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Key Points: 

1.  Systematic spread in CMIP5 simulation of Pacific region rainfall is investigated using 

empirical mode reduction techniques. 

2.  Two significant modes of model spread are identified for the DJF rainfall climatology. 

3.  These modes are interpreted in terms of spread in simulated patterns of SST and 

circulation. 
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Abstract.  Current-generation climate models exhibit various errors or biases in both the 

spatial distribution and intensity of precipitation relative to observations.  In this study, 

empirical orthogonal function (EOF) analysis is applied to the space-model index domain of 

precipitation over the Pacific from Coupled Model Intercomparison Project Phase 5 (CMIP5) 

simulations to explore systematic spread of simulated precipitation characteristics across the 

ensemble. Two significant modes of spread, generically termed principal uncertainty patterns 

(PUPs), are identified in the December-January-February precipitation climatology:  the 

leading PUP is associated with the meridional width of deep convection, while the second is 

associated with tradeoffs in precipitation intensity along the South Pacific Convergence Zone 

(SPCZ), the Intertropical Convergence Zone (ITCZ), and the spurious Southern Hemisphere 

ITCZ.  An important factor distinguishing PUPs from the analogy to time series analysis is 

that the modes can reflect either true systematic intermodel variance patterns or internal 

variability.  In order to establish that the PUPS reflect the former, three complementary tests 

are performed using preindustrial control simulations: a bootstrap significance test for 

reproducibility of the intermodel spatial patterns, a check for robustness over very long 

climatological averages, and a test on the loadings of these patterns relative to interdecadal 

sampling.   Composite analysis based on these PUPs demonstrates physically plausible 

relationships to CMIP5 ensemble spread in simulated sea surface temperatures (SSTs), 

circulation, and moisture.  Further analysis of atmosphere-only, prescribed SST simulations 

demonstrates decreased spread in the spatial distribution of precipitation, while substantial 

spread in intensity remains.   
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1. Introduction 

The tropical Pacific as simulated by state-of-the-art global climate models, including those in 

Phase 5 of the Coupled Model Intercomparison Project (CMIP5), is characterized by several 

well-known biases.  Prominent among these are the Eastern Pacific cold-tongue bias, with 

colder than observed sea surface temperatures (SSTs) frequently confined too close to the 

equator and penetrating too far to the west [Zheng et al. 2012; Li et al. 2015], and the double 

Intertropical Convergence Zone (ITCZ), with two bands of deep convection in the east, one 

on either side of the equator, rather than the observed equatorially asymmetric state with deep 

convection confined to the Northern Hemisphere only [Mechoso et al. 1995; Li et al. 2004; 

Lin 2007].  Among the hypotheses accounting for the genesis of biases or errors in eastern 

tropical Pacific climate are deficiencies in the representation of coupled ocean-atmosphere 

features or processes, such as spurious warming in the upwelling zone along the South 

American coast and too strong surface winds and ocean currents [Zheng et al. 2012] or larger 

scale issues related to hemispheric energy imbalances [Hwang and Frierson 2013].  

Intermodel differences in parameterizations of deep convection as well as clouds, especially 

low-level marine stratocumuli, may further contribute to errors in simulation of tropical 

Pacific climate in current generation models [Mechoso et al. 1995; Zhang 2001; Lin 2007; 

Brown et al. 2013].  

Perhaps less well-appreciated are the biases occurring outside of the eastern tropical 

Pacific, particularly those in and around the South Pacific Convergence Zone (SPCZ), a 

diagonally-oriented convection zone extending from the tropical western Pacific warm pool 

southeastward into the Southern Hemisphere (SH) midlatitudes of the Central Pacific 

[Vincent 1994].  Coupled models frequently produce SPCZs that are more zonal than 

observed and with precipitating deep convection penetrating too far into the southeast Pacific 

dry descent region [Brown et al. 2011; 2012; Ganachaud et al. 2014; see also Figure 1].  
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Niznik et al. [2015] stress the importance of distinguishing between the tropical and 

subtropical portions of the SPCZ when analyzing model bias, given the distinct processes 

influencing the tropical and subtropical portions.  In light of the biases in the eastern 

equatorial Pacific, it is of interest to quantify how these may affect, or in turn be affected by, 

the biases in the SPCZ.  Moreover, to the extent that biases reflect linkages among 

components of the climate system, their diagnosis may contribute to understanding why the 

SPCZ exists, as this remains elusive [Takahashi and Battisti 2007; Power 2011]. 

It is noteworthy that the aforementioned biases are little improved from the CMIP3 to 

CMIP5 model ensembles [Li and Xie 2012; Brown et al. 2012; Hirota and Takayuba 2013; Li 

and Xie 2014].  The continuing occurrence of substantial biases in simulations of present-day 

climate limits confidence in projections of anthropogenic climate change impacts, especially 

at the regional scales considered for mitigation and adaptation [IPCC 2013].  For example, 

Widlansky et al. [2013] document substantial change in SPCZ region precipitation under 

future warming, including an equatorward shift of the mean SPCZ axis with amplified 21st 

century surface warming in the eastern Pacific.  For many islands in the Pacific that depend 

on precipitation from the SPCZ, such shifts would clearly impact water resources and 

infrastructure, but the errors existing in current climate simulation need to be resolved to 

meet the needs of planning and decision-making. 

