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Abstract.  Current-generation climate models exhibit various errors or biases in both the spatial 29 

distribution and intensity of precipitation relative to observations.  In this study, empirical 30 

orthogonal function (EOF) analysis is applied to the space-model index domain of precipitation 31 

over the Pacific from Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations to 32 

explore systematic spread of simulated precipitation characteristics across the ensemble. Two 33 

significant modes of spread, generically termed principal uncertainty patterns (PUPs), are 34 

identified in the December-January-February precipitation climatology:  the leading PUP is 35 

associated with the meridional width of deep convection, while the second is associated with 36 

tradeoffs in precipitation intensity along the South Pacific Convergence Zone (SPCZ), the 37 

Intertropical Convergence Zone (ITCZ), and the spurious Southern Hemisphere ITCZ.  An 38 

important factor distinguishing PUPs from the analogy to time series analysis is that the modes 39 

can reflect either true systematic intermodel variance patterns or internal variability.  In order to 40 

establish that the PUPS reflect the former, three complementary tests are performed using 41 

preindustrial control simulations: a bootstrap significance test for reproducibility of the 42 

intermodel spatial patterns, a check for robustness over very long climatological averages, and a 43 

test on the loadings of these patterns relative to interdecadal sampling.   Composite analysis 44 

based on these PUPs demonstrates physically plausible relationships to CMIP5 ensemble spread 45 

in simulated sea surface temperatures (SSTs), circulation, and moisture.  Further analysis of 46 

atmosphere-only, prescribed SST simulations demonstrates decreased spread in the spatial 47 

distribution of precipitation, while substantial spread in intensity remains.   48 
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1. Introduction 49 

The tropical Pacific as simulated by state-of-the-art global climate models, including those in 50 

Phase 5 of the Coupled Model Intercomparison Project (CMIP5), is characterized by several 51 

well-known biases.  Prominent among these are the Eastern Pacific cold-tongue bias, with colder 52 

than observed sea surface temperatures (SSTs) frequently confined too close to the equator and 53 

penetrating too far to the west [Zheng et al. 2012; Li et al. 2015], and the double Intertropical 54 

Convergence Zone (ITCZ), with two bands of deep convection in the east, one on either side of 55 

the equator, rather than the observed equatorially asymmetric state with deep convection 56 

confined to the Northern Hemisphere only [Mechoso et al. 1995; Li et al. 2004; Lin 2007].  57 

Among the hypotheses accounting for the genesis of biases or errors in eastern tropical Pacific 58 

climate are deficiencies in the representation of coupled ocean-atmosphere features or processes, 59 

such as spurious warming in the upwelling zone along the South American coast and too strong 60 

surface winds and ocean currents [Zheng et al. 2012] or larger scale issues related to hemispheric 61 

energy imbalances [Hwang and Frierson 2013].  Intermodel differences in parameterizations of 62 

deep convection as well as clouds, especially low-level marine stratocumuli, may further 63 

contribute to errors in simulation of tropical Pacific climate in current generation models 64 

[Mechoso et al. 1995; Zhang 2001; Lin 2007; Brown et al. 2013].  65 

Perhaps less well-appreciated are the biases occurring outside of the eastern tropical Pacific, 66 

particularly those in and around the South Pacific Convergence Zone (SPCZ), a diagonally-67 

oriented convection zone extending from the tropical western Pacific warm pool southeastward 68 

into the Southern Hemisphere (SH) midlatitudes of the Central Pacific [Vincent 1994].  Coupled 69 

models frequently produce SPCZs that are more zonal than observed and with precipitating deep 70 

convection penetrating too far into the southeast Pacific dry descent region [Brown et al. 2011; 71 
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2012; Ganachaud et al. 2014; see also Figure 1].  Niznik et al. [2015] stress the importance of 72 

distinguishing between the tropical and subtropical portions of the SPCZ when analyzing model 73 

bias, given the distinct processes influencing the tropical and subtropical portions.  In light of the 74 

biases in the eastern equatorial Pacific, it is of interest to quantify how these may affect, or in 75 

turn be affected by, the biases in the SPCZ.  Moreover, to the extent that biases reflect linkages 76 

among components of the climate system, their diagnosis may contribute to understanding why 77 

the SPCZ exists, as this remains elusive [Takahashi and Battisti 2007; Power 2011]. 78 

It is noteworthy that the aforementioned biases are little improved from the CMIP3 to CMIP5 79 

model ensembles [Li and Xie 2012; Brown et al. 2012; Hirota and Takayuba 2013; Li and Xie 80 

2014].  The continuing occurrence of substantial biases in simulations of present-day climate 81 

limits confidence in projections of anthropogenic climate change impacts, especially at the 82 

regional scales considered for mitigation and adaptation [IPCC 2013].  For example, Widlansky 83 

et al. [2013] document substantial change in SPCZ region precipitation under future warming, 84 

including an equatorward shift of the mean SPCZ axis with amplified 21st century surface 85 

warming in the eastern Pacific.  For many islands in the Pacific that depend on precipitation from 86 

the SPCZ, such shifts would clearly impact water resources and infrastructure, but the errors 87 

existing in current climate simulation need to be resolved to meet the needs of planning and 88 

decision-making. 89 

An outstanding challenge in model intercomparison, assessment, and validation involves 90 

quantifying what may be a range of simulated behaviors across model ensembles.  A common 91 

approach involves quantifying biases or errors in terms of the model ensemble mean (MEM) and 92 

some bulk measure of the spread across the ensemble, e.g., the intermodel standard deviation or 93 

root-mean-square difference with respect to the MEM.  However, such metrics may fall short of 94 
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capturing how the models differ with respect to one another other.  Our perspective is that the 95 

study of systematic differences across a model ensemble may ultimately help to isolate 96 

deficiencies in model physics and suggest targets for improvement, beyond what biases or errors 97 

in the MEM may already indicate about model deficiencies and how to resolve them.  Certainly, 98 

in light of the wide array of physical implementations and parameterizations and associated 99 

tunable parameters used in current generation models, determining precisely how to correct a 100 

particular error may be challenging.  Nevertheless, we suggest that the application of 101 

methodologies to identify common behaviors in models is useful:  at the very least, objective 102 

grouping of models based on shared structural features can guide the selection of models for 103 

specific applications, such as the design of a multimodel ensemble.  As we show below, the 104 

methodology we apply here highlights the tendency for models of the same “family” to behave 105 

similarly.  To the extent that we can consider such similar behavior as reflecting non-106 

independence across these models, one may choose to include only a single representative of a 107 

family in an ensemble. 108 

 To quantify the spread in simulation of climatological precipitation in the CMIP5 ensemble, 109 

we consider here the application of objective empirical mode decomposition techniques to the 110 

entire model suite.  In the present study, we apply empirical orthogonal function/principal 111 

component (EOF/PC) analysis on the space-model index domain rather than the conventional 112 

space-time domain.  This approach, which we generically term principal uncertainty pattern 113 

(PUP) analysis regardless of the specific decomposition technique used, is conceptually similar 114 

to recent studies by, e.g., Deser et al. [2012], regarding internal variability in a single model 115 

ensemble; Delcambre et al. [2013a, 2013b]; regarding the Northern Hemisphere jet in the 116 

CMIP3 archive; and Li and Xie [2012; 2014, with the latter referred to hereinafter as LX14] 117 
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regarding tropics-wide SST in CMIP3/CMIP5 and tropical Pacific precipitation biases in CMIP5.  118 

More recently, Anderson et al. [2015] performed a multivariate PUP analysis to relate CMIP5-119 

simulated trends in SST to trends in land surface precipitation, while Langenbrunner et al. 120 

