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ABSTRACT

The accurate representation of precipitation is a recurring issue in climate models. El Ni~no–Southern Os-

cillation (ENSO) precipitation teleconnections provide a test bed for comparison of modeled to observed

precipitation. The simulation quality for the atmospheric component of models in the Coupled Model In-

tercomparison Project (CMIP) phase 5 (CMIP5) is assessed here, using the ensemble of runs driven by observed

sea surface temperatures (SSTs). Simulated seasonal precipitation teleconnection patterns are compared to

observations during 1979–2005 and to the ensemble of CMIP phase 3 (CMIP3). Within regions of strong ob-

served teleconnections (equatorial South America, the western equatorial Pacific, and a southern section of

NorthAmerica), there is little improvement in the CMIP5 ensemble relative to CMIP3 in amplitude and spatial

correlation metrics of precipitation. Spatial patterns within each region exhibit substantial departures from

observations, with spatial correlation coefficients typically less than 0.5. However, the atmospheric models do

considerably better in other measures. First, the amplitude of the precipitation response (root-mean-square

deviation over each region) is well estimated by the mean of the amplitudes from the individual models. This is

in contrast with the amplitude of the multimodel ensemble mean, which is systematically smaller (by about

30%–40%) in the selected teleconnection regions. Second, high intermodel agreement on teleconnection sign

provides a good predictor for high model agreement with observed teleconnections. The ability of the model

ensemble to yield amplitude and sign measures that agree with the observed signal for ENSO precipitation

teleconnections lends supporting evidence for the use of correspondingmeasures in global warming projections.

1. Introduction

El Ni~no–Southern Oscillation (ENSO) is a leading

mode of interannual climate variability originating in the

tropical Pacific. ENSO teleconnections are a reflection of

the strong coupling between the tropical ocean and global

atmosphere, and SST anomalies in the equatorial Pacific

can have substantial remote effects on climate (Horel and

Wallace 1981; Ropelewski and Halpert 1987; Trenberth

et al. 1998; Wallace et al. 1998; Dai and Wigley 2000).

In recent decades, measurable progress has been

made in simulating ENSO dynamics and associated tele-

connections within atmosphere–ocean coupled gen-

eral circulation models (CGCMs) (Neelin et al. 1992;

Delecluse et al. 1998; Davey et al. 2001; Latif et al. 2001;

DeWeaver and Nigam 2004; AchutaRao and Sperber

2006;Randall et al. 2007).Anumber of studies use the fully

coupled GCMs to assess twentieth-century ENSO vari-

ability and teleconnections against observations (Doherty

andHulme 2002;Capotondi et al. 2006; Joseph andNigam

2006; Cai et al. 2009). Others examine the evolution of

ENSO and these teleconnections under climate change

(Doherty and Hulme 2002; van Oldenborgh et al. 2005;

Merryfield 2006; Meehl and Teng 2007; Coelho and

Goddard 2009). Problems persist in the ability of the

models to accurately represent the tropical Pacific mean

state, annual cycle, and ENSO’s natural variability

(Guilyardi et al. 2009b; Cai et al. 2012). Additional un-

certainties remain in the role of the atmospheric compo-

nents of CGCMs in setting the dynamics of ENSO and its

teleconnections (Guilyardi et al. 2004, 2009a; Lloyd et al.

2009; Sun et al. 2009; Weare 2013), as well as how ENSO

will behave under climate change (Collins et al. 2010).

The precipitation response to interannual climate

variations like ENSO also continues to be a challenge
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for CGCMs (Dai 2006). In the tropics, equatorial wave

dynamics spread tropospheric temperature anomalies,

which induce feedbacks with convection zones in sur-

rounding regions (e.g., Chiang and Sobel 2002; Su et al.

2003). At midlatitudes, wind anomalies generated by

Rossby wave trains interact with storm tracks to create

precipitation anomalies (Held et al. 1989; Chen and van

den Dool 1997; Straus and Shukla 1997). These moist

teleconnection processes share physical mechanisms

with feedbacks active in climate change (e.g., Neelin et al.

2003).Examination ofENSOprecipitation teleconnections

can therefore contribute to assessing the accuracy of

models for these pathways, but note that this is distinct

from the discussion in the literature that the tropical

Pacific may experience ‘‘El Ni~no–like’’ climate change.

One difficulty with assessing teleconnections from

coupled models is that errors in the ENSO dynamics

(e.g., in amplitude or spatial distribution of the main

SST anomaly in the equatorial Pacific) degrade the

quality of the simulation at the source region before

the teleconnection mechanisms even begin (Joseph and

Nigam 2006; Coelho and Goddard 2009). To isolate the

atmospheric portion of the teleconnection pathway, it

is useful to employ atmospheric component simulations

forced by observed SSTs, referred to as Atmospheric

Model Intercomparison Project (AMIP) runs (Gates

et al. 1999). In coupled model runs, errors in position

or amplitude of the main equatorial ENSO SST signal

can have a substantial impact on the teleconnections

(Cai et al. 2009), and it is quite challenging for the

models to accurately simulate regional signals in pre-

cipitation, even when observed SSTs are specified.

A few studies use AMIP runs to examine ENSO tele-

connections. Risbey et al. (2011) do so for teleconnec-

tions over Australia, noting errors in the modeled

amplitude and pattern coherence. Spencer and Slingo

(2003) find that issues in the sensitivity of precipitation

to tropical Pacific SSTs lead to errors in the Aleutian

low despite otherwise accurate tropical ENSO tele-

connections. Cash et al. (2005) compare two uncoupled

atmospheric GCMs forced with identically prescribed

SSTs, finding noticeable variations between the two

models in the response of extratropical 500-mb height

and regional precipitation. They force these models

with climatological SST fields and SSTs representative

of a response to a Coupled Model Intercomparison Pro-

ject (CMIP) phase 2 (CMIP2) CO2 doubling experiment.