An outstanding challenge in model intercomparison, assessment, and validation involves 

quantifying what may be a range of simulated behaviors across model ensembles.  A 

common approach involves quantifying biases or errors in terms of the model ensemble mean 

(MEM) and some bulk measure of the spread across the ensemble, e.g., the intermodel 

standard deviation or root-mean-square difference with respect to the MEM.  However, such 

metrics may fall short of capturing how the models differ with respect to one another other.  

Our perspective is that the study of systematic differences across a model ensemble may 
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ultimately help to isolate deficiencies in model physics and suggest targets for improvement, 

beyond what biases or errors in the MEM may already indicate about model deficiencies and 

how to resolve them.  Certainly, in light of the wide array of physical implementations and 

parameterizations and associated tunable parameters used in current generation models, 

determining precisely how to correct a particular error may be challenging.  Nevertheless, we 

suggest that the application of methodologies to identify common behaviors in models is 

useful:  at the very least, objective grouping of models based on shared structural features can 

guide the selection of models for specific applications, such as the design of a multimodel 

ensemble.  As we show below, the methodology we apply here highlights the tendency for 

models of the same ―family‖ to behave similarly.  To the extent that we can consider such 

similar behavior as reflecting non-independence across these models, one may choose to 

include only a single representative of a family in an ensemble. 

 To quantify the spread in simulation of climatological precipitation in the CMIP5 

ensemble, we consider here the application of objective empirical mode decomposition 

techniques to the entire model suite.  In the present study, we apply empirical orthogonal 

function/principal component (EOF/PC) analysis on the space-model index domain rather 

than the conventional space-time domain.  This approach, which we generically term 

principal uncertainty pattern (PUP) analysis regardless of the specific decomposition 

technique used, is conceptually similar to recent studies by, e.g., Deser et al. [2012], 

regarding internal variability in a single model ensemble; Delcambre et al. [2013a, 2013b]; 

regarding the Northern Hemisphere jet in the CMIP3 archive; and Li and Xie [2012; 2014, 

with the latter referred to hereinafter as LX14] regarding tropics-wide SST in CMIP3/CMIP5 

and tropical Pacific precipitation biases in CMIP5.  More recently, Anderson et al. [2015] 

performed a multivariate PUP analysis to relate CMIP5-simulated trends in SST to trends in 

land surface precipitation, while Langenbrunner et al. [2015] applied PUP analysis to 
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identify and attribute CMIP5 model discrepancies in the simulated meridional position and 

longitudinal extent of the North Pacific storm track in current climate as well as end of the 

21
st
 century projections.  

 

2. Data and Methods 

We seek here to characterize CMIP5 model spread in simulations of rainfall in the tropical 

Pacific, focusing primarily on the austral summer (December-January-February or DJF) 

season, when the SPCZ is most prominent.  In order to address the impact of coupled ocean-

atmosphere versus atmosphere-only sources of model spread, we analyze both the historic 

(coupled) simulations of CMIP5 as well as stand-alone atmospheric models forced with 

prescribed sea surface temperature and sea ice boundary conditions [Taylor et al. 2012].  The 

latter follow a protocol similar to the Atmospheric Model Intercomparison Project (AMIP) 

and are thus referred to hereafter as AMIP-style simulations.  For the historic suite, 36 

models are analyzed; for the AMIP-style suite, 30 models are analyzed.  The models and 

associated acronyms are summarized in Table 1.  For each available model, we use only a 

single ensemble member, to give equal weighting to each model in the analysis. For ease of 

comparison, all model fields are first regridded using bilinear interpolation to a uniform 2.5º 

x 2.5º grid over a rectangular domain spanning 120ºE–60ºW and 50ºS–20ºN.  For both the 

historic and AMIP-style simulations, 27 years of data for DJF are analyzed, spanning the 

common period 1979-2005.  Of course, the AMIP simulations are forced with observed SSTs 

while the historic simulations have SSTs that freely evolve subject to prescribed forcings 

from insolation, volcanic eruptions, and anthropogenic emissions.   As we elaborate on 

further below, the behavior we identify is robust to the sampling time period. 

Precipitation climatologies for both the coupled and AMIP-style ensembles are 

concatenated to form M x N matrices, where M denotes the spatial dimension (i.e., M = Mx x 
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My longitude-latitude points) and N the model index dimension; EOFs and PCs are computed 

from each M x N matrix.  The resulting modes (or PUPs) capture the leading spatial patterns 

of intermodel differences in terms of variance explained across the space-model index 

domain.  The PC associated with each PUP corresponds to the loadings (or projections) of 

individual model climatologies onto that spatial pattern (EOF), providing an indication of the 

relative contribution of each model to that PUP.  For example, a large positive loading or PC 

value for a given model means that it projects strongly (and positively) onto that mode, 

relative to the ensemble mean.  These weights are further used as the basis for regression 

analysis of various fields related to precipitation, including SST, winds, and moisture.   

We have also applied maximum covariance analysis (MCA) to the cross-covariance 

matrix of precipitation and SST.  The MCA-based approach yields pairs of uncertainty 

patterns for precipitation and SST representing coupled ensemble spread in these two fields.  

For more information on these methods, the reader is referred to Langenbrunner et al. [2015] 

and the references therein. 