[2015] applied PUP analysis to identify and attribute CMIP5 model discrepancies in the 121 

simulated meridional position and longitudinal extent of the North Pacific storm track in current 122 

climate as well as end of the 21st century projections.  123 

 124 

2. Data and Methods 125 

We seek here to characterize CMIP5 model spread in simulations of rainfall in the tropical 126 

Pacific, focusing on the austral summer (December-January-February) season, when the SPCZ is 127 

most prominent.  In order to address the impact of coupled ocean-atmosphere versus atmosphere-128 

only sources of model spread, we analyze both the historic (coupled) simulations of CMIP5 as 129 

well as stand-alone atmospheric models forced with prescribed sea surface temperature and sea 130 

ice boundary conditions [Taylor et al. 2012].  The latter follow a protocol similar to the 131 

Atmospheric Model Intercomparison Project (AMIP) and are thus referred to hereafter as AMIP-132 

style simulations.  For the historic suite, 36 models are analyzed; for the AMIP-style suite, 30 133 

models are analyzed.  The models and associated acronyms are summarized in Table 1.  For each 134 

available model, we use only a single ensemble member, to give equal weighting to each model 135 

in the analysis. For ease of comparison, all model fields are first regridded using bilinear 136 

interpolation to a uniform 2.5º x 2.5º grid over a rectangular domain spanning 120ºE–60ºW and 137 

50ºS–20ºN.  For both the historic and AMIP-style simulations, 27 years of data for December-138 

January-February (DJF) are analyzed, spanning the common period 1979-2005.  Of course, the 139 

AMIP simulations are forced with observed SSTs while the historic simulations have SSTs that 140 
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freely evolve subject to prescribed forcings from insolation, volcanic eruptions, and 141 

anthropogenic emissions.   As we elaborate on further below, the behavior we identify is robust 142 

to the sampling time period. 143 

Precipitation climatologies for both the coupled and AMIP-style ensembles are concatenated 144 

to form M x N matrices, where M denotes the spatial dimension (i.e., M = Mx x My longitude-145 

latitude points) and N the model index dimension; EOFs and PCs are computed from this M x N 146 

matrix.  The resulting modes (or PUPs) capture the leading spatial patterns of intermodel 147 

differences in terms of variance explained across the space-model index domain.  The PC 148 

associated with each PUP corresponds to the loadings (or projections) of individual model 149 

climatologies onto that spatial pattern (EOF), providing an indication of the relative contribution 150 

of each model to that PUP.  For example, a large positive loading or PC value for a given model 151 

means that it projects strongly (and positively) onto that mode, relative to the ensemble mean.  152 

These weights are further used as the basis for regression analysis of various fields related to 153 

precipitation, including SST, winds, and moisture.   154 

We have also applied maximum covariance analysis (MCA) to the cross-covariance matrix 155 

of precipitation and SST.  The MCA-based approach yields pairs of uncertainty patterns for 156 

precipitation and SST representing coupled ensemble spread in these two fields.  For more 157 

information on these methods, the reader is referred to Langenbrunner et al. [2015] and the 158 

references therein. 159 

     160 

3. Results  161 

3.1 PUPs for coupled model simulations 162 
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In computing the PUPs, we seek to identify systematic variation in model behavior relative to the 163 

MEM.  Thus, for reference, Figure 1 shows DJF MEM precipitation for the historic simulations 164 

as well as the departure of the MEM from the observations, in this case from the Global 165 

Precipitation Climatology Project [GPCP; Adler et al. 2003].  Several aspects of the rainfall 166 

biases discussed in Section 1 are readily apparent.  For example, the MEM is too wet in the SH 167 

Eastern Pacific, reflecting the model simulation of a spurious SH ITCZ there, while the dipole 168 

appearing along the poleward portion of the SPCZ is consistent with its too zonal orientation in 169 

the models.  Along the equator, especially to the west of the International Dateline, the MEM 170 

considerably underestimates rainfall relative to GPCP, consistent with too cool SSTs and 171 

excessive westward extension of cold tongue [Li et al. 2015; 2016].  Farther to the west near the 172 

Maritime continent, the CMIP5 models are excessively wet, as they also are over the western 173 

coast of South America.  An important caveat in discussing these biases is that different 174 

observational products may yield divergent estimates of rainfall.  For example, the GPCP 175 

estimates of precipitation are lower over much of the tropical and subtropical ocean, especially in 176 

the west Pacific, compared to the Climate Prediction Center (CPC) Merged Analysis of 177 

Precipitation [CMAP; Xie and Arkin 1997] data set, which has been attributed to use of atoll-178 

based rain gauge estimates in the latter but not in the former [Yin et al. 2004].  While differences 179 

across observational estimates are clearly important in validating model performance, for our 180 

purposes in understanding the spread of CMIP5 simulations relative to the MEM, they are not 181 

critical. 182 

 183 

3.1.1 FIRST PUP 184 
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For the PUPs computed from the N = 36 coupled model DJF precipitation climatologies, the 185 

leading two modes emerge as well separated from the remaining modes and are thus regarded as 186 

significant according to the method of North et al. [1982].  The first mode, which accounts for 187 

24.3% of the total field variance, is depicted in Figure 2a.  The leading PUP predominantly 188 

captures the CMIP5 historic ensemble’s spread in the meridional width of principal centers of 189 

Pacific region deep convection.   Within the SPCZ, the leading mode exhibits its largest positive 190 

loadings slightly equatorward of the mean diagonal axis through the mean precipitation centroid 191 

over 5ºS to 15ºS; the ITCZ is similarly split.  The gray 4 mm day-1 contours, representing 192 

averages over models with positive (solid) and negative (dashed) loadings (see Figure 2b), 193 

underscore the spatial displacements of the SPCZ and ITCZ between the two subsets of models.   194 

Comparing the leading PUP to the MEM bias relative to GPCP (Figure 1b) indicates little 195 

systematic relationship between the spatial patterns.  For example, along the poleward margin of 196 

the ITCZ and along the equator just west of the Dateline, the positive weight models have 197 

reduced bias compared to the models with negative weights.  On the other hand, the models with 198 

positive weights exhibit an enhanced spurious SH ITCZ, which is especially evident in the 4 mm 199 

day-1 contour.  Such behavior underscores a difficulty in bias correction, namely that alleviation 200 

in one region is often associated with degradation in another [Wang et al. 2014]. 201 

The ACCESS and HADGEM2 families of models exhibit the largest positive model weights, 202 

corresponding to a narrower ITCZ/SPCZ complex with precipitation more concentrated along 203 

the equator, while the MPI models exhibit the largest negative weights, corresponding to a wider 204 