They find that precipitation difference patterns between

the two models are similar for either case, implying that

the differences between the atmospheric GCMs are

‘‘relatively insensitive’’ to the prescribed SST fields.

Because challenges persist in correctly simulating

a precipitation teleconnection response (e.g., Rowell

2013), analysis of the CMIP phase 5 (CMIP5) AMIP

ensemble can provide a way to gauge the fidelity of the

current generation of models in simulating large-scale

atmospheric processes leading to rainfall. In particular, we

evaluate December–February (DJF) ENSO precipitation

teleconnections during 1979–2005 in the CMIP5 AMIP

models, and we compare these to observations and to the

earlier CMIP phase 3 (CMIP3) AMIP ensemble.

In standard evaluation measures of teleconnection

patterns and amplitude, substantial differences exist

among models and when compared to the observations.

In light of such differences, we turn to other measures

in which the multimodel ensemble may contain useful

information. These include amplitude measures, a com-

parison of individual models to the multimodel ensem-

ble mean (MMEM), and measures of sign agreement.

In these alternative measures, the CMIP5 model en-

semble does unexpectedly well compared to observa-

tions. The performance on sign agreement measures is

decent enough to motivate questions regarding the op-

timal way to apply significance tests within multimodel

ensembles. We provide some explanation in the dis-

cussion section, noting that even though a full answer

may not yet exist, such alternative measures are rele-

vant to the evaluation of precipitation change in global

warming.

2. Datasets and analysis

To produce ENSO precipitation teleconnection pat-

terns, we use modeled and observed monthly mean SST

and precipitation data during the DJF months for the

years 1979–2005. For SST observations, we use the Ex-

tendedReconstructed Sea Surface Temperature (ERSST)

version 3 dataset (Xue et al. 2003; Smith et al. 2008); for

monthly precipitation rate observations, we employ the

Climate Prediction Center (CPC) Merged Analysis of

Precipitation (CMAP) archive (Xie and Arkin 1997).

For modeled teleconnections, we use monthly AMIP

precipitation (pr) and surface temperature (ts) data from

the CMIP5 and CMIP3 archives, as detailed in Table 1

[for more information on AMIP runs, see Gates et al.

(1999) and references therein]. All modeled precipita-

tion data are regridded to a 2.58 3 2.58 grid prior to

calculating teleconnection patterns. This is the native

grid of the CMAP precipitation dataset, and we use it to

facilitate direct comparison of modeled teleconnections

to the observations.

Linear regression and Spearman’s rank correlation

are used to calculate DJF precipitation teleconnections

for the selected time period. Linear regression is widely

used for assessing the relationship between global pre-

cipitation and tropical Pacific SSTs, where precipitation
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at a grid point is regressed against a spatially averaged

SST time series [here, the Ni~no-3.4 index, defined from

58S to 58N and 1908 to 2408E; see Trenberth (1997) for

information on El Ni~no indices]. One caveat is that

linear regression assumes the precipitation data fol-

low a Gaussian distribution, whereas in reality they

are zero-bounded and exhibit non-Gaussian behavior.

Spearman’s rank correlation—in which the rank of

the data is used to compute the correlation coefficient

(Wilks 1995)—does not make such assumptions, and

therefore we use it to provide a check on the sensitivity

of teleconnection patterns to the statistical methods

employed [for examples of studies that employ rank

correlation, see Whitaker and Weickmann (2001) or

M€unnich and Neelin (2005)].

Appropriate t tests are used in both the linear and

rank methods to resolve grid points that meet or pass

certain confidence levels (von Storch and Zwiers 1999).

The majority of this paper will focus on a t test applied

to teleconnections resolved via linear regression. This

t test is based on calculating a two-tailed p value where

the null hypothesis is a linear regression slope of zero.

Note that our use of the Ni~no-3.4 index yields ‘‘stan-

dard’’ teleconnection patterns, which provide a good

basis for comparison of models to observations. We

recognize, however, that there is interesting work ad-

dressing the next level of distinction among different

‘‘flavors’’ of ENSO and the remote impacts of SST

anomalies that have a central (rather than eastern)

Pacific signature (Ashok et al. 2007; Kao and Yu 2009;

Trenberth and Smith 2009).

3. Evaluating modeled spatial patterns and
amplitudes of precipitation teleconnections

a. Teleconnection patterns resolved via linear
regression and rank correlation

Figures 1 and 2 show observed and modeled precipi-

tation teleconnections for the DJF season as estimated

by linear regression and Spearman’s rank correlation,

respectively. We show both methods to check that tele-

connected rainfall patterns are robust against the sta-

tistical assumptions going into the calculation (ENSO

composites, not shown, yield similar results). Spearman’s

rank correlation is insensitive to extreme values and so

can bring regions with different amplitudes of variance

onto a common footing. This statistical method also of-

fers a significance test that does not assume Gaussian

statistics. Linear regression, by contrast, is easier to

interpret in terms of a change of the physical variables,

which in this case is precipitation rate per degree change

of SST in the Ni~no-3.4 region. Beyond this, comparing

modeled to observed teleconnections raises some in-

teresting questions about the restrictions of the statis-

tical significance tests. The most pertinent question

to arise is how best to use the collective information

offered by a multimodel ensemble. Substantial inter-

model variations also occur, and they are discussed in

sections 3b, 3c, and 3d. Other aspects of the restrictive

nature of these significance tests will be discussed in

section 4

Figures 1b and 2b show teleconnection patterns ob-

tained from the model ensemble. Note that there are

FIG. 1. DJF precipitation teleconnections for the years 1979–2005, as diagnosed through a linear regression analysis of precipitation

against the Ni~no-3.4 index (mm day21 8C21). (a) Observed teleconnections. (b) Concatenated multimodel ensemble (CMME) tele-

connections for the CMIP5AMIP 15-model ensemble. (c)As in (a), but with a two-tailed t test applied to the regression values and shaded

at 95% confidence (black outline) and 90% confidence (lighter shading). (d) As in (b), but shaded only where a t test yields grid points

significant at or above the 95% confidence level.
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several ways to obtain a regression representative of

all data contained in the 15-model ensemble. The option

we choose provides a straightforward test of statistical

significance. Specifically, we perform the regression over

all 15 models simultaneously; a straightforward way to

interpret (and program) this is as a concatenated time

series of the 15 available models, and so we will refer to

this as the concatenated multimodel ensemble (CMME),

when it is necessary to distinguish it.

