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Abstract 9	
  

The accurate representation of precipitation is a recurring issue in climate models. El Niño-10	
  

Southern Oscillation (ENSO) precipitation teleconnections provide a testbed for comparison of 11	
  

modeled to observed precipitation. We assess the simulation quality for the atmospheric 12	
  

component of models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), using 13	
  

the ensemble of runs driven by observed sea surface temperatures (SSTs). Simulated seasonal 14	
  

precipitation teleconnection patterns are compared to observations during 1979-2005 and to 15	
  

the CMIP3 ensemble. Within regions of strong observed teleconnections (equatorial South 16	
  

America, the western equatorial Pacific, and a southern section of North America), there is 17	
  

little improvement in the CMIP5 ensemble relative to CMIP3 in amplitude and spatial 18	
  

correlation metrics of precipitation. Spatial patterns within each region exhibit substantial 19	
  

departures from observations, with spatial correlation coefficients typically less than 0.5. 20	
  

However, the atmospheric models do considerably better in other measures. First, the 21	
  

amplitude of the precipitation response (root mean square deviation over each region) is well 22	
  

estimated by the mean of the amplitudes from the individual models. This is in contrast with 23	
  

the amplitude of the multi-model ensemble mean, which is systematically smaller (by about 24	
  

30-40%) in the selected teleconnection regions. Second, high intermodel agreement on 25	
  

teleconnection sign provides a good predictor for high model agreement with observed 26	
  

teleconnections. The ability of the model ensemble to yield amplitude and sign measures that 27	
  

agree with the observed signal for ENSO precipitation teleconnections lends supporting 28	
  

evidence for the use of corresponding measures in global warming projections.29	
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1.  Introduction 30	
  

The El Niño-Southern Oscillation (ENSO) is a leading mode of interannual climate variability 31	
  

originating in the tropical Pacific. ENSO teleconnections are a reflection of the strong 32	
  

coupling between the tropical ocean and global atmosphere, and SST anomalies in the 33	
  

equatorial Pacific can have substantial remote effects on climate (Horel and Wallace 1981; 34	
  

Ropelewski and Halpert 1987; Trenberth et al. 1998; Wallace et al. 1998; Dai and Wigley 35	
  

2000). 36	
  

In recent decades, measurable progress has been made in simulating ENSO dynamics and 37	
  

associated teleconnections within atmosphere-ocean coupled general circulation models 38	
  

(CGCMs) (Neelin et al. 1992; Delecluse et al. 1998; Davey et al. 2001; Latif et al. 2001; 39	
  

AchutaRao and Sperber 2006; Randall et al. 2007). A number of studies use the fully-coupled 40	
  

GCMs to assess 20th century ENSO variability and teleconnections against observations 41	
  

(Doherty and Hulme 2002; Capotondi et al. 2006; Joseph and Nigam 2006; Cai et al. 2009).  42	
  

Others examine the evolution of ENSO and these teleconnections under climate change 43	
  

(Doherty and Hulme 2002; van Oldenborgh et al. 2005; Merryfield et al. 2006; Meehl and Teng 44	
  

2007; Coelho and Goddard 2009).  Problems persist in the ability of the models to accurately 45	
  

represent the tropical Pacific mean state, annual cycle, and ENSO’s natural variability 46	
  

(Guilyardi et al. 2009a; Cai et al. 2012). Additional uncertainties remain in the role of the 47	
  

atmospheric components of CGCMs in setting the dynamics of ENSO and its teleconnections 48	
  

(Guilyardi et al. 2004, 2009b; Lloyd et al. 2009; Sun et al. 2009; Weare 2012), as well as how 49	
  

ENSO will behave under climate change (Collins et al. 2010). 50	
  

The precipitation response to interannual climate variations like ENSO also continues to be a 51	
  

challenge for CGCMs (Dai 2006). In the tropics, equatorial wave dynamics spread tropospheric 52	
  

temperature anomalies, which induce feedbacks with convection zones in surrounding regions 53	
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(e.g., Chiang and Sobel 2002; Su et al. 2003). At mid-latitudes, wind anomalies generated by 54	
  

Rossby wave trains interact with storm tracks to create precipitation anomalies (Held et al. 55	
  

1989; Chen and van den Dool 1997; Straus and Shukla 1997). These moist teleconnection 56	
  

processes share physical mechanisms with feedbacks active in climate change (e.g., Neelin et 57	
  

al. 2003). Examination of ENSO precipitation teleconnections can therefore contribute to 58	
  

assessing the accuracy of models for these pathways, though note this is distinct from the 59	
  

discussion in the literature that the tropical Pacific may experience “El Niño-like” climate 60	
  

change. 61	
  

One difficulty with assessing teleconnections from coupled models is that errors in the ENSO 62	
  

dynamics (e.g., in amplitude or spatial distribution of the main SST anomaly in the equatorial 63	
  

Pacific) degrade the quality of the simulation at the source region before the teleconnection 64	
  

mechanisms even begin (Joseph and Nigam 2006; Coelho and Goddard 2009). To isolate the 65	
  

atmospheric portion of the teleconnection pathway, it is useful to employ atmospheric 66	
  

component simulations forced by observed SSTs, referred to as Atmospheric Model 67	
  

Intercomparison Project (AMIP) runs (Gates et al. 1998).  In coupled model runs, errors in 68	
  

position or amplitude of the main equatorial ENSO SST signal can have a substantial impact on 69	
  

the teleconnections (Cai et al. 2009), and it is quite challenging for the models to accurately 70	
  

simulate regional signals in precipitation, even when observed SSTs are specified. 71	
  

A few studies use AMIP runs to examine ENSO teleconnections. Risbey et al. (2011) do so for 72	
  

teleconnections over Australia, noting errors in the modeled amplitude and pattern 73	
  

coherence. Spencer and Slingo (2003) find that issues in the sensitivity of precipitation to 74	
  

tropical Pacific SSTs lead to errors in the Aleutian low despite otherwise accurate tropical 75	
  

ENSO teleconnections.  Cash et al. (2005) compare two uncoupled, atmospheric GCMs forced 76	
  

with identically prescribed SSTs, finding noticeable variations between the two models in the 77	
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response of extratropical 500mb height and regional precipitation. They force these models 78	
  

with climatological SST fields and SSTs representative of a response to a CMIP2 CO2 doubling 79	
  

experiment. They find that precipitation difference patterns between the two models are 80	
  

similar for either case, implying that the differences between the atmospheric GCMs are 81	
  

