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Abstract

Global climate models (GCMs) are examples of high-dimensional input-output systems,
where ‘model output is a function of many variables, and an update in model physics commonly
improves performance in one objective function (i.e., measure of model performance) at the
expense of degrading another. Here, concepts from multiobjective optimization in the engi-
neering literature are used to investigate parameter sensitivity and optimization in the face of
such tradeoffs. A metamodeling technique called cut high-dimensional model representation
(cut-HDMR) is leveraged in the context of multiobjective optimization to improve GCM sim-
ulation of the tropical Pacific climate, focusing on seasonal precipitation, column water va-
por, and skin temperature. An evolutionary algorithm is used to solve for Pareto fronts, which
are surfaces in objective function space along which tradeoffs in GCM performance occur. This
approach allows the modeler to visualize tradeoffs quickly and identify the physics at play. In
some cases, Pareto fronts are small, implying that tradeoffs are minimal, optimal parameter
value choices are more straightforward, and the GCM is well-functioning. In all cases con-
sidered here, the control run was found not to be Pareto-optimal (i.e., not on the front), high-
lighting an opportunity for model improvement through objectively informed parameter se-
lection. Taylor diagrams illustrate that these improvements occur primarily in field magnitude,
not spatial correlation, and they show that specific parameter updates can improve fields fun-
damental to tropical moist processes—namely precipitation and skin temperature—without sig-
nificantly impacting others. These results provide an example of how basic elements of mul-

tiobjective optimization can facilitate pragmatic GCM tuning processes.

1 Introduction

Uncertainties noted in present-day global climate model (GCM) simulations are com-
plex, region-dependent, and occur across a broad range of time scales. GCMs must correctly
simulate coupling among the land, ocean, and atmosphere as well as the interplay between large-
and small-scale dynamics, which themselves rely heavily on sub-grid scale physics and their
parameterizations. This study focuses on the tropical Pacific climate at the seasonal time scale,
where uncertainty is largely due to under-constrained moist processes. An inexhaustive list of
GCM issues in this region includes excessive precipitation in the Southern Hemisphere and
the double inter-tropical convergence zone [ITCZ; Dai, 2006; Lin, 2007], issues with dynam-
ics related to the El Nifo-Southern Oscillation [ENSO; Latif et al., 2001] and the South Pa-

cific Convergence Zone [SPCZ; Brown et al., 2010; Lintner et al., 2016], sea surface temper-
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ature biases leading to the excessive equatorial cold tongue [Li and Xie, 2014], issues in sim-
ulating the three-dimensional structure of moisture and temperature in the atmosphere [Zian

et al., 2013], persistent errors representing clouds and microphysics [Bony and Dufresne, 2005],
and uncertainty related to land-sea contrasts and representation of topography, particularly over

the Amazon [Yin et al., 2013].

These uncertainties are each present to an extent in the National Corporation for Atmo-
spheric Research (NCAR) Community Earth System Model version 1 [CESM1; Kay et al., 2012;
Gettelman et al., 2012a,b; Neale et al., 2013]. Additional issues have been noted in the abil-
ity of CESM to represent tropical Pacific dynamics at interannual time scales, specifically the
frequency and seasonal timing of ENSO events and other modes of variability [Deser et al.,
2012; Capotondi, 2013], as well as its ability to simulate tropical wave dynamics associated
with the Madden-Julian Oscillation [MJO; Boyle et al., 2015]. Although some aspects of the
physics at fast time scales relevant to convective processes are reasonably well simulated—
including the pickup of deep convective precipitation and how this depends on column-averaged
temperature and column water vapor [Sahany et al., 2012, 2014; Kuo and Neelin, 2016]—disparities
in convective measures between CESM and observations have also been noted [e.g., Zhang
and Chen, 2015]. Poorly represented microphysics is also a persistent issue affecting CESM
and leads to errors in radiation statistics, cloud cover, and feedbacks [Gettelman et al., 2012b;

Trenberth et al., 2015; Zheng et al., 2016].

In the process of improving GCMs through parameter tuning and calibration, a common
phenomenon can occur where updating a parameter value can cause one metric of model per-
formance to improve while another gets worse. Perturbed physics ensembles, in which a sin-
gle model is integrated across a range of parameter values, allow the modeler to isolate these
parameter uncertainties in a single climate model [Allen and Stainforth, 2002; Murphy et al.,
2004; Stainforth et al., 2005; Collins et al., 2006]. Recent studies have used perturbed physics
ensembles to identify sensitive parameters in climate models [Guo et al., 2014, 2015; Boyle
et al., 2015; Qian et al., 2015], determine optimal parameter ranges [Jackson et al., 2004, 2008;
Annan et al., 2005; Severijns and Hazeleger, 2005], and explore nonlinearity in parameter sen-
sitivity using polynomial-based metamodels [Neelin et al., 2010; Bellprat et al., 2012; Bracco
et al., 2013] or more involved techniques like artificial neural networks [Sanderson et al., 2008]
or Bayesian inference strategies [Sacks et al., 1989; Rougier, 2007; Rougier et al., 2009; Lee
et al., 2011, 2012]. The majority of these studies is done in the context of model calibration

or parameter optimization, and multiobjective methods offer a powerful approach for constrain-
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ing high-dimensional parameter space [e.g., Price et al., 2009]. The utility of multiobjective
techniques, however, has not been exploited in the context of fully-coupled atmosphere-ocean

GCMs, nor have they been combined with metamodels or model emulators.

In this paper, we use a perturbed physics ensemble to train reduced-complexity mod-
els that reconstruct the parameter space and sensitivity of the deep convection scheme within
a fully-coupled GCM. This technique is termed metamodeling, model emulation, or surrogate
modeling, and the primary method employed here is cut high-dimensional model representa-
tion (cut-HDMR), a technique adapted from the engineering literature. The output from cut-
HDMR is then used within multiobjective optimization methods that quantify parameter-based
tradeoffs in model performance and facilitate selections for parameter value updates. Central
to our methodology is the Pareto front or frontier, which is a surface in objective function space
along which model performance in one metric or objective function cannot improve without
degrading another, and it is used to characterize the tradeoffs encountered in a GCM. By con-
sidering multiple objective functions simultaneously, one can better understand the tradeoffs
involved in GCM parameter updates as well as calibrate or optimize parameter choices in an

objective way.