The more classical approach of obtaining a single map

of teleconnections for a 15-model ensemble is to cal-

culate the teleconnections for each model individually

and average the 15 patterns together afterward, dis-

cussed previously as the MMEM. While this is more

widely used, obtaining a test of statistical significance be-

comes complicated, as one cannot easily take an average

of significance tests across 15 models. Thus in Figs. 1

and 2, the variant shown is the first one, although it should

be noted that the MMEM (not shown) and CMME pat-

terns are nearly identical, with a global spatial correlation

coefficient greater than r 5 0.999. The high correlation

between these two methods is to be expected if the

variance in each model is similar and stably estimated.

In the remainder of this paper, we will focus on the en-

semble patterns seen in both Figs. 1b and 1d, and we will

refer to them using MMEM and CMME interchangeably.

In Fig. 1, we show CMME linear regression DJF

teleconnection patterns (Figs. 1b,d) alongside obser-

vations (Figs. 1a,c). The ensemble pattern in Fig. 1b

reproduces a number of observed features. A broad

region of reduced precipitation over equatorial South

America, stretching out through the Atlantic intertropical

convergence zone (ITCZ), is qualitatively simulated,

although the region of the most intense anomalies is

slightly displaced spatially from the observations. The

region of increased precipitation starting off the coast

of California and extending through Mexico, the Gulf

States, and beyond Florida into the Atlantic storm track

is also qualitatively reflected in the CMME regression.

In the western Pacific, and surrounding the main ENSO

region to the north and south, there is a broad ‘‘horse-

shoe’’ pattern of reduced precipitation, which the CMME

captures reasonably well in terms of the low-amplitude

parts, although the location of the most intense anom-

alies is off.

Figures 1c and 1d show the same data as Figs. 1a and

1b, but with a two-tailed t test applied to the regression

at each grid point. One can see in Fig. 1d that the CMME

regression passes a 95% confidence level criterion over

fairly broad areas in each major teleconnection region,

thanks to the large amount of information available in

the 15-model ensemble. Each of the areas discussed

above passes this significance test, as do some smaller

regions, such as southeastern Africa. Figure 1c displays

observed teleconnections masked to show only grid

points that pass the 90% and 95% confidence levels,

indicating a relatively limited area over which the grid

point–based regressions meet these confidence criteria.

Specifically, linear regressions in Fig. 1 produce sta-

tistically significant teleconnections at 36.8% of grid

points across the globe in the CMME. The average of

the individual 15 models is 17.6% of grid points, while

that of the observations is 16.1%. Thus the local sig-

nificance tests for individual models, not shown, are

FIG. 2. As in Fig. 1, but for Spearman’s rank correlation analysis between gridpoint precipitation and the Ni~no-3.4

index. Note here that the color bar is unitless and corresponds to the Spearman’s rank correlation coefficient, with

a minimumof21.0 and amaximum of11.0. (a),(b) The teleconnection patterns from the rank correlation applied to

the observations and CMME, respectively. (c) As in (a), but shaded only where grid points pass the 95% confidence

level (black outline) and the 90% confidence level (lighter shading) of a statistical significance test for the rank

correlation analysis. (d) The CMME teleconnections shaded for grid points that pass at the 95% significance level in

the rank correlation analysis.
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qualitatively similar to the spatial extent of the obser-

vations in Fig. 1c.

Given that the CMME yields a statistically significant

prediction for the sign of the signal over the main tele-

connection regions, a one-tailed t test (on the side pre-

dicted by the CMME) could be used on the observations,

in which case the 90% confidence level of a two-tailed

test would correspond to the 95% confidence level of

a one-tailed test. However, when loosening the confi-

dence level restriction from 95% to 90% for observed

teleconnections, we only see a small increase in the

spatial extent of regions that pass the significance test.

In comparing Figs. 1c and 1d, one can see that the CMME

is significant at 95% confidence over a broader area than

the observations.

Figure 2 displays the same information as in Fig. 1, but

for Spearman’s rank correlation applied to the CMME

and observations. The teleconnection patterns that re-

sult using either the linear or rank method are similar

overall, implying that ENSO precipitation teleconnec-

tions are robust despite assumptions made about the

distribution of rainfall events a priori. Differences may

be noted between the two methods in particular re-

gions, such as the rank correlation deemphasizing the

narrow band along the equator in South America in

the CMME (Fig. 2b) relative to the linear regression

(Fig. 1b), although not in the observations (Fig. 2a).