ITCZ/SPCZ.  Overall, the model weights for simulations from the same parent are typically 205 

close.  The effective degrees of freedom [Bretherton et al. 1999] estimated from the variance 206 

spectrum of the EOF modes is ~9.  The tendency for similar values of model weights for sibling 207 
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models is consistent with a lower number of degrees of freedom in the ensemble, since not all 208 

models within the ensemble are independent.    However, it is not always the case that siblings 209 

are close, e.g., two of versions of the IPSL models exhibit modest negative loadings with respect 210 

to PUP 1 while the third is positively loaded.  In this case, the two negative weight models share 211 

the same convection scheme (differing otherwise in terms of horizontal resolution), while the 212 

third has a distinct convection scheme [Oueslati and Bellon 2013]. 213 

Obviously, it is necessary to assess whether the PUPs represent physically plausible behavior 214 

or merely mathematical artifacts of the methodology:  after all, it is possible that the spatial 215 

structure occurs with no clear relationship to underlying physical processes.  To provide some 216 

physical context, we linearly regress various climate fields from the models using the leading 217 

mode PC (model weights) as the regression index; in Figure 2c, we present the results of the 218 

regression analysis for SST and 850 mb winds.  The values shown correspond to unit standard 219 

deviation scaling of the PC, i.e., a model weight of +1.   220 

From the SST regression, the near-equatorial enhancement of rainfall in PUP mode 1 is 221 

associated with a widespread region of SSTs in the Central to Eastern Pacific ~0.5-0.75 °C 222 

warmer than the MEM (again, assuming a model weight of +1).  The warm SSTs both underlie 223 

the enhanced rainfall and extend to the east of the principal near-equatorial positive precipitation 224 

values evident in Figure 2a.  The spatial patterns of rainfall and SSTs are qualitatively consistent 225 

with interannual variability associated with El Niño/La Niña events in both observations and 226 

models [Folland et al. 2002].  Thermodynamically, the occurrence of warmer than MEM SSTs 227 

over a broad region upstream, as defined based on the orientation of the mean low-level trade 228 

wind inflow, should increase low-level moist static energy (MSE), both through low-level 229 

warming and moistening.  Thus, models with higher low-level MSE compared to the MME may 230 
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be expected to support rainfall further to the east  [Lintner and Neelin 2008; Niznik and Lintner 231 

2013].  232 

Considering the mode 1 regression of 850 mb winds, the meridional pattern of drier 233 

conditions toward the poles and wetter conditions toward the equator is associated with 234 

anomalous low-level convergence.  Moreover, within the equatorward region of enhanced 235 

leading mode rainfall, the low-level winds are anomalous northwesterly.  Since the 236 

climatological DJF low-level circulation in this region is southeasterly to easterly, the low-level 237 

winds in models favoring higher rainfall along the equator are therefore weakened.  We point out 238 

here consistency with the physical mechanism for variability at the margins of tropical deep 239 

convection zones discussed by Lintner and Neelin [2008] and Niznik and Lintner [2013], in 240 

which enhanced moisture and precipitation along the eastern margin of the SPCZ was related to 241 

reduced dry air (or low-MSE) advection associated with slackened trade winds from the dry and 242 

cool, low MSE region upstream.  Moreover, the principal axis of low-level winds along the 243 

SPCZ coincides with enhanced rainfall extending southeastward toward SH midlatitudes for the 244 

models with positive weights; this behavior suggests outflow of moisture along the SPCZ in 245 

these models is important for sustaining convection on its poleward edge.  In the extreme 246 

southeast Pacific, the low-level winds in Figure 2c are associated with an anomalous cyclonic 247 

circulation opposing the quasi-stationary climatological mean anticyclone (the South Pacific 248 

High) located there.  Regressions of specific humidity at 700 mb and winds at 200 mb (not 249 

shown) also support these results.  250 

An important distinction between the PUP analysis presented here and conventional EOFs 251 

calculated across a time series is that the PUP modes can arise from two sources of variance:  252 

internal climate variability in individual models and true intermodel variability.  Prior work (e.g., 253 
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Deser et al. [2012]) indicates that internal variability can lead to distinct regional behavior in 254 

climatologies over timescales comparable to the 27-year means for our PUP analysis.  For 255 

example, in the Pacific, models simulate well-known low-frequency modes of observed 256 

variability like the Pacific Decadal Oscillation (PDO) or the Interdecadal Pacific Oscillation 257 

(IPO), but the phase of these is dependent on the model initialization [Anderson et al. 2015].  258 

Since the spatial footprint of the PDO (or IPO) on SST in the tropical and southern Pacific is 259 

somewhat reminiscent of the SST regression in Figure 2c, distinguishing between internal 260 

(sampling) variability and systematic intermodel variability requires careful attention, and we 261 

have addressed this in three separate and complementary ways. 262 

First, we employed a bootstrapping technique to provide a significance test for the pattern in 263 

Figure 2a.  This was done by generating 100 randomized 30-year climatologies from 5-year 264 

segments in the preindustrial control runs (see Table 1 for more information).  This procedure 265 

yielded 100 ‘alternative’ ensembles, and a PUP analysis was performed on each.  The average 266 

spatial correlation between the leading modes from this set of 100 alternative ensembles and that 267 

in Figure 2a is r = 0.95, implying that the pattern seen in Figure 2a is robust to sampling.  A two-268 

sided t test was further applied at each grid point to these modes to assess whether the sample 269 

means of grid point values among the 100 bootstraps are significantly different from zero.  The 270 

results of this test are stippled where grid points pass at the 99% confidence level in Figure 2a, 271 

indicating widespread confidence that the leading mode does not arise from sampling of 272 

interdecadal variability. 273 

As a second check that the results in Figure 2a are not the result of internal variability, we 274 

calculated the climatology of the preindustrial control run simulation for each model over its 275 

entire length (ranging from 240 to 1050 years):  that is, we check whether the spatial pattern seen 276 
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in Figure 2a is reproducible for climatologies much longer than 30-year averages.  The spatial 277 

correlation between the 1st PUP (not shown) and Figure 2a is r = 0.95, with similar percent 278 

variance accounted for, indicating that this PUP is also distinct from sampling across low-279 

frequency (on the order of 100 years or longer) oscillations. 280 

A final test can be seen in the error bars in Figure 2b.  Consecutive, non-overlapping 30-year 281 

climatologies from the preindustrial control runs were calculated for each model, and the 282 

resulting climatologies were centered by the 1979-2005 ensemble mean and projected onto 283 

Figure 2a.  The error bars in Figure 2b represent the range of values for these projections, or a 284 

measure of internal variability of the principal components.  The spread for each model is 285 

notably smaller than that across the entire ensemble, indicating that internal model variability is 286 

not a major contributor to the pattern in Figure 2a. 287 

Taken together, this set of checks leads us to conclude that the PUP in Figure 2a represents 288 

true systematic differences across model climatologies, distinct from internal model variability.   289 

 290 

3.1.1 SECOND PUP 291 

The 2nd mode PUP for the historic ensemble, accounting for 16.9% of the field variance, is 292 

presented in Figure 3.  The predominant feature of this PUP is widespread occurrence of positive 293 

values outside of the central and eastern Pacific, with especially large values in the SPCZ and to 294 

the north of Australia (Figure 3a).  By contrast, the 2nd PUP reflects strong negative values over 295 

the spurious SH ITCZ as well as in the upwelling region adjacent to the coast of South America. 296 

The spatial tradeoff in precipitation intensity between the SPCZ and ITCZ can be interpreted 297 

qualitatively in terms of a teleconnected atmospheric response to diabatic (convective) heating, 298 

as in the Gill [1980] model.  That is, those models which exhibit stronger convection over the 299 
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SPCZ may be expected to simulate weaker precipitation elsewhere (such as over the eastern 300 

Pacific) through mass balance of stronger ascent in the SPCZ and stronger subsidence elsewhere. 301 

We point out that the areas enclosed by the 4 mm day-1 contour are approximately the same for 302 

both the positive and negative weight models, which is consistent with the notion of a spatial 303 

redistribution of rainfall within the domain.  The regression analysis (Figure 3c) highlights SSTs 304 

colder than the MEM collocated with the largest negative rainfall values in the eastern tropical 305 

Pacific.  306 

Our leading PUP modes are in general agreement with the results of LX14 (c.f., their Figure 307 