In the remainder of this manuscript, we leverage a perturbed physics ensemble described
in Bernstein and Neelin [2016] to build simple metamodels and use their output for multiob-
jective parameter optimization. Following steps that a modeler might take in the tuning phase
of GCM development, we focus on the tropical Pacific climatology of precipitation, column
water vapor, and skin temperature. Sections 2 and 3 contain a description of the data, meth-
ods, and concepts used in this paper. Section 4 demonstrates the use of metamodels to recon-
struct the parameter space of the the GCM used here. We then pivot to the primary goal of
this paper in Section 5, where we use concepts from multiobjective optimization to visualize
tradeoffs in GCM performance and identify parameter values that optimize a set of observed
metrics. Section 6 examines these tradeoffs for precipitation over the Amazon and over the
tropics. These results are shown on Taylor diagrams in section 7, and parameter updates are
explored across additional fields in section 8. Summary and conclusions are contained in sec-

tion 9.
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2 Data

Unless otherwise noted, climatological fields for models, observations, and reanalysis
products are analyzed on a domain that encompasses the tropical Pacific, including all land

and ocean grid points between 40°S—40°N, 120°E-300°E.

2.1 Perturbed physics ensemble setup

Many parameter space sampling strategies exist, though some are more naturally asso-
ciated with particular metamodeling approaches. We choose a perturbed physics ensemble that
aims at estimating nonlinearity first, for one parameter at a time, and then for pairwise param-
eter.combinations. The first-pass estimate uses on-axis runs—where “axis” refers to a single
axis in parameter space—because it allows the modeler to build intuition about the magnitude
and. nonlinearity of the parameter sensitivity to each parameter acting alone, and the compu-
tational costs associated with this step are order-N (where N is the number of parameters sam-
pled): Parameter interactions are then estimated with pairwise parameter perturbation runs that
are informed by the first pass. The organization of this approach leverages the construction
of cut-HDMR, which orders approximations by their degree of parameter interaction (see sec-
tion 3.1 and the Supporting Information [SI]). This allows leading aspects of high-order non-

linearity to be estimated at order-NV in the number of computations.

Our approach assumes that the modeler knows only qualitative (if any) information about
the nonlinearity of the parameter space that is being sampled, and so an ensemble with along-
axis perturbations gives direct and quantitative insight into this nonlinearity in directions of
parameter space that are more straightforward to interpret. Another important aspect consid-
ered in our ensemble is that precipitation exhibits substantial internal variability, and so model
runs‘are several decades long to better sample the GCM climatology. Other parameter space
sampling strategies are discussed more comprehensively in the SI (and in references in the in-
troduction) and would also be compatible with the multiobjective optimization techniques that

are the main thrust of this paper.

2.1.1 On-axis runs

Bernstein and Neelin [2016] have created a branch run perturbed physics ensemble for
the fully coupled CESMI1 (subversion 1.0.5) by perturbing four parameters in the deep con-

vection scheme of the Community Atmosphere Model version 4 (CAM4). Note that both CAM4

This article is protected by copyright. All rights reserved.



and CAMS, as well as the upcoming CAMO6, all use the Zhang-MacFarlane scheme for deep
convection [Zhang and McFarlane, 1995] with modifications incorporated from Richter and

Rasch [2008] and Raymond and Blyth [1986, 1992].

These integrations have been performed in a way that mimics experiments in the Cli-
mate Model Intercomparison Project phase 5 (CMIPS) ensemble [Taylor et al., 2012]. To build
the perturbed physics ensemble, the GCM was first integrated using transient climate forcing
during the 1850-1975 period. From there, branch integrations were performed for each pa-
rameter value during an additional 30 years, producing a total of 20 integrations (including
a control run) that each spans 1975-2005. The name, units, perturbations, and a short descrip-
tion for each parameter in the ensemble are listed in Table 1. We use monthly fields and cal-
culate December-January-February (DJF), June-July-August (JJA), and annual climatologies
for each run. The first 10 years are discarded to allow for model equilibration, so climatolo-
gies represent a 1985-2005 average. Bernstein and Neelin [2016] show that the hydrological
cycle tends to adjust quickly to parameter changes (on timescales less than 10 years). Small
remaining imbalances in top-of-atmosphere (TOA) radiation associated with adjustment of the
deep ocean could be relevant to some climate quantities but are not a strong effect for those

examined here.

2.1.2 Off-axis runs

In addition to the single-parameter perturbation runs, we leverage off-axis experiments
(in this case, two parameters varied simultaneously) to more accurately interpolate into the four-
dimensional parameter space. Table 2 lists the additional off-axis integrations that are used as
interaction terms in the metamodel calculations shown later. A grand total of 51 integrations
have been produced: the initial ensemble of 20 mentioned above, the six in Table 2 for off-
axis terms, and 25 additional runs that were created for validation and exploration purposes.
These 25 additional runs consist of 20 integrations where two parameter were varied at once,
and five integrations where three parameters were varied. The parameter information for these

runs is not listed explicitly, though they are shown in some figures and will be discussed later.

2.2 Observations and reanalyses

The primary data sets used to constrain the GCM in this study are precipitation from the

Global Precipitation Climatology Project [Adler et al., 2003; Huffinan et al., 2009] and column
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Table 1. The four parameters modified in the perturbed physics ensemble. The first column lists the param-

eter shorthand as used in this chapter, with the full parameter name in the second column. The third column

shows the parameter values used in the CESM1 integrations, with the control run values (the parameter de-

fault values) shown with an asterisk. Note in the the text that the first two dmpdz values are discussed as a

dangerous range, so quadratic metamodel fits in this chapter exclude the model runs for the bracketed val-

ues of dmpdz (third column). Units and a short description are listed in the fourth and fifth columns. More

information on this ensemble can be found in Bernstein [2014] and Bernstein and Neelin [2016]. For more

information on CESM1 or the deep convection scheme, see the Community Atmosphere Model version 4

(CAM4) documentation, Neale et al. [2010].

Parameter Name (and units) Values Description
dmpdz deep convective [0, 0.08,] 0.16, Turbulent entrainment of environmental air into
entrainment parameter 0.25,0.5,1%, 1.5, deep convective plume
(x 1073 m~1) 2
a7 deep convective timescale 30, 60*, 120, Time scale for consumption rate deep of
(minutes) 180, 240 Convective Available Potential Energy (CAPE)
by cumulus convection; necessary for closure of
deep convection scheme
« downdraft fraction 0,0.1*%,0.25,0.5,  Fraction or proportionality factor that
(unitless, out of 1.0) 0.75 determines the mass flux of an ensemble
downdraft, taking into account precipitation and
evaporation
ke evaporation efficiency 0.1,0.5,1*%,5,10  Evaporation efficiency of precipitation
(x 10~S kg

[m—QS—l]—l/Q S—l)

bold* (with asterisk) indicates standard or control value

This article is protected by copyright. All rights reserved.



Table 2. Off-axis runs (i.e., integrations in which two parameters are changed at a time) used to fit nonlinear
interaction terms in the quadratic and cut-HDMR metamodels. Control values for each parameter are marked

with bold font; see Table 1 for units and description of parameters.

dmpdz T a ke

1.0 60 05 5.0

1.0 120 05 1.0

1.0 180 01 5.0

1.5 60 05 1.0

1.5 60 0.1 50

1.5 180 0.1 1.0

water vapor and skin temperature from the ERA-Interim reanalysis [Dee et al., 2011]. Sev-
eral other data sets evaluated here are described in Table 3; monthly fields were downloaded

for each variable during 1985-2005, unless otherwise noted.