The region passing significance criteria at the 95% level

under the rank correlation of the observations (Fig. 2c)

is comparable to that produced for the linear regres-

sion of the observations (Fig. 1c), and likewise for the

CMME. We henceforth focus on linear regression

teleconnection patterns on account of the simpler in-

terpretation of the amplitudes.

b. Regional model disagreement

Another point that can be made with Figs. 1 and 2 is

the large-scale agreement between teleconnected pre-

cipitation patterns in the CMME and in the observa-

tions. For reasons discussed in section 5, this agreement

is apparent over broader regions where the CMME

passes the t test at 95% confidence, not just in the nar-

rower regions where observations pass the t test at 95%

confidence. However, regional disagreement between

observations and the CMME pattern is also seen, es-

pecially in regions where the observations have intense

precipitation. In addition, the CMME exhibits a gen-

eral ‘‘smoothing’’ of teleconnection patterns.

These overly smoothed teleconnection patterns in

the CMME can be understood when examining indi-

vidual model patterns. Figure 3 shows teleconnections

for one run of each model in CMIP5, displayed for the

equatorial Americas; substantial regional variability is

easily seen. Qualitatively similar figures highlighting re-

gional disagreement have been produced in other stud-

ies that use CGCMs to examine ENSO teleconnections

and precipitation characteristics (e.g., Dai 2006, his

Fig. 9). Difficulties in simulating these teleconnections

in CGCMs persist in the AMIP models shown here:

variations in the location of the strongest precipitation

anomaly in Fig. 3 are common from model to model,

even though these are the areas that most easily pass

significance criteria on an individual model basis. Over

the region where the CMME regression passes a t test

at the 95% level, however, one can see that the overall

teleconnection pattern is plausible at large scales in each

of the models. Thus, Fig. 3 provides a visual sense of

the tradeoffs to be quantified: disagreement among

models at regional scales, excessive smoothing relative

to observations in the CMME, and yet some possi-

bility that there is useful information about the tele-

connection patterns in the 15-model ensemble, if it can

be suitably extracted.

c. Taylor diagram analysis of modeled
teleconnections

The regional variation among AMIP models leads to

a distinction between their ability 1) to reproduce spa-

tial patterns of teleconnections and 2) to represent the

amplitudes of these patterns. To examine individual

model fidelity in simulating patterns and amplitude of

rainfall teleconnections, we look at four regions (de-

tailed below) that show a robust ENSO response; each

region displays a continuous teleconnection signal

significant at the 95% confidence level in observations

(see Fig. 1c).

These four regions include (a) the equatorial Pacific

(the ‘‘cold tongue’’ region; positive DJF ENSO signal),

(b) the horseshoe-shaped region in the western Pacific

(negative signal), (c) equatorial South America (nega-

tive signal), and (d) a southern section of NorthAmerica

(positive signal). The equatorial Pacific region is shown

for reference, since this is the source region and is di-

rectly forced by the largest ENSO-related SST anomalies.

We consider the other three regions the ‘‘teleconnec-

tion regions,’’ since to accurately simulate teleconnected

rainfall in each one, the models must capture the path-

ways leading to remote precipitation change. The Taylor

diagrams in Fig. 4 show the spatial correlations be-

tween the observations and each model plotted against

the spatial root-mean-square deviation of each model’s

pattern (i.e., the standard deviation smod) normalized

by observations (sobs); we refer to this measure as the

teleconnection amplitude. For models withmultiple runs,

correlations and amplitudes are calculated for each run

first and then averaged among them; each individual
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model is given equal weight in the MMEM. Note we use

the MMEM here, and not the CMME, although Taylor

diagrams using the latter (not shown) are nearly identical.

Additionally, some of the individual models have small

negative correlations with observations in certain regions.

These models are used in calculating the MMEM, al-

though for diagrammatic simplicity the domain of the

Taylor diagrams is not extended to display these points.

Figure 4 allows easy comparison between CMIP3 and

CMIP5 AMIP runs. There is little (if any) improvement

from CMIP3 to CMIP5 in reproducing teleconnected

rainfall patterns in these regions. Additionally, models

exhibit generally low correlations (ranging from less

than 0.2 to a few instances exceeding 0.7, with an aver-

age correlation coefficient of about 0.40) with observa-

tions. In every region, one can also see that the MMEM

is typically more accurate than the majority of indivi-

dual models in reproducing spatial patterns. However,

the MMEM amplitude is substantially lower than that of

the individual ensemble members, and it underestimates

FIG. 3. DJF precipitation teleconnections shown for (a) the observations and (b)–(p) 1 run from each of 15 available CMIP5 AMIP

models (listed alphabetically by model acronym; see Table 1 for expansions of model names). Teleconnections here are resolved via the

linear regression analysis as in Fig. 1, with an identical color bar that has units of mm day21 8C21. Patterns are plotted for the equatorial

Americas to highlight regional (intermodel) disagreement among the ensemble members.
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the observations in every region outside of the central

equatorial Pacific. As a final point, we note that Taylor

diagrams of the corresponding rank correlation method

(not shown) also indicate consistent results.

d. Teleconnection amplitude in major impact regions

The varied agreement in amplitude measures from

Fig. 4 suggests that it may be more reasonable to use

FIG. 4. Taylor diagrams for the standardized amplitude and spatial correlation of precipitation teleconnections in four selected

regions, as indicated in the inset of each panel: (a) the equatorial Pacific (central ENSO) region, (b) the ‘‘horseshoe’’ region in the

western equatorial Pacific, (c) an equatorial section of South America, and (d) a southern section of North America. On the Taylor

diagrams, angular axes show spatial correlations between modeled and observed teleconnections; radial axes show spatial standard

deviation (root-mean-square deviation) of the teleconnection signals in each area, normalized against that of the observations. Shaded

red triangles (15 total) and blue circles (11 total) denote each of the CMIP5 and CMIP3 AMIP models, respectively. The unshaded

red triangle is the CMIP5 MMEM; the unshaded blue circle is the CMIP3 MMEM. Note that some models have negative correlations

with the observed teleconnections in a few regions; while we include them in calculating the MMEM, we do not plot them individually

in the diagrams.
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amplitude information from individual ensemble mem-

bers, rather than using that of the MMEM. To get a

better sense of how teleconnection amplitude of in-

dividual models might be affected by internal variability

within the models themselves, we take advantage of

AMIP models with multiple realizations, and we assess

the internal variability among these runs for eachmodel.