“relatively insensitive” to the prescribed SST fields. 82	
  

Because challenges persist in correctly simulating a precipitation teleconnection response, 83	
  

analysis of the CMIP5 AMIP ensemble can provide a way to gauge the fidelity of the current 84	
  

generation of models in simulating large-scale atmospheric processes leading to rainfall. In 85	
  

particular, we evaluate December-January-February (DJF) ENSO precipitation teleconnections 86	
  

during 1979-2005 in the CMIP5 models, and we compare these to observations and to the 87	
  

earlier CMIP3 AMIP ensemble. 88	
  

In standard evaluation measures of teleconnection patterns and amplitude, substantial 89	
  

differences exist among models and when compared to the observations. In light of such 90	
  

differences, we turn to other measures in which the multi-model ensemble may contain 91	
  

useful information. These include amplitude measures, a comparison of individual models to 92	
  

the multi-model ensemble mean (MMEM), and measures of sign agreement. 93	
  

In these alternative measures, the CMIP5 model ensemble does unexpectedly well compared 94	
  

to observations. The performance on sign agreement measures is decent enough to motivate 95	
  

questions regarding the optimal way to apply significance tests within multi-model ensembles. 96	
  

We provide some explanation in the discussion section, noting that even though a full answer 97	
  

may not yet exist, such alternative measures are relevant to the evaluation of precipitation 98	
  

change in global warming. 99	
  

 100	
  

2.  Data sets and analysis 101	
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To produce ENSO precipitation teleconnection patterns, we use modeled and observed 102	
  

monthly mean SST and precipitation data during the DJF months for the years 1979-2005. For 103	
  

SST observations, we use the Extended Reconstructed Sea Surface Temperature (ERSST.v3) 104	
  

data set (Xue et al. 2003; Smith et al. 2008); for monthly precipitation rate observations, we 105	
  

employ the Climate Prediction Center Merged Analysis of Precipitation (CMAP) archive (Xie 106	
  

and Arkin 1997). 107	
  

For modeled teleconnections, we use monthly AMIP precipitation (pr) and surface 108	
  

temperature (ts) data from the CMIP5 and CMIP3 archives, as detailed in Table 1 (for more 109	
  

information on AMIP runs, see Gates et al. 1998 and references therein). All modeled 110	
  

precipitation data are regridded to a 2.5º-by-2.5º grid prior to calculating teleconnection 111	
  

patterns.  This is the native grid of the CMAP precipitation data set, and we use it to facilitate 112	
  

direct comparison of modeled teleconnections to the observations. 113	
  

Linear regression and Spearman’s rank correlation are used to calculate DJF precipitation 114	
  

teleconnections for the selected time period. Linear regression is widely used for assessing 115	
  

the relationship between global precipitation and tropical Pacific SSTs, where precipitation at 116	
  

a gridpoint is regressed against a spatially averaged SST time series (here, the Niño 3.4 index, 117	
  

defined from 5ºS to 5ºN and 190ºE to 240º E; see Trenberth 1997 for information on El Niño 118	
  

indices).  One caveat is that linear regression assumes the precipitation data follow a 119	
  

Gaussian distribution, whereas in reality they are zero-bounded and exhibit non-Gaussian 120	
  

behavior. Spearman’s rank correlation — in which the rank of the data is used to compute the 121	
  

correlation coefficient (Wilks 1995) — does not make such assumptions, and therefore we use 122	
  

it to provide a check on the sensitivity of teleconnection patterns to the statistical methods 123	
  

employed (for examples of studies that employ rank correlation, see Whitaker and Weickmann 124	
  

2001 or Münnich and Neelin 2005). 125	
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Appropriate t-tests are used in both the linear and rank methods to resolve gridpoints that 126	
  

meet or pass certain confidence levels (von Storch and Zwiers 1999). The majority of this 127	
  

paper will focus on a t-test applied to teleconnections resolved via linear regression. This t-128	
  

test is based on calculating a two-tailed p-value where the null hypothesis is a linear 129	
  

regression slope of zero. Note that our use of the Niño 3.4 index yields "standard" 130	
  

teleconnection patterns, which provide a good basis for comparison of models to 131	
  

observations. We recognize, however, that there is interesting work addressing the next level 132	
  

of distinction among different "flavors" of ENSO and the remote impacts of SST anomalies that 133	
  

have a central (rather than eastern) Pacific signature (Ashok et al. 2007; Kao and Yu 2009; 134	
  

Trenberth and Smith 2009). 135	
  

 136	
  

3.  Evaluating modeled spatial patterns and amplitudes of precipitation teleconnections 137	
  

a.  Teleconnection patterns resolved via linear regression and rank correlation  138	
  

Figs. 1 and 2 show observed and modeled precipitation teleconnections for the DJF season as 139	
  

estimated by linear regression and Spearman’s rank correlation, respectively. We show both 140	
  

methods to check that teleconnected rainfall patterns are robust against the statistical 141	
  

assumptions going into the calculation (ENSO composites, not shown, yield similar results). 142	
  

Spearman’s rank correlation is insensitive to extreme values and so can bring regions with 143	
  

different amplitudes of variance on to common footing.  This statistical method also offers a 144	
  

significance test that does not assume Gaussian statistics. Linear regression, by contrast, is 145	
  

easier to interpret in terms of a change of the physical variables, which in this case is 146	
  

precipitation rate per degree change of SST in the Niño 3.4 region. Beyond this, comparing 147	
  

modeled to observed teleconnections raises some interesting questions about the restrictions 148	
  

of the statistical significance tests. The most pertinent question to arise is how best to use 149	
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the collective information offered by a multi-model ensemble. Substantial intermodel 150	
  

variations also occur, and they are discussed in subsections 3b, 3c, and 3d. Other aspects of 151	
  

the restrictive nature of these significance tests will be discussed in section 4 152	
  

Figs. 1b and 2b show teleconnection patterns obtained from the model ensemble. Note that 153	
  

there are several ways to obtain a regression representative of all data contained in the 15-154	
  

model ensemble.  The option we choose provides a straightforward test of statistical 155	
  

significance. Specifically, we perform the regression over all 15 models simultaneously; a 156	
  

straightforward way to interpret (and program) this is as a concatenated time series of the 15 157	
  

available models, and so we will refer to this as the concatenated multi-model ensemble 158	
  