3 Methods
3.1 Metamodels

The GCM in this study is an example of a high-dimensional input-output problem, in
which a physical system has a large number of input parameters that can be varied indepen-
dently and will produce a complex response in the output (a GCM simulation). If N param-
eters are sampled K times each, the number of model integrations required for brute-force sam-
pling is KV. Sampling the full parameter space of the 20-member ensemble used in this study
requires 1000 model integrations at the combinations of values in Table 1. Such a task is com-
putationally unfeasible, so metamodels are borrowed from the engineering literature to accom-

plish this task.

The first type of metamodel used here is the polynomial-based metamodel (here, linear
and quadratic) described in Neelin et al. [2010]. This technique fits the parameter dependence
of a given field at each grid point and time step or climatological average to a quadratic func-
tion, allowing for linear (single-parameter) and nonlinear (parameter interaction) effects. This
metamodel can be trained by using on-axis information only or can be further approximated

using nonlinear interaction terms, requiring at least one off-axis integration in each pairwise
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Table 3. The observational and reanalysis data sets used as model constraints in this study. The full field
name is listed in the first column, with the CESM nomenclature given in parentheses. The observational data
sets are listed in the second column, the time period used is listed in the third column, and references are
given in the fourth column. Note that the CERES and ERS data are more recent satellite products and are only

available for the listed time frames.

Field name (with CESM Data set Period Citation
shorthand) analyzed
precipitation (PRECT) Global Precipitation Climatology 1985-2005 Adler et al. [2003]

Project version 2.2 (GPCP)

column water vapor (TMQ) ERA-Interim Reanalysis 1985-2005 Dee et al. [2011]
skin temperature (TS)
sea-level pressure (PSL)

300 hPa zonal winds (U300)

2-meter air temperature or Willmott and Matsuura version 1.02 1985-2005 Willmott and Matsuura
reference height temperature [2001]

(TREFHT)

Zonal wind stress (TAUX) European Remote Sensing satellites 1 1991-2001 PODAAC [1994]

and 2 (ERS-1 and ERS-2)

Longwave cloud forcing Clouds and the Earth’s Radiant Energy 2000-2016 Wielicki et al. [1996]
(LWCF) System - Energy Balanced and Filled

(CERES-EBAF) edition 2.8
Shortwave cloud forcing

(SWCF)
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parameter plane, or N (/N —1)/2 additional integrations. An even simpler linear metamodel

can be calculated by neglecting second-order terms.

The second type of metamodel we use is a modification of cut-HDMR [e.g., Rabitz and
Alis, 1999; Rabitz et al., 1999; Li et al., 2001; Wang and Shan, 2007]. This technique is a sim-
ple yet flexible expansion that orders terms by degree of interaction. We use empirical orthog-
onal functions (EOFs) across each parameter axis separately to approximate the on-axis non-
linearity in the cut-HDMR expansion, and we incorporate a nonlinear interaction in a man-

ner similar to the quadratic metamodel to fit the residuals.

For a detailed description and comparison of these specific techniques, a discussion of
their performance, and their context in the greater literature, we refer the reader to the SI. For
the majority of the results presented here, we have used the cut-HDMR metamodel with in-
teraction terms included. As discussed in the SI, the quadratic and cut-HDMR metamodels give
similar results for response surfaces, and we find them to be reasonable choices for reconstruct-
ing-the full climatological fields. Cut-HDMR is more adept at capturing model fields directly
along the axes, though both metamodels show degradation at points in parameter space far from
parameter axes and the control parameter set (i.e., in regions near the edge of the feasible pa-

rameter space).

These metamodels are used to reconstruct total fields of seasonal precipitation, column
water vapor, and skin temperature. Visualization techniques are then applied to these recon-
structions with the goal of finding the parameter combinations in the full parameter space that
minimize model error relative to observations and reanalyses. These measures of model er-
ror, referred to in this paper as objective functions, include use latitude-weighted root-mean-
square error (rmse) and mean-square error (mse) for December-January-February (DJF), June-
July=August (JJA), and annual climatologies in a domain that includes the tropical Pacific Ocean.
We note that this study does not advocate for any metamodeling technique in particular, as the
ideal.candidate will change based on the perturbed physics ensemble and goals of the mod-
eler. Here, we use these techniques as a means to an end: to visualize and quantify tradeoffs

in model performance.

3.2 Pareto-optimal sets

When multiple objective functions are considered at once, a GCM’s performance can

be viewed in objective function space. A schematic is shown in Fig. 1a, where two objective

—10-

This article is protected by copyright. All rights reserved.



functions ‘a’ and ‘b’ are the axes, and the goal of the modeler is to minimize both simulta-
neously. Each dot represents a different point in parameter space for the high-dimensional model,
and we will use this type of plot to examine the performance of CESM1. The black dots rep-
resent the Pareto-optimal set, and the curve connecting them denotes a Pareto frontier, which
gets its name from Vilfredo Pareto, an Italian engineer-turned-economist who first described
these concepts in the context of optimal resource allocation at the turn of the 20th century. In
this schematic, optimum GCM performance is confined to move along the front, where per-
formance in one measure cannot improve without degradation in another. The extreme ends
highlight where either a or b are optimized individually, though if they are equally important,
the modeler might opt for a happier medium. These Pareto fronts not only help identify trade-
offs that occur but also the GCM physics that warrant revision. Also note that while we vi-
sualize the Pareto front as a curve in two dimensions, it can be scaled up to a multi-dimensional
surface based on the number of objective functions considered. Figure 1b shows a similar Pareto
front but with different objective functions ‘c’ and ‘d.” In this case, the front is shorter in length
and has fewer Pareto-optimal points on it, implying that the tradeoffs are less extensive and

the decision for the modeler more straightforward.

Figure 1. A schematic Pareto front is shown for a general high-dimensional model like a GCM. Dots show
points in parameter space, plotted as a function of two objective functions, a and b. The black dots show

Pareto-optimal solutions, and the line portrays the Pareto front.

In the multiobjective optimization literature, tradeoffs in a system are largely governed
by the details of the system, itself. As an example, a common tradeoff experienced in car man-
ufacturing might be luxury versus affordability of a new car. True constraints that govern man-
ufacturing costs imply that a cheaper car will be made with less expensive materials, and be-
cause of this, fewer resources will be dedicated to the comfort and features (the luxury) of its
design. The manufacturer would weigh these tradeoffs when designing a car for the consumer
market, and the tradeoff frontier would ideally be broad—a situation akin to Fig. la. GCMs
are somewhat different in that observations serve as a truth, and if a GCM (and observations)
were functioning perfectly, the optimal parameter set would be a single point, not a curve or
surface. In reality, GCMs experience Pareto fronts that vary between the likes of Figs. la and
1b, and in cases where a small Pareto front is encountered, this is a positive sign indicating

the model is functioning well in the aspects that impact these objective functions.

