplementary Information. Cluster 194	

power distributions were also examined over other domains yielding similar results. 195	

 196	

3. Analysis 197	

3.1 Cluster Power Distributions:  Observations 198	

Previous cluster studies have analyzed cluster quantities such as cloud area above 199	

a certain reflectivity threshold (Wood and Field 2011), storm cluster area and duration 200	

using IR imagery and scatterometer data (Mapes et al. 2009), and cluster area and power 201	

using satellite radar and passive microwave imagery (Peters et al. 2009, 2012). In the 202	

case of radar imagery, these have been for narrow swaths, limited by the radar swath 203	

width. In Figure 1 we form an observational baseline for cluster power using satellite-204	

retrieved rain rate data, evaluating the merged satellite TRMM-3B42 retrieval at a global 205	

scale over land and ocean, so statistics are not limited by swath width. Figure 1 examines 206	

TRMM-3B42 cluster power distributions for multiple rain rate thresholds at a global 207	

scale.  208	

Across the Tropics at multiple rain rate thresholds (Figure 1), TRMM-3B42 209	

cluster power distributions follow a long, scale-free power law, similar to Peters et al. 210	

(2012), which noted an exponent of -1.87 in the TRMM radar 2A25 retrieval. The 211	

exponent here (as estimated from the slope of the least squares best-fit line over the 212	

power law range at the 0.7 mm hr-1 rain rate threshold in Fig. 1) is -1.50. In Fig. 1, the 213	

cutoff that terminates the power law range for all rain rate thresholds lies at 214	

approximately 105 GW, with the frequency of the highest power clusters for all 215	
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distributions falling off more rapidly after the cutoff. This cutoff also appears to be 216	

insensitive to rain rate threshold. Note that the cluster power of the lowest power bin 217	

depends on rain rate threshold, simply because the minimum cluster power is a function 218	

of the minimum rain rate considered and the grid cell size. Cluster power distributions 219	

must begin at a threshold-dependent minimum power and are shifted slightly because this 220	

affects the normalization of the probability distribution.  221	

To provide further context for this distribution, Figure S1 shows the distribution 222	

of cluster area (previously examined in other data sets by Mapes and Houze 1993; Peters 223	

et al. 2009), which likewise exhibits an approximate power law range followed by a 224	

reduction in probability above the cutoff scale. The cutoff scale for area is more 225	

dependent on rain rate threshold than that for power in the total rate of water loss from 226	

the cluster is a physically important quantity, so we focus on cluster power. To provide a 227	

sense of how whether the cluster power distribution might change if evaluated over a 228	

particular subset of the tropics, Figure S2 shows comparable results for the Atlantic-East 229	

Pacific region. The power law range has similar exponent (-1.42 versus-1.50) and the 230	

cutoff occurs at a similar power. 231	

Intriguingly, the form of the cluster power probability distribution is similar to 232	

what occurs for temporal clusters, i.e. accumulations of precipitation over events, in a 233	

simple prototype model (Stechmann and Neelin 2011, 2014; Neelin et al. 2017) that also 234	

exhibits a power law range with approximately exponential cut off. The exponent of that 235	

simple configuration, -1.5, is close to the exponent for precipitation integrated over 236	

spatial clusters here. An apparent exponent of -1.2 or steeper, depending on convective 237	

parameters, was noted for the power law range in cluster area distributions in a similar 238	
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simple model (Hottovy and Stechmann 2015), but no quantitative prototype appears to 239	

exist yet for integrated cluster precipitation. For continuity with previous literature, 240	

probability distributions for cluster area are shown for reference in Fig. 1 of the 241	

Supplementary Information (SI). Similar to the power distributions, an approximately 242	

power-law range is found for cluster area, extending from the minimum area (7x108 m2) 243	

to a qualitatively similar cutoff at around 3x1011 m2, with exponent of approximately -1.7. 244	

The cutoff for area distributions exhibits slightly more dependence on rain rate threshold. 245	