(“CMME”), when it is necessary to distinguish it. 159	
  

The more classical approach of obtaining a single map of teleconnections for a 15-model 160	
  

ensemble is to calculate the teleconnections for each model individually and average the 15 161	
  

patterns together afterward, discussed previously as the “MMEM.” While this is more widely 162	
  

used, obtaining a test of statistical significance becomes complicated, as one cannot easily 163	
  

take an average of significance tests across 15 models.  Thus in Figs. 1 and 2, the variant 164	
  

shown is the first one, though note that the MMEM (not shown) and CMME patterns are nearly 165	
  

identical, with a global spatial correlation coefficient greater than ρ=0.999.  The high 166	
  

correlation between these two methods is to be expected if the variance in each model is 167	
  

similar and stably estimated. In the remainder of this paper, we will focus on the ensemble 168	
  

patterns seen in both Figs. 1b and 1d, and we will refer to them using “MMEM” and “CMME” 169	
  

interchangeably. 170	
  

In Fig. 1, we show CMME linear regression DJF teleconnection patterns (1b and 1d) alongside 171	
  

observations (1a and 1c). The ensemble pattern in Fig. 1b reproduces a number of observed 172	
  

features. A broad region of reduced precipitation over equatorial South America, stretching 173	
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out through the Atlantic Intertropical Convergence Zone (ITCZ), is qualitatively simulated, 174	
  

although the region of the most intense anomalies is slightly displaced spatially from the 175	
  

observations. The region of increased precipitation starting off the coast of California and 176	
  

extending through Mexico, the Gulf States, and beyond Florida into the Atlantic storm track is 177	
  

also qualitatively reflected in the CMME regression. In the western Pacific, and surrounding 178	
  

the main ENSO region to the north and south, there is a broad “horseshoe” pattern of reduced 179	
  

precipitation, which the CMME captures reasonably well in terms of the low amplitude parts, 180	
  

although the location of the most intense anomalies is off.  181	
  

Figs. 1c and 1d show the same data as 1a and 1b, but with a two-tailed t-test test applied to 182	
  

the regression at each gridpoint. One can see in Fig. 1d that the CMME regression passes a 95% 183	
  

confidence level criterion over fairly broad areas in each major teleconnection region, thanks 184	
  

to the large amount of information available in the 15-model ensemble. Each of the areas 185	
  

discussed above passes this significance test, as do some smaller regions, such as southeastern 186	
  

Africa. Fig. 1c displays observed teleconnections masked to show only grid points that pass 187	
  

the 90% and 95% confidence levels, indicating a relatively limited area over which the 188	
  

gridpoint-based regressions meet these confidence criteria.  Specifically, linear regressions in 189	
  

Fig. 1 produce statistically significant teleconnections at 36.8% of gridpoints across the globe 190	
  

in the CMME.  The average of the individual 15 models is 17.6% of gridpoints, while that of the 191	
  

observations is 16.1%. Thus the local significance tests for individual models, not shown, are 192	
  

qualitatively similar to the spatial extent of the observations in Fig. 1c. 193	
  

Given that the CMME yields a statistically significant prediction for the sign of the signal over 194	
  

the main teleconnection regions, a one-tailed t-test (on the side predicted by the CMME) 195	
  

could be used on the observations, in which case the 90% confidence level of a two-tailed test 196	
  

would correspond to the 95% confidence level of a one-tailed test. However, when loosening 197	
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the confidence level restriction from 95% to 90% for observed teleconnections, we only see a 198	
  

small increase in the spatial extent of regions that pass the significance test. In comparing 199	
  

Figs. 1c and 1d, one can see that the CMME is significant at 95% confidence over a broader 200	
  

area than the observations. 201	
  

Fig. 2 displays the same information as in Fig. 1, but for Spearman’s rank correlation applied 202	
  

to the CMME and observations.  The teleconnection patterns that result using either the linear 203	
  

or rank method are similar overall, implying that ENSO precipitation teleconnections are 204	
  

robust despite assumptions made about the distribution of rainfall events a priori. Differences 205	
  

may be noted between the two methods in particular regions, such as the rank correlation 206	
  

deemphasizing the narrow band along the equator in South America in the CMME (Fig. 2b) 207	
  

relative to the linear regression (Fig. 1b), although not in the observations (Fig. 2a). The 208	
  

region passing significance criteria at the 95% level under the rank correlation of the 209	
  

observations (Fig. 2c) is comparable to that produced for the linear regression of the 210	
  

observations (Fig. 1c), and likewise for the CMME.  We henceforth focus on linear regression 211	
  

teleconnection patterns, due to the simpler interpretation of the amplitudes. 212	
  

  213	
  

b.  Regional model disagreement 214	
  

Another point that can be made with Figs. 1 and 2 is the large-scale agreement between 215	
  

teleconnected precipitation patterns in the CMME and in the observations. For reasons 216	
  

discussed in section 5, this agreement is apparent over broader regions where the CMME 217	
  

passes the t-test at 95% confidence, not just in the narrower regions where observations pass 218	
  

the t-test at 95% confidence.  However, regional disagreement between observations and the 219	
  

CMME pattern is also seen, especially in regions where the observations have intense 220	
  

precipitation. In addition, the CMME exhibits a general “smoothing” of teleconnection 221	
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patterns. 222	
  

These overly smoothed teleconnection patterns in the CMME can be understood when 223	
  

examining individual model patterns. Fig. 3 shows teleconnections for one run of each model 224	
  

in CMIP5, displayed for the equatorial Americas; substantial regional variability is easily seen. 225	
  

Qualitatively similar figures highlighting regional disagreement have been produced in other 226	
  

studies that use CGCMs to examine ENSO teleconnections and precipitation characteristics 227	
  

(e.g., Dai 2006, his Fig. 9). Difficulties in simulating these teleconnections in CGCMs persist in 228	
  

the AMIP models shown here: variations in the location of the strongest precipitation anomaly 229	
  

in Fig. 3 are common from model to model, even though these are the areas that most easily 230	
  

pass significance criteria on an individual model basis. Over the region where the CMME 231	
  

regression passes a t-test at the 95% level, however, one can see the overall teleconnection 232	
  

pattern is plausible at large scales in each of the models. Thus, Fig. 3 provides a visual sense 233	
  

of the trade-offs to be quantified: disagreement among models at regional scales; excessive 234	
  

smoothing relative to observations in the CMME; and yet some possibility that there is useful 235	
  

information about the teleconnection patterns in the 15-model ensemble, if it can be suitably 236	
  

extracted. 237	
  

 238	
  

c.  Taylor diagram analysis of modeled teleconnections 239	
  

The regional variation among AMIP models leads to a distinction between their ability (1) to 240	
  

reproduce spatial patterns of teleconnections, and (2) to represent the amplitudes of these 241	
  

patterns.  To examine individual model fidelity in simulating patterns and amplitude of 242	
  

rainfall teleconnections, we look at four regions (detailed below) that show a robust ENSO 243	
  

response; each region displays a continuous teleconnection signal significant at the 95% 244	
  

confidence level in observations (see Fig. 1c). 245	
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These four regions include (a) the equatorial Pacific (the “cold tongue” region; positive DJF 246	
  

ENSO signal), (b) the horseshoe-shaped region in the western Pacific (negative signal), (c) 247	
  

equatorial South America (negative signal), and (d) a southern section of North America 248	
  

