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Abstract 9 

The accurate representation of precipitation is a recurring issue in climate models.  El Niño-10 

Southern Oscillation (ENSO) precipitation teleconnections provide a testbed for comparison of 11 

modeled to observed precipitation. We assess the simulation quality for the atmospheric 12 

component of models in Coupled Model Intercomparison Project 5 (CMIP5), using the 13 

ensemble of runs driven by observed sea surface temperatures. Simulated seasonal 14 

precipitation teleconnection patterns (defined using linear and rank regression) are compared 15 

to observations during 1979-2005 and to the CMIP3 ensemble. Within regions of strong 16 

observed teleconnections (equatorial South America, the western equatorial Pacific, and a 17 

southern section of North America), there is little improvement in the CMIP5 ensemble 18 

relative to CMIP3 in amplitude and spatial correlation metrics of precipitation. Spatial 19 

patterns within each region exhibit a substantial departure from observations, with spatial 20 

correlation coefficients typically less than 0.5, but the models do considerably better in other 21 

measures. The amplitude of the precipitation response (root mean square over each region) is 22 

well estimated by the mean of the amplitudes from the individual models. However, the 23 

amplitude of the multi-model ensemble mean is systematically smaller (by about 30-40% in 24 

the selected teleconnection regions). The models perform well at capturing the sign of 25 

observed teleconnections over broad regions.  In this way, high intermodel agreement on 26 

teleconnection sign (positive or negative precipitation response) provides a good predictor for 27 

high model with observed teleconnection signals. This supports the usefulness of these 28 

measures for assessment of precipitation in global warming projections.29 
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1.  Introduction 30 

The El Niño-Southern Oscillation (ENSO) is a leading mode of interannual climate variability 31 

originating in the tropical Pacific. ENSO teleconnections are a reflection of the strong 32 

coupling between the tropical ocean and global atmosphere, and SST anomalies in the 33 

equatorial Pacific can have remote effects on climate globally (e.g., Trenberth et al. 1998; 34 

Wallace et al. 1998; Ropelewski and Halpert 1987; Horel and Wallace 1981). 35 

In recent decades, measurable progress has been made in simulating ENSO dynamics and 36 

associated teleconnections within ocean-atmosphere coupled general circulation models 37 

(CGCMs) (Neelin et al. 1992; Delecluse et al. 1998; Latif et al. 2001; Davey et al. 2001; 38 

Randall et al. 2007; AchutaRao and Sperber 2006). A number of studies use the fully coupled 39 

GCMs to assess 20th century ENSO variability and teleconnections against observations (Cai et 40 

al. 2009; Joseph and Nigam 2006; Capotondi et al. 2006).  Others examine the evolution of 41 

ENSO and these teleconnections under climate change (Coelho and Goddard 2009; Meehl et 42 

al. 2007b; van Oldenborgh et al. 2005; Merryfield et al. 2006).  Problems persist in the ability 43 

of the models to accurately represent the tropical Pacific mean state, annual cycle, and 44 

ENSO’s natural variability (e.g., Guilyardi et al. 2009a), including the role of the atmospheric 45 

component in setting the dynamics (Guilyardi et al. 2009b; Sun et al. 2009; Lloyd et al. 2009; 46 

Guilyardi et al. 2004), as well as in uncertainties in how ENSO will behave under climate 47 

change (Collins et al. 2010). 48 

The precipitation response to interannual climate variations like ENSO also continues to be a 49 

challenge for CGCMs. In the tropics, equatorial wave dynamics spreads tropospheric 50 

temperature anomalies, which induce feedbacks with the convection zones in surrounding 51 

regions (e.g., Chiang and Sobel 2002; Su et al. 2003). At mid-latitudes, wind anomalies 52 

generated by Rossby wave trains interact with storm tracks to create precipitation anomalies 53 
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(Held et al. 1989; Chen and van den Dool 1997; Straus and Shukla 1997). These moist 54 

teleconnection processes share physical mechanisms with feedbacks active in climate change 55 

(e.g., Neelin et al. 2003) and thus examination of these can contribute to assessing the 56 

accuracy of the models for these pathways. 57 

One difficulty with assessing teleconnections from coupled models is that errors in the ENSO 58 

simulation, for instance in amplitude or spatial distribution of the main SST anomaly in the 59 

equatorial Pacific, degrade the quality of the simulation at the source region before the 60 

teleconnection mechanisms even begin (e.g., Joseph and Nigam 2006; Coelho and Goddard 61 

2009). To isolate the atmospheric portion of the teleconnection pathway, it is common to 62 

employ atmospheric component runs forced by observed sea surface temperature (SST), often 63 

known as Atmospheric Model Intercomparison Project (AMIP)-style runs (Gates et al., 1998).   64 

Studies using AMIP runs to examine ENSO teleconnections include Risbey et al. (2011) for 65 

teleconnections over Australia, noting errors in the modeled amplitude and coherence and  66 

Spencer and Slingo (2003), noting issues in the sensitivity of precipitation to tropical Pacific 67 