—11-
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There is an extensive literature on how to calculate a Pareto-optimal set, and this can
be a thorny and computationally expensive problem when there are many dimensions over which
a modeler wishes to optimize. Iterative or evolutionary algorithms are popular, and the gen-
eral approach of these methods—inspired by concepts in biological evolution and natural selection—
is to select a ‘population’ of individuals (here, points in parameter space), test the performance
of that population using a fitness function, and iterate or evolve over successive populations
until ‘an optimal set of points is found. In this paper, the optimality condition or fitness func-
tion will be to minimize the mse of multiple fields relative to observations or reanalyses si-
multaneously. The Pareto-optimal sets discussed in this study have been calculated using a Python
package obtained through the Github repository of Woodruff and Herman [2014]. This code
implements a non-dominated evolutionary sorting algorithm (NGSA) originally introduced by
Laumanns et al. [2002]. For a more thorough discussion of NGSA and related methods, use-

ful starting points are Deb et al. [2002] and Deb et al. [2005].

Multiobjective methods have had limited application so far in climate modeling litera-
ture. Price et al. [2009] built a metamodel for the response surface of an intermediate-complexity
global energy and moisture balance model, Grid ENabled Integrated Earth system (GENIE),
using a parameter set that represented physical processes in ocean, atmosphere, and sea ice
dynamics. They used a kriging method to model the response surface and then employed a
version of NGSA [Deb et al., 2002] to find Pareto-optimal solutions. The metamodels we em-

ploy here are chosen for their simplicity and reasonable performance, as discussed in the SI.

Figure 2. Rmse values as a function of parameter for the tropical Pacific domain. The left, center, and right
columns show precipitation, column water vapor, and skin temperature. Dots show values of original model
integrations along each parameter axis, and lines show metamodel reconstructions. Dark solid lines represent
the cut-HDMR metamodel reconstruction using the leading three modes, and dark dashed lines represent this
for the leading two modes. Light solid lines show quadratic metamodel reconstructions, and light dashed lines

show linear metamodel reconstructions. Blue, red, and green correspond to DJF, JJA, and annual analyses.

In the sections that follow, we inspect the parameter sensitivity of tropical Pacific pre-
cipitation, column water vapor, and skin temperature across single parameter axes and then
use metamodels to do this in multi-dimensional parameter and objective function space. Re-
sponse surface methodology (discussed in the SI and in more detail below) is used to guide

choices for interaction terms and metamodel adjustment, and the results are used to construct

12—
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Pareto fronts and explore optimal points in parameter space. A parameter update is proposed
in section 6 that improves the tropical Pacific simulation of precipitation, column water va-
por, and skin temperature climatologies. Taylor diagrams are used to give an alternative view
of the Pareto fronts as well as compare a larger set of model fields to observations before and
after the update. As the update demonstrates, improvement in some fields can lead to degra-

dation in others, and these parameter changes are therefore suggested alongside caveats.

4 Parameter sensitivity across multiple fields

Figure 2 shows model rmse as a function of parameter value for precipitation, column
water vapor, and skin temperature fields in the tropical Pacific domain. A notable theme here
is that all parameters show some degree of nonlinearity as a function of parameter value for
a given field—even when the parameter dependence appears fairly linear in others—and these
results parallel those of Bernstein and Neelin [2016]. For example, the parameter dependence
across « appears linear for column water vapor but more notably nonlinear at low « values
for both precipitation and skin temperature. Because of this behavior, it is not possible to as-
sume a consistent functional form of parameter dependence across all variables, and the most

useful metamodeling techniques are those that can account for this.

Tradeoffs in model performance can also be found in the objective functions of Fig. 2.
Examining precipitation rmse as a function of 7 (Fig. 2d), values of 7 near or just above the
control (60 minutes) lower the error relative to GPCP and are therefore candidates for model
improvement. In contrast, much higher values of 7 (in the range of 200 minutes) are desired
in order to better constrain column water vapor or skin temperature against the ERA-Interim
reanalysis. Multiobjective tradeoffs become quickly apparent: by changing 7 from its default
value, one cannot improve model simulation of precipitation without degrading that of column
water vapor or skin temperature. Tradeoffs like these are encountered frequently in such a high-
dimensional optimization problem, and improving the tropical Pacific climate in the face of

such constraints is the focus of this study.

Finally, we note the skill of the cut-HDMR metamodel at capturing on-axis sensitivity
(see the SI for a lengthier discussion). The dark solid lines pass through all of the integrated
points of Fig. 2, lending confidence to this method for cases when parameters are varied close
to the axes. Comparing this with the linear or quadratic metamodel—especially for parame-

ters like dmpdz or k.—cut-HDMR does significantly better along the axes.

—13-
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Figure 3. Rmse values as a function of two parameters, o and dmpdz, with 7 and k. held at their control
values. Calculations were done over the tropical Pacific domain. Surfaces show the metamodel reconstruction
of parameter dependence. Small filled circles show on-axis rmse values (as seen in Fig. 1), and large filled
circles show off-axis values extrapolated by the metamodel. The numbers to the right of each large circle
show the true rmse value (top) and the percent error of the metamodel surface relative to this point (positive
values imply the metamodel overestimates the rmse at that parameter combination). Rows show off-axis
reconstructions for (a—d) precipitation, (e—h) column water vapor, and (i-1) skin temperature. The left two
columns show cut-HDMR results using on-axis information for DJF and JJA, and the right two columns show

these reconstructions with an added interaction term outlined in red.

5 Objective functions in parameter space: Response surfaces

Figure 3 displays results from using cut-HDMR to interpolate off parameter axes from
information in Fig. 2 in the a-dmpdz plane, shown for precipitation (top row), skin temper-
ature (middle row), and column water vapor (bottom row). These figures are called response
surfaces and fall into the discipline of response surface methodology that arose in the statis-
tics literature [Box and Wilson, 1951]. This methodology discusses the relationship between
a nonlinear response function (here, the rmse values of a climate field relative to observations)
and explanatory variables (parameters). Response surfaces are often thought of as univariate
in one objective function, but note here that we use this terminology in a multivariate sense—

i.e., considering multiple response surfaces of different seasons or fields simultaneously.