2), which depict regressions of precipitation, SST, and surface winds onto PCs of intermodal 308 

spread in annual- and zonal-mean tropical Pacific rainfall, normalized with respect to each 309 

model’s tropical mean rainfall, for a smaller set (N = 18) of CMIP5 models.  LX14 remark that 310 

similar results were obtained for the decomposition over longitude and latitude, which would be 311 

more directly comparable to our analysis.  There are, however, some differences with respect to 312 

LX14.  For instance, the leading PUP from our analysis accounts for less than half the variance 313 

compared to the leading mode of LX14.  This difference may stem from the normalization 314 

applied in LX14, which may be expected to suppress some of the spread across models, given 315 

model-to-model differences in the overall amount of tropical rainfall, thereby increasing the 316 

variance captured by the leading mode in LX14.  The 2nd mode of LX14 manifests a much more 317 

pronounced dipole in the regression of precipitation over the eastern north tropical Pacific than is 318 

evident in our 2nd mode.  However, analysis of the PUPs computed on the June-July-August 319 

(JJA; not shown) climatology indicates a similarly located dipole appearing in the second JJA 320 

PUP (with similar overall structure to the second mode for DJF).  Thus, there is some modulation 321 

of the spatial details by the choice of season.  Overall, though, the similarity of the leading PUPs 322 
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to the results of LX14, obtained with some differences in the underlying methodology and 323 

selection of models and analysis period, supports the robustness of these patterns of model 324 

spread. 325 

As with the leading mode, we checked the reproducibility of the pattern in Figure 3a against 326 

sampling variability:  using the bootstrap method, the spatial correlation between 100 327 

bootstrapped 2nd PUP modes and that of Figure 3a is r = 0.94.  The stippling throughout Figure 328 

3a underscores that the behavior at most gridpoints is distinct from internal variability, and the 329 

small error bars on model weights in Figure 3b show that within-model spread is small compared 330 

to the spread across the ensemble.  Finally, the 2nd PUP calculated from climatologies computed 331 

over the entire preindustrial control time series produces a spatial correlation of r = 0.94.  We 332 

therefore reiterate that the second mode is distinct from sampling internal variability at decadal 333 

or longer time scales. 334 

It is interesting to note that while the 1st and 2nd PUP PCs are uncorrelated in a linear least 335 

squares sense (by construction), they do exhibit an apparent higher-order relationship (Figure 4).  336 

In particular, using a quadratic fitting function yields a correlation of 0.54 between the two PCs.  337 

Rejecting the obvious outliers (the CSIRO, CMCC-CMS and CMCC-CESM, GISS models) 338 

further increases the quadratic best fit (r = 0.78) without significantly changing the linear 339 

correlation.  The quadratic relationship between the model weights for the first two modes 340 

implies that models with strong SPCZ regional rainfall (2nd PC > 0) may have either relatively 341 

narrow (PC > 0) or wide (PC < 0) meridional distributions of rainfall, while models with weak 342 

SPCZ region rainfall tend to fall closer to the ensemble-mean with respect to the overall 343 

latitudinal extent of Pacific region convection. 344 

 345 
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3.2 MCA and relationship of coupled model precipitation spread to SST 346 

As noted above, within coupled models, biases are often attributed to poor simulation of ocean 347 

dynamics.  With respect to simulated precipitation, errors arising from ocean dynamics may 348 

impact SSTs, which in turn induce errors in surface fluxes and ocean-atmosphere coupling that 349 

affect temperature and moisture vertical structure in the overlying atmosphere.  To investigate 350 

this linkage, we applied Maximum Covariance Analysis (MCA) to the cross-covariance matrix 351 

of normalized precipitation and SST for the historic simulations, as shown Figure 5.  The leading 352 

MCA mode accounts for 66% of the total squared covariance between these two fields, with a 353 

correlation coefficient between the model weights for the precipitation and SST fields of r = 354 

0.79, implying tight coupling between the model spread in precipitation and SST.  The squared 355 

covariance value is significant at the 94% confidence interval, based on a Monte Carlo procedure 356 

with a sample size of 300.   The precipitation pattern associated with the spatial projection of the 357 

first MCA mode manifests a horseshoe-like pattern reminiscent of the leading coupled PUP 358 

mode in Figure 2a; in fact, the spatial pattern correlation coefficient between the leading coupled 359 

model EOF- and MCA-based PUPs is 0.78, while the model weights for these PUPs are 360 

correlated with r = 0.88.  One difference in the precipitation field of the MCA-based PUP 361 

relative to the 1st EOF-based PUP is that the former exhibits large values in the vicinity of the 362 

spurious SH ITCZ (around 120°W, 10°S); in this regard, the leading SVD precipitation pattern 363 

more resembles the 2nd EOF-based PUP.  Indeed, the spatial correlation pattern coefficient (r = 364 

0.35) and the correlation of model weights (r = 0.32) for the 2nd precipitation EOF PUP and 365 

leading MCA PUP are both significant at p = 0.05.   366 

 367 

3.3 PUPs for AMIP-style simulations 368 
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We have also analyzed the spread across ensemble members for the AMIP-style simulations. 369 

Analogous to Figure 1, Figure 6 depicts the DJF MEM precipitation for the AMIP ensemble as 370 

well as the bias relative to GPCP.  Overall, there is an improved spatial distribution of 371 

precipitation over the domain, with the spurious SH ITCZ effectively eliminated and the slope of 372 

the SPCZ improved, although the tilt of the more subtropical portion is still somewhat too zonal.  373 

Also, the intensity of rainfall within the SPCZ and ITCZ is generally larger than the GPCP 374 

values.  Interestingly, in comparison to the coupled models, the bias actually worsens along the 375 

northern margin of the extreme eastern portion of the ITCZ:  a possible explanation for the 376 

degradation of the AMIP simulations in this region is that competition for convection between 377 

the NH and SH ITCZs in the coupled simulations suppresses intensity to the north, leading to 378 

values more in line with GPCP.    379 

For the AMIP-style ensemble, the spread across ensemble members arises from poor 380 

parameterizations or missing physics within the atmosphere only, since the same boundary 381 

conditions (SSTs and sea ice) are prescribed across the models.  A gross comparative measure of 382 

the total variability within that selection of models for each of the historic and AMIP-style 383 

ensembles can be obtained from the sum of squares of the elements in the covariance matrix (the 384 

Frobenius norm; see Bretherton et al. 1992), which we normalize by the number of models in 385 

each ensemble to account for the different number of models.  For the coupled ensemble, the 386 

(normalized) Frobenius norm is ~1855 mm2 day-2, while it is ~1190 mm2 day-2 for the AMIP-387 

style simulations.  The larger intermodel variability within the coupled ensemble is consistent 388 

with additional sources of uncertainty owing to coupling of the atmosphere to an interactive 389 

ocean.  Nevertheless, that the total variance in the AMIP models is ~2/3 as large as in the fully 390 
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coupled versions indicates that atmospheric processes alone contribute substantially to ensemble 391 

spread. 392 

Figure 7 depicts the leading EOF-based PUP for the AMIP-style simulations.  This mode 393 

explains 23.4% of the total variance, i.e., comparable to mode 1 for the historic ensemble.  For 394 

the AMIP PUPs, only the leading mode is well separated from the remaining modes.  Overall, 395 

the leading AMIP PUP spatial pattern highlights model discrepancies localized primarily over 396 

the western portion of the domain where simulated precipitation values are largest: models with 397 

positive loadings exhibit larger than MEM rainfall over the SPCZ and lower values to the north 398 

in the ITCZ as well as over northern Australia.  The latter region is characterized by a summer 399 

monsoon climate.  Prior work [e.g., Kiladis et al. 1989; Mantsis et al. 2013] points to coupling 400 

with the Australian summer monsoon as an important determinant of SPCZ intensity and spatial 401 

structure, especially in its more tropical portion.  This linkage is consistent with the structure in 402 

the leading PUP, in that models with enhanced precipitation in the SPCZ tend to simulate 403 

reduced precipitation in the Australian monsoon region.  As with the leading mode of the 404 

coupled ensemble, the regression of model weights for the leading AMIP PUP onto 850 mb 405 

winds indicates stronger (north)westerlies in models with more intense rainfall in the SPCZ. 406 