     

3. Results  

3.1 PUPs for coupled model simulations 

In computing the PUPs, we seek to identify systematic variation in model behavior relative to 

the MEM.  Thus, for reference, Figure 1 shows DJF MEM precipitation for the historic 

simulations as well as the departure of the MEM from the observations, in this case from the 

Global Precipitation Climatology Project [GPCP; Adler et al. 2003].  Several aspects of the 

rainfall biases discussed in Section 1 are readily apparent.  For example, the MEM is too wet 

in the SH Eastern Pacific, reflecting the model simulation of a spurious SH ITCZ there, while 

the dipole appearing along the poleward portion of the SPCZ is consistent with its too zonal 

orientation in the models.  Along the equator, especially to the west of the International 
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Dateline, the MEM considerably underestimates rainfall relative to GPCP, consistent with 

too cool SSTs and excessive westward extension of cold tongue [Li et al. 2015; 2016].  

Farther to the west near the Maritime continent, the CMIP5 models are excessively wet, as 

they also are over the western coast of South America.  An important caveat in discussing 

these biases is that different observational products may yield divergent estimates of rainfall.  

For example, the GPCP estimates of precipitation are lower over much of the tropical and 

subtropical ocean, especially in the west Pacific, compared to the Climate Prediction Center 

(CPC) Merged Analysis of Precipitation [CMAP; Xie and Arkin 1997] data set, which has 

been attributed to use of atoll-based rain gauge estimates in the latter but not in the former 

[Yin et al. 2004].  While differences across observational estimates are clearly important in 

validating model performance, for our purposes in understanding the spread of CMIP5 

simulations relative to the MEM, they are not critical. 

 

3.1.1 FIRST PUP FOR DJF 

For the PUPs computed from the N = 36 coupled model DJF precipitation climatologies, the 

leading two modes emerge as well separated from the remaining modes and are thus regarded 

as significant according to the method of North et al. [1982].  The first mode, which accounts 

for 24.3% of the total field variance, is depicted in Figure 2a.  The leading PUP 

predominantly captures the CMIP5 historic ensemble‘s spread in the meridional width of 

principal centers of Pacific region deep convection.   Within the SPCZ, the leading mode 

exhibits its largest positive loadings slightly equatorward of the mean diagonal axis through 

the mean precipitation centroid over 5ºS to 15ºS; the ITCZ is similarly split.  The gray 4 mm 

day
-1

 contours, representing averages over models with positive (solid) and negative (dashed) 
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loadings (see Figure 2b), underscore the spatial displacements of the SPCZ and ITCZ 

between the two subsets of models.   

Comparing the leading PUP to the MEM bias relative to GPCP (Figure 1b) indicates little 

systematic relationship between the spatial patterns.  For example, along the poleward margin 

of the ITCZ and along the equator just west of the Dateline, the positive weight models have 

reduced bias compared to the models with negative weights.  On the other hand, the models 

with positive weights exhibit an enhanced spurious SH ITCZ, which is especially evident in 

the 4 mm day
-1

 contour.  Such behavior underscores a difficulty in bias correction, namely 

that alleviation in one region is often associated with degradation in another [Wang et al. 

2014]. 

The ACCESS and HADGEM2 families of models exhibit the largest positive model 

weights, corresponding to a narrower ITCZ/SPCZ complex with precipitation more 

concentrated along the equator, while the MPI models exhibit the largest negative weights, 

corresponding to a wider ITCZ/SPCZ.  Overall, the model weights for simulations from the 

same parent are typically close.  The effective degrees of freedom [Bretherton et al. 1999] 

estimated from the variance spectrum of the EOF modes is ~9.  The tendency for similar 

values of model weights for sibling models is consistent with a lower number of degrees of 

freedom in the ensemble, since not all models within the ensemble are independent.    

However, it is not always the case that siblings are close, e.g., two of versions of the IPSL 

models exhibit modest negative weights with respect to PUP 1 while the third has a positive 

weight.  In this case, the two negative weight models share the same convection scheme 

(differing otherwise in terms of horizontal resolution), while the third has a distinct 

convection scheme [Oueslati and Bellon 2013]. 

Obviously, it is necessary to assess whether the PUPs represent physically plausible 

behavior or are merely mathematical artifacts of the methodology:  after all, it is possible that 
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the spatial structure may have no clear relationship to underlying physical processes.  To 

provide some physical context, we linearly regress various climate fields, including SST, 

winds at 850 mb and 200 mb, and specific humidity at 700 mb, from the models using the 

leading mode PC (model weights) as the regression index.  Our objective is to relate these 

regressions to known thermodynamic and dynamic mechanisms, drawing analogies between 

how these mechanisms operate in producing observed (and simulated) behavior, such as 

interannual variability, and the spread inherent in the model ensemble.  

In Figure 2c, we present the results of the regression analysis for SST and 850 mb winds.  

The values shown correspond to unit standard deviation scaling of the PC, i.e., a model 

weight of +1.  From the SST regression, the near-equatorial enhancement of rainfall for the 

leading PUP is associated with a widespread region of SSTs in the Central to Eastern Pacific 

~0.5-0.75 °C warmer than the MEM (again, scaled for a model weight of +1).  These warm 

SSTs both underlie the enhanced rainfall and further extend to the east of the principal area of 

positive rainfall values evident in Figure 2a.  The spatial patterns of rainfall and SSTs are 

qualitatively analogous to the behavior for interannual variability associated with El Niño/La 

Niña events in both observations and models [Folland et al. 2002].  Thermodynamically, the 

occurrence of warmer than MEM SSTs over a broad region upstream, as defined based on the 

orientation of the mean low-level trade wind inflow, is associated with higher low-level moist 

static energy (MSE), both through low-level warming and moistening.  Thus, models with 

higher low-level MSE compared to the MME are expected to support rainfall further to the 

east  [Lintner and Neelin 2008; Niznik and Lintner 2013], which is clearly evident in the 

more eastward position of the 4 mm/day contour for positive weight models compared to 

negative weight models.  