The first and second columns show the results using on-axis information in the meta-
model reconstruction, while the third and fourth columns show results when refining cut-HDMR
to incorporate the off-axis (interaction) term, outlined in red at (o, dmpdz) = (0.5,1.5). Gen-
eral qualities are similar between cut-HDMR with and without the interaction terms, and they
commonly overestimate the curvature of the response surface, particularly at the edges of the
parameter ranges (e.g., low values of dmpdz). This is visually apparent when comparing the
value of the rmse values from integrations (filled circles) to that of the cut-HDMR results (un-
derlying response surface). For example, the integration at (a,dmpdz) = (0.5,0.16) shows a large
discrepancy between the true model rmse value and the underlying surface. This sensitivity
is not ideal for the metamodel, though it doesn’t devalue it, since the modeler will typically
avoid parameter values at the edge of the feasible range and is likely to consider parameter

updates that are in the vicinity of the control axes.

14—
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We note that a similar analysis for Fig. 3, but in this case using the (o, dmpdz) = (0.25,1.5)
point as the interaction term, leads to a much more substantial curvature effect, so we choose
to use (o, dmpdz) = (0.5,1.5) for the nonlinear interaction fit in this plane. Our process in se-
lecting this was iterative, informed by integrating the GCM at several well-chosen off-axis points
(larger circles in Fig. 3) and comparing their true rmse values to those predicted by the meta-
model. This method helps bring the box contained within «a € [0.25,0.5] and dmpdz € [1.0, 2.0]
into focus as a likely region or window for a parameter update. By starting with on-axis in-
formation and using the response surface to guide where further integrations should be placed,
the modeler can narrow to a region of interest in parameter space that can help improve the
accuracy of the metamodel and improve decisions about GCM parameter updates. Note that
if the curvature effect is severe and the metamodel is deemed untrustworthy, one could incor-
porate more off-axis terms into the metamodel calculation or even scale up to higher-order terms

in HDMR for that particular plane.

6 Parameters in objective function space: Pareto fronts
6.1 Pareto front visualization

Figure 3 allows the modeler to visualize initial tradeoffs when two parameters are var-
ied at once, though the goal here is to achieve full exploration of the ensemble at hand. The
cut-HDMR metamodel is used to interpolate into the four-dimensional space, and Fig. 4 shows
this for an approximately global domain (60°S to 60°N, top row) and for the tropical Pacific
domain shown in other figures (bottom row). The vertical and horizontal axes show metamodel-
estimated mse values for precipitation and column water vapor. The familiar Pareto front, as
schematized in Fig. 1, is approximated by plotting the first three successive Pareto-optimal sets—

as calculated by the evolutionary algorithm described in section 3—as black squares.

For a well-tuned model, the control run (yellow star) would ideally lie on the Pareto front
in Fig. 4, though in this case one can see notable uncertainty in column water vapor that dis-
places the control run along the horizontal axis. Note that for measures like these, annual cases
(not shown) tend to perform better, likely because the model itself has been historically tuned
to annual averages. Each square in Fig. 4 represents one of the 1000 possible parameter com-
binations that have been reconstructed using the cut-HDMR metamodel. The color of each square
represents the Euclidean distance in parameter space between a point’s parameter values and

the control values; the distances are normalized to have a maximum of one (light yellow) for
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Figure 4. Cut-HDMR reconstructions of the full parameter space, showing tradeoffs in objective functions
of precipitation and column water vapor mse. (a,b) show seasonal results for all longitudes between 60°S

and 60°N, and (c,d) show results for the tropical Pacific domain. The control run is shown in each figure as a
yellow star, and squares represent the 1000 possible parameter combinations based on the sampling discussed
in the methods. Color and shading of squares denotes the Euclidean distance of a given parameter set to the
control, with each parameter axis normalized by its range to contribute equally in computing the Euclidean
distance. Darker red squares represent parameter combinations closer to the control run, and yellow squares
imply parameter combinations further from the control; the minimum and maximum distances are represented
by the shaded red and yellow squares in the legend, respectively. Black squares mark points that approxi-
mate the Pareto front, selected through an iterative procedure that collects the first three successive sets of

Pareto-optimal solutions using the evolutionary algorithm.

the combination of all parameters at their farthest endpoints, and zero (dark red) for all pa-
rameters at the control. That the darkest red squares tend to occur nearest the control run—

and the yellow squares farthest—serves as a check for the smoothness of the response surface.

The 1000 parameter combinations have been reconstructed based on the original on-axis
parameter sampling in the perturbed physics ensemble. While it would be possible to inter-
polate between these values and sample at a density greater than 1000, we have chosen to stop
here with the knowledge that parameter sensitivity is smoothly varying (see Figs. 2 and 3),
and for the size of improvements we are getting, this resolution is adequate. A notable point
from Fig. 4 is that the shape of the Pareto front varies seasonally and regionally. For the global
domain in JJA (Fig. 4b), it is curved more smoothly, with a continuous set of tradeoffs. The
global domain during DJF (Fig. 4a) is sharper, by contrast. In addition, a significant portion
of the Pareto front in the tropical Pacific domain during both DJF and JJA is nearly parallel
to the horizontal axis, highlighting a region in parameter space where precipitation error will
not change measurably, but as much as a 50% improvement can be made to column water va-

por relative to the control run.

6.2 Two-dimensional Pareto fronts in detail

Figure 5 shows a zoomed version of the Pareto front for different combinations of ob-
jective function planes. The control is now plotted as a gray star, and the shaded squares from

Fig. 4 are in grayscale. All on- and off-axis validation (i.e., true GCM) runs are also included
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Figure 5. Zoomed in version of cut-HDMR reconstructions for the full parameter space, calculated over
the tropical Pacific domain and shown for different combinations of precipitation, column water vapor, and
skin temperature mse. The control run (star) and the shading of squares as in Fig. 3 now appear in grayscale,
with dark gray squares representing parameter combinations close to the control, and light gray far from

the control. The colored shapes shown in the legends indicate mse values from full model integrations. The
first four colored shapes after the control run represent model integrations varying parameters on-axis sep-
arately. Shapes plotted with darker hues relative to the legend imply parameter values that are less than the
control, and shapes plotted with lighter hues relative to the legend imply parameter values greater than the
control. Colored squares represent integrations where parameter values were varied two at a time, according
to Table 2. Thick light gray lines represent a fit Pareto-optimal set using univariate spline interpolation. In
(c,d), three points are circled in yellow, red, and blue corresponding to the off-axis integrations at (7,a) =
(120,0.5), (o, dmpdz) = (0.5,1.5), and (ke,a) = (5.0,0.5), respectively, conducted at key points suggested by

the metamodel.

as-distinct shapes, and these represent all of the integrations performed with CESM1 as part
of the iterative search process in narrowing to an optimal parameter window. Pareto-optimal
sets 'were calculated using the evolutionary algorithm, and the resulting Pareto fronts are drawn
as thick, light gray curves. Spline interpolation has been used to smooth each of these for dis-
play purposes, and the width of the gray curves is chosen to schematically convey the width

that arises from an iteration procedure as described in Fig. 4.