We choose the integrated precipitation/power for the cluster for the remainder of this 246	

work because of its greater physical importance due to the correspondence to total water 247	

loss/latent heat release from the cluster.  248	

 Figure 2 displays typical satellite-retrieved cluster morphology at the lowest and 249	

highest minimum rain rate thresholds considered in this study (0.1 mm hr-1 and 0.7 mm 250	

hr-1) for a sample day in 2004. Most clusters at the 0.1 mm hr-1 rain rate threshold with 251	

high cluster power (≥ 105 GW) resemble tropical cyclones, mesoscale convective systems, 252	

ITCZ-like features, or the tail ends of mid-latitude fronts that occasionally pass between 253	

200 and 300N/S. At the 0.7 mm hr-1 rain rate threshold, overall structure of most features 254	

remains the same, with only some trimming on the edges of the largest features. These 255	

examples of cluster morphology are provided simply to illustrate the phenomena that are 256	

being condensed into the distributions, and provide a sense of why little variation in 257	

cluster power behavior across rain rate thresholds occurs in the observational 258	

distributions. 259	

 260	
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3.2. Cluster Power Distributions:  Historical HIRAM Output 261	

Figures 3-5 quantify how the HIRAM at two horizontal resolutions approximates 262	

observed cluster power behavior. Figure 3 compares HIRAM cluster power distributions 263	

at multiple rain rate thresholds, while Figure 4 displays HIRAM distributions at two 264	

resolutions. Figure 5 overlays HIRAM-C360 and TRMM-3B42 cluster power 265	

distributions at two rain rate thresholds.  266	

 Like the TRMM-3B42 dataset (Figure 1), HIRAM cluster power distributions 267	

(Figures 3-4) are also scale-free along a power law range, have a cutoff around 105 GW, 268	

and display little sensitivity to rain rate threshold along the power law range before the 269	

cutoff. Additionally, HIRAM distribution least squares best-fit exponents (for the 0.7 mm 270	

hr-1 threshold) range from -1.36 to -1.39 (depending on horizontal resolution), similar to 271	

the TRMM-3B42 analysis (-1.50, Figure 1). The lower resolution simulation (C180) has 272	

a shorter scale-free region due to coarser resolution resulting in a larger minimum cluster 273	

area and hence larger minimum cluster power. The C180 PDF is slightly further from the 274	

observations in the sense that probability density drops slightly less steeply than that of 275	

C360. Otherwise, its scale-free power law range and cutoff closely parallel that from the 276	

higher resolution simulation (Figure 4).  277	

 Tail behavior sensitivity to rain rate threshold is quantified in Figure 3. While 278	

TRMM-3B42 distributions exhibit little sensitivity, HIRAM distributions do exhibit 279	

substantial sensitivity above the cutoff for low rain rate thresholds. At rain rate thresholds 280	

below 0.3 mm hr-1, the cutoff shifts towards higher power. This finding is consistent with 281	

previous findings that global climate models can overestimate light precipitation 282	
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coverage (e.g., Dai 2006). Beginning at a rain rate threshold of 0.3 mm hr-1 and above, 283	

tails of the distributions converge, suggesting that it is important to exclude low rain rates 284	

from clusters and that higher minimum rain rate thresholds are more robust for 285	

comparison with observations. For an illustration of the spatial behavior of modeled 286	

precipitation clusters, refer to Figures S3-S4 in the SI.    287	

 The comparison between TRMM-3B42 and HIRAM-C360 cluster power 288	

distributions in Figure 6 shows that, in general, the tail of the modeled power distribution 289	

at the 0.7 mm hr-1 rain rate threshold more closely parallels the TRMM-3B42 distribution. 290	

Although their least squares best-fit exponents are slightly different (-1.39 for HIRAM-291	

C360, Figure 3, -1.50 for TRMM-3B42, Figure 1), and the tail of the TRMM-3B42 292	

distribution is longer, the tails for both distributions at high power are very similar.   293	