The leading mode 850 mb winds are associated with anomalous flow convergence along 

the SPCZ, coincident with the enhanced rainfall there.  Moreover, within the SPCZ region, 
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the 850 mb winds are anomalous northwesterly to westerly.  Since the climatological DJF 

low-level circulation in this region is southeasterly to easterly, the 850 mb winds in models 

favoring higher rainfall along the equator are therefore weakened.  Here we note the 

consistency with the physical mechanism for variability at the margins of tropical deep 

convection zones discussed by Lintner and Neelin [2008] and Niznik and Lintner [2013].  In 

particular, under normal conditions, trade wind inflow from the relatively cool and dry 

southeast tropical Pacific represents a drying advective tendency that acts to suppress 

precipitation.  With a slackening of the trades, drying advection in this region is reduced, 

supporting the eastward extension of SPCZ rainfall.  Moreover, the principal axis of 850 mb 

winds along the SPCZ for models with positive weights coincides with enhanced rainfall 

extending southeastward toward SH midlatitudes; this behavior suggests export of tropical 

moisture along the SPCZ in these models that can sustain convection to the southeast.  

Further to the west along the poleward edge of the SPCZ, weak equatorward flow transports 

drier mean air masses into the SPCZ, which along with local cooling of SST is associated 

with reduced rainfall.  In the extreme southeast Pacific, the low-level winds in Figure 2c are 

associated with an anomalous cyclonic circulation opposing the quasi-stationary 

climatological mean anticyclone (the South Pacific High) located there.  Regressions of 

specific humidity at 700 mb and winds at 200 mb (not shown) also support these results.  

An important distinction between the PUP analysis presented here and conventional 

EOFs calculated across a time series is that the PUP modes can arise from two sources of 

variance:  internal climate variability in individual models and true intermodel variability.  

Prior work (e.g., Deser et al. [2012]) indicates that internal variability can lead to distinct 

regional behavior in climatologies over timescales comparable to the 27-year means for our 

PUP analysis.  For example, in the Pacific, models simulate well-known low-frequency 

modes of observed variability like the Pacific Decadal Oscillation (PDO) or the Interdecadal 
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Pacific Oscillation (IPO), but the phase of these is dependent on the model initialization 

[Anderson et al. 2015].  Since the spatial footprint of the PDO (or IPO) on SST in the tropical 

and southern Pacific is somewhat reminiscent of the SST regression in Figure 2c, 

distinguishing between internal (sampling) variability and systematic intermodel variability 

requires careful attention, and we have addressed this in three separate and complementary 

ways. 

First, we employed a bootstrapping technique to provide a significance test for the pattern 

in Figure 2a.  This was done by generating 100 randomized 30-year climatologies from 5-

year segments in the preindustrial control runs (see Table 1 for more information).  This 

procedure yielded 100 ‗alternative‘ ensembles, and a PUP analysis was performed on each.  

The average spatial correlation between the leading modes from this set of 100 alternative 

ensembles and that in Figure 2a is r = 0.95, implying that the pattern seen in Figure 2a is 

robust to sampling.  A two-sided t test was further applied at each grid point to these modes 

to assess whether the sample means of grid point values among the 100 bootstraps are 

significantly different from zero.  The results of this test are stippled where grid points pass at 

the 99% confidence level in Figure 2a, indicating widespread confidence that the leading 

mode does not arise from sampling of interdecadal variability. 

As a second check that the results in Figure 2a are not the result of internal variability, we 

calculated the climatology of the preindustrial control run simulation for each model over its 

entire length (ranging from 240 to 1050 years):  that is, we check whether the spatial pattern 

seen in Figure 2a is reproducible for climatologies much longer than 30-year averages.  The 

spatial correlation between the 1
st
 PUP EOF for the climatologies computed from these 

lengthier preindustrial control integrations (not shown) and the 1979-2005 climatologies is r 

= 0.95, with similar percent variance accounted for, indicating that the PUP behavior is 
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further distinct from sampling across low-frequency oscillations on the order of 100 years or 

longer. 

A final test can be seen in the error bars in Figure 2b.  Consecutive, non-overlapping 30-

year climatologies from the preindustrial control runs were calculated for each model, and the 

resulting climatologies were centered by the 1979-2005 ensemble mean and projected onto 

Figure 2a.  The error bars in Figure 2b represent the range of values for these projections, or a 

measure of internal variability of the principal components.  The spread for each model is 

notably smaller than that across the entire ensemble, indicating that internal model variability 

is not a major contributor to the pattern in Figure 2a. 

Taken together, this set of checks leads us to conclude that the PUP in Figure 2a 

represents true systematic differences across model climatologies, distinct from internal 

model variability.   