Inspecting Fig. 5 more closely, it is clear that the control run is at times displaced from
the Pareto front. Along-axis runs (large shapes) are plotted for the four parameters that have
been perturbed in this study, as well as off-axis integrations (colored squares) where two pa-
rameters were perturbed at once. In Fig. 5c, three off-axis integrations have been circled in
orange, red, and blue to represent different locations along the Pareto front in this plane (see
Table 4 for specific parameter values of these runs). The selection process was based in par-
ticular on DJF, though the same points are also labeled for JJA. We emphasize that wherever
the-metamodel produces an optimal region on the Pareto front with points that are not close
to an existing model run, additional CESM integrations should be conducted (and potentially

incorporated into the metamodel) if that region is being considered for a parameter update.

These figures also give a comprehensive sense of the tradeoffs to be expected in two di-

mensions. For example, tradeoffs are minor for precipitation versus column water vapor (Figs.

~17-

This article is protected by copyright. All rights reserved.



5a,b), indicated by the small Pareto front. For precipitation versus skin temperature, the Pareto
front is much larger for DJF, implying substantial tradeoffs in model performance (Fig. 5c),
though the opposite is true for JJA (Fig. 5d). A similar story exists for column water vapor
versus skin temperature, with DJF exhibiting considerable tradeoffs relative to JJA (Figs. 5Se,f).
As discussed for Fig. 1, in cases where the Pareto front is small and the tradeoffs slight, the
GCM is well-optimized for the objective functions being considered, making the modeler’s
decision somewhat easier. But when the Pareto front is large, tradeoffs can lead to a larger range
of equivalently performing (i.e., Pareto-optimal) parameter updates, depending on what is im-
portant to the modeler. For example, Fig. 5c shows that parameter adjustments can decrease

skin temperature mse as much as 50%, though that comes at the expense of an increase in pre-

cipitation mse of about 30%.

6.3 Tests for identifying optima for higher-dimensional Pareto fronts

Extending the Pareto fronts above to include more than two dimensions—i.e., incorpo-
rating three or more objective functions at once—is a useful next step in the optimization pro-
cess. Different Pareto-optimal solutions will exist for different combinations of seasons, fields,
and regions (all of which embody unique objective functions). Because of this, we consider
these tradeoffs simultaneously when searching for Pareto-optimal solutions. We use DIJF, JJA,
and annual climatologies for three separate fields—precipitation, skin temperature, and col-
umn water vapor—over the tropical Pacific region. This gives 3 x 3 = 9 separate objective
functions over which the evolutionary sorting algorithm optimizes simultaneously. The goal
is to find the parameter combinations that lie on the Pareto front when all nine dimensions are

considered together.

To establish which points in parameter space perform best, we have developed several
tests for determining what points lie on or closest to the nine-dimensional front using the evo-
lutionary algorithm. The first test is the most stringent and is only passed when a given (dmpdz, 7, k)
combination is on the Pareto front for both the quadratic and cut-HDMR metamodels (once
each with the interaction terms included, and once each without). In other words, points that
pass this test are Pareto-optimal solutions for all versions of metamodel used here. For the 1000
parameter combinations approximated by the metamodel, as well as all 51 true integrations
in the perturbed physics ensemble, only six passed this test and are marked in Table 4 with
one asterisk. Three additional parameter combinations in table 3—denoted with two asterisks—

passed a test discussed in the next paragraph, and a final tenth combination performs well but
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Table 4. Rows above the line detail the six parameter combinations that are contained in the Pareto-optimal

set across all four metamodels; rows below the line show three additional parameter combinations that per-

form well across other tests (see text for details). Units for each variable are as follows: dmpdz x 1073 m~ 1,

T minutes, « as a fraction out of 1.0, and ke x107° kg [m

—2g-11-1/2 ¢

1

~1. Control values for each parameter

are marked with bold font. Asterisks give information about the tests that each case passes and are discussed

in the text; colors correspond to parameter combinations in Figs. 5c,d and 6.

dmpdz T a ke
1.0 120 05 0.1
1.0 120 025 1.0
1.0 120 05 05
1.5 60 025 1.0
2.0 60 025 05
20 120 01 1.0
1.5 60 05 1.0
1.5 120 025 1.0
1.0 60 0.5 5.0
~19—

sk

This article is protected by copyright. All rights reserved.



passes no tests, and it is included for presentation purposes later. Note that the control run is
not part of the optimal parameter sets in Table 4, and none of the cases suggest changing just

one parameter or all parameters at once.

The test described above requires agreement among the different forms of metamodel.
An alternative and complementary screening process for Pareto-optimal solutions might re-
lax the requirement that the points fall directly on the Pareto front and instead fall somewhere
near it. The final three cases marked with two asterisks in Table 4 meet criteria for three ad-
ditional screenings designed to accommodate this. The first was to search for optimal param-
eter combinations for each pairwise combination of season and field (as done in Fig. 5), then
evaluate which cases occur most frequently on these fronts. The second test was to calculate
the leading points on the Pareto front by iterating over successive Pareto-optimal layers un-
til at least 100 cases were collected (i.e., the top 10% of points). The third and final test was
to calculate the Euclidean mse distance from the origin in each pairwise plane and extract the
lowest 100 values (i.e., the 10% of cases closest to the origin). This final option is the most
relaxed in that points are not selected based on whether they lie on a Pareto front, but instead
are located closest to the origin in each pairwise mse plane. Such a test overlaps with infor-
mation gained from solving for points on the Pareto front, since many of these cases will co-
incide. Three parameter combinations that score well on these alternative tests are listed in Ta-
ble 4, denoted with two asterisks. Though more points fit the necessary criteria, we choose
to show three that represent physically plausible parameter values that are reasonably distinct
from one another. For this process to be truly useful, this element of human judgment and decision-

making is crucial.

Figure 6. Zonally averaged anomalies of precipitation and skin temperature relative to observations and
reanalyses, calculated for the tropical Pacific region between 120°E and 300°E during (a,b) DJF and (c,d)
JJA. Yellow, red, and blue lines correspond to the points circled along the Pareto front in Fig. Sc, the dark
solid lines show the control run, and the dashed line represents the GPCP and ERA-Interim data sets, about

which the integrations are centered.