We then compare this to the amplitude range of the 15-

model ensemble. Figure 5 displays the radial axis from the

Taylor diagrams discussed previously, but where multiple

runs from each model are available, we plot them in-

dividually (43 total runs for 15 models in CMIP5; 26 total

runs for 13 models in CMIP3; see Table 1).

The vertical extent of the black lines in Fig. 5, repre-

senting plus or minus one standard deviation of the

amplitudes for the runs of a given model, is a measure of

internal variability for that model. The vertical extent

of each green bar is plus or minus one standard de-

viation of the MMEM amplitude, and it serves as a

measure of intermodel variability. Notable points from

this diagram include the following: 1) The MMEM

systematically underestimates the spread and central

tendency of intermodel variability, with a low bias

of about 20%–40% outside of the immediate ENSO

region. 2) The regional disagreement among models

owes itself partly to internal model variability, but

intermodel variability contributes to the majority of

the regional disagreement seen in Fig. 3. 3) Individual

models are overestimating the amplitude in the im-

mediate ENSO region for CMIP5, even though their

spread is more symmetric about the observations in

remote regions. 4) When comparing CMIP5 to CMIP3,

CMIP5 shows no consistent improvement or change

due to model development. Although the MMEMmay

fall closer to observed amplitudes in some regions for

CMIP5, this comes at the expense of a tendency for in-

dividual models to overestimate rainfall teleconnections

in the central ENSO region.

Figure 5 suggests that serious errors can result from

considering only information available in the MMEM.

While its spatial patterns correlate better with obser-

vations than most individual models, the MMEM tele-

connection amplitude is routinely too low in the remote

regions considered. It is therefore useful to consider

measures of teleconnection amplitude and spread from

individual models, in addition to theMMEM, in situations

FIG. 5. Standardized amplitude of precipitation teleconnections in each of the four regions

identified in Fig. 4. The calculation for this amplitude is discussed in the caption of Fig. 4 and in

the text. CMIP5 models (15 models, 43 runs) are shown on the left; CMIP3 models (13 models,

26 runs) on the right; see Table 1 for models used. Each blue dot represents a separate model

run, and where multiple runs are available for a given model, a blue dot is plotted for each.

Black bars represent the spread among the multiple runs for one model (when available),

centered at that model’s average amplitude among the multiple runs (61s of the amplitude

measure). The green dots and green bars denote the average teleconnection amplitude and its

spread (6 1s) for the entire ensemble in each region. The red dot is the MMEM including all

available models and runs, weighted so that each separate model contributes equally.
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where regional disagreement can dampen the MMEM

amplitudes due to averaging varied model signals.

4. Sign agreement plots in ENSO teleconnections,
and an argument for agreement plots of
precipitation change in global warming scenarios

Agreement plots for the sign of precipitation change

under global warming scenarios are commonly used in

multimodel studies (e.g., Randall et al. 2007; Meehl

et al. 2007), often as complementary information to

the MMEM. Agreement-on-sign tests can be viewed

as relatively weak statements regarding the precipitation

change at individual grid points for the model ensem-

ble, and it has been argued that sign agreement should

be used in conjunction with requirements on individual

models that grid points pass statistical significance tests

for change in mean precipitation (e.g., Neelin et al. 2006,

hereafter N06; Tebaldi et al. 2011, hereafter T11).

Here we examine agreement-on-sign measures based

on the ENSO precipitation regression patterns for each

model. Because we can assess these against observa-

tions, we can use this to examine the procedure as a

means of inferring its usefulness. If a procedure that

identifies high model agreement at a grid point also

correctly predicts the sign of the observations at that

grid point, it can help build confidence in using corre-

sponding procedures for the global warming case.

Figure 6a shows the traditional agreement-on-sign

plot for ENSO teleconnections in the CMIP5 AMIP

ensemble. At each grid point, we count the number of

models that agree on a positive (negative) DJF tele-

connection signal for the linear regression over Ni~no-

3.4, so that the plot shows the integer value of models

that agree on a wet (dry) response during ENSO. The

sign of the regression slope at each grid point is equiv-

alent to the sign of the expected DJF precipitation re-

sponse during an El Ni~no event. Areas with 12 or more

models agreeing on sign are shaded based on a binomial

test. Specifically, if we consider the null hypothesis that

the value of an ENSO precipitation signal for a given

point is equally likely to be positive or negative (i.e.,

drawn from a binomial distribution with a probability

of p 5 0.5), then when 12 or more models agree on sign,

the null hypothesis for this 50–50 probability can be

rejected at a confidence level greater than 98% (for

15 models, a sign agreement of 12 or more corresponds

to a confidence level of about 98.6%, and 11 or more

corresponds to 95.8%; both yield fairly similar spatial

patterns, so we use the more conservative 12).

The grid points with high sign agreement that pass

the binomial test at the 98% level in Fig. 6a cover a

spatial region similar to the areas passing the two-tailed

FIG. 6. (a) Agreement on a positive teleconnection signal (linear

regression) within the 15-model ensemble. Blue (red) colors rep-

resent high agreement on a positive (negative) precipitation re-

sponse during ENSO events. Note that in an ensemble of 15 models,

an agreement count of 12 implies that 80% of models agree on the

sign of the precipitation teleconnection at that grid point, which is

the area passing a binomial test at .98% confidence level (dis-

cussed in text). (b) Neelin et al. (2006; i.e., N06) significance

criteria (cross-hatching) overlaid on the sign prediction of the

15-model ensemble (colored shading). (c) Tebaldi et al. (2011;

i.e., T11) significance criteria (cross-hatching) overlaid on the

sign prediction of the ensemble, as in (b). Details of the N06 and

T11 cross-hatching criteria and sign prediction shading are out-

lined in the text. The cross-hatching is shown as an overlay in

(b) and (c) to highlight the restrictive nature of the N06 and

T11 criteria relative to the more extensive spatial coverage over

which the 15-model ensemble passes the binomial test at the 98%

level and exhibits an accurate prediction of the observed tele-

connection signals.
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t test applied to the CMME (Fig. 1d) at the 95% level.