 

3.1.2 SECOND PUP FOR DJF 

The 2
nd

 mode PUP for the historic ensemble, accounting for 16.9% of the field variance, is 

presented in Figure 3.  The predominant feature of this PUP is widespread occurrence of 

positive values outside of the central and eastern Pacific, with especially large values in the 

SPCZ and to the north of Australia (Figure 3a).  By contrast, the 2
nd

 PUP reflects strong 

negative values over the spurious SH ITCZ as well as in the upwelling region adjacent to the 

coast of South America. The spatial tradeoff in precipitation intensity between the SPCZ and 

ITCZ can be interpreted qualitatively in terms of a teleconnected atmospheric response to 

diabatic (convective) heating, as in the Gill [1980] model.  That is, those models which 

exhibit stronger convection over the SPCZ may be expected to simulate weaker precipitation 

elsewhere (such as over the eastern Pacific) through mass balance of stronger ascent in the 

SPCZ and stronger subsidence elsewhere. We point out that the areas enclosed by the 4 mm 
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day
-1

 contour are approximately the same for both the positive and negative weight models, 

which is consistent with the notion of a spatial redistribution of rainfall within the domain.  

The regression analysis (Figure 3c) highlights SSTs colder than the MEM collocated with the 

largest negative rainfall values in the eastern tropical Pacific.  

Our leading PUP modes are in general agreement with the results of LX14 (c.f., their 

Figure 2), which depict regressions of precipitation, SST, and surface winds onto PCs of 

intermodal spread in annual- and zonal-mean tropical Pacific rainfall, normalized with 

respect to each model‘s tropical mean rainfall, for a smaller set (N = 18) of CMIP5 models.  

LX14 remark that similar results were obtained for the decomposition over longitude and 

latitude, which would be more directly comparable to our analysis.  There are, however, some 

differences with respect to LX14.  For instance, the leading PUP from our analysis accounts 

for less than half the variance compared to the leading mode of LX14.  This difference may 

stem from the normalization applied in LX14, which may be expected to suppress some of 

the spread across models, given model-to-model differences in the overall amount of tropical 

rainfall, thereby increasing the variance captured by the leading mode in LX14.  The 2
nd

 

mode of LX14 manifests a much more pronounced zonal dipole in the regression of 

precipitation over the eastern north tropical Pacific than is evident in our 2
nd

 mode; we will 

further address this behavior in the context of our results for JJA below.  Overall, though, the 

similarity of the leading PUPs to the results of LX14, obtained with some differences in the 

underlying methodology and selection of models and analysis period, supports the robustness 

of these patterns of model spread. 

As with the leading mode, we checked the reproducibility of the pattern in Figure 3a 

against sampling variability:  using the bootstrap method, the spatial correlation between 100 

bootstrapped 2
nd

 PUP modes and that of Figure 3a is r = 0.94.  The stippling throughout 

Figure 3a underscores that the behavior at most gridpoints is distinct from internal variability, 
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and the small error bars on model weights in Figure 3b show that within-model spread is 

small compared to the spread across the ensemble.  Finally, the 2
nd

 PUP EOF calculated from 

the climatologies based on the longer preindustrial control runs is spatial correlated with the 

2
nd

 PUP EOF for 1979-2005 at r = 0.94, again underscoring that the 1979-2005 period is 

sufficient for examining the model spread.  We therefore reiterate that the second mode is 

distinct from sampling internal variability at decadal or longer time scales. 

It is interesting to note that while the 1
st
 and 2

nd
 PUP PCs are uncorrelated in a linear least 

squares sense (by construction), they do exhibit an apparent higher-order relationship (Figure 

4).  In particular, using a quadratic fitting function yields a correlation of 0.54 between the 

two PCs.  Rejecting the obvious outliers (the CSIRO, CMCC-CMS and CMCC-CESM, GISS 

models) further increases the quadratic best fit (r = 0.78) without significantly altering the 

linear correlation.  The quadratic relationship between the model weights for the first two 

modes implies that models with strong SPCZ regional rainfall (2
nd

 PC > 0) may have either 

relatively narrow (PC > 0) or wide (PC < 0) meridional distributions of rainfall, while models 

with weak SPCZ region rainfall tend to fall closer to the ensemble-mean with respect to the 

overall latitudinal extent of Pacific region convection. 

 

3.1.3 PUPS FOR JJA 

As we noted in Section 2, our study emphasizes DJF, when the SPCZ is of strongest 

intensity.  Of course, it is worthwhile to consider how the results for DJF compare to other 

seasons.  Thus, we provide here a brief summary for a PUP analysis of the mean precipitation 

climatologies averaged over austral winter (June-July-August, or JJA).  Figure 5 illustrates 

the EOFs of the two leading modes of precipitation spread computed for JJA.  Structurally, 

the 1
st
 PUP EOF for JJA (Figure 5a) manifests some similar elements to the EOF for DJF 

(Figure 2a), e.g., values are higher near the equator and lower on the poleward edges of the 
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ITCZ/SPCZ complex.  Given the much less prominent SPCZ in JJA and the presence of dry 

monsoon conditions over northern Australia, the largest values for 1
st
 JJA mode are more 

confined to the Northern Hemisphere; indeed, the spatial pattern is broadly translated 

northward compared to DJF, consistent with the seasonal migration of convection.  The 850 

mb wind anomalies for a model weight of +1 standard deviation are also more confined to the 

Northern Hemisphere in JJA.  Despite the spatial resemblance of the leading EOFs for DJF 

and JJA, correlating the model weights for JJA (not shown) with those for DJF yields a 

modest positive correlation (r = 0.52).  Thus, we conclude that there is some variation in the 

relative contributions of individual models to producing the leading mode of uncertainty 

between DJF and JJA, even as the spatial patterns are comparable. 