6.4 Comparing Pareto-optimal cases

Figure 6 shows zonal averages in the tropical Pacific region for precipitation and skin

temperature, calculated as anomalies relative to the GPCP and ERA-Interim data sets, respec-
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tively. These averages are shown for DJF (top row) and JJA (bottom row) and lend insight into
the kind of tradeoffs encountered along the Pareto front as well as the improvements that can
be achieved with multiobjective optimization. The blue lines, corresponding to the parame-

ter update (co,k.) = (0.5,5.0) shown in Fig. 5 and Table 4, show a slight decrease in the max-
imum error of precipitation in both hemispheres (i.e., improvement as much as 20%) relative
to the control run, but skin temperature simulation is worse, shifting the model from initially
overestimating zonal temperatures to fully underestimating them. The yellow lines, correspond-
ing to (7,) = (120,0.5), achieve the opposite effect: precipitation quality gets worse relative

to the control, and skin temperature simulation improves slightly (by about 10%). A happy
medium can be found in the red lines, which correspond to («,dmpdz) = (0.25,1.5) and im-
prove both precipitation (by about 10%) and skin temperature (by about 5%) relative to the
control. This improvement happens in both the DJF and JJA seasons, even though the inte-
grations themselves were based on the DJF Pareto front in Fig. 5c. Such an outcome—an up-
date that improves fields of interest across multiple seasons—is unusual but certainly advan-

tageous to a modeler.

Figure 7. Zoomed in cut-HDMR reconstruction of the full parameter space, showing tradeoffs between
precipitation over the tropical Pacific (vertical axis) and over the Amazon (horizontal axis) during DJF and

JJA. Shading, shapes, and Pareto fronts are plotted as in Fig. 5.

Armed with the information gained from tests leading to Table 4, as well as the details
of Figs. 5 and 6, we now evaluate the model simulated with the update corresponding to the
red point, which represents increasing « and dmpdz to 0.25 and 1.5, respectively—leaving 7
and k. the same. We do this with informed confidence that the seasonal climatology for both
precipitation and skin temperature will improve in the tropical Pacific region. One caveat dis-
cussed later is that other fields will also be affected in a coupled climate system, and so the
parameter value that improves precipitation and skin temperature most may not do so for other
fields of interest to the modeler. Note that this particular update was not the combination used
to fit the interaction term of the metamodel in the a-dmpdz plane of Fig. 3, which was (o,dmpdz)
= (0.5,1.5). The point of the interaction term is therefore not to serve as an optimal point in
an objective function plane, but rather to help adjust the metamodel in its vicinity so that po-
tential nearby optima are brought into sharper focus and can then be integrated in the full GCM

for subsequent analysis.
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6.5 An application to precipitation tradeoffs between the tropical Pacific and the Ama-

zon

Another relevant tradeoff in CESM1 occurs between simulating climatological rainfall
over.the Amazon and over the broader tropical Pacific. This can be seen in Fig. 7, which shows
precipitation mse over the tropical Pacific (vertical axis) versus that over the Amazon (hor-
izontal axis, defined here as 30°S-20°N, 270°E-330°E). Making parameter changes to im-
prove one of these aspects of model performance comes at the expense of degrading the other.
The control run sits fairly close to the Pareto front for the JJA season, but it is much further
during DJF, especially for the Amazon. Some suggestions for parameter updates during DJF
involve modifications to «, either by increasing this parameter along its axis (light upside-down
triangles) or higher values of o coupled with either changes to dmpdz (red squares) or changes
to k. (blue squares). For JJA, higher dmpdz values appear to be favored (light red triangles),
though red squares («,dmpdz) and blue squares (k.,a) are also close to the Pareto front. The
circles from Figs. 5c¢,d have been included on the corresponding points here, highlighting once
again that the shape and composition of the Pareto front can vary across region and that op-
timal parameter combinations are likely to change across season, domain, or objective func-

tion.

Figure 8. cut-HDMR metamodel reconstruction of the full parameter space plotted as a Taylor diagram.
Calculations were done for (a) precipitation, (b) column water vapor, and (c) skin temperature over the trop-
ical Pacific domain during the DJF season. Black dots show the full parameter space reconstruction from
cut-HDMR, gray dots represent all validation runs for the GCM, and the red stars highlight the location of
(ar,dmpdz) = (0.25,1.5) model integrations. Angular values are latitude-weighted spatial correlations relative
to observations and reanalyses, and radial values are normalized spatial standard deviations for each field

(where observations and reanalyses correspond to the “REF” or reference value of 1.0).

7 Pareto fronts visualized on Taylor diagrams

Taylor diagrams [Taylor, 2001] are a common way to visualize and compare multiple
aspects of GCM performance, and Fig. 8 shows these results from the full ensemble integra-
tion for the red point in Table 4 for DJF. The angular direction in these plots is the latitude-
weighted spatial correlation for each field relative to the control or reanalysis data sets, and

the radial value is the field’s latitude-weighted spatial standard deviation divided by that of the
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observations. Black points represent the parameter space reconstruction of the cut-HDMR meta-
model with interaction terms from Table 2; gray dots show all on- and off-axis runs available
in the ensemble. The control run is shown as a circled yellow star, and the suggested param-
eter update discussed previously, («,dmpdz) = (0.25,1.5), is shown as a circled red square. In
each plot, a zoomed inset is included to see the edge of points more clearly. Note that the ‘tails’
of these clouds are due to incorporating interaction terms and the curvature effects caused by
them. The modeler must make a compromise when including the interaction terms: the meta-
model is improved in the vicinity of these points and closer to the axes, though it can be de-
graded at the edges of the parameter ranges, where (as stated previously) parameter values are

physically less reasonable. This is not a large point of concern, however, as the behavior of

the metamodel is less important far from the Pareto front.

Across DJF, JJA, and annual climatologies, the control run falls close to the edge of the
cloud of points at higher correlation values, meaning the spatial correlation for the control pa-
rameter set is nearly maximized in the parameter space explored here. The magnitude of spa-
tial variability in this domain, however, is overestimated for precipitation and column water

vapor and underestimated for skin temperature.

For precipitation, column water vapor, and skin temperature, the parameter update helps
nudge model performance closer to the observed magnitude of spatial variability. As discussed
previously, the relatively short or narrow Pareto front seen in Fig. 8c implies that there are no
significant tradeoffs between pattern and amplitude in skin temperature. Precipitation in Fig.
8a is an example where further improvement could happen, though the current update still does
some good. In contrast, the update for column water vapor (Fig. 8b) does show a clear trade-
off. A schematic Pareto front has been drawn as a light gray line in the inset of Fig. 8b. The
parameter update here causes the model magnitude to be underestimated, though the spatial
correlation increases slightly. The slope of this line is important and depicts a true Pareto front
along which the GCM performance can improve its spatial correlation only by degrading its

magnitude.

These Taylor diagrams separate spatial correlation from magnitude and therefore give
the modeler information not captured in measures of rmse or mse in previous figures. The rel-
atively, flat shape of the cloud of points in each case indicates that parameter optimization is
mainly changing the magnitude of the fields rather than their spatial correlation with the ob-

servations and reanalyses. This outcome implies that the GCM uncertainty explored here is
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likely a deeper issue within the model’s structural physics and dynamics themselves and can
only be alleviated to an extent by parameter optimization. This result is important, since many
changes expected as a result of anthropogenic global warming alter the magnitude of precip-
itation, and this is a large source of uncertainty in diagnosing end-of-century changes in multi-
model ensembles [e.g., Xie ef al., 2015]. Placing constraints on GCMs that can improve the
representation of this magnitude of variability is a necessary step in understanding GCM un-

certainty in end-of-century changes.