However, the areas of high sign agreement cover amuch

larger spatial region than those passing the t test at the

95% level for individual model realizations, which are

similar to the areas passing the t test at this level for ob-

servations (see Fig. 1c and the discussion in section 3a).

This last point suggests two comparisons. First, we can

contrast regions of high sign agreement identified by

the binomial test with examples of criteria that have been

considered in the global warming literature that combine

t tests on individual models with sign agreement criteria

from the ensemble. Second, in this ENSO teleconnection

test bed, we can evaluate the model ensemble’s sign

prediction against observations. These results are dis-

played in Figs. 6b and 6c. These panels display hatching

according to the N06 or T11 criteria, respectively, over-

laid on a plot that assesses the prediction of the model

ensemble for the sign of the teleconnection signal; details

of these criteria are outlined below.

To produce the cross-hatching in Fig. 6b, we follow

the N06 procedure: 1) at each grid point, count the

number of models in the ensemble that have a slope

significantly different from zero at the 95% confidence

interval, and 2) cross-hatch grid points where greater

than 50% of models are significant and also agree on

the sign of the precipitation teleconnection. The N06

criteria impose a requirement that at least half of models

both be significant and agree on sign.

To produce the cross-hatching in Fig. 6c, we follow

the T11 procedure: 1) at each grid point, count the

number of models with a teleconnection significant at

the 95% confidence interval (as in N06); 2) for grid

points where more than 50% of models show a signifi-

cant rainfall response, cross-hatch if 80% or more of

significant models agree on the sign of the response;

and 3) if fewer than 50% of models agree on the sign,

shade the grid point black.

The underlying color shading in Figs. 6b and 6c is

identical and evaluates the sign prediction of the AMIP

CMME for the teleconnection signal, produced in the

following way: 1) Take the regions of high sign agree-

ment passing the binomial test at the 98% significance

level in Fig. 6a as a prediction of the sign of the observed

teleconnection pattern and compare that to the obser-

vations at the same grid point. 2) If the observations and

the model prediction agree on sign, shade blue (red) for

a positive (negative) ENSO precipitation signal, repre-

senting a correct prediction by the intermodel agreement

plot (Fig. 6a). 3) If the observations and Fig. 6a dis-

agree on the sign, shade the grid point purple to indicate

an erroneous prediction. 4) If the agreement on sign

does not pass the binomial test criterion of Fig. 6a, no

prediction is made and the grid point is left unshaded.

When examining Figs. 6b and 6c, the most impor-

tant point is that the model ensemble prediction of

sign does very well when assessed against observa-

tions. In major regions for which model agreement

passes the binomial test at 98% confidence, almost the

whole area yields the correct sign. The scattered, in-

correct grid points tend to be either isolated or at the

edges of correct regions, such that a scientific assess-

ment of likely areas of increase or decrease based on

the predicted areas (color shading in Figs. 6a and 6b)

would be highly accurate. Potential physical mechanisms

for the success of the sign prediction are discussed in the

next section.

Another obvious point in Figs. 6b and 6c is the simi-

larity between the N06 and T11 approaches. In practice,

the T11 test employed here is equivalent to the N06

test defined at a 40% threshold (80% 3 50% 5 40%).

The one difference is that T11 further specify those

grid points where more than 50% of models are sig-

nificant but fewer than 80% agree on sign, which they

classify as ‘‘no prediction.’’ This last T11 criterion may

be useful in evaluating precipitation change under

global warming, where at a given grid point, statistical

significance of the precipitation change for individual

models does not necessarily mean they will agree on

sign. In comparing the N06 and T11 procedures to the

regions over which the models correctly predict sign

of the observations, it is immediately apparent that the

N06 and T11 tests are highly conservative. Although they

do remove the modest fraction of points for which the

sign would have been incorrectly predicted based on

high agreement (passing the binomial test at the 98%

level), they do so at the cost of excluding substantial

regions that are correctly predicted. This is evident in

Figs. 6b and 6c, where the hatched areas are restricted

in spatial extent relative to the broader shaded regions.

To show the sign agreement of the model ensemble

with observations in more detail, we display in Fig. 7a

the number of individual ensemble members that agree

on sign with observations for ENSO teleconnections.

The same criterion for displaying high model agree-

ment (12 or more models) is used as in Fig. 6a. Within

this region, it may be seen that there are large portions

in which the number of models agreeing on sign with

observations is even higher, including substantial areas

where 100% of models agree with the sign of the

observations.

To obtain a counterpart of this plot from the model

ensemble, Fig. 7b shows the number of models agreeing

with the sign of the MMEM. Note that in producing this,

we exclude each model’s contribution to the MMEM

when determining agreement, so as to avoid inflating the

count. The similarities between Figs. 7a and 7b indicate
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that high sign agreement with the MMEM can serve as

a predictor for sign agreement with the observations.

5. Discussion

As discussed in the previous section, Figs. 6 and 7

suggest that there are substantial regions where models

from the CMIP5 AMIP ensemble are providing useful

information on the sign of rainfall teleconnections, de-

spite individual models and the observations failing to

meet t test criteria at the 95% level in parts of these

regions. We argue below that this is a combined conse-

quence of the larger size of the model ensemble relative

to individual runs, the nature of the quantity being

tested (the sign), and the models’ skill in predicting the

observed sign.