Relative to the historic coupled ensemble, the MEM DJF 4 mm day-1 precipitation for the 407 

AMIP-style simulations more closely approximates the location of the observed 4 mm day-1 408 

contour, demonstrating improved fidelity among the AMIP-style simulations in capturing the 409 

overall spatial distribution of precipitating deep convection in the Pacific domain.  That is, the 410 

specification of the boundary forcing through imposed SSTs leads to a better match to observed 411 

rainfall distribution.  The spatial pattern correlations of the leading AMIP PUP modes with 412 

respect to the 1st and 2nd historic EOFs are 0.63 and 0.22, respectively.  Thus, errors or 413 
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uncertainties in simulations of the atmosphere itself may be viewed as contributing to the spatial 414 

pattern of the leading coupled mode, in addition to the structural differences associated with fully 415 

coupled ocean-atmosphere dynamics.  Some caution is warranted in comparing the results, given 416 

the different models assessed in the coupled and AMIP-style simulations.  Still, for the subset of 417 

models common to both the coupled and AMIP-style ensembles (N = 25), the correlation 418 

between model weights of the leading PUPs is 0.49, which is significant at p = 0.05.  This 419 

correlation remains significant at the 95th percentile even if reasonable allowance is made for a 420 

lower number of degrees of freedom owing to non-independent models.   421 

 422 

3.4 PUPs for precipitation standard deviation 423 

In addition to computing PUPs for the DJF precipitation climatologies, we have also computed 424 

PUPs with respect to simulation of the interannual standard deviation in the coupled historic 425 

simulations (Figure 7).  The two leading variability PUPs account for 30.3% and 16.9%, 426 

respectively, and are well separated from the remaining modes.  The first mode (Figure 8a) 427 

identifies spatially pervasive differences in the level of variability across the model ensemble.  428 

On the other hand, the second mode (Figure 8b) emphasizes models with high or low variability 429 

along the equator in the central Pacific.  Given the localization of the 2nd mode to the principal 430 

region of ENSO variability, it suggests spread arising from model simulation of ENSO and 431 

atmosphere-ocean feedbacks within this region.  Indeed, there is modest correlation between the 432 

model weights for the 2nd mode and SST variability in the NINO3 region (not shown). 433 

Perhaps not surprisingly, the weights for the historic ensemble climatology and standard 434 

deviation PUPs exhibit some relationships.  Both the 1st and 2nd PUP model weights for the 435 

historic climatology are positively correlated (at p = 0.05) with the model weights of the leading 436 
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PUP for standard deviation, i.e., the models exhibiting more intense climatological precipitation 437 

along the equator and/or along the SPCZ tend to be those with higher interannual standard 438 

deviations, i.e., areas with higher mean rainfall experience a greater degree of year-to-year 439 

variability.  On the other hand, model weights for the 2nd historic climatology PUP are negatively 440 

correlated with those of the 2nd standard deviation PUP, i.e., models with higher rainfall 441 

interannual variability over the equatorial central Pacific tend to have a more pronounced 442 

climatological double ITCZ, but less intense rainfall toward the axis of the SPCZ.  443 

For completeness, we have further computed PUPs on the DJF interannual precipitation 444 

standard deviation for the AMIP-style simulations (not shown).  The leading mode, which 445 

accounts for 38.4% of the variance, strongly resembles the leading mode for the historic 446 

ensemble (Figure 7a), again showing pervasive differences across the models in the overall level 447 

of precipitation variability and pointing to uncertainties in representation of atmospheric 448 

processes as the principal determinant of this aspect of model spread.  On the other hand, no 449 

analogue to the historic ensemble 2nd mode PUP (Figure 8b) is evident in the AMIP-style 450 

ensemble, which underscores the role of ocean-atmosphere coupling in generating this aspect of 451 

the interannual variability in the models.    452 

 453 

4. Summary and discussion 454 

In this study, we have applied an approach, generically termed principal uncertainty pattern 455 

(PUP) analysis, to investigate the leading patterns characterizing the spread among CMIP5 456 

model simulations of DJF tropical Pacific precipitation.  The two leading PUPs for the historic 457 

(coupled ocean-atmosphere) simulations, derived from EOF/PC analysis, reveal distinct patterns 458 

of differences of the models with respect to ensemble mean in both the spatial distribution of 459 
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precipitation as well as its intensity.  The first mode can be broadly characterized in terms of 460 

spread in the meridional width of the Pacific ITCZ-SPCZ complex as well as the zonal 461 

distribution of precipitation along the equator.  The second mode shows spread expressed as a 462 

tradeoff between SPCZ and ITCZ precipitation intensity, the latter including the spurious SH 463 

ITCZ. 464 

As we have noted, PUPs may reflect either true intermodel spread or internal variability, 465 

which is quite distinct from application of EOFs (or other methods) in the time domain.  Thus, an 466 

important consideration is how to distinguish these two potential sources of PUP behavior.  To 467 

address this, we performed a bootstrap significance test for the intermodel spatial patterns, a test 468 

on the model weights, and a check for robustness against longer climatological averages.  The 469 

results confirm in complementary ways that these patterns in fact arise from intermodel 470 

differences in the tropical Pacific climatology and are distinct from internal model variability at 471 

times scales of several decades or longer. 472 

Simple linear regressions of SST and low-level circulation (as well as humidity) onto 473 

precipitation PUP model weights underscore the physical consistency of these interpretations, as 474 

does application of maximum covariance analysis (MCA) to the covariance matrix of 475 

precipitation and SST. By analyzing the stand-alone atmospheric (AMIP-style) simulations in 476 

which the impacts of SST-related biases are suppressed, intermodel spread in rainfall intensity 477 

remains, especially in the western tropical Pacific, even as the overall spatial configuration of 478 

domain-wide precipitation is improved. 479 

While we have demonstrated the plausibility of the precipitation PUPs in terms of their 480 

physical consistency with other climate fields, can we draw any conclusions about the source of 481 

spread as it relates to particular aspects of model parameterizations, especially for the AMIP-482 
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style models for which errors related to ocean dynamics are suppressed?  One way of 483 

interpreting the spatial structure inherent to the leading AMIP PUP (Figure 7a) is that it 484 

corresponds to model tradeoffs in precipitation in the SPCZ core compared to the margins, i.e., 485 

models with more intense precipitation have narrower SPCZs.   486 

In prior work using an intermediate level complexity model, Lintner et al. [2012] described a 487 

pattern of reduced precipitation along the margins and enhanced precipitation in the cores of 488 

strong tropical convection zones with the addition of an entrainment-like process to the model’s 489 

convection scheme.  The occurrence of this spatial pattern was tied to dry air mixing reducing 490 

convective available potential energy along the margins; the enhanced precipitation in the 491 

interior was related to enhanced moisture converging within the convection zone core.  Oueslati 492 

and Bellon [2013] documented similar behavior in entrainment sensitivity experiments in the 493 

family of CNRM models, as did Hirota et al. [2014] in MIROC5 simulations with different 494 

representations of entrainment.   495 

It remains to be seen whether the PUP model weightings can be systematically related to 496 