SSTs lead to errors in the Aleutian low despite otherwise accurate tropical ENSO 68 

teleconnections. 69 

Because the challenges of correctly simulating precipitation teleconnection response are so 70 

substantial, analysis of the CMIP5 AMIP-style ensemble can provide a way to gauge the fidelity 71 

of the current generation of models in simulating large-scale atmospheric processes leading to 72 

rainfall. In particular we evaluate December-February (DJF) ENSO precipitation 73 

teleconnections during 1979-2005 in the CMIP5 models against observations, and also compare 74 

to the similar set of AMIP-style runs in the earlier CMIP3 ensemble.  Faced with substantial 75 

ongoing intermodel differences and differences with respect to observations in standard 76 

evaluation measures, we turn to other measures in which the multi-model ensemble may 77 
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contain useful information. These include amplitude measures, comparing assessment from 78 

the full model ensemble to the multi-model ensemble mean (MMEM), and measures of 79 

agreement on sign. In both of these the CMIP5 model ensemble does unexpectedly well 80 

compared to observations. The performance on agreement-on-sign measures proves 81 

sufficiently good that it motivates questions regarding the optimal way to apply significance 82 

tests within multi-model ensemble, which the discussion section attempts to formulate 83 

coherently, even if a full solution is not yet clear, since these are relevant to evaluation of 84 

precipitation change in global warming. 85 

 86 

2.  Data sets and analysis 87 

To produce ENSO precipitation teleconnection patterns, we use modeled and observed 88 

monthly mean SST and precipitation data during the DJF months for the years 1979-2005. For 89 

SST observations, we use the Extended Reconstructed Sea Surface Temperature (ERSST.v3) 90 

data set (Smith et al. 2008; Xue et al. 2003); for monthly precipitation rate observations, we 91 

use the Climate Prediction Center Merged Analysis of Precipitation (CMAP) archive (Xie and 92 

Arkin 1997). 93 

For modeled teleconnections, we use monthly AMIP run output from the CMIP5 and CMIP3 94 

multi-model ensemble archives, available for download at http://pcmdi3.llnl.gov (for more 95 

information on AMIP runs, see Gates et al. 1998 and references therein). Precipitation flux  96 

and surface temperature data are used in teleconnection calculations.  All modeled 97 

precipitation data are regridded to a 2.5ºx2.5º grid prior to calculating teleconnection 98 

patterns.  This is the native grid of the CMAP precipitation data, and we use it to facilitate 99 

direct comparison of modeled teleconnections to the observations. 100 

Linear regression and Spearman rank correlation methods are used to calculate DJF 101 

http://pcmdi3.llnl.gov/
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precipitation teleconnections for the time period specified.  Each method is carried out using 102 

the Nino3.4 SST index (defined by a spatial average from 5ºS to 5ºN, 190ºE to 240º E; see 103 

Trenberth and Stepaniak 2001 for discussion of El Niño indices) and gridpoint-by-gridpoint 104 

precipitation data on the common CMAP grid. The use of the Nino 3.4 index yields "standard" 105 

teleconnection patterns, which provide a good first basis for comparison of models to 106 

observations. We recognize, however, that there is interesting work that addresses the next 107 

level of distinction among different "flavors" of ENSO and the remote impacts of SST 108 

anomalies that have a central (rather than eastern) Pacific signature (Kao and Yu 2009; 109 

Trenberth and Smith 2009; Ashok et al. 2007). Appropriate two-tailed significance tests are 110 

used in both the linear and rank method to resolve gridpoints that meet or pass certain 111 

confidence levels. 112 

 113 

3.  Evaluating models 114 

a.  Teleconnection patterns in linear regression and rank correlation  115 

Figures 1 and 2 show observed and modeled precipitation teleconnections for the DJF season 116 

as estimated by linear regression and Spearman rank correlation, respectively, against the 117 

Nino3.4 SST index. The rank correlation offers an appealing alternate method, because it 118 

tends to be robust against outliers and brings regions with different amplitudes of variance on 119 

to common footing.  Furthermore, for a rank correlation, the rainfall at each gridpoint is 120 

mapped onto a uniform distribution, offering a significance test that does not assume 121 

Gaussian statistics (Whitaker and Weickmann 2001; Wilks 1995). Rank correlation can also be 122 

considered a form of regression between the rank change of two variables.  The linear 123 

regression, by contrast, is easier to interpret in terms of a change of the physical variables, in 124 

this case precipitation rate per unit change of SST. Linear regression and rank correlation are 125 
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both employed (as well as composites, which are not shown here but yield similar results) to 126 

check that the teleconnection patterns are robust to the estimation method. Beyond this 127 

check, the model-to-observation comparison raises some interesting questions about the 128 

restrictions of the statistical significance tests, as will be discussed in section 4. 129 

One of the questions to arise is how best to use the information from a multi-model 130 

ensemble. Figs. 1b and 2b show linear and rank regression teleconnection patterns obtained 131 

from the multi-model ensemble. In order to obtain a single regression map for the entire 132 