Before addressing this, we consider the possibility

that the broader region of skill at sign prediction in the

ensemble (relative to individual model runs) could

simply be an issue with applicability of the t test due

to the inherent non-Gaussianity of the rainfall distribu-

tion, even at seasonal time scales. This was addressed

in Fig. 2 by repeating the teleconnection calculations

using Spearman’s rank correlation, which makes no

assumptions of Gaussianity for the gridpoint rainfall

distributions, and an accompanying statistical signifi-

cance test. This yields results similar to those of the lin-

ear regression t test.

We now consider an explanation based on the fact

that the sign agreement both uses information from

the full model ensemble and tests a different hypoth-

esis than difference from zero. Because the collective

15-model ensemble contains a much larger set of reali-

zations of internal variability, it is natural that regions of

smaller signal should pass a given significance criteria in

measures that use all 15 models. This is evident in

comparing Fig. 6a to Fig. 1d, where areas of high sign

agreement (passing the binomial test at the 98% level)

tend to coincidewith areas that pass a t test on theCMME

at 95% confidence. In both cases the broad regions of

statistical significance come from using all 15 models.

Taking this into account, we consider the question of

why the models agree so well with the observations on

the sign of the teleconnection patterns, despite doing

poorly at detailed spatial distribution. There are two

aspects to this question: one statistical, and the other

physical. The statistical aspect is that where the models

exhibit sign agreement of 80%, the best estimate of the

parameter p in the binomial distribution is 0.8. While it

is beyond the scope of the paper to establish Bayesian

posterior probability density functions or other mea-

sures of margin of error on the inferred p, the point

needed to interpret the results here is straightforward:

if the models are sufficiently good representations of

observations such that the observed signal can be con-

sidered to be drawn from a binomial distribution with

a similar value of p at each point, then one would expect

the high level of agreement seen. Thus, the 15-model

ensemble shows success at predicting the sign of the

observations in broader regions than those where tele-

connection signals pass t tests applied to individual

models or observations. If we consider the fact that

these broader regions are those that pass the 98%

confidence level of the binomial test, this success of the

ensemble at sign prediction is completely consistent

with expectations and with the statement that the models

are doing well at simulating the observed sign.

The ability of models to provide information beyond

what a particular significance test may suggest is not

FIG. 7. (a) Sign agreement of precipitation teleconnections

between each of 15 CMIP5 AMIP models and the observations.

(b) Sign agreement of precipitation teleconnections between the

CMIP5 AMIP models and the MMEM, calculated using one run

from eachmodel. For (b), eachmodel is individually removed from

the MMEM before determining its sign agreement. Both (a) and

(b) use Ni~no-3.4 teleconnection patterns diagnosed via linear re-

gression. Red areas denote models that agree with the observations

or MMEM on a negative precipitation signal during ENSO events;

blue areas imply agreement on a positive precipitation signal.

4442 JOURNAL OF CL IMATE VOLUME 26



a new concept in modeled precipitation studies. Risbey

et al. (2011) resolve significant teleconnections in an

AMIP model using a 30-yr record and a two-tailed t test.

The authors note that the number of grid points passing

a 95% significance criterion is much fewer than the

same method applied to a century of historical data.

As a result, they loosen their restriction to an 80% confi-

dence interval, noting that the associated teleconnection

patterns are similar for records of either length. Power

et al. (2012) evaluate projected precipitation changes

from the coupled CMIP3 model ensemble, and they

demonstrate using the binomial distribution that model

consensus on the sign of end-of-century rainfall anoma-

lies is itself a strong argument for confidence in ensemble

agreement patterns.

That the ensemble does, in fact, get broad areas of

small-amplitude change correct in our teleconnection

analysis adds to the discussion in the literature that

projected change is worth assessing even in regions that

do not meet t test criteria applied to individual runs

(Tebaldi et al. 2011; Power et al. 2012) if these regions

do meet significance tests applied to the ensemble. This

is particularly relevant in global warming studies, where

a modest regional precipitation anomaly in a MMEM

could mean substantial changes in regional precipitation

budgets.

An important physical question that arises from

the present teleconnection results is this: Why does the

15-model ensemble perform better at predicting the sign

of the observed signal (including in broad areas of

modest precipitation amplitude response) and at yielding

the amplitude of the observed response than the indivi-

dual models do at reproducing detailed spatial patterns

of observed teleconnections? The unimpressive spatial

correlations (Fig. 4) are affected by poor individual

model skill in positioning high-amplitude signals.

We suggest that this may be associated with the

multiple physical processes operating in ENSO tele-

connections. Specifically, there are atmospheric processes

at work that will have smaller intermodel uncertainty and

smaller internal variability but are widespread spatially.

An example of these processes is an increase in tro-

pospheric temperature driving changes in radiative

fluxes, as well as driving an increase in water vapor

and a corresponding increase in the threshold for con-

vection (the thermodynamic process sometimes referred

to as the ‘‘rich-get-richer’’ mechanism; Chou and Neelin

2004; Held and Soden 2006; Trenberth 2011).

At the same time, feedbacks associated with dynam-

ical changes in moisture convergence can produce large

excursions from expected values of precipitation, both in

intermodel and temporal variability. The models contain

reasonable approximations to each of these processes,

but the location of strong precipitation changes can be

highly sensitive to factors such as model convection pa-

rameterizations, including the threshold for convective

onset (Kanamitsu et al. 2002; Neelin et al. 2010).