(positive signal). The equatorial Pacific region is shown for reference, since this is the source 249	
  

region and is directly forced by the largest ENSO-related SST anomalies. We consider the 250	
  

other three regions the “teleconnection regions,” since to accurately simulate teleconnected 251	
  

rainfall in each, the models must capture the pathways leading to remote precipitation 252	
  

change. The Taylor diagrams in Fig. 4 show the spatial correlations between the observations 253	
  

and each model plotted against the spatial root mean square deviation of each model’s 254	
  

pattern (i.e., the standard deviation σmod) normalized by observations (σobs); we refer to this 255	
  

measure as the teleconnection amplitude. For models with multiple runs, correlations and 256	
  

amplitudes are calculated for each run first and then averaged among them; each individual 257	
  

model is given equal weight in the MMEM. Note we use the MMEM here, and not the CMME, 258	
  

though Taylor diagrams using the latter (not shown) are nearly identical. Additionally, some 259	
  

of the individual models have small negative correlations with observations in certain regions. 260	
  

These models are used in calculating the MMEM, though for diagrammatic simplicity the 261	
  

domain of the Taylor diagrams is not extended to display these points. 262	
  

Fig. 4 allows easy comparison between CMIP3 and CMIP5 AMIP runs. There is little (if any) 263	
  

improvement from CMIP3 to CMIP5 in reproducing teleconnected rainfall patterns in these 264	
  

regions. Additionally, models exhibit generally low correlations (ranging from less than 0.2 to 265	
  

a few instances exceeding 0.7, with an average correlation coefficient of about 0.40) with 266	
  

observations.  In every region, one can also see that the MMEM is typically more accurate than 267	
  

the majority of individual models in reproducing spatial patterns.  However, the MMEM 268	
  

amplitude is substantially lower than that of the individual ensemble members, and it 269	
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underestimates the observations in every region outside of the central equatorial Pacific.  As 270	
  

a final point, we note that Taylor diagrams of the corresponding rank correlation method (not 271	
  

shown) also indicate consistent results. 272	
  

 273	
  

d.  Teleconnection amplitude in major impact regions 274	
  

The varied agreement in amplitude measures from Fig. 4 suggests that it may be more 275	
  

reasonable to use amplitude information from individual ensemble members, rather than 276	
  

using that of the MMEM. To get a better sense of how teleconnection amplitude of individual 277	
  

models might be affected by internal variability within the models themselves, we take 278	
  

advantage of AMIP models with multiple realizations, and we assess the internal variability 279	
  

among these runs for each model.  We then compare this to the amplitude range of the 15-280	
  

model ensemble. Fig. 5 displays the radial axis from the Taylor diagrams discussed previously, 281	
  

but where multiple runs from each model are available, we plot them individually (43 total 282	
  

runs for 15 models in CMIP5; 26 total runs for 13 models in CMIP3; see Table 1).   283	
  

The vertical extent of the black lines in Fig. 5, representing ± one standard deviation of the 284	
  

amplitudes for the runs of a given model, is a measure of internal variability for that model. 285	
  

The vertical extent of each green bar is ± one standard deviation of the MMEM amplitude, and 286	
  

it serves as a measure of intermodel variability.  Notable points from this diagram include:  287	
  

(1) The MMEM systematically underestimates the spread and central tendency of intermodel 288	
  

variability, with a low bias of about 20-40% outside of the immediate ENSO region; (2) the 289	
  

regional disagreement among models owes itself partly to internal model variability, but 290	
  

intermodel variability contributes to the majority of the regional disagreement seen in Fig. 3; 291	
  

(3) individual models are overestimating the amplitude in the immediate ENSO region for 292	
  

CMIP5, even though their spread is more symmetric about the observations in remote regions; 293	
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(4) when comparing CMIP5 to CMIP3, CMIP5 shows no consistent improvement or change due 294	
  

to model development. Although the MMEM may fall closer to observed amplitudes in some 295	
  

regions for CMIP5, this comes at the expense of a tendency for individual models to 296	
  

overestimate rainfall teleconnections in the central ENSO region. 297	
  

Fig. 5 suggests that serious errors can result from considering only information available in the 298	
  

MMEM.  While its spatial patterns correlate better with observations than most individual 299	
  

models, the MMEM teleconnection amplitude is routinely too low in the remote regions 300	
  

considered.  It is therefore useful to consider measures of teleconnection amplitude and 301	
  

spread from individual models, in addition to the MMEM, in situations where regional 302	
  

disagreement can dampen the MMEM amplitudes due to averaging varied model signals. 303	
  

 304	
  

4.  Sign agreement plots in ENSO teleconnections, and an argument for agreement plots of 305	
  

precipitation change in global warming scenarios 306	
  

Agreement plots for the sign of precipitation change under global warming scenarios are 307	
  

commonly used in multi-model studies (e.g., Randall et al. 2007; Meehl et al. 2007), often as 308	
  

complementary information to the MMEM. Agreement-on-sign tests can be viewed as 309	
  

relatively weak statements regarding the precipitation change at individual gridpoints for the 310	
  

model ensemble, and it has been argued that sign agreement should be used in conjunction 311	
  

with requirements on individual models that gridpoints pass statistical significance tests for 312	
  

change in mean precipitation (e.g., Neelin et al. 2006; Tebaldi et al. 2011, hereafter N06 and 313	
  

T11, respectively).  314	
  

Here we examine agreement-on-sign measures based on the ENSO precipitation regression 315	
  

patterns for each model. Because we can assess these against observations, we can use this to 316	
  

examine the procedure as a means of inferring its usefulness. If a procedure that identifies 317	
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high model agreement at a gridpoint also correctly predicts the sign of the observations at 318	
  

that gridpoint, it can help build confidence in using corresponding procedures for the global 319	
  

warming case. 320	
  

Fig. 6a shows the traditional agreement-on-sign plot for ENSO teleconnections in the CMIP5 321	
  

AMIP ensemble.  At each gridpoint, we count the number of models that agree on a positive 322	
  

(negative) DJF teleconnection signal for the linear regression over Niño 3.4, so that the plot 323	
  

shows the integer value of models which agree on a wet (dry) response during ENSO. The sign 324	
  

of the regression slope at each gridpoint is equivalent to the sign of the expected DJF 325	
  

precipitation response during an El Niño event.  Areas with 12 or more models agreeing on 326	
  

sign are shaded based on a binomial test. Specifically, if we consider the null hypothesis that 327	
  

the value of an ENSO precipitation signal for a given point is equally likely to be positive or 328	
  

negative, i.e. drawn from a binomial distribution with a probability of p=0.5, then when 12 or 329	
  

more models agree on sign, the null hypothesis for this 50-50 probability can be rejected at a 330	
  

confidence level greater than 95% (for 15 models, the 95% confidence level falls between an 331	
  

agreement count of 10 and 11). 332	
  

The gridpoints with high sign agreement that pass the binomial test at the 95% level in Fig. 6a 333	
  

cover a spatial region similar to the areas passing the two-tailed t-test applied to the CMME 334	
  