CMIP5 ensemble, we can either (a) perform the regression over all 15 models simultaneously, 133 

or (b) average all teleconnection patterns from the ensemble of models. These two regression 134 

variants have been tested to arrive at the multi-model ensemble regression pattern. In Figs. 1 135 

and 2, the variant shown is the first one – a regression performed over the time series of all 136 

15 models simultaneously – which offers a straightforward significance test for the results of 137 

the entire ensemble. A straightforward way to interpret (and program) this is as a 138 

concatenated time series of available models, and so we will refer to this as the concatenated 139 

multi-model ensemble (CMME), when it is necessary to distinguish it. 140 

Figs. 1b and 1d show the CMME linear regression DJF teleconnection patterns compared to 141 

observations in Figs. 1a and 1c. The multi-model ensemble pattern in Fig. 1b reproduces a 142 

number of features of the observations. A broad region of reduced precipitation over 143 

equatorial South America, stretching out through the Atlantic Intertropical Convergence Zone 144 

(ITCZ), is qualitatively simulated, although the region of the most intense anomalies is slightly 145 

displaced spatially from the observations. The region of increased precipitation starting off 146 

the coast of California and extending through Mexico, the Gulf States and beyond Florida into 147 

the Atlantic storm track similarly is qualitatively reflected in the CMME regression. In the 148 

western Pacific and surrounding the main ENSO region to the north and south, there is a broad 149 
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"horseshoe pattern" of reduced precipitation, which the CMME captures reasonably well in 150 

terms of the low amplitude parts, although the location of the most intense anomalies is off.  151 

Figures 1c and 1d show the same data as Figs. 1a and 1b but with a two-tailed significance 152 

test applied to the regression at each gridpoint. In Fig. 1d, the CMME regression passes a 95% 153 

confidence level criterion over fairly broad areas in each major teleconnection region, thanks 154 

to the large amount of model information available. Each of the areas discussed above is 155 

considered significant at this level, as are some smaller regions, such as southeastern Africa. 156 

Fig. 1c displays observed teleconnections masked to show only grid points that pass at the 90% 157 

and 95% confidence levels. This point-by-point test indicates a relatively limited area over 158 

which the regression meets these confidence criteria. 159 

Given that the CMME yields a statistically significant prediction for the sign of the signal over 160 

the main teleconnection regions, one might consider that a one-sided t-test could be used on 161 

the observations, in which case the 90% confidence level of a two-sided test would correspond 162 

to the 95% confidence level of a one-sided test. However, when loosening the restriction from 163 

a 95% to a 90% confidence level, we only see a small increase in the areal extent of regions 164 

that pass the significance test. In comparing Figs. 1c and 1d, one can see that the multi-165 

model ensemble has a broader area over which teleconnections are significant at the 95% 166 

confidence level, relative to the observations. 167 

Fig. 2 displays the same information as in Fig. 1, but for a Spearman rank correlation over the 168 

CMME.  The teleconnection patterns that result using either the linear or rank method are 169 

similar overall, implying that ENSO precipitation teleconnections are robust despite 170 

assumptions made about the distribution of rainfall events a priori. Differences may be noted 171 

between the two methods in particular regions, such as the rank correlation deemphasizing 172 

the narrow band along the equator in South America in the CMME (Fig. 2b) relative to the 173 
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linear regression (Fig. 1b), although not in the observations (Fig. 2a). The region passing 174 

significance criteria at the 95% level using rank correlations for the observed teleconnections 175 

(Fig. 2c) is comparable to that produced for the linear regression (Fig. 1c), and likewise for 176 

the CMME. 177 

Teleconnection patterns for the entire ensemble were also produced by creating a multi-178 

model ensemble mean (MMEM). This was done by performing a separate regression for each 179 

model and then averaging all 15 patterns.  The MMEM pattern that results (not shown) is 180 

nearly identical to that of the CMME (global correlation coefficient greater than 0.999). (Note 181 

that a significance test for the MMEM, however, is not as straightforward.) The high 182 

correlation between these two methods is to be expected if the variance in each model is 183 

similar and is stably estimated. This implies that averaging 15 models’ linear regression maps 184 

is nearly identical to performing a regression over those 15 models concatenated into a single 185 

time series; as such, in the remainder of this paper, we take teleconnection patterns for both 186 

the MMEM and CMME to be interchangeable. Additionally, we henceforth focus on 187 

teleconnection patterns estimated via linear regression due to the simpler interpretation of 188 

the amplitudes (units of mm day-1 C-1). 189 

 190 

b.  Regional model disagreement 191 

Another point that can be made with Figs. 1 and 2 is the large-scale agreement between 192 