We also ask how HIRAM-C360 cluster power distributions compare to 294	

distributions from a synthetic time series created from the same data that deliberately 295	

removes any spatial relations beyond those that would occur from the climatological 296	

probability of precipitation (Figure 5). Clusters can occur even in simple systems in 297	

which there is no spatial correlation and under certain circumstances these can have 298	

power law distributions (Stauffer and Aharony, 1994; for discussion in a meteorological 299	

context see, e.g., Peters et al. 2009) —due diligence thus requires that we verify that the 300	

reproduction of observed cluster distributions by HIRAM is well distinguished from such 301	

a simple case. The synthetic time series is analogous to a statistical null hypothesis model, 302	

in that strong differences between HIRAM-C360 cluster power distributions and those of 303	

the synthetic time series provide evidence that spatial relations simulated dynamically in 304	

the model are key to producing the pdf. To build the synthetic time series that preserves 305	
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rain rate probabilities while artificially removing these spatial relations, we select rain 306	

rate values for each grid cell from random time steps at the same spatial location using 307	

HIRAM-C360 data from 1 May-30 September 1979-1999. The rain rate probabilities as a 308	

function of space are preserved, but all other spatial autocorrelation effects are destroyed. 309	

Clusters are then evaluated from the synthetic time series at rain rate thresholds of 0.3 310	

mm hr-1 and 0.7 mm hr-1 just as for the actual HIRAM-C360 output, and the PDFs are 311	

compared. The synthetic time series distributions clearly have different structures than 312	

the observed/HIRAM distributions; the power law range, if present, is too short to be 313	

clearly seen, and distinct cutoffs occur at relatively low cluster power. This comparison 314	

suggests that the features of the observed cluster PDF captured by HIRAM are not 315	

obtained just by chance occurrence of neighboring raining points. 316	

 317	

3.3. Cluster Power Distributions:  Future HIRAM Output 318	

Changes in the frequency of high cluster power events (e.g., tropical cyclones) 319	

may have large societal repercussions. As a result, we examine changes in future cluster 320	

power distributions (Figures 6-7) by comparing historical (AMIP), mid-century 321	

(SST2030), and end-of-century (SST2090) cluster power distributions at the 0.7 mm hr-1 322	

rain rate threshold used in this study. Historical, mid-century, and end-of-century 323	

distributions are very similar to each other before the cutoff, following the same long, 324	

scale-free power law range (Figure 6). By end-of-century, there is a clear signal in both 325	

simulations that indicates a shift towards higher power in the tail region, implying more 326	

frequent intense storm clusters (Figure 6). This increase (for the highest three bins for 327	
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which statistics can be calculated, which span a factor of 4 in storm power — 2 x 105 GW 328	

to 8 x 105 GW) is a factor of approximately 3, 10, and almost 20, respectively, as 329	

indicated on Figure 7a for the highest resolution simulation by end-of-century. Figure 7b 330	

shows an alternate means of displaying this information as a form of risk ratio (Otto et al. 331	

2012), specifically, showing the ratio of  the probability density. This increases rapidly 332	

for the largest cluster sizes, similar to time-domain results for accumulations (Neelin et al. 333	

2017) which exhibited an approximately exponential increase for the largest 334	

accumulations. The end of century also has events of unprecedented size, as may be seen 335	

in Fig. 7a, but these are not shown in Fig. 7b since they would be estimated as infinite 336	

ratio. Figure 7b also shows a test of robustness of the binning procedure, showing two 337	

cases with slightly smaller asymptotic bin widths, for which the last bin with nonzero 338	

counts in the historical period is shifted by approximately half a bin width and almost one 339	

bin width, respectively. These yield highly consistent results over the portion of the curve 340	

that they estimate. Additionally, if instead of considering changes to the probabilities of 341	

fixed bins, we consider how the tail of the distribution extends, the probability 342	

corresponding to the highest power bin in the historical period shifts to higher power — 343	

for the end-of-century this probability occurs for a power that has increased by roughly a 344	

factor of 1.4 relative to current climate (Figure 7a). 345	

Other studies (e.g., Knutson et al. 2013; Villarini et al. 2014; Wehner et al. 2015) 346	

have compared changes in modeled rain rates under global warming scenarios with 347	

changes expected under Clausius-Clapeyron (CC) scaling of humidity, so to test a 348	

possible physical explanation for the increased probability of intense storm clusters by 349	

end-of-century, we examine changes to cluster power distributions under a realistic 350	
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global warming scenario. The difference in mean global temperature between HIRAM-351	