Although the 2
nd

 EOF for JJA (Figure 5b) also bears similarity to the 2
nd

 EOF for DJF 

(Figure 3a), the former features a pronounced zonal dipole over low NH latitudes of the 

central and eastern Pacific.  In fact, this dipole supplants the uncertainty tradeoff in the 

SPCZ-spurious ITCZ as the dominant feature in mode 2.  Also, as we discussed in the 

previous subsection regarding the comparison of our results to LX14, the presence of the 

strong zonal dipole in JJA is more consistent with the behavior seen in LX14‘s second mode 

for the annual mean, indicating that in this region, the model spread in JJA imprints strongly 

on the annual mean.  Somewhat surprisingly, the model weights for JJA and DJF are more 

strongly correlated (r = 0.84) for the 2
nd

 mode compared to the first, despite less apparent 

spatial coherence of the EOFs.  Thus, it appears that the mechanisms responsible for the 2
nd

 

mode of CMIP5 model spread produce seasonally distinct spatial loci of strong uncertainty 

but do so with a similar ordering of the model weights. 
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3.2 MCA and relationship of coupled model precipitation spread to SST 

As noted above, within coupled models, biases are often attributed to poor simulation of 

ocean dynamics.  With respect to simulated precipitation, errors arising from ocean dynamics 

may impact SSTs, which in turn induce errors in surface fluxes and ocean-atmosphere 

coupling that affect temperature and moisture vertical structure in the overlying atmosphere.  

To investigate this linkage, we applied Maximum Covariance Analysis (MCA) to the cross-

covariance matrix of normalized precipitation and SST for the historic simulations, as shown 

Figure 6.  The leading MCA mode accounts for 66% of the total squared covariance between 

these two fields, with a correlation coefficient between the model weights for the 

precipitation and SST fields of r = 0.79, implying tight coupling between the model spread in 

precipitation and SST.  The squared covariance value is significant at the 94% confidence 

interval, based on a Monte Carlo procedure with a sample size of 300.   The precipitation 

pattern associated with the spatial projection of the first MCA mode manifests a horseshoe-

like pattern reminiscent of the leading coupled PUP mode in Figure 2a; in fact, the spatial 

pattern correlation coefficient between the leading coupled model EOF- and MCA-based 

PUPs is 0.78, while the model weights for these PUPs are correlated with r = 0.88.  One 

difference in the precipitation field of the MCA-based PUP relative to the 1
st
 EOF-based PUP 

is that the former exhibits large values in the vicinity of the spurious SH ITCZ (around 

120°W, 10°S); in this regard, the leading SVD precipitation pattern more resembles the 2
nd

 

EOF-based PUP.  Indeed, the spatial correlation pattern coefficient (r = 0.35) and the 

correlation of model weights (r = 0.32) for the 2
nd

 precipitation EOF PUP and leading MCA 

PUP are both significant at p = 0.05.   
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3.3 PUPs for AMIP-style simulations 

We have also analyzed the spread across ensemble members for the AMIP-style simulations. 

Analogous to Figure 1, Figure 7 depicts the DJF MEM precipitation for the AMIP ensemble 

as well as the bias relative to GPCP.  Overall, there is an improved spatial distribution of 

precipitation over the domain, with the spurious SH ITCZ effectively eliminated and the 

slope of the SPCZ improved, although the tilt of the more subtropical portion is still 

somewhat too zonal.  Also, the intensity of rainfall within the SPCZ and ITCZ is generally 

larger than the GPCP values.  Interestingly, in comparison to the coupled models, the bias 

actually worsens along the northern margin of the extreme eastern portion of the ITCZ:  a 

possible explanation for the degradation of the AMIP simulations in this region is that 

competition for convection between the NH and SH ITCZs in the coupled simulations 

suppresses intensity to the north, leading to values more in line with GPCP.    

For the AMIP-style ensemble, the spread across ensemble members arises from poor 

parameterizations or missing physics within the atmosphere only, since the same boundary 

conditions (SSTs and sea ice) are prescribed across the models.  A gross comparative 

measure of the total variability within that selection of models for each of the historic and 

AMIP-style ensembles can be obtained from the sum of squares of the elements in the 

covariance matrix (the Frobenius norm; see Bretherton et al. 1992), which we normalize by 

the number of models in each ensemble to account for the different number of models.  For 

the coupled ensemble, the (normalized) Frobenius norm is ~1855 mm
2
 day

-2
, while it is 

~1190 mm
2
 day

-2
 for the AMIP-style simulations.  The larger intermodel variability within 

the coupled ensemble is consistent with additional sources of uncertainty owing to coupling 

of the atmosphere to an interactive ocean.  Nevertheless, that the total variance in the AMIP 

models is ~2/3 as large as in the fully coupled versions indicates that atmospheric processes 

alone contribute substantially to ensemble spread. 
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Figure 8 presents the leading EOF-based PUP for the AMIP-style simulations.  This mode 

explains 23.4% of the total variance, i.e., comparable to mode 1 for the historic ensemble.  

For the AMIP PUPs, only the leading mode is well separated from the remaining modes.  