6. Summary and conclusions

AMIP runs from the CMIP3 and CMIP5 ensembles

provide one standard by which we can judge the ability

of the CGCMs’ atmospheric components to reproduce

dynamic feedback processes that lead to remote seasonal

precipitation anomalies. We focus on standard tele-

connection patterns associated with the ENSO Ni~no-3.4

index. Comparisons among the ensemble of models and

with the observations are made using precipitation tele-

connection patterns for the DJF for the years 1979–2005.

The spatial patterns and amplitudes of these telecon-

nections are analyzed in several regions with robust

ENSO feedbacks, including the eastern tropical Pacific,

the ‘‘horseshoe’’ region in the western tropical Pacific,

a southern section of North America, and equatorial

South America.

Teleconnection patterns are examined using three

methods: linear regression, Spearman’s rank correla-

tion, and compositing techniques (not shown), all with

similar results. The rank correlation method provides

an alternative significance test, which is useful in nar-

rowing some of the questions that arise for regions of

low-amplitude signal. Teleconnection patterns defined

with linear regression are useful for questions that in-

volve the amplitude of the signal; as such, we focus on

results from the linear regression.

How well the models perform at reproducing the

observed teleconnection patterns (amplitudes and spa-

tial patterns) depends strongly on the quantity for which

they are assessed. In standard measures of spatial corre-

lation, taken over the regions outlined above, the CMIP3

and CMIP5 AMIP models exhibit strong regional dis-

agreement with one another and with observations.

Comparing patterns visually, this is associated with regions

of strong precipitation change varying substantially from

model to model and with respect to observations, yielding

low spatial correlations between modeled and observed

teleconnection patterns (average correlation coefficients

on the order of 0.40 in the defined regions).

The MMEM performs marginally better than most

individual models in spatial correlation measures, largely

because the regions of strongest and varying change

have been smoothed. However, the MMEM system-

atically underestimates amplitude measures of the re-

gional precipitation response by 30%–40%, typically

falling more than one standard deviation below the central

tendencyof the 15-model ensemble. This underestimation
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is again associated with regional disagreement among

ensemble members, a well-documented artifact in pre-

cipitation studies ofGCMensembles (e.g., N06; R€ais€anen

2007; Knutti et al. 2010; Neelin et al. 2010; Schaller et al.

2011). The average of individual CMIP5 AMIP am-

plitudes, by contrast, is an accurate predictor for the

observations in all regions but the central ENSO region,

where models overestimate the precipitation response.

Sizeable internal variability of precipitation teleconnec-

tions is also shown to exist within each model, although

it does not dominate the intermodel spread.

One thing underlined by the low spatial correlations

in individual models is that even in AMIP experiments,

where only the atmospheric components of CGCMs are

being compared, simulation of ENSO teleconnections is

fairly challenging for the models. While coupled models

will have additional feedbacks, the AMIP experiments

provide a first line of assessment. Furthermore, because

we can compare AMIP simulations to observations, we

can assess how the model simulations fare under other

metrics commonly used in assessment of ensemble pat-

terns and intermodel agreement.

Sign agreement measures for a precipitation response

in model ensembles are often used for assessing global

warming precipitation changes. Examining sign agree-

ment for the teleconnection patterns, the model ensem-

ble has broad spatial regions with high consensus on sign,

passing a binomial test (to reject the null hypothesis of

50–50 probability of either sign) at the 98% level. These

regions are more spatially extensive than the regions for

which individual models (or observations) would pass

a two-tailed t test at the 95% (or even the 90%) level.

Furthermore, the regions passing the binomial test cor-

respond well to the set of points passing a t test (at the

95% level) applied to the 15-model ensemble. Thus the

larger region with high agreement on sign, relative to

regions passing criteria (e.g., N06 or T11) that make use

of t tests on individual models, is primarily the result of the

sign agreement test making use of the 15-model ensemble.

For these teleconnection patterns, the sign prediction

can be tested against observations. The models exhibit

high sign agreement with observations over similarly

broad regions, implying that high sign agreement within

the model ensemble (grid points passing the binomial

test at the 98% level) is a good predictor for sign agree-

ment with observations. One can infer from this that

the model ensemble is producing useful information

regarding the teleconnected precipitation signal in re-

gions that do not pass a t test at the 95% level for in-

dividual models, provided they pass a significance test

that makes use of information from the full ensemble.

The evaluation of the model simulations for ENSO

teleconnections may be used, with due caution, to draw

inferences for assessment of precipitation in global

warming projections. Many of the physical processes

leading to rainfall teleconnections are analogous to the

global warming case. In particular, widespread tropo-

spheric warming initiates tropical dynamics that cause

similar global precipitation change in both teleconnec-

tions and global warming. In both cases, one can trace

localized precipitation anomalies with high amplitude

and sizeable intermodel spread back to tropical regions

of strong convergence feedbacks and regions where

large-scale wave dynamics interacts with midlatitude

storm tracks.

The unimpressive skill of models at capturing the

precise regional distribution of large-amplitude rainfall

teleconnections compared to observations is consistent

with poor intermodel agreement on a precise pattern

of precipitation change in global warming. However, the

skill of individual models at reproducing the observed

teleconnection signal amplitude (assessed from the mean

of the individual model amplitudes, not the MMEM)

suggests that corresponding measures for global warm-

ing precipitation change may be trustworthy. Further-

more, sign agreement plots for the AMIP ensemble

prove skillful at predicting the sign of observed tele-

connections. While agreement plots for end-of-century

precipitation change obviously have different spatial

patterns than the signals considered here, the fact that

sign agreement plots are skillful at predicting spatially

extensive ENSO remote precipitation impacts—which

are challenging simulation targets that share physical

pathways with global warming precipitation signals—

provides a supporting argument in favor of using sign

agreement plots in global warming studies to make pre-

dictions of change from an ensemble of models.
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