CMME teleconnections and observations; surprisingly, this is more apparent when 95% 193 

significance criteria are not imposed.  However, regional disagreement between observations 194 

and the MMEM pattern may also be seen, especially in regions where the observations have 195 

intense precipitation, while the MMEM exhibits a general “smoothing” of teleconnection 196 

patterns. 197 
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These smoothed teleconnection patterns in the MMEM can be understood when examining 198 

patterns from individual models.  Fig. 3 shows teleconnections for one run of each model, 199 

displayed for the equatorial Americas. There is very substantial regional variability among 200 

them. Differences in the location of the strongest precipitation anomaly are common from 201 

model to model, even though these are the areas that most easily pass significance criterion 202 

on a model by model basis (local significance tests for individual models, not shown, are 203 

qualitatively similar to the areal extent in Fig. 1c). However, over the region where the CMME 204 

passes the t-test at the 95% level, one can see the overall teleconnection pattern is plausible 205 

at large scales in each of the models. Thus, Fig. 3 provides a visual sense of the trade-offs to 206 

be quantified: disagreement among models at regional scales; excessive smoothing relative to 207 

observations in the MMEM; and yet some possibility that there is useful information about the 208 

teleconnection pattern in the model ensemble, if it can be suitably extracted. 209 

 210 

c.  Taylor diagram analysis of modeled teleconnections 211 

The regional variation among AMIP models leads to a distinction between their ability (1) to 212 

reproduce spatial patterns of teleconnections, and (2) to represent the amplitudes of these 213 

patterns.  To examine individual model fidelity in simulating patterns and amplitude of 214 

rainfall teleconnections, we look at four regions that show a robust ENSO response; each 215 

region displays a continuous teleconnection signal significant at the 95% confidence level, 216 

when examining Fig. 1c. 217 

These four regions include (a) the equatorial Pacific (the “cold tongue” region; positive DJF 218 

ENSO signal), (b) the horseshoe-shaped region in the western Pacific (negative signal), (c) 219 

equatorial South America (negative signal), and (d) a southern section of North America 220 

(positive signal). The equatorial Pacific region is shown for reference, since this is the source 221 
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region, directly forced by the largest ENSO-related SST anomalies. We consider the other 222 

three regions the “teleconnection regions,” since to accurately simulate teleconnected 223 

rainfall in each of them, the models must capture the pathways leading to remote 224 

precipitation change. The Taylor diagrams in Fig. 4 show the spatial correlations between the 225 

observations and each model (radial axis) plotted along with the spatial root mean square 226 

(RMS) amplitude of each model pattern, normalized by the observed RMS. Correlations and 227 

amplitudes are averaged among runs for models with multiple realizations; each individual 228 

model is given equal contribution in the MMEM. 229 

As seen in Fig. 4, there is little (if any) improvement from CMIP3 to CMIP5 in reproducing  230 

teleconnected rainfall patterns in these regions. In addition, note the generally low 231 

correlations (ranging from less than 0.2 to a few instances exceeding 0.7, with an average 232 

correlation coefficient of about 0.40) between each model and observations.  In every region, 233 

one can also see that the MMEM is typically more accurate than the majority of individual 234 

models in reproducing these patterns.  However, the normalized amplitude measure shows 235 

that the MMEM amplitude is substantially lower than teleconnection amplitudes of the 236 

individual ensemble members.  Furthermore, in every region outside of the central equatorial 237 

Pacific, the MMEM underestimates the observations.  As a final point, we note that Taylor 238 

diagrams of the corresponding rank correlation method (not shown) indicate consistent 239 

results. 240 

 241 

d.  Teleconnection amplitude in major impact regions 242 

The varied agreement in amplitude measures from Fig. 4 suggests that it may be more 243 

reasonable to use amplitude information from individual ensemble members, rather than 244 

using that of the MMEM. To get a better sense of how teleconnection amplitude of individual 245 
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models might be affected by internal variability, we take advantage of AMIP models with 246 

multiple realizations, and we assess the internal variability among these runs for each model.  247 

We then compare this to the amplitude of the entire ensemble of models. Fig. 5 displays the 248 

radial axis from the Taylor diagrams discussed previously, but where multiple runs from each 249 

model are available, we plot them individually (43 total runs for 15 models in CMIP5; 26 total 250 

runs for 13 models in CMIP3).   251 

The vertical extent of the black lines in Fig. 5, representing ± one standard deviation among 252 

the multiple runs for one model (when available), is a measure of internal variability for a 253 

given model’s runs, while that of the green bars (± one standard deviation of the multi-model 254 

ensemble) is a measure of intermodel variability.  Notable points from this diagram include:  255 

(1) The MMEM systematically underestimates the spread and central tendency of intermodel 256 

variability, with a low bias of about 20-40% outside of the immediate ENSO region; (2) the 257 

regional disagreement among models owes itself partly to internal model variability, but 258 

intermodel variability contributes to the majority of the regional disagreement seen in Figure 259 

3; (3) models are overestimating the amplitude in the immediate ENSO region for CMIP5, even 260 

though their spread is more symmetric about the observations in remote regions; (4) when 261 

comparing CMIP5 to CMIP3, CMIP5 shows no consistent improvement or change due to model 262 

development.  Although the MMEM may fall closer to observed amplitudes in CMIP5, this 263 

comes at the expense of a tendency to overestimate rainfall teleconnections in the central 264 

ENSO region. 265 

Fig. 5 suggests that serious errors can result from considering only information available in the 266 