Overall, the leading AMIP PUP spatial pattern highlights model discrepancies localized 

primarily over the western portion of the domain where simulated precipitation values are 

largest: models with positive loadings exhibit larger than MEM rainfall over the SPCZ and 

lower values to the north in the ITCZ as well as over northern Australia.  The latter region is 

characterized by a summer monsoon climate.  Prior work [e.g., Kiladis et al. 1989; Mantsis et 

al. 2013] points to coupling with the Australian summer monsoon as an important 

determinant of SPCZ intensity and spatial structure, especially in its more tropical portion.  

This linkage is consistent with the structure in the leading PUP, in that models with enhanced 

precipitation in the SPCZ tend to simulate reduced precipitation in the Australian monsoon 

region.  As with the leading mode of the coupled ensemble, the regression of model weights 

for the leading AMIP PUP onto 850 mb winds indicates stronger (north)westerlies in models 

with more intense rainfall in the SPCZ. 

Relative to the historic coupled ensemble, the MEM DJF 4 mm day
-1

 precipitation for the 

AMIP-style simulations more closely approximates the location of the observed 4 mm day
-1

 

contour, demonstrating improved fidelity among the AMIP-style simulations in capturing the 

overall spatial distribution of precipitating deep convection in the Pacific domain.  That is, 

the specification of the boundary forcing through imposed SSTs leads to a better match to 

observed rainfall distribution.  The spatial pattern correlations of the leading AMIP PUP 

modes with respect to the 1
st
 and 2

nd
 historic EOFs are 0.63 and 0.22, respectively.  Thus, 

errors or uncertainties in simulations of the atmosphere itself may be viewed as contributing 

to the spatial pattern of the leading coupled mode, in addition to the structural differences 

associated with fully coupled ocean-atmosphere dynamics.  Some caution is warranted in 
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comparing the results, given the different models assessed in the coupled and AMIP-style 

simulations.  Still, for the subset of models common to both the coupled and AMIP-style 

ensembles (N = 25), the correlation between model weights of the leading PUPs is 0.49, 

which is significant at p = 0.05.  This correlation remains significant at the 95
th

 percentile 

even if reasonable allowance is made for a lower number of degrees of freedom owing to 

non-independent models.   

 

3.4 PUPs for precipitation standard deviation 

In addition to computing PUPs for the DJF precipitation climatologies, we have also 

calculated PUPs with respect to simulation of the interannual DJF standard deviation in the 

coupled simulations.  Our interest in computing PUPs on interannual standard deviation is 

principally to illustrate the applicability of the PUP approach to other dimensions of 

precipitation besides climatological means, which are frequently the focus of model 

intercomparison studies.  However, as numerous studies (e.g., Russo and Sterl [2012]; Huang 

et al. [2013], and Toreti and Naveau [2015]) have demonstrated, uncertainties in precipitation 

means may be quite distinct from other aspects of precipitation behavior such as extremes.  

Thus, multimodel evaluation should take into account these potential differences.  

The two leading standard deviation PUPs (Figure 9) account for 30.3% and 16.9%, 

respectively, and are well separated from the remaining modes.  The 1
st
 PUP EOF (Figure 9a) 

is effectively of the same sign across the Pacific region; thus, for this mode, models tend to 

exhibit either higher or lower variability relative to the MEM ubiquitously throughout the 

domain.  As with the PUPs for DJF mean rainfall, the weights of models in the same family 

tend to lie close to one another, though again the IPSL family of models contains both low 

and high variance versions differing by convection scheme.  Also notable are the two earth 

system models (ESMs) from GFDL, which differ principally in the formulation of their ocean 
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components:  GFDL-ESM2M exhibits much higher variability than GFDL-ESM2G, which 

may be due to the latter having relatively low mean rainfall in the equatorial region (see 

Figure 2a).   

The 2
nd

 mode EOF (Figure 9b) points to models with enhanced interannual variability 

along the equator, especially concentrated in the Central Pacific, and reduced variability in 

surrounding regions.  The localization of the largest values of the 2
nd

 PUP EOF to the central 

equatorial Pacific suggests spread arising from model simulation of ENSO and atmosphere-

ocean feedbacks within this region.  CMIP5 models have been shown to display a wide range 

of skill in simulating aspects of ENSO such as its frequency of occurrence, intensity, and 

spatial structure, though few models score uniformly well on all characteristics [Bellenger et 

al. 2014]. One of the problematic aspects is the simulation of distinct Eastern Pacific and 

Central Pacific-type El Niño events, with CMIP5 models often failing to simulate, or 

undersimulating, the latter [Fang et al. 2015].  For the 2
nd

 PUP model weights, there is a 

modest (r = 0.4) correlation with NINO3 region SST variability:  although suggestive of a 

relationship between the 2
nd

 PUP and ENSO, a more rigorous exploration is clearly 

warranted.  Because of uncertainties in the spatial characteristics of ENSO simulation, for 

instance, NINO3 may not represent the optimal index for comparison.  

Perhaps not surprisingly, the model weights for the historic ensemble means and standard 

deviations exhibit some relationships.  Both the 1
st
 and 2

nd
 PUP model weights for the 

historic climatology are positively correlated with the model weights of the leading PUP for 

standard deviation, i.e., the models exhibiting more intense climatological precipitation along 

the equator and/or along the SPCZ tend to be those with higher interannual standard 

deviations, i.e., areas with higher mean rainfall experience a greater degree of year-to-year 

variability.  On the other hand, model weights for the 2
nd

 historic climatology PUP are 

negatively correlated with those of the 2
nd

 standard deviation PUP, i.e., models with higher 
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rainfall interannual variability over the equatorial central Pacific tend to have a more 

pronounced climatological double ITCZ, but less intense rainfall in the core of the SPCZ.  