(Fig. 1d) at the 95% level. However, the areas of high sign agreement cover a much larger 335	
  

spatial region than those passing the t-test at the 95% level for individual model realizations, 336	
  

which are similar to the areas passing the t-test at this level for observations (see Fig. 1c and 337	
  

the discussion in section 3a). 338	
  

This last point suggests two comparisons. First, we can contrast regions of high sign 339	
  

agreement identified by the binomial test with examples of criteria that have been 340	
  

considered in the global warming literature that combine t-tests on individual models with 341	
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sign agreement criteria from the ensemble. Second, in this ENSO teleconnection testbed, we 342	
  

can evaluate the model ensemble’s sign prediction against observations. These results are 343	
  

displayed in Figs. 6b and 6c. These panels display hatching according to the N06 or T11 344	
  

criteria, respectively, overlaid on a plot that assesses the prediction of the model ensemble 345	
  

for the sign of the teleconnection signal; details of these criteria are outlined below. 346	
  

To produce the cross-hatching in Fig. 6b, we follow the N06 procedure:  (1) at each gridpoint, 347	
  

count the number of models in the ensemble that have a slope significantly different from 348	
  

zero at the 95% confidence interval; (2) cross-hatch grid points where greater than 50% of 349	
  

models are significant and also agree on the sign of the precipitation teleconnection. The N06 350	
  

criteria impose a requirement that at least half of models both be significant and agree on 351	
  

sign. 352	
  

To produce the cross-hatching in Fig. 6c, we follow the T11 procedure:  (1) at each gridpoint, 353	
  

count the number of models with a teleconnection significant at the 95% confidence interval 354	
  

(as in N06); (2) for gridpoints where more than 50% of models show a significant rainfall 355	
  

response, cross-hatch if 80% or more of significant models agree on the sign of the response; 356	
  

(3) if fewer than 50% of models agree on the sign, shade the gridpoint black.  357	
  

The underlying color shading in Figs. 6b and 6c is identical and evaluates the sign prediction 358	
  

of the AMIP CMME for the teleconnection signal, produced in the following way:  (1) take the 359	
  

regions of high sign agreement passing the binomial test at the 95% significance level in Fig. 360	
  

6a as a prediction of the sign of the observed teleconnection pattern and compare that to the 361	
  

observations at the same gridpoint; (2) if the observations and the model prediction agree on 362	
  

sign, shade blue (red) for a positive (negative) ENSO precipitation signal, representing a 363	
  

correct prediction by the intermodel agreement plot (Fig. 6a); (3) if the observations and the 364	
  

Fig. 6a disagree on the sign, shade the gridpoint purple to indicate an erroneous prediction; 365	
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(4) if the agreement on sign does not pass the binomial test criterion of Fig. 6a, no prediction 366	
  

is made and the gridpoint is left unshaded. 367	
  

When examining Figs. 6b and 6c, the most important point is that the model ensemble 368	
  

prediction of sign does very well when assessed against observations. In major regions for 369	
  

which model agreement passes the binomial test at 95% confidence, almost the whole area 370	
  

yields the correct sign. The scattered, incorrect gridpoints tend to be either isolated or at the 371	
  

edges of correct regions, such that a scientific assessment of likely areas of increase or 372	
  

decrease based on the predicted areas (color shading in Figs. 6a and 6b) would be highly 373	
  

accurate. Potential physical mechanisms for the success of the sign prediction are discussed in 374	
  

the next section. 375	
  

Another obvious point in Fig 6b and 6c is the similarity between the N06 and T11 approaches. 376	
  

In practice, the T11 test employed here is equivalent to the N06 test defined at a 40% 377	
  

threshold (80% x 50% = 40%). The one difference is that T11 further specify those grid points 378	
  

where more than 50% of models are significant but fewer than 80% agree on sign, which they 379	
  

classify as “no prediction.” This last T11 criterion may be useful in evaluating precipitation 380	
  

change under global warming, where at a given gridpoint, statistical significance of the 381	
  

precipitation change for individual models does not necessarily mean they will agree on sign. 382	
  

In comparing the N06 and T11 procedures to the regions over which the models correctly 383	
  

predict sign of the observations, it is immediately apparent that the N06 and T11 tests are 384	
  

highly conservative. Though they do remove the modest fraction of points for which the sign 385	
  

would have been incorrectly predicted based on high agreement (passing the binomial test at 386	
  

the 95% level), they do so at the cost of excluding substantial regions that are correctly 387	
  

predicted. This is evident in Figs. 6b and 6c, where the hatched areas are restricted in spatial 388	
  

extent relative to the broader shaded regions. 389	
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To show the sign agreement of the model ensemble with observations in more detail, we 390	
  

display in Fig. 7a the number of individual ensemble members that agree on sign with 391	
  

observations for ENSO teleconnections.  The same criterion for displaying high model 392	
  

agreement (12 or more models) is used as in Fig. 6a. Within this region, it may be seen that 393	
  

there are large portions in which the number of models agreeing on sign with observations is 394	
  

even higher, including substantial areas where 100% of models agree with the sign of the 395	
  

observations. 396	
  

To obtain a counterpart of this plot from the model ensemble, Fig. 7b shows the number of 397	
  

models agreeing with the sign of the MMEM.  Note that in producing this, we exclude each 398	
  

model’s contribution to the MMEM when determining agreement, so as to avoid inflating the 399	
  

count. The similarities between Figs. 7a and 7b indicate that high sign agreement with the 400	
  

MMEM can serve as a predictor for sign agreement with the observations.   401	
  

 402	
  

5.  Discussion 403	
  

As discussed in the previous section, Figs. 6 and 7 suggest that there are substantial regions 404	
  

where models from the CMIP5 AMIP ensemble are providing useful information on the sign of 405	
  

rainfall teleconnections, despite individual models and the observations failing to meet t-test 406	
  

criteria at the 95% level in parts of these regions. We argue below that this is a combined 407	
  

consequence of the larger size of the model ensemble relative to individual runs, the nature 408	
  

of the quantity being tested (the sign), and the models’ skill in predicting the observed sign. 409	
  

Before addressing this, we consider the possibility that the broader region of skill at sign 410	
  

prediction in the ensemble (relative to individual model runs) could simply be an issue with 411	
  

applicability of the t-test due to the inherent non-Gaussianity of the rainfall distribution, 412	
  

even at seasonal timescales.  This was addressed in Fig. 2 by repeating the teleconnection 413	
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calculations using Spearman’s rank correlation, which makes no assumptions of Gaussianity 414	
  

for the gridpoint rainfall distributions, and an accompanying statistical significance test. This 415	
  

yields results similar to those of the linear regression t-test.  416	
  

We now consider an explanation based on the fact that the sign agreement both uses 417	
  

information from the full model ensemble and tests a different hypothesis than difference 418	
  

from zero. Because the collective 15-model ensemble contains a much larger set of 419	
  

realizations of internal variability, it is natural that regions of smaller signal should pass a 420	
  

given significance criteria in measures that use all 15 models. This is evident in comparing 421	
  