C360 SST2090 and AMIP experiments is +2.16 K, within the range of temperature 352	

increase projected by Stocker et al. (2013). Assuming a 7% increase in specific humidity 353	

per 1 K warming under the CC relationship, this represents a possible 15.12% increase in 354	

precipitation under global warming. Given this warming, we multiply HIRAM-C360 355	

AMIP rain rates (at the 0.7 mm hr-1 threshold) by a factor of 1.15, re-cluster (keeping the 356	

same threshold), and then re-analyze this CC-scaled dataset, comparing its distribution of 357	

cluster power to HIRAM-C360 AMIP and SST2090 distributions. 358	

 The application of a CC-scaling factor to the HIRAM-C360 AMIP dataset does 359	

increase frequency of the most powerful storm clusters and shift the tail region of the CC-360	

scaled dataset towards higher power compared to the original HIRAM-C360 AMIP 361	

dataset (Figure 7c). However, this application appears to only account for a fraction of 362	

the increased probability of the most intense storm clusters, suggesting that the increased 363	

probability of the most intense storm clusters by end-of-century is significantly higher 364	

than that expected based on a simple CC-scaling of precipitation intensity. Knutson et al. 365	

(2013) and Wehner et al. (2015) also found that rain rate increases surrounding the cores 366	

(e.g., within 200 km) of intense tropical cyclones under global warming exceed rain rate 367	

increases that would be expected solely under CC scaling of precipitation, hypothesizing 368	

a link between this exceedance and the dynamics driving the intensity around the cores of 369	

intense tropical cyclones. Wang et al (2015) also note a link between an increase in 370	

precipitation rates near storm centers, CC-scaling, and the dynamics affecting the 371	

convergence near storm centers. In a different study, Knutson et al (2015) find that where 372	

end-of-century SST increases are particularly large, though not uniform globally, the 373	
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amount of precipitation associated with intense hurricanes also increases at a rate 374	

exceeding CC-scaling of precipitation. Although detailed analysis of spatial structures 375	

beyond the scope of this work, Fig. S4 provides examples of storms from the large-power 376	

end of the distribution for reference. 377	

 378	

4. Summary and Discussion 379	

Observed cluster power distributions are found to follow a long, scale-free power 380	

law between 10 – 105 GW, with a rapid drop off in the frequency of storm clusters with 381	

high cluster power thereafter. In units of mass loss, the cutoff near 105 GW is equivalent 382	

to approximately 1011 kg hr-1. The phenomena leading to these clusters range from 383	

convective phenomena at the grid cell scale (approximately 25 km) and mesoscale 384	

clusters through ITCZ disturbances and tropical cyclones. The cutoff at high power is 385	

largely independent of rain rate in the observations, and here is found in a data set not 386	

limited by swath width, or land versus ocean retrievals. This suggests that some set of 387	

physical factors within the tropical climate system and the meteorology of storm 388	

aggregation must lead to the existence of the cutoff, as further discussed below. 389	

 HIRAM simulations at both resolutions for the historical period accurately 390	

reproduce observed distributions using a minimum rain rate threshold of 0.7 mm hr-1, 391	

with similar least squares best-fit exponents over the power law range (-1.5 for TRMM-392	

3B42, -1.39/-1.36 for HIRAM-C360/C180). At both model resolutions, the cutoff at high 393	

power is correctly produced near 105 GW, suggesting that model resolution has little 394	

impact on simulating cluster power. HIRAM cutoff values are sensitive to rain rate 395	
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threshold, due to overly widespread occurrence of low rain rates, but agree well provided 396	

the threshold is not too low.  397	

A first step in posing the question of what processes might be important to this 398	

distribution shape is to ask whether the HIRAM simulation of the atmospheric dynamics 399	

driving the aggregation of neighboring contiguous precipitating grid cells can be 400	

distinguished from simpler processes that might be hypothesized to account for some of 401	

the effects. The simplest process that can create clusters potentially exhibiting such a 402	

distribution, including a power law range under certain circumstances, would be one in 403	

which precipitation occurs with observed probabilities but without the dynamical 404	

information of spatial relations. Constructing a synthetic time series from the HIRAM-405	