Figure 9. Taylor diagrams showing model performance for the (a,dmpdz) = (0.25,1.5) update (col-

ored markers) relative to the control run (black markers). These plots are modeled after those in the

CESM Atmospheric Model Working Group (AMWG) diagnostics package, distributed by AMWG at
http://www2.cesm.ucar.edu/working-groups/amwg. Correlation and amplitude values were calculated over the

tropical Pacific region discussed in the text.

8 Standard model diagnostics

While the model improvements gained from the o and dmpdz updates are small for most
fields, they are not inconsequential. GCMs are complex systems that change from one gen-
eration to the next, and model improvement is a stepwise process. Figure 9 shows how GCM
performance in multiple fields changes as the model is updated from its control parameter set
to the modified (o, dmpdz) = (0.25,1.5). The information presents a collection of different fields
typically analyzed in the CESM Atmospheric Model Working Group (AMWG) diagnostics
package (https://www?2.cesm.ucar.edu/working-groups/amwg/amwg-diagnostics-package). De-

tails of the observational or reanalysis data sets are listed in Table 3.

Similar to the discussion above, the improvement in model fields tends to occur primar-
ily in the magnitude of spatial variability and not correlation. Sea level pressure and precip-
itation improve across DJF, JJA, and annual climatologies. The simulation of other fields im-
proves in certain seasons but degrades in others (e.g., compare zonal wind stress during DJF
and JJA), though shortwave and longwave cloud forcing get consistently worse across all cli-
matologies. These changes in model performance occur while having only a minimal effect
on fields that already perform well, however (e.g., skin temperature or 2-meter air tempera-
ture), and this is a nontrivial result, given that precipitation can exhibit significant internal vari-

ability, and objectively improving its quality without significantly altering other aspects of the
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climate system is historically a thorny problem. In the case of the update (o,dmpdz) = (0.25,1.5),
if the goal is to improve precipitation or sea level pressure at seasonal timescales, then such

an update might be worth the tradeoff of slightly degraded quality in other fields. If the trade-
offs for other fields are severe, then it would be straightforward to repeat analyses with ob-
jective functions corresponding to these fields, as well. And finally, it is important to keep in
mind that the measures plotted in these diagrams are distinct from rmse or mse values, so an
improvement in the objective functions evaluated earlier will not translate directly into improve-

ment in correlation or spatial variability, though there will be significant overlap.

9 Summary and conclusions

In this paper, we showcase concepts from multiobjective optimization to answer ques-
tions about parameter optimization in a perturbed physics ensemble, which samples four pa-

rameters from the deep convection scheme of CESM1.

Parameter sensitivity is visualized in one dimension, along each parameter axis, and in
multiple dimensions, as a response surface that describes model rmse as a function of two or
more parameters. This method gives quantitative information on how objective functions vary
in parameter space, and by incorporating interaction terms into the response surface, we demon-
strate how one can adapt the metamodel to focus on regions or windows of interest where likely
candidates for parameter updates exist. We then employ metamodeling techniques to evalu-
ate combinations of parameters in objective function space, yielding information about which
parameter combinations can improve multiple metrics simultaneously. Our optimization ap-
proach is iterative and is done in several steps. First, a metamodel is used to generate hypothe-
ses for where in parameter space to place more model runs, and the GCM is integrated at these
well-chosen points. Next, this information is used to further refine the metamodel and produce
a more accurate Pareto front in the vicinity of these selected points. Different choices of meta-
model or emulator can be made, depending on how the parameter space is initially sampled
and what the overall goals of the modeler are. In our case, understanding along-axis sensitiv-
ity was a first-order concern. Cut-HDMR is a useful choice for this, though we do not rec-

ommend or promote any metamodeling technique in particular.

Tradeoffs in model performance are visualized for GCM precipitation, column water va-
por, and skin temperature climatologies, and an evolutionary algorithm is used to find Pareto-

optimal sets in objective function space. These results are used to estimate the Pareto front,
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which is a surface in objective function space along which the optimal configuration of GCM

parameters exist, and where improvements in one dimension cause degradation in another.

Both quadratic and cut-HDMR metamodels are used in a series of tests to pinpoint the
most likely candidates for a GCM parameter update. Our results show that the control param-
eter set is not located on the Pareto front for any of the cases considered (and in some exam-
ples is notably displaced). These outcomes depend entirely on the objective functions of in-
terest to the modeler and the observational constraints used, so these results will likely vary
for other fields, processes, and domains of interest. One parameter update in particular, which
passed the testing criteria and represented an increase in both « (the evaporation efficiency)
and dmpdz (the fractional entrainment rate), improved zonal mean skin temperature and pre-
cipitation magnitude relative to the control parameter set. We note that the details of the Pareto
front will depend on the parameter space sampling strategy, the metamodeling approach, and
the observations used as objective constraints. Furthermore, while the metamodel is adept at
reconstructing climatological fields near parameter axes and in the vicinity of parameter space
where off-axis runs have been used for fitting, its performance quality degrades away from these
regions. We therefore emphasize that we do not trust the metamodel for final conclusions about
optimal parameter updates but rather use it to suggest locations for new GCM runs and to pro-

vide context for interpreting them.

These results are also displayed using Taylor diagrams. Incorporating multiple fields shows
that this parameter update modestly improves CESM1 precipitation during DJF without sig-
nificantly affecting column water vapor or temperature. These diagrams highlight that the im-
provement from the proposed (o,dmpdz) updated arises primarily in the magnitude measure
of the field, and not the correlation. That the parameter optimization has such a modest ef-
fect on the correlation score implies that model error may be rooted in larger issues underly-

ing GCM dynamics or physics, or in other parameters not sampled in this ensemble.

The performance of CESM1 with the control parameter set and the proposed update is
then compared to six additional observational and reanalysis data sets commonly used in the
NCAR Atmospheric Model Working Group (AMWG) diagnostics package. Improvements can
be seen in precipitation and sea level pressure across DJF, JJA, and annual climatologies. Im-
provement in other fields only happens in certain seasons, and simulation of both longwave
and shortwave cloud forcing gets slightly and consistently worse. In considering such param-

eter updates identified by this multiobjective approach, one would ideally also incorporate out-

26—

This article is protected by copyright. All rights reserved.



side information available to modelers—including reasonable evidence from process-based model
studies or observations—and make an informed decision about whether the sub-grid scale pro-
cesses involved in these updates are well-represented by the parameter values and GCM code.
In addition, this approach serves as a way of identifying processes in need of additional scrutiny

for observational constraints in the coupled climate system.
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