Fig. 6a to Fig. 1d, where areas of high sign agreement (passing the binomial test at the 95% 422	
  

level) tend to coincide with areas that pass a t-test on the CMME at 95% confidence. In both 423	
  

cases the broad regions of statistical significance come from using all 15 models. 424	
  

Taking this into account, we consider the question of why the models agree so well with the 425	
  

observations on the sign of the teleconnection patterns, despite doing poorly at detailed 426	
  

spatial distribution. There are two aspects to this question:  one statistical, and the other 427	
  

physical. The statistical aspect is that where the models exhibit sign agreement of 80%, the 428	
  

best estimate of the parameter p in the binomial distribution is 0.8. While it is beyond the 429	
  

scope of the paper to establish Bayesian posterior probability density functions or other 430	
  

measures of margin of error on the inferred p, the point needed to interpret the results here 431	
  

is straightforward: if the models are sufficiently good representations of observations such 432	
  

that the observed signal can be considered to be drawn from a binomial distribution with a 433	
  

similar value of p at each point, then one would expect the high level of agreement seen. 434	
  

Thus the 15-model ensemble shows success at predicting the sign of the observations in 435	
  

broader regions than those where teleconnection signals pass t-tests applied to individual 436	
  

models or observations. If we consider the fact that these broader regions are those that pass 437	
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the 95% confidence level of the binomial test, this success of the ensemble at sign prediction 438	
  

is completely consistent with expectations and with the statement that the models are doing 439	
  

well at simulating the observed sign. 440	
  

The ability of models to provide information beyond what a particular significance test may 441	
  

suggest is not a new concept in modeled precipitation studies. Risbey et al. (2011) resolve 442	
  

significant teleconnections in an AMIP model using a 30-year record and a two-tailed t-test. 443	
  

The authors note that the number of gridpoints passing a 95% significance criterion is much 444	
  

fewer than the same method applied to a century of historical data.  As a result, they loosen 445	
  

their restriction to an 80% confidence interval, noting that the associated teleconnection 446	
  

patterns are similar for records of either length. Power et al. (2012) evaluate projected 447	
  

precipitation changes from the coupled CMIP3 model ensemble, and they demonstrate using 448	
  

the binomial distribution that model consensus on the sign of end-of-century rainfall 449	
  

anomalies is itself a strong argument for confidence in ensemble agreement patterns. 450	
  

That the ensemble does, in fact, get broad areas of small amplitude change correct in our 451	
  

teleconnection analysis adds to the discussion in the literature that projected change is worth 452	
  

assessing even in regions that do not meet t-test criteria applied to individual runs (Tebaldi et 453	
  

al. 2011, Power et al. 2012) if these regions do meet significance tests applied to the 454	
  

ensemble. This is particularly relevant in global warming studies, where a modest regional 455	
  

precipitation anomaly in a MMEM could mean substantial changes in regional precipitation 456	
  

budgets. 457	
  

 An important physical question that arises from the present teleconnection results is: why 458	
  

does the 15-model ensemble perform better at predicting the sign of the observed signal 459	
  

(including in broad areas of modest precipitation amplitude response) and at yielding the 460	
  

amplitude of the observed response than the individual models do at reproducing detailed 461	
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spatial patterns of observed teleconnections? The unimpressive spatial correlations (Fig. 4) 462	
  

are affected by poor individual model skill in positioning high amplitude signals. 463	
  

We suggest that this may be associated with the multiple physical processes operating in ENSO 464	
  

teleconnections. Specifically, there are atmospheric processes at work that will have smaller 465	
  

intermodel uncertainty and smaller internal variability but are widespread spatially. 466	
  

Examples for these processes include an increase in tropospheric temperature driving changes 467	
  

in radiative fluxes, as well as driving an increase in water vapor and a corresponding increase 468	
  

in the threshold for convection (the thermodynamic process sometimes referred to as the 469	
  

“rich-get-richer” mechanism; Chou and Neelin 2004; Held and Soden 2006; Trenberth 2011). 470	
  

At the same time, feedbacks associated with dynamical changes in moisture convergence can 471	
  

produce large excursions from expected values of precipitation, both in intermodel and 472	
  

temporal variability. The models contain reasonable approximations to each of these 473	
  

processes, but the location of strong precipitation changes can be highly sensitive to factors 474	
  

such as model convection parameterizations, including the threshold for convective onset 475	
  

(Kanamitsu et al. 2002; Neelin et al. 2010). 476	
  

 477	
  

6. Summary and conclusions 478	
  

AMIP runs from the CMIP3 and CMIP5 ensembles provide one standard by which we can judge 479	
  

the ability of the CGCMs’ atmospheric components to reproduce dynamic feedback processes 480	
  

that lead to remote seasonal precipitation anomalies.  We focus on standard teleconnection 481	
  

patterns associated with the ENSO Niño 3.4 index.  Comparisons among the ensemble of 482	
  

models and with the observations are made using precipitation teleconnection patterns for 483	
  

the DJF for the years 1979-2005.  The spatial patterns and amplitudes of these 484	
  

teleconnections are analyzed in several regions with robust ENSO feedbacks, including the 485	
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eastern tropical Pacific, the “horseshoe” region in the western tropical Pacific, a southern 486	
  

section of N. America, and equatorial S. America. 487	
  

Teleconnection patterns are examined using three methods:  linear regression, Spearman’s 488	
  

rank correlation, and compositing techniques (not shown), all with similar results.  The rank 489	
  

correlation method provides an alternative significance test, which is useful in narrowing 490	
  

some of the questions that arise for regions of low amplitude signal. Teleconnection patterns 491	
  

defined with linear regression are useful for questions that involve the amplitude of the 492	
  

signal; as such, we focus on results from the linear regression. 493	
  

How well the models perform at reproducing the observed teleconnection patterns 494	
  

(amplitudes and spatial patterns) depends strongly on the quantity for which they are 495	
  

assessed. In standard measures of spatial correlation, taken over the regions outlined above, 496	
  

the CMIP3 and CMIP5 AMIP models exhibit strong regional disagreement with one another and 497	
  

with observations. Comparing patterns visually, this is associated with regions of strong 498	
  

precipitation change varying substantially from model to model and with respect to 499	
  

observations, yielding low spatial correlations between modeled and observed teleconnection 500	
  

patterns (average correlation coefficients on the order of 0.40 in the defined regions). 501	
  

The MMEM performs marginally better than most individual models in spatial correlation 502	
  

measures, largely because the regions of strongest and varying change have been smoothed. 503	
  