MMEM.  While its spatial patterns tend to do less poorly in spatial correlation with 267 

observations than most individual models, the MMEM teleconnection amplitude is routinely 268 

too low in the remote regions considered.  It is therefore useful to consider measures of 269 
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teleconnection amplitude and spread from individual models, in addition to the MMEM, in 270 

situations where regional disagreement can dampen the MMEM amplitudes due to averaging 271 

varied model signals. 272 

 273 

4.  Sign agreement plots in ENSO teleconnections and their relation to precipitation 274 

change in global warming scenarios 275 

Agreement plots for the sign of precipitation change under global warming scenarios have 276 

been commonly used in multi-model studies (e.g., see Randall et al. 2007; Meehl et al. 2007), 277 

often being used as complementary information to the MMEM. Agreement-on-sign tests can be 278 

viewed as relatively weak statements regarding the precipitation change, and it has been 279 

argued that these should be used in conjunction with requirements that the signal pass local 280 

tests for significant difference from zero on a model-by-model basis (e.g., Neelin et al. 2006; 281 

Tebaldi et al. 2011, hereafter N06 and T11).  282 

Here we examine agreement-on-sign measures based on the ENSO precipitation regression 283 

patterns for each model. Because we can also assess these against observations, we can use 284 

this to examine the procedure as a means of inferring its usefulness for global warming, 285 

where observations of large precipitation change will not be feasible for at least some 286 

decades. 287 

Fig. 6a shows the traditional agreement-on-sign plot, but for precipitation teleconnections in 288 

the CMIP5 AMIP ensemble.  At each grid point, we count the number of models that agree on 289 

a negative (positive) DJF teleconnection signal, so that the agreement plot shows the integer 290 

value of models which agree on a dry (wet) regression slope during ENSO.  Note areas with 291 

high agreement on sign cover a much larger spatial region than those passing the two-tailed 292 

significance test at the 95% level applied to observations (see Fig. 1c). 293 
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Fig. 6b provides one way of summarizing the significance information from a traditional two-294 

tailed t-test applied to each model of the CMIP5 AMIP ensemble.  The number of models that 295 

pass a traditional t-test at 95% confidence is counted at each gridpoint, so that the color bar 296 

represents the number of models meeting this criterion. This figure highlights areas in which 297 

80% of the ensemble members pass this test. Fig. 6b, along with the agreement in Fig. 6a, 298 

provides a sense of what the N06 and T11 tests would indicate. Essentially, the former would 299 

count only sign agreement among models passing a t-test at a defined level at each gridpoint, 300 

and the latter would screen out regions where less than a certain fraction of models 301 

individually pass a t-test. It is immediately apparent that either of these will be highly 302 

restrictive in the regions considered, despite high agreement on sign. By contrast, note the 303 

similarity between the regions passing the significance test on the full CMME (Fig. 1d) and the 304 

areal extent of high agreement in Figs. 6a, 7a, and 7b. 305 

Most of the signal that survives such a model-by-model t-test criterion in Fig. 6b occur in 306 

gridpoints with a positive precipitation anomaly.  This is perhaps consistent with the 307 

hypothesis that a distribution of rainfall events may be affecting the applicability of the t-308 

test, as rainfall event distributions can have a long tail at larger values but are cut off at zero 309 

at the lower end. However, using Spearman rank correlation values and an associated 310 

significance test that does not require Gaussian assumptions (not shown) does not differ 311 

strongly from the counting results in Fig. 6b. 312 

The models thus exhibit high agreement on sign over much more extensive spatial regions 313 

than what a local t-test criterion would imply.  In comparing Figures 6a and 6b, it is useful to 314 

consider to what extent sign agreement can provide an alternative measure of confidence.  315 

The fact that there are regions exhibiting very high agreement on sign suggests that there is 316 

information contained within the ensemble that would be excluded by these criteria. This 317 
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leads us to conjecture that the N06 and T11 criteria may both be too restrictive. Whereas N06 318 

and T11 were making statements about predicted precipitation change, we have the option of 319 

checking the modeled teleconnections against observations.  In particular, we can produce an 320 

agreement plot that counts model agreement on the sign of observed rainfall teleconnection 321 

patterns (Fig. 7a).  This agreement plot clearly indicates that the models agree with the sign 322 

of the observed teleconnection signal over broad regions. 323 

Fig. 7a is suggestively similar to the traditional agreement on sign plot in Fig. 6a, but the two 324 

computations are not directly comparable. To make the comparison to the model ensemble 325 

more direct, we use a variant of the agreement plot: the number of models that agree with 326 

the sign of the MMEM (Fig. 7b).  The MMEM serves as a model-based hypothesis used to check 327 

the ensemble members.  One detail in this computation is that we exclude each model from 328 

the MMEM when determining agreement on sign, so as to avoid inflating the agreement count. 329 

The plot for agreement on sign between the CMIP5 AMIP models and the corresponding MMEM 330 

is shown in Fig. 7b.  The information on regions of high agreement is largely the same as that 331 

in Fig. 6a. Note that where all 15 models agree on sign, the count will be 15 in both 332 

measures, although the meaning of these measures will differ in the middle of the range.  333 