C360 data but with the spatial relation between grid cells destroyed by randomizing the 406	

time step from which the rain rate sample is drawn  provides a simple foil that acts like a 407	

null hypothesis. The cluster power distributions resulting from the synthetic time series 408	

are quantitatively well distinguished from the observed and HIRAM distributions. This 409	

verifies that the atmospheric dynamics driving cluster distributions in HIRAM are more 410	

complex than simply yielding reasonable probabilities of precipitation.  411	

The long scale-free range in both observations and HIRAM but not in the simplest 412	

case tested by the synthetic time series suggests that the length and slope of the scale-free 413	

range, as well as the apparent change of dynamical regimes at the cutoff, constitute 414	

interesting targets for explanation in modeling of cluster aggregation. Theory has recently 415	

been developed for the distribution of precipitation accumulation—the integral of 416	

precipitation over the time for which it exceeds a specified threshold — which is the 417	

analog in the time domain of the cluster power integrated over spatially continuous points. 418	
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The accumulation distribution with a power law range followed by a roughly exponential 419	

cut off seen in observations (Peters et al. 2010) and models (Neelin et al. 2017) can be 420	

mimicked by stochastic models for the prognostic column moisture equation (Stechmann 421	

and Neelin 2014; Neelin et al. 2017). In the time domain case, fluctuations of moisture 422	

convergence drive variations of moisture, with the time derivative of moisture providing 423	

a memory of previous states. Precipitation accumulation corresponds to the physical 424	

effect of the integrated loss of moisture.  The cutoff scale is set by the interplay between 425	

the magnitude of the moisture convergence fluctuations and the integrated loss and thus 426	

increases under global warming as moisture convergence fluctuations increase (Neelin et 427	

al. 2017). Creating analogous theory for the spatial case is desirable but is a nontrivial 428	

undertaking, given the complex processes creating horizontal relations between 429	

neighboring columns, including moisture transport by convergent and rotational 430	

components of the flow, gravity wave dynamics, and radiative interactions.  We 431	

conjecture that model experiments in idealized domains or with interventions in model 432	

dynamics that have been used to study various aspects of aggregation (e.g., Bretherton et 433	

al. 2005; Muller and Held 2012; Holloway et al. 2012; Khairoutdinov and Emanuel 2013; 434	

Wing and Emanuel 2014; Wing and Cronin 2015; Bretherton and Khairoutdinov 2015; 435	

Arnold and Randall 2015) might feasibly be used to determine if the cutoff scale found 436	

here corresponds to any fundamental physical scale of the system. 437	

 Because the cutoff affects the probability of the highest cluster power events, 438	

potentially very important for human impacts, changes to cluster power distributions 439	

under global warming are examined. HIRAM cluster power distributions at both 440	

resolutions from the future SST2030 and SST2090 experiments have the same long, 441	
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scale-free range as historical HIRAM output, but the cutoff tends to shift toward higher 442	

power. A natural simple hypothesis to compare against for the increased probability of 443	

more intense storms by end-of-century, is a CC-scaling of the precipitation to factor in 444	

the simplest impacts of temperature on specific humidity. Specifically, a CC-scaling 445	

factor of 7% increase per degree of warming under the projected change to mean global 446	

temperature (2.16 K, calculated using HIRAM-C360 AMIP and SST2090 temperature 447	

data) was applied to the HIRAM-C360 AMIP dataset before running the same clustering 448	

and binning procedures. The resulting cluster power distribution with this hypothetical 449	