However, the MMEM systematically underestimate amplitude measures of the regional 504	
  

precipitation response by 30-40%, typically falling more than one standard deviation below 505	
  

the central tendency of the 15-model ensemble.  This underestimation is again associated 506	
  

with regional disagreement among ensemble members, a well-documented artifact in 507	
  

precipitation studies of GCM ensembles (e.g., N06; Räisänen 2007; Knutti et al. 2010; Neelin 508	
  

et al. 2010; Schaller et al. 2011). The average of individual CMIP5 AMIP amplitudes, by 509	
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contrast, is an accurate predictor for the observations in all regions but the central ENSO 510	
  

region, where models overestimate the precipitation response. Sizeable internal variability of 511	
  

precipitation teleconnections is also shown to exist within each model, though it does not 512	
  

dominate the intermodel spread. 513	
  

One thing underlined by the low spatial correlations in individual models is that even in AMIP 514	
  

experiments, where only the atmospheric components of CGCMs are being compared, 515	
  

simulation of ENSO teleconnections is fairly challenging for the models. While coupled models 516	
  

will have additional feedbacks, the AMIP experiments provide a first line of assessment. 517	
  

Furthermore, because we can compare AMIP simulations to observations, we can assess how 518	
  

the model simulations fare under other metrics commonly used in assessment of ensemble 519	
  

patterns and intermodel agreement 520	
  

Sign agreement measures for a precipitation response in model ensembles are often used for 521	
  

assessing global warming precipitation changes. Examining sign agreement for the 522	
  

teleconnection patterns, the model ensemble has broad spatial regions with high consensus on 523	
  

sign, passing a binomial test (to reject the null hypothesis of 50-50 probability of either sign) 524	
  

at the 95% level. These regions are more spatially extensive than the regions for which 525	
  

individual models (or observations) would pass a two-tailed t-test at the 95% (or even the 90%) 526	
  

level. Furthermore, the regions passing the binomial test correspond well to the set of points 527	
  

passing a t-test (at the 95% level) applied to the 15-model ensemble. Thus the larger region 528	
  

with high agreement on sign, relative to regions passing criteria (e.g., N06 or T11) that make 529	
  

use of t-tests on individual models, is simply the result of the sign agreement test making use 530	
  

of the 15-model ensemble. 531	
  

For these teleconnection patterns, the sign prediction can be tested against observations. The 532	
  

models exhibit high sign agreement with observations over similarly broad regions, implying 533	
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that high sign agreement within the model ensemble (gridpoints passing the binomial test at 534	
  

the 95% level) is a good predictor for sign agreement with observations. One can infer from 535	
  

this that the model ensemble is producing useful information regarding the teleconnected 536	
  

precipitation signal in regions that do not pass a t-test at the 95% level for individual models, 537	
  

provided they pass a significance test that makes use of information from the full ensemble. 538	
  

The evaluation of the model simulations for ENSO teleconnections may be used, with due 539	
  

caution, to draw inferences for assessment of precipitation in global warming projections.  540	
  

Many of the physical processes leading to rainfall teleconnections are analogous to the global 541	
  

warming case. In particular, widespread tropospheric warming initiates tropical dynamics that 542	
  

cause similar global precipitation change in both teleconnections and global warming. In both 543	
  

cases, one can trace localized precipitation anomalies with high amplitude and sizeable 544	
  

intermodel spread back to tropical regions of strong convergence feedbacks and regions 545	
  

where large-scale wave dynamics interacts with mid-latitude storm tracks. 546	
  

The unimpressive skill of models at capturing the precise regional distribution of large-547	
  

amplitude rainfall teleconnections compared to observations is consistent with poor 548	
  

intermodel agreement on a precise pattern of precipitation change in global warming. 549	
  

However, the skill of individual models at reproducing the observed teleconnection signal 550	
  

amplitude (assessed from the mean of the individual model amplitudes, not the MMEM) 551	
  

suggests that corresponding measures for global warming precipitation change may be 552	
  

trustworthy. Furthermore, sign agreement plots for the AMIP ensemble prove skillful at 553	
  

predicting the sign of observed teleconnections. While agreement plots for end-of-century 554	
  

precipitation change obviously have different spatial patterns than the signals considered 555	
  

here, the fact that sign agreement plots are skillfull at predicting spatially extensive ENSO 556	
  

remote precipitation impacts — which are challenging simulation targets that share physical 557	
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pathways with global warming precipitation signals — provides a supporting argument in favor 558	
  

of using sign agreement plots in global warming studies to make predictions of change from an 559	
  

ensemble of models.560	
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Table 1.  CMIP5 and CMIP3 modeling centers and models used, and the number of AMIP runs 710	
  

available at the time of our analysis. Data are available for download at 711	
  

http://pcmdi3.llnl.gov. 712	
  

Modeling center or group 
(institute ID) CMIP5 AMIP model runs CMIP3 AMIP model runs 
Beijing Climate Center, China 
Meteorological Administration (BCC) BCC-CSM1.1 3 

  Canadian Centre for Climate 
Modelling and Analysis (CCCMA) CanAM4 4 

  National Center for Environmental 
Research (NCAR) CCSM4 1 CCSM3 1 

   
PCM 1 

Centro Euro-Mediterraneo per I 
Cambiamente Climatici (CMCC) CNRM-CM5 1 CNRM-CM3 1 
Commonwealth Scientific and 
Industrial Research Organization in 
collaboration with Queensland 
Climate Change Centre of 
Excellence (CSIRO-QCCCE) CSIRO-Mk3.6.0 1 

  LASG, Institute of Atmospheric 
Physics, Chinese Academy of 
Sciences (LASG-CESS) FGOALS-s2 3 FGOALS-g1.0 3 
NOAA Geophysical Fluid Dynamics 
Laboratory (NOAA GFDL) GFDL-HIRAM-C180 3 GFDL-CM2.1 1 
NASA Goddard Institute for Space 
Studies (NASA GISS) GISS-E2-R 5 GISS-ER 4 
Met Office Hadley Centre (MOHC) HadGEM2-A 5 UKMO-HadGEM1 1 
Institute for Numerical Mathematics 
(INM) INM-CM4 1 INM-CM3.0 1 
Institut Pierre-Simon Laplace (IPSL) IPSL-CM5A-LR 5 IPSL-CM4 5 
Atmosphere and Ocean Research 
Institute (The University of Tokyo), 
National Institute for Environmental 
Studies, and Japan Agency for 
Marine-Earth Science and 
Technology (MIROC) MIROC5 2 MIROC3.2(hires) 1 

   
MIROC3.2(medres) 3 

Max Planck Institute for 
Meteorology (MPI-M) MPI-ESM-LR 3 ECHAM5/MPI-OM 3 
Meteorological Research Institute 
(MRI) MRI-CGCM3 3 MRI-CGCM2.3.2 1 
Norwegian Climate Centre (NCC) NorESM1-M 3 
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 Figures and captions 713	
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 714	
  

Figure 1. DJF precipitation teleconnections for the years 1979-2005, as diagnosed through a linear regression 715	
  

analysis of precipitation against the Niño 3.4 index (units of mm day-1 C-1).  (a) Observed teleconnections. (b) 716	
  