entrainment or other parameterized processes.  On this note, Siongco et al. [2014] applied an 497 

object classification method to sort CMIP5 AMIP-style models into two groups, depending on 498 

where these models exhibited the strongest bias in the Atlantic ITCZ; they found no systematic 499 

relationship between the location of bias and the convective parameterization used.  A practical 500 

challenge is that comprehensive documentation of parameter values for CMIP5 models is 501 

difficult to obtain.  We did examine model weightings for the 1st AMIP PUP with respect to 502 

qualitative descriptors of model components available from the Earth System Documentation 503 

website (http://compare.es-doc.org/) but this revealed no clear source of spread. 504 
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In future work, we anticipate continuing application of PUPs as a tool for diagnosing sources 505 

of model ensemble spread in precipitation and how these relate across different variables.  For 506 

example, Bellucci et al. [2010] and Oueslati and Bellon [2015] have speculated that 507 

overestimation of the occurrence frequency of weak or moderate ascent regimes in the CMIP5 508 

ensemble, rather than precipitation intensity within different vertical velocity regimes, 509 

principally accounts for the simulated precipitation errors in these models.  Thus, inclusion of the 510 

vertical motion field in the MCA may be instructive.  We also envision application of PUPs to 511 

single model ensembles in which a parameter or set of parameters is systematically varied.  By 512 

doing so, we can assess the extent to which variations in different parameters may produce 513 

distinct spatial patterns of model disagreement.   514 

 515 

Acknowledgments 516 

CMIP5 data were obtained from the Program for Climate Model Diagnosis and Intercomparison 517 

(PCMDI) data portal [http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html].  BRL and MJN 518 

acknowledge the financial support of NSF-AGS-1312865, JDN and BL acknowledge the support 519 

of NSF-AGS-1540518 and NOAA NA14OAR4310274, and GL acknowledges the support of the 520 

Youth Innovation Promotion Association CAS and the Guangdong Natural Science Funds for 521 

Distinguished Young Scholar (2015A030306008).   522 



 24 

References Cited 523 
Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, 524 
S. Curtis, D. Bolvin, A. Gruber, J. Susskind, and P. Arkin, 2003: The Version 2 Global 525 
Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. 526 
Hydrometeor., 4,1147–1167. 527 
Anderson, B.T., B.R. Lintner, B. Langenbrunner, J.D. Neelin, E. Hawkins, and J. Syktus, 2015:  528 
Sensitivity of terrestrial precipitation trends to the structural evolution of sea surface 529 
temperature.  Geophys. Res. Lett., 42, 1190—1196, doi:10.1002/2014GL062593. 530 

Bellucci, A., S. Gualdi, and A. Navarra, 2010: The double-ITCZ syndrome in coupled general 531 
circulation models: The role of large-scale vertical circulation regimes. J. Clim., 23, 1127–1145. 532 

Bretherton, C. S., C. Smith, and J. M. Wallace, 1992:  An Intercomparison of Methods for 533 
Finding Coupled Patterns in Climate Data.  J. Clim., 5, 541–560. 534 

Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The 535 
Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. J. Clim., 12, 536 
doi:1175/1520-0442. 537 
Brown, J. R., S. B. Power, F. P. Delage, R. A. Colman, A. F. Moise, and B. F. Murphy, 2011: 538 
Evaluation of the South Pacific Convergence Zone in the IPCC AR4 climate model simulations 539 
of the twentieth century. J. Clim., 24, 1565–1582.  540 

Brown, J. R., A. F. Moise, and F. P. Delage, 2012:  Changes in the South Pacific Convergence 541 
Zone in IPCC AR4 future climate projections.  Clim. Dyn., 39, 1–19. 542 

Brown, J. R., A. F. Moise, and R. A. Colman, 2013: The South Pacific Convergence Zone in 543 
CMIP5 simulations of historical and future climate. Clim. Dyn., 41, 2179–2197, doi: 544 
10.1007/s00382-012-1591-x. 545 
Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013a:  Diagnosing Northern 546 
Hemisphere Jet Portrayal in 17 CMIP3 Global Climate Models:  Twentieth Century Variability, 547 
J. Climate, 26, 4910–4929. 548 

Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013b:  Diagnosing Northern 549 
Hemisphere Jet Portrayal in 17 CMIP3 Global Climate Models:  Twenty-First-Century 550 
Projections, J. Climate, 26, 4930–4946. 551 
Deser, C., A. S. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change 552 
projections: The role of internal variability. Clim. Dyn., 38, 527–546, doi:10.1007/s00382-010-553 
0977-x. 554 

Folland, C. K., J. A. Renwick, M. J. Salinger, A. B. Mullan, 2002:  Relative influences of the 555 
Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone.  Geophys. 556 
Res. Lett.,  29, Art #1643. 557 
Ganachaud, A., et al. (2014), The Southwest Pacific Ocean circulation and climate experiment 558 
(SPICE), J. Geophys. Res. Oceans, 119, 7660–7686, doi:10.1002/2013JC009678. 559 
Gill, A. E., 1980: Some simple solutions for heat�induced tropical circulation. Q. J. R. Meteorol. 560 
Soc., 106, 447–462. 561 



 25 

Hirota N., Y. N. Takayabu, M. Watanabe, and M. Kimoto, 2011:  Precipitation reproducibility 562 
over tropical oceans and its relationship to the double ITCZ problem in CMIP3 and MIROC5 563 
climate models. J. Clim., 24, 4859–4873. 564 
Hirota, N., and Y. N. Takayabu, 2013:  Reproducibility of precipitation distribution over the 565 
tropical oceans in CMIP5 multi-climate models compared to CMIP3.  Clim. Dyn., 41, 2909–566 
2920, doi: 10.1007/s00382-013-1839-0. 567 

Hirota, H., Y. N. Takayabu, M. Watanabe, M. Kimoto, and M. Chikira, 2014: Role of 568 
Convective Entrainment in Spatial Distributions of and Temporal Variations in Precipitation 569 
over Tropical Oceans. J. Clim., 27, 8707–8723. 570 
Hwang, Y.-T. and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence 571 
Zone problem and cloud bias over Southern Ocean. Proc. Nat. Acad. Sci., 110, 4935–4940, doi: 572 
10.1073/pnas.1213302110. 573 

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group 574 
I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, 575 
T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and 576 
P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, 577 
NY, USA, 1535 pp, doi:10.1017/CBO9781107415324. 578 
Kiladis, G. N., H. von Storch, and H. van Loon, 1989: Origin of the South Pacific Convergence 579 
Zone. J. Clim., 2, 1185–1195, doi:10.1175/1520-0442. 580 
Langenbrunner, B., J. D. Neelin, B. R. Lintner, and B. T. Anderson, 2015:  Patterns of 581 
precipitation change and climatological uncertainty among CMIP5 models, with a focus on the 582 
midlatitude Pacific storm track.  J. Clim., 28, 7857–7872, doi:10.1175/JCLI-D-14-00800.1. 583 

Li, J., X. Zhang, Y. Yu, and F. Dai, 2004:  Primary reasoning behind the double ITCZ 584 
phenomenon in a coupled ocean-atmosphere general circulation model.  Adv. Atmos. Sci., 21, 585 
857–867. 586 
Li G, Xie S-P (2012) Origins of tropical-wide SST biases in CMIP multi-model ensembles. 587 
Geophys. Res. Lett. 39, L22703, doi:10.1029/2012GL05377. 588 
Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multi-model ensemble: The excessive 589 
equatorial Pacific cold tongue and double ITCZ problems. J. Clim., 27, 1765–1780, doi: 590 
10.1175/JCLI-D-13-00337.1. 591 