Areas are not shaded where fewer than 80% of models agree with one another (Fig. 6a) or 334 

with the MMEM or observations (Figs. 7b or 7a).  335 

A measure of the usefulness of the model-to-MMEM agreement plot (Fig. 7b) is how well it 336 

compares to the plot of model-to-observations agreement (Fig. 7a). Broad spatial areas 337 

exhibit high agreement with the sign of the observations in Fig. 7a, both for teleconnected 338 

precipitation increases and decreases. It is notable that these areas are substantially more 339 

widespread than would be suggested by the t-test in Fig. 1b. Comparing regions of high 340 

model-to-MMEM agreement (Fig. 7b) to the corresponding agreement with observations (Fig. 341 
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7a), one can see many similarities.  Regions where more than 80% of models agree with the 342 

MMEM on sign are reflected in model agreement with observations. In short, high model-to-343 

MMEM agreement on sign does well at predicting where the models will be in high agreement 344 

with the sign of the observations. 345 

 346 

5.  Discussion 347 

As discussed in the previous section, Figs. 6 and 7 suggest that there are substantial regions 348 

where models from the CMIP5 AMIP ensemble are providing useful information on the sign of 349 

rainfall teleconnections, despite both individual models and the observations failing to meet 350 

significance criteria in some regions. 351 

A first conjecture for this discrepancy would be that an inherent non-Gaussianity of the 352 

rainfall distribution might affect the applicability of the t-test, even at seasonal timescales. 353 

However, applying a significance test that does not depend on Gaussian assumptions for the 354 

corresponding teleconnection patterns estimated with rank correlation yields results that are 355 

not very different from those of the linear regression t-test. A second postulate is that the 356 

agreement on sign both uses information from the full model ensemble and tests a slightly 357 

different hypothesis than difference from zero. This is evident in comparing Fig. 7b to Fig. 1d, 358 

one can see that areas of high agreement on sign tend to coincide with areas that pass a t-359 

test at 95% confidence. 360 

Even taking this into account, there remains the intriguing question of why the models agree 361 

so well with the observations on the sign of the teleconnection pattern. There are two 362 

aspects to this question:  one statistical, and the other physical. The statistical aspect is that 363 

only areas of high amplitude tend to pass the t-test at high confidence in the satellite 364 

observational record. The physical aspect is that the models appear to perform better at 365 
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capturing broad areas of modest amplitude than they do at the spatial correlation (a measure 366 

that is affected by poor model skill in correctly positioning high amplitude signals). 367 

We postulate that this may be associated with the physics of the system, in which more than 368 

one physical process operates in ENSO teleconnections. Specifically, there are processes that 369 

will have smaller intermodel uncertainty and smaller internal variability but are widespread 370 

spatially.  An example for this could be a increase in tropospheric temperature driving an 371 

increase in water vapor and a corresponding increase in the threshold for convection (a 372 

process sometimes referred to as the “rich-get-richer” mechanism; Chou and Neelin 2004; 373 

Held and Soden 2006; Trenberth 2011). 374 

At the same time, feedbacks associated with dynamical changes in moisture convergence can 375 

produce large excursions from expected values of precipitation, both in intermodel and 376 

temporal variability. The models contain reasonable approximations to each of these 377 

processes, and they may very well provide more information in regions where a test based on 378 

a limited characterization of the distribution would suggest limited significance.  In other 379 

words, it is possible that different physical processes at work in the atmospheric response are 380 

producing a convolution of different distributions for which a t-test with a null hypothesis of 381 

zero signal is less than optimal. 382 

Another example of models providing better than expected estimates of teleconnection 383 

pattern from a short record is found in Risbey et al. (2011), for composite plots for rainfall 384 

teleconnections using a 30-year record with a two-tailed t-test.  The authors note that the 385 

number of gridpoints passing a 95% significance criterion is much fewer than the same method 386 

applied to a century of historical data.  As a result, they loosen their restriction to an 80% 387 

confidence interval, noting that the teleconnection patterns are similar for records of either 388 

length. 389 
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While we cannot undertake a comprehensive examination here of the available significance 390 

tests that could illuminate the information a model ensemble provides, the cases here suggest 391 

that further work on this would be fruitful. In particular, it appears that previous criteria for 392 

assessing significance on an individual model basis (e.g., N06 and T11) may be excessively 393 

restrictive, excluding information that would be admitted by t-tests based on the full model 394 

ensemble or by agreement-on-sign criteria that prove to be correct when compared to 395 

observations. 396 

 397 

6. Summary and conclusions 398 

AMIP runs from the CMIP3 and CMIP5 ensembles provide one standard by which we can judge 399 

the ability of the CGCMs’ atmospheric components to reproduce dynamic feedback processes 400 

that lead to remote precipitation.  We focus on standard teleconnection patterns associated 401 

with the ENSO Nino3.4 index.  Comparisons among the ensemble of models and with the 402 

observations are made using precipitation teleconnection patterns for the DJF for the years 403 

1979-2005.  The spatial patterns and amplitudes of these teleconnections are analyzed in 404 

several regions with robust ENSO feedbacks, including the eastern tropical Pacific, the 405 