CC-scaled precipitation lies between the original AMIP and SST2090 cluster power 450	

distributions, indicating that the change in future cluster power distributions considerably 451	

exceeds expectations based on a simple CC-scaling of rain rates.  452	

 The shift of the cutoff toward higher cluster power in the warmer climate has a 453	

substantial impact on the frequency of occurrence of the largest storms. The probability 454	

of high cluster power events for the end of century relative to the historical period 455	

increases rapidly beyond the historical cutoff. These increases substantially exceed a 456	

factor of 10 for the highest bin for which cluster power statistics can be computed in the 457	

historical period. Phrased another way, at the corresponding value of probability for the 458	

highest bin in which statistics can be computed for the historical period, the end of 459	

century clusters would be roughly 40% more powerful.  460	

 461	
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 673	

Figure captions: 674	

Fig. 1 Probability distributions of cluster power, i.e., precipitation integrated over clusters of 675	

contiguous pixels exceeding the specified rain rate threshold, expressed in units of latent heat 676	

release (gigawatt) with 1 GW equivalent to 1.4x106 kg H2O hr-1 in integrated precipitation. 677	

Clusters are calculated from the TRMM-3B42 precipitation product, over the Tropics, May-678	

September 1998-2008. The least squares best-fit exponent before the cutoff (fit over the scale-free 679	

range up to 105 GW for the 0.7 mm hr-1 threshold) is -1.50. 680	

Fig. 2 Examples of precipitation clusters from selected TRMM-3B42 time slice for rain rate 681	

thresholds 0.1 mm hr-1 and 0.7 mm hr-1, as indicated. The spatial distribution of each cluster is 682	

shown with the power integrated over the cluster given by the legend. 683	

Fig. 3 Same as Fig. 1, but for GFDL-HIRAM AMIP simulations at two resolutions (C180 and 684	

C360). For readability, HIRAM-C180 AMIP distributions have been shifted up vertically by a 685	

decade. The least squares best-fit exponent before the cutoff is -1.36 for HIRAM C180 and -1.39 686	

for HIRAM-C360. 687	

Fig.4 Same as in Fig. 3, but comparing modeled cluster power probability distributions between 688	

resolutions for the 0.7 mm hr-1 rain rate threshold , with no vertical shift of the HIRAM C180 689	

distribution. Note that the normalization differs simply because the course resolution model does 690	

not extend to as small a minimum cluster size. 691	

Fig. 5 Observed (TRMM-3B42) and modeled (HIRAM-C360 AMIP) Tropics cluster power 692	

probability distributions for May-September 1998-2008 for rain rate thresholds 0.3 mm hr-1 and 693	

0.7 mm hr-1. Also plotted are cluster probability distributions at each rain rate threshold from a 694	
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synthetic time series created by random selections from 1979-1999 HIRAM-C360 AMIP data 695	

that preserve probability distributions at each point but not spatial correlations (see text). The 696	

distributions for the 0.7 mm hr-1 rain rate threshold have been shifted up vertically by two decades 697	

to improve readability. 698	

Fig. 6 Same as Fig. 3, displaying a comparison of HIRAM cluster power probability distributions 699	

at two resolutions for historical (AMIP, May-September 1998-2008) and future (SST2030/2090, 700	

May-September 2026-2035/2086-2095) simulations for the 0.7 mm hr-1 rain rate threshold. 701	

HIRAM-C180 cluster power distributions have been shifted up vertically by a decade for 702	

readability. 703	

Fig. 7 (a) As in Fig. 6, the change in the distribution of cluster power between historical (AMIP) 704	

and future (SST2090) simulations for the 0.7mm hr-1 rain rate threshold using the higher 705	

resolution HIRAM (C360), with probability increase factors displayed for selected bins above the 706	

cutoff (vertical arrows). Horizontal arrow shows the estimated power increase for the probability 707	

value at the highest bin that can be estimated in current climate. (b) The change in cluster power 708	

distribution displayed as a risk ratio of the probability density for end-of-century to that in the 709	

historical period. Magenta line shows the risk ratio as estimated from the curves in (a); black and 710	

gray curves show tests of sensitivity to alternate bin-width choices: asymptotic bin widths of 711	

0.1920 (black), 0.1960 (cyan). Ac) Black and magenta curves same as Fig. 7a, with an additional 712	

comparison (red) to the AMIP dataset with a CC-scaling factor applied (see text). 713	