Li, G., Y. Du, H. Xu, and B. Ren, 2015: An intermodel approach to identify the source of 592 
excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational 593 
datasets. J. Clim., 28, 7630–7640. 594 
Li, G., S.-P. Xie, Y. Du, and Y. Luo, 2016: Effects of excessive equatorial cold tongue bias on 595 
the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-596 
model ensemble. Clim. Dyn., (in review). 597 

Lin, J.-L., 2007:  The double-ITCZ problem in IPCC AR4 coupled GCMs:  Ocean-atmosphere 598 
feedback analysis.  J. Clim., 20, 4497–4525. 599 

Lintner, B. R., and J. D. Neelin, 2008:  Eastern margin variability of the South Pacific 600 
Convergence Zone margin.  Geophys. Res. Lett., 35 (16), L16701, doi:10.1029/2008GL034298. 601 



 26 

Mantsis, D. F., B. R. Lintner, A. J. Broccoli, and M. Khodri, 2013:  Mechanisms of mid-602 
Holocene precipitation change in the South Pacific Convergence Zone.  J. Clim., 26, 6937–6953, 603 
doi:10.1175/JCLI-D-12-00674.1. 604 
Matthews, A. J., 2012: A multiscale framework for the origin and variability of the South Pacific 605 
convergence zone. Q. J. R. Meteorol. Soc., 138, 1165–1178. 606 
Mechoso, C. R., and co-authors, 1995: The seasonal cycle over the tropical Pacific in coupled 607 
ocean-atmosphere general circulation models.  Mon. Weather Rev., 123, 2825–2838. 608 
Niznik, M. J., and B. R. Lintner, 2013:  Circulation, precipitation, and moisture relationships 609 
along the South Pacific Convergence Zone in reanalyses and CMIP5 models.  J. Clim., 26, 610 
10174–10192, doi:10.1175/JCLI-D-13-00263.1. 611 

Niznik, M. J., B. R. Lintner, A. J. Matthews, and M. J. Widlansky, 2015: The role of tropical–612 
extratropical interaction and synoptic variability in maintaining the South Pacific Convergence 613 
Zone in CMIP5 Models. J. Clim., 28, 3353–3374, doi:10.1175/JCLI-D-14-00527.1. 614 
North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982:  Sampling errors in the estimation 615 
of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706. 616 
Oueslati, B., and G. Bellon, 2013: Convective Entrainment and Large-Scale Organization of 617 
Tropical Precipitation: Sensitivity of the CNRM-CM5 Hierarchy of Models. J. Clim., 26, 2931–618 
2946, doi:10.1175/JCLI-D-12-00314.1. 619 

Oueslati, B., and G. Bellon, 2015: The double ITCZ bias in CMIP5 models: interaction between 620 
SST, large-scale circulation and precipitation. Clim. Dyn., 44, 585–607, doi: 10.1007/s00382-621 
015-2468-6. 622 
Power, S., 2011:  Understanding the South Pacific Convergence Zone and its impacts:  623 
International Workshop on the South Pacific Convergence Zone, Apia, Samoa, 24-26 August, 624 
2010.  Eos, 92, 55–56. 625 

Siongco, A. C., C. Hohenegger, and B. Stevens, 2014:  The Atlantic ITCZ bias in CMIP5 626 
models.  Clim. Dyn., 5, 1169–1180, doi: 10.1007/s00382-014-2366-3. 627 

Takahashi, K., and D. S. Battisti, 2007:  Processes controlling the mean tropical Pacific 628 
precipitation patterns:  II.  The SPCZ and southeast Pacific dry zone.  J. Clim., 20, 5696–5706. 629 

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment 630 
design. Bull. Amer. Meteor. Soc., 93, 485–498. 631 

Vincent, D. G., 1994:  The South Pacific Convergence Zone (SPCZ):  A review.  Mon. Wea. 632 
Rev., 122, 1949–1970. 633 

Xie, P., and P. A. Arkin, 1997:  Global precipitation: A 17-year monthly analysis based on gauge 634 
observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 635 
2539–2558. 636 
Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on 637 
CMIP5 climate model biases. Nature Clim. Change, 4, 201–205, doi:10.1038/nclimate2118. 638 
Widlansky, M. J., A. Timmermann, K. Stein, S. McGregor, N. Schneider, M. H. England, M. 639 
Lengaigne, and W. Cai, 2013: Changes in South Pacific rainfall bands in a warming climate. 640 
Nature Climate Change, 3, 417–423, doi:10.1038/NCLIMATE1726. 641 



 27 

Yin, X., A. Gruber, and P. A. Arkin, 2004:  Comparison of the GPCP and CMAP Merged 642 
Gauge–Satellite Monthly Precipitation Products for the Period 1979–2001.  J. Hydrometeor., 5, 643 
1207–1222. 644 
Zheng, Y., J.-L. Lin, and T. Shinoda, 2012: The equatorial Pacific cold tongue simulated by 645 
IPCC AR4 coupled GCMs: Upper ocean heat budget and feedback analysis. J. Geophys. Res., 646 
117, C05024, doi:10.1029/2011JC007746.  647 



 28 

Table and Figure Captions 648 

Table 1:  List of model centers/groups and associated model acronyms analyzed. 649 

 650 

Figure 1:  a) Model ensemble mean (MEM) DJF precipitation climatology for the 36 member 651 

CMIP5 historic simulation ensemble analyzed in the present study.  The solid gray contour 652 

denotes the 4 mm day-1 precipitation isoline, which delineates the region of strongest deep 653 

convection in the Tropics.  b) Departure of the MEM from Global Precipitation Climatology 654 

Project [GPCP; Adler et al. 2003] rainfall.  The solid and dashed gray contours denote the 4 mm 655 

day-1 isolines from the MEM and GPCP, respectively. 656 

 657 

Figure 2:  1st PUP of DJF-mean precipitation climatologies for the historic CMIP5 simulations.  658 

a) The 1st PUP spatial pattern (EOF), in units of mm day-1.  The solid and dashed contours 659 

represent the mm day-1 isolines for models with positive and negative loadings of this spatial 660 

pattern, respectively.  Stippled areas pass the bootstrap significance test at the 99% confidence 661 

level (see text). b) Model weights (PCs) for mode 1, in units of standard deviation.  Error bars 662 

represent the range of PC values that can arise from internal variability using model pre-663 

industrial control runs (see text).  c) Regression of the model’s SST (shading) and 850 mb winds 664 

(vectors) based on the weights shown in b) and scaled by 1 standard deviation.  Vectors are 665 

plotted when the regression slope of at least one component passes a two-sided test for difference 666 

from zero at the 95% confidence level. 667 

 668 

Figure 3:  As in Figure 2, but for the 2nd PUP. 669 

 670 

Figure 4:  Scatterplot of historic ensemble 1st PUP model weights (x-axis) versus 2nd PUP model 671 

weights (y-axis).  The gray line depicts a quadratic polynomial best-fit curve to the data. 672 

 673 

Figure 5: Leading PUP for maximum covariance analysis (MCA) applied to the DJF-mean 674 

cross-covariance matrix of normalized (a) precipitation and (b) SST for the N = 36 historic 675 

CMIP5 simulations.  The top panel depicts the precipitation field (in units of mm day-1) while the 676 

bottom panel depicts the SST field (in units of °C).  Model weights for precipitation and SST (in 677 

units of standard deviation) appear in (c) and (d), respectively. 678 
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 679 