“horseshoe” region in the western tropical Pacific, a southern section of N. America, and 406 

equatorial S. America. Teleconnection patterns are examined using both regression (linear 407 

and rank) and compositing techniques, all with similar results.  The rank method provides an 408 

alternate significance test, which is useful in narrowing some of the questions that arise for 409 

regions of low amplitude signal. The patterns defined with linear regression are useful for 410 

questions that involve the amplitude of the signal, since the amplitude of the precipitation 411 

change per SST change has an easier physical interpretation than amplitude given in terms of 412 

rank. 413 
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How well the models perform at reproducing the observed teleconnection pattern depends 414 

strongly on the quantity for which they are assessed. In standard measures of spatial 415 

correlation and amplitude, here taken over a set of regions where the teleconnection signal is 416 

reasonably strong, the CMIP3 and CMIP5 AMIP models exhibit strong regional disagreement 417 

with one another and with observations. Comparing patterns visually, this is associated with 418 

regions of strong precipitation change differing substantially from model to model and also 419 

with respect to observations. This yields low spatial correlations between modeled and 420 

observed teleconnections, with correlation coefficients on the order of 0.40 on average in the 421 

defined teleconnection regions.  The MMEM performs marginally better than the majority of 422 

models in spatial correlation measures, largely because the regions of strongest change have 423 

been smoothed. 424 

The MMEM systematically underestimates amplitude measures of the regional precipitation 425 

response, typically falling more than one standard deviation below the mean of the model 426 

ensemble.  This low amplitude in the MMEM is again associated with regional disagreement 427 

among ensemble members in the placement of high amplitude precipitation change. It is 428 

expected that in presence of intermodel variability, the MMEM amplitude will be lower than 429 

the individual model amplitudes (a fact noted in other analyses of GCM ensembles, e.g., N06; 430 

Knutti et al. 2010b; Neelin et al., 2010; Schaller et al. 2011; Räisänen 2007). 431 

Here, we quantify this, and ask whether better information can be obtained from the 432 

ensemble than that permitted by the MMEM. This includes assessment of the degree to which 433 

internal atmospheric variability contributes to regional disagreement among models. 434 

Teleconnection amplitudes of individual CMIP5 models distribute accurately about the 435 

observed values in all regions but the central ENSO region.  Internal variability of this 436 

amplitude is significant within each model, but it does not dominate the intermodel spread.  437 
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Thus it is intermodel variability – and not the internal variability within each model – that is 438 

the major factor in causing the MMEM to perform poorly in amplitude measures. In sum, the 439 

MMEM underestimates the observed by 30-40% in the teleconnection regions, but the mean of 440 

the individual model amplitudes provides a good estimate of the observed amplitude. 441 

Measures of the agreement on the sign of a precipitation response in model ensembles are 442 

often used for assessing global warming precipitation changes. Examining sign agreement for 443 

the teleconnection patterns, the model ensemble has broad spatial regions with high levels of 444 

agreement. These regions are more spatially extensive than the spatial regions for which 445 

individual models (or the observations) would pass a two-tailed t-test for a signal significantly 446 

different from zero at the 95% (or even the 90%) level. Surprisingly, the models exhibit high 447 

agreement on sign with the observations over similarly broad regions.  In other words, high 448 

agreement on sign within the model ensemble is a good predictor for agreement on sign with 449 

observations for ENSO teleconnections. 450 

Based on this agreement-on-sign analysis, it may be inferred that the model ensemble is 451 

producing useful information regarding the teleconnection precipitation signal even in regions 452 

that do not pass a t-test at the 95% level for individual models. This may in part be due to the 453 

fact that the full ensemble is being used in the sign test, and so this measure benefits from 454 

more information. A t-test for regression patterns using the full multi-model ensemble 455 

indicates comparably large regions that pass the significance test at the 95% level. It may also 456 

in part be associated with the models correctly producing some of the multiple mechanisms 457 

that contribute to the precipitation signal, such as skill at simulating mechanisms that lead to 458 

low amplitude signal occurring, despite issues with reproduction of intense, localized 459 

precipitation change.  460 

The evaluation of the model simulations for ENSO teleconnections may be used, with due 461 
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caution, to draw inferences for assessment of precipitation in global warming projections.  462 

Many of the processes producing the precipitation change are analogous to the global warming 463 

case. In particular, widespread tropospheric warming initiates precipitation change 464 

mechanisms in the tropics in both teleconnections and global warming. Regions of strong 465 

convergence feedbacks in certain tropical regions, and regions where large-scale wave 466 

dynamics interacts with mid-latitude storm tracks, producing localized precipitation 467 

anomalies with high amplitude and high intermodel variation, are analogous in both cases. 468 

The unimpressive skill of the models at capturing the precise regional distribution of the high 469 

intensity changes compared to teleconnection observations is consistent with the poor 470 

intermodel agreement on a precise pattern of precipitation change in global warming. 471 