Concatenated multi-model ensemble (CMME) teleconnections for the CMIP5 AMIP 15-model ensemble. (c) Same 717	
  

as in (a), but with a two-tailed t-test applied to the regression values and shaded at 95% confidence (black 718	
  

outline) and 90% confidence (lighter shading). (d) Same as in (b) but shaded only where a t-test yields gridpoints 719	
  

significant at or above the 95% confidence level.720	
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 721	
  

Figure 2.  As in Fig. 1, but for Spearman’s rank correlation analysis between gridpoint precipitation and the Niño 722	
  

3.4 index.  Note here that the color bar is unitless and corresponds to the Spearman’s rank correlation 723	
  

coefficient, with a minimum of -1.0 and a maximum of +1.0.  Panels (a) and (b) show the teleconnection 724	
  

patterns from the rank correlation applied to the observations and CMME, respectively. (c) Same as in (a) but 725	
  

shaded only where gridpoints pass the 95% confidence level (black outline) and the 90% confidence level (lighter 726	
  

shading) of a statistical significance test for the rank correlation analysis. (d) The CMME teleconnections shaded 727	
  

for gridpoints that pass at the 95% significance level in the rank correlation analysis. 728	
  

729	
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 730	
  

Figure 3. DJF precipitation teleconnections shown for (a) the observations, top left, and (b)-(p) one run from 731	
  

each of 15 available CMIP5 AMIP models (listed alphabetically by model acronym). Teleconnections here are 732	
  

resolved via the linear regression analysis as in Fig. 1, with an identical color bar that has units of mm day-1 C-1. 733	
  

Patterns are plotted for the equatorial Americas to highlight regional (intermodel) disagreement among the 734	
  

ensemble members.735	
  



	
  

	
   37	
  

2.0

1.6

1.2

0.8

0.4

0.4 0.8 1.2 1.6 2.0

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.80

0.90

0.95

0.99

Correlation

2.0

1.6

1.2

0.8

0.4

0.4 0.8 1.2 1.6 2.0

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.80

0.90

0.95

0.99

Correlation

2.0

1.6

1.2

0.8

0.4

0.4 0.8 1.2 1.6 2.0

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.80

0.90

0.95

0.99

Correlation

2.0

1.6

1.2

0.8

0.4

0.4 0.8 1.2 1.6 2.0

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.80

0.90

0.95

0.99

Correlation

CMIP3 Models
CMIP3 MMEM
CMIP5 Models
CMIP5 MMEM

Eq. Pac. W. Pac.

S. Amer. N. Amer.

(a) (b)

(c) (d)

σ
m

od
/σ

ob
s

σ
m

od
/σ

ob
s

σmod/σobs σmod/σobs

σmod/σobs σmod/σobs

σ
m

od
/σ

ob
s

σ
m

od
/σ

ob
s

 736	
  

Figure 4. Taylor diagrams for the standardized amplitude and spatial correlation of precipitation teleconnections 737	
  

in four selected regions, as indicated in the inset of each panel: (a) the equatorial Pacific (central ENSO) region, 738	
  

(b) the “horseshoe” region in the western equatorial Pacific, (c) an equatorial section of South America, and (d) 739	
  

a southern section of North America. On the Taylor diagrams, angular axes show spatial correlations between 740	
  

modeled and observed teleconnections; radial axes show spatial standard deviation (root mean square deviation) 741	
  

of the teleconnection signals in each area, normalized against that of the observations.  Shaded red triangles (15 742	
  

total) and blue circles (11 total) denote each of the CMIP5 and CMIP3 AMIP models, respectively. The unshaded 743	
  

red triangle is the CMIP5 MMEM; the unshaded blue circle is the CMIP3 MMEM. Note that some models have 744	
  

negative correlations with the observed teleconnections in a few regions, and while we include them in the 745	
  

MMEM, we do not plot them individually in the diagrams.746	
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 747	
  

Figure 5. Standardized amplitude of precipitation teleconnections in each of the four regions identified in Fig. 4. 748	
  

The calculation for this amplitude is discussed in the caption of Fig. 4 and in the text. CMIP5 models (15 models, 749	
  

43 runs) are shown on the left; CMIP3 models (13 models, 26 runs) on the right; see Table 1 for models used. 750	
  

Each blue dot represents a separate model run, and where multiple runs are available for a given model, a blue 751	
  

dot is plotted for each. Black bars represent the spread among the multiple runs for one model (when available), 752	
  

centered at that model’s average amplitude among the multiple runs (±1 standard deviation of the amplitude 753	
  

measure).  The green dots and green bars denote the average teleconnection amplitude and its spread (±1 754	
  

standard deviation) for the entire ensemble, in each region. The red dot is the MMEM including all available 755	
  

models and runs, weighted so that each separate model contributes equally.756	
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(a) Agreement on ENSO teleconnections

(b) Neelin et al. 2006 (N06) criteria and sign prediction assessment

(c) Tebaldi et al. 2011 (T11) criteria and sign prediction assessment
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 757	
  

Figure 6. (a) Agreement on a positive teleconnection signal (linear regression) within the 15-model ensemble. 758	
  

Blue (red) colors represent high agreement on a positive (negative) precipitation response during ENSO events. 759	
  

Note that in an ensemble of 15 models, an agreement count of 12 implies that 80% of models agree on the sign 760	
  

of the precipitation teleconnection at that gridpoint, which is the area passing a binomial test at greater than 761	
  

the 95% confidence level (discussed in text). (b) Neelin et al. 2006 (N06) significance criteria (cross-hatching) 762	
  

overlaid on the sign prediction of the 15-model ensemble (colored shading). (c) Tebaldi et a. 2011 (T11) 763	
  

significance criteria (cross-hatching) overlaid on the sign prediction of the ensemble, as in (b). Details of the N06 764	
  

and T11 cross-hatching criteria and sign prediction shading are outlined in the text. The cross-hatching is shown 765	
  

as an overlay in (b) and (c) to highlight the restrictive nature of the N06 and T11 criteria relative to the more 766	
  

extensive spatial coverage over which the 15-model ensemble passes the binomial test at the 95%  level and 767	
  

exhibits an accurate prediction of the observed teleconnection signals.768	
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Figure 7. (a) Sign agreement of precipitation teleconnections between each of 15 CMIP5 AMIP models and the 770	
  

observations. (b) Sign agreement of precipitation teleconnections between the CMIP5 AMIP models and the 771	
  

MMEM, calculated using one run from each model. For (b), each model is individually removed from the MMEM 772	
  

before determining its sign agreement. Both (a) and (b) use Niño 3.4 teleconnection patterns diagnosed via 773	
  

linear regression.  Red areas denote models that agree with the observations or MMEM on a negative 774	
  

precipitation signal during ENSO events; blue areas imply agreement on a positive precipitation signal. 775	
  