 714	
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 715	

Fig. 1 Probability distributions of cluster power, i.e., precipitation integrated over clusters of 716	

contiguous pixels exceeding the specified rain rate threshold, expressed in units of latent heat 717	

release (gigawatt) with 1 GW equivalent to 1.4x106 kg H2O hr-1 in integrated precipitation. 718	

Clusters are calculated from the TRMM-3B42 precipitation product, over the Tropics, May-719	

September 1998-2008. The least squares best-fit exponent before the cutoff (fit over the scale-free 720	

range up to 105 GW for the 0.7 mm hr-1 threshold) is -1.50.721	
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 722	

723	

 724	

Fig. 2 Examples of precipitation clusters from selected TRMM-3B42 time slice for rain rate 725	

thresholds 0.1 mm hr-1 and 0.7 mm hr-1, as indicated. The spatial distribution of each cluster is 726	

shown with the power integrated over the cluster given by the legend. 727	

728	
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 728	

 729	

Fig. 3 Same as Fig. 1, but for GFDL-HIRAM AMIP simulations at two resolutions (C180 and 730	

C360). For readability, HIRAM-C180 AMIP distributions have been shifted up vertically by a 731	

decade (i.e. its y-axis values are offset by 1 power of 10). The least squares best-fit exponent 732	

before the cutoff is -1.36 for HIRAM C180 and -1.39 for HIRAM-C360. 733	

 734	

 735	

 736	

 737	
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 738	

Fig.4 Same as in Fig. 3, but comparing modeled cluster power probability distributions between 739	

resolutions for the 0.7 mm hr-1 rain rate threshold , with no vertical shift of the HIRAM C180 740	

distribution. Note that the normalization differs simply because the course resolution model does 741	

not extend to as small a minimum cluster size. 742	

 743	

 744	

 745	

 746	

 747	

 748	
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 749	

Fig. 5 Observed (TRMM-3B42) and modeled (HIRAM-C360 AMIP) Tropics cluster power 750	

probability distributions for May-September 1998-2008 for rain rate thresholds 0.3 mm hr-1 and 751	

0.7 mm hr-1. Also plotted are cluster probability distributions at each rain rate threshold from a 752	

synthetic time series created by random selections from 1979-1999 HIRAM-C360 AMIP data 753	

that preserve probability distributions at each point but not spatial correlations (see text). The 754	

distributions for the 0.7 mm hr-1 rain rate threshold have been shifted up vertically by two decades 755	

to improve readability. 756	

 757	

 758	
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 759	

Fig. 6 Same as Fig. 3, displaying a comparison of HIRAM cluster power probability distributions 760	

at two resolutions for historical (AMIP, May-September 1998-2008) and future (SST2030/2090, 761	

May-September 2026-2035/2086-2095) simulations for the 0.7 mm hr-1 rain rate threshold. 762	

HIRAM-C180 cluster power distributions have been shifted up vertically by a decade for 763	

readability. 764	

 765	

 766	

 767	

 768	

 769	

 770	
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 771	

Fig. 7 (a) As in Fig. 6, the change in the distribution of cluster power between historical (AMIP) 772	

and future (SST2090) simulations for the 0.7mm hr-1 rain rate threshold using the higher 773	
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resolution HIRAM (C360), with probability increase factors displayed for selected bins above the 774	

cutoff (vertical arrows). Horizontal arrow shows the estimated power increase for the probability 775	

value at the highest bin that can be estimated in current climate. (b) The change in cluster power 776	

distribution displayed as a risk ratio of the probability density for end-of-century to that in the 777	

historical period. Magenta line shows the risk ratio as estimated from the curves in (a); black and 778	

gray curves show tests of sensitivity to alternate bin-width choices: asymptotic bin widths of 779	

0.1920 (black), 0.1960 (cyan). (c) Black and magenta curves same as Fig. 7a, with an additional 780	

comparison (red) to the AMIP dataset with a CC-scaling factor applied (see text). 781	

 782	

 783	

 784	