However, the skill of the ensemble at reproducing the observed teleconnection signal 472 

amplitude (provided it is not assessed from the MMEM) suggests that corresponding measures 473 

for global warming precipitation change may be trustworthy. Furthermore, the surprisingly 474 

good skill of agreement-on-sign measures from the model ensemble at predicting the sign of 475 

the observed teleconnection bodes well for the usefulness of such measures in anticipating 476 

the sign of precipitation changes associated with global warming.477 
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 602 

 603 

Figure 1. DJF precipitation teleconnections for the years 1979-2005, as diagnosed through a 604 

linear regression analysis of precipitation against the Nino3.4 index (units of mm day-1 C-1).  605 

(a) Observed teleconnections; (b) concatenated multi-model ensemble teleconnections 606 

(CMME) for 15 CMIP5 AMIP models; (c) same as in (a), but with a two-tailed significance test 607 

applied to the regression values, shown at 95% confidence (black outline) and 90% confidence 608 

(lighter shading); (d) same as in (b) but shaded only where the regression is significant at or 609 

above the 95% confidence level.610 
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 611 

 612 

Figure 2.  As in Fig. 1, but for a Spearman rank correlation analysis between precipitation and 613 

the Niño3.4 index.  Note here that the color bar is in units of the Spearman rank correlation 614 

coefficient, with a minimum value of -1.0 and a maximum of +1.0.  (a) and (b) show the 615 

teleconnection patterns from the rank correlation applied to the observations and CMME, 616 

respectively. Patterns plotted in (c) are as in (a) but shaded only where gridpoints pass the 617 

95% confidence level (black outline) and the 90% confidence level (lighter shading) of a two-618 

tailed statistical significance test for the rank correlation analysis. (d) The CMME 619 

teleconnections shaded for gridpoints that pass at the 95% significance level in the rank 620 

correlation analysis.621 
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 Figure 3. DJF 622 

precipitation teleconnections shown for (a) the observations (top left) and for (b)-(p) one run 623 

from each of 15 available CMIP5 AMIP models (listed alphabetically by model acronym). 624 

Teleconnections here are resolved via a linear regression analysis as in Fig. 1, with an 625 

analogous color bar that has units of mm day-1 C-1. Patterns are plotted for the equatorial 626 

Americas to highlight regional (intermodel) disagreement among the ensemble members.627 
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 628 

Figure 4. Taylor diagrams for the standardized amplitude and spatial correlation of 629 

precipitation teleconnections in four selected regions, as indicated in the inset of each panel: 630 

(a) the equatorial Pacific (central ENSO) region, (b) the “horseshoe” region in the western 631 

equatorial Pacific; (c) an equatorial section of South America, and (d) a southern section of 632 

North America. On the Taylor diagrams, angular axes show spatial correlations between 633 

modeled and observed teleconnections; radial axes show spatial standard deviations of the 634 

teleconnection signals in each area, normalized against that of the observations.  Shaded red 635 
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triangles (15 total) and blue circles (11 total) denote each of the CMIP5 and CMIP3 AMIP 636 

models, respectively. The unshaded red triangle is the CMIP5 MMEM; the unshaded blue circle 637 

is the CMIP3 MMEM. 638 

639 
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 640 

Figure 5. Standardized amplitude of precipitation teleconnections in each of the four regions 641 

identified in Fig. 4 (spatial standard deviation of each model’s precipitation teleconnections 642 

divided by that of the observations). CMIP5 models are shown on the left, CMIP3 models on 643 

the right. Each blue dot represents a separate model run, and where multiple runs are 644 

available for a given model, a blue dot is plotted for each. Black bars represent the spread 645 

among the multiple runs for one model (where available), centered at that model’s average 646 

amplitude among the multiple runs (±1 standard deviation).  The green dots and green bars 647 

denote the average teleconnection amplitude (±1 standard deviation) for the entire 648 

ensemble, for each region. The red dot is the weighted MMEM. 649 
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 650 

Figure 6. (a) Agreement on sign plot for 15 modeled teleconnection patterns (linear 651 

regression).  Blue colors represent high agreement on a positive precipitation response during 652 

ENSO events; red colors represent high agreement on a negative precipitation response.  Note 653 

that in an ensemble of 15 models, an agreement count of 12 implies that 80% of models agree 654 

on the sign of the precipitation teleconnection at that gridpoint. (b) Number of models that 655 

pass a two-tailed statistical significance test for the linear regression being significantly 656 

different from a slope of 0. Note again that 12 models implies 80% agreement in the 657 

ensemble. 658 
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 659 

Figure 7. (a) Agreement on sign of precipitation teleconnections between each of 15 CMIP5 660 

AMIP models and the observations. (b) Agreement on sign of precipitation teleconnections 661 

between the CMIP5 AMIP models and the MMEM, calculated by first subtracting the influence 662 

of each model from the MMEM when determining the agreement count. Both (a) and (b) use 663 

teleconnection patterns diagnosed via linear regression.  Red areas denote models that agree 664 

with the observations or MMEM on a negative precipitation signal during ENSO events; blue 665 

areas imply agreement on a positive precipitation signal. 666 