 680 

Figure 6:  As in Figure 1, but for the 30 member AMIP-style ensemble. 681 

 682 

Figure 7:  1st PUP of DJF-mean precipitation climatologies for the AMIP simulations.  a) The 1st 683 

PUP spatial pattern (EOF), in units of mm day-1.  The solid and dashed contours represent the 4 684 

mm day-1 isolines for models with positive and negative loadings of this spatial pattern, 685 

respectively.  Vectors correspond to the regression of 850 mb winds on the weights shown in b).  686 

b) Model weights (PCs) for mode 1, in units of standard deviation. 687 

 688 

Figure 8:  (a) 1st and (b) 2nd PUP spatial patterns of DJF interannual precipitation standard 689 

deviations for the historic CMIP5 simulations, in units of mm day-1.   (c) 1st and (d) 2nd PUP 690 

model weights, in units of standard deviation.   691 

  692 
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Table 1:  List of model centers/groups and associated model acronyms analyzed. 693 
 694 

Modeling center/group/country 
Historic 
Ensemble 
acronym 

Pre-industrial 
control length 
(years) 

AMIP-
ensemble 
acronym 

Commonwealth Scientific and Industrial Research Organization 
(CSIRO) and Bureau of Meteorology (BOM), Australia  

ACCESS1-0 
500 

ACCESS1-0 

ACCESS1-3 
500 

ACCESS1-3 

 
Beijing Climate Center, China Meteorological Administration 
   

bcc-csm1-1 400 bcc-csm1-1 

bcc-csm1-1-m 500 bcc-csm1-1-m 

Beijing Normal University BNU-ESM 560 BNU-ESM 
Canadian Centre for Climate Modelling and Analysis CanESM2 1000 CanAM4 
 
National Center for Atmospheric Research  
 

CCSM4 1050 CCSM4 
CESM1-BGC 500   
CESM1-CAM5 300 CESM1-CAM5 

 
Centro Euro-Mediterraneo per I Cambiamenti Climatici 
    

CMCC-CESM 275   
CMCC-CM 300 CMCC-CM 
CMCC-CMS 500   
CMCC-CM5 850   

Centre National de Recherches Météorologiques    CNRM-CM5 
CSIRO with Queensland Climate Change Centre of Excellence CSIRO-Mk3-6-0 500 CSIRO-Mk3-6-0 
EC-EARTH consortium EC-EARTH 450 EC-EARTH 

LASG, Institute of Atmospheric Physics, Chinese Academy of 
Sciences   

FGOALS-g2 700 FGOALS-g2 
   FGOALS-s2 

 
 
NOAA Geophysical Fluid Dynamics Laboratory 
  
  

GFDL-CM3 
500 

GFDL-CM3 

GFDL-ESM2G 
500   

GFDL-ESM2M 
500   

   
GFDL-HIRAM-C180 

   
GFDL-HIRAM-C360 

NASA Goddard Institute for Space Studies  GISS-E2-H 240   
GISS-E2-R 550 GISS-E2-R 

Met Office Hadley Centre (additional HadGEM2-ES realizations 
contributed by Instituto Nacional de Pesquisas Espaciais)    

   HadGEM2-A 

HadGEM2-AO 700   

HadGEM2-CC 240   

HadGEM2-ES 575   

Institute for Numerical Mathematics inmcm4 500 inmcm4 
 
Institut Pierre-Simon Laplace 
  

IPSL-CM5A-LR 1000 IPSL-CM5A-LR 
IPSL-CM5A-MR 300 IPSL-CM5A-MR 
IPSL-CM5B-LR 700 IPSL-CM5B-LR 

 
Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The University of 
Tokyo), and National Institute for Environmental Studies 

MIROC5 
700 

MIROC5 

MIROC-ESM 
530   
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   MIROC-ESM-
CHEM 

250   

Max Planck Institute for Meteorology  MPI-ESM-LR 1000 MPI-ESM-LR 
MPI-ESM-MR 1000 MPI-ESM-MR 

 
Meteorological Research Institute  
   

   MRI-AGCM3-2H 
   MRI-AGCM3-2S 
MRI-CGCM3 500 MRI-CGCM3 

Norwegian Climate Centre  NorESM1-M 250 NorESM1-M 
NorESM1-ME 500   

 695 
   696 
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 697 
 698 
 699 
Figure 1:  a) Model ensemble mean (MEM) DJF precipitation climatology for the 36 member 700 
CMIP5 historic simulation ensemble analyzed in the present study.  The solid gray contour 701 
denotes the 4 mm day-1 precipitation isoline, which delineates the region of strongest deep 702 
convection in the Tropics.  b) Departure of the MEM from Global Precipitation Climatology 703 
Project [GPCP; Adler et al. 2003] rainfall.  The solid and dashed gray contours denote the 4 mm 704 
day-1 isolines from the MEM and GPCP, respectively.  705 
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 706 
 707 
Figure 2: 1st PUP of DJF-mean precipitation climatologies for the historic CMIP5 simulations.  708 
a) The 1st PUP spatial pattern (EOF), in units of mm day-1.  The solid and dashed contours 709 
represent the mm day-1 isolines for models with positive and negative weights, respectively.  710 
Stippled areas pass the bootstrap significance test at the 99% confidence level (see text). b) 711 
Model weights (PCs) for PUP 1, in units of standard deviation.  Error bars represent the range of 712 
weights that can arise from internal variability using model pre-industrial control runs (see text).  713 
c) Regression of the model’s SST (shading) and 850 mb winds (vectors) based on the weights 714 
shown in b) and scaled by 1 standard deviation.  Vectors are plotted when the regression slope of 715 
at least one component passes a two-sided test for difference from zero at the 95% confidence 716 
level. 717 
 718 

a) P climatology PUP 1 

b) Model weights for PUP 1

c) SST and 850mb wind relationships to PUP 1
ref. vector

1 m/s
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 719 
 720 

Figure 3:  As in Figure 2, but for the 2nd PUP. 721 

 722 

  723 
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 724 
 725 
Figure 4:  Scatterplot of historic ensemble 1st PUP model weights (x-axis) versus 2nd PUP model 726 
weights (y-axis).  The gray line depicts a quadratic polynomial best fit curve to the data. 727 
  728 
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 729 
 730 
Figure 5: Leading PUP for maximum covariance analysis (MCA) applied to the DJF-mean 731 
cross-covariance matrix of normalized (a) precipitation and (b) SST for the N = 36 historic 732 
CMIP5 simulations.  The top panel depicts the precipitation field (in units of mm day-1) while the 733 
bottom panel depicts the SST field (in units of °C).  Model weights for precipitation and SST (in 734 
units of standard deviation) appear in (c) and (d), respectively. 735 
  736 
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 737 
 738 
Figure 6:  As in Figure 1, but for the 30 member AMIP-style ensemble. 739 

 740 
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 741 
 742 
 743 
Figure 7:  1st PUP of DJF-mean precipitation climatologies for the AMIP simulations.  a) The 1st 744 
PUP spatial pattern (EOF), in units of mm day-1.  The solid and dashed contours represent the 4 745 
mm day-1 isolines for models with positive and negative loadings of this spatial pattern, 746 
respectively.  Vectors correspond to the regression of 850 mb winds on the weights shown in b).  747 
b) Model weights (PCs) for mode 1, in units of standard deviation. 748 
 749 
 750 
   751 
  752 
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 753 
 754 
Figure 8:  (a) 1st and (b) 2nd PUP spatial patterns of DJF interannual precipitation standard 755 
deviations for the historic CMIP5 simulations, in units of mm day-1.   (c) 1st and (d) 2nd PUP 756 
model weights, in units of standard deviation.   757 
 758 