For completeness, we have further computed PUPs on the DJF interannual precipitation 

standard deviation for the AMIP-style simulations (not shown).  The leading mode, which 

accounts for 38.4% of the variance, strongly resembles the leading mode for the historic 

ensemble (Figure 9a), again showing pervasive differences across the models in the overall 

level of precipitation variability and pointing to uncertainties in representation of atmospheric 

processes as the principal determinant of this aspect of model spread.  On the other hand, no 

analogue to the historic ensemble 2
nd

 mode standard deviation PUP (Figure 9b) is evident in 

the AMIP-style ensemble, which underscores the role of ocean-atmosphere coupling in 

generating this aspect of the interannual variability in the CMIP5 models.    

 

4. Summary and discussion 

In this study, we have applied an approach, generically termed principal uncertainty pattern 

(PUP) analysis, to investigate the leading patterns characterizing the spread among CMIP5 

model simulations of tropical Pacific precipitation.  For DJF, the two leading PUPs for the 

historic (coupled ocean-atmosphere) simulations, derived from EOF/PC analysis, reveal 

distinct patterns of differences of the models with respect to ensemble mean in both the 

spatial distribution of precipitation as well as its intensity.  The first mode can be broadly 

characterized in terms of spread in the meridional width of the Pacific ITCZ-SPCZ complex 

as well as the zonal distribution of precipitation along the equator.  The second mode shows 

spread expressed as a tradeoff between SPCZ and ITCZ precipitation intensity, the latter 

including the spurious SH ITCZ.  Broadly similar modes are evident for JJA, but for the 1
st
 

mode, the strongest signals are displaced northward, consistent with the mean seasonal 

migration of tropical convection from DJF to JJA, while for the 2
nd

 mode, the dominant 
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signature is a zonal dipole in precipitation spread over low latitudes in the NH Eastern 

Pacific. 

As we have noted, PUPs may reflect either true intermodel spread or internal variability, 

which is quite distinct from application of EOFs (or other methods) in the time domain.  

Thus, an important consideration is how to distinguish these two potential sources of PUP 

behavior.  To address this, we performed a bootstrap significance test for the intermodel 

spatial patterns, a test on the model weights, and a check for robustness against longer 

climatological averages.  The results confirm in complementary ways that these patterns in 

fact arise from intermodel differences in the tropical Pacific climatology and are distinct from 

internal model variability at times scales of several decades or longer. 

Simple linear regressions of SST and low-level circulation (as well as upper-level 

circulation and specific humidity) onto precipitation PUP model weights underscore the 

physical consistency of these interpretations, as does application of maximum covariance 

analysis (MCA) to the covariance matrix of precipitation and SST. By analyzing the stand-

alone atmospheric (AMIP-style) simulations in which the impacts of SST-related biases are 

suppressed, intermodel spread in rainfall intensity remains, especially in the western tropical 

Pacific, even as the overall spatial configuration of domain-wide precipitation is improved. 

While we have demonstrated the physical consistency of the precipitation PUPs with the 

spread inherent in other climate fields, can we draw any conclusions about the source of 

spread as it relates to particular aspects of model parameterizations, especially for the AMIP-

style models for which errors related to ocean dynamics are suppressed?  One way of viewing 

the spatial structure inherent to the leading AMIP PUP (Figure 8a) is that represents a 

tradeoff between precipitation in the SPCZ core compared to the margins, i.e., models with 

more intense precipitation in the SPCZ core have narrower SPCZs.  In prior work using an 

intermediate level complexity model, Lintner et al. [2012] described a pattern of reduced 
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precipitation along the margins and enhanced precipitation in the cores of strong tropical 

convection zones with the addition of an entrainment-like process to the model‘s convection 

scheme.  The occurrence of this spatial pattern was tied to dry air mixing reducing convective 

available potential energy along the margins with enhanced precipitation in the interior 

related to enhanced moistening available via large-scale convergence within the convection 

zone core.  Oueslati and Bellon [2013] documented similar behavior in entrainment 

sensitivity experiments in the family of CNRM models, as did Hirota et al. [2014] in 

MIROC5 simulations with different representations of entrainment.   

It remains to be seen whether the PUP model weightings can be systematically related to 

entrainment or other parameterized processes.  On this note, Siongco et al. [2014] applied an 

object classification method to sort CMIP5 AMIP-style models into two groups, depending 

on where these models exhibited the strongest bias in the Atlantic ITCZ; they uncovered no 

systematic relationship between the location of bias and the convective parameterization 

used.  A practical challenge is that comprehensive documentation of parameter values for 

CMIP5 models is difficult to obtain.  We did examine model weightings for the 1
st
 AMIP 

PUP with respect to qualitative descriptors of model components available from the Earth 

System Documentation website (http://compare.es-doc.org/) but this indicated no obvious 

candidates for model spread. 

Moving forward, we anticipate continuing application of PUPs as a tool for diagnosing 

sources of model ensemble spread in precipitation and how these relate across different 

variables.  For example, Bellucci et al. [2010] and Oueslati and Bellon [2015] have 

speculated that overestimation of the occurrence frequency of weak or moderate ascent 

regimes in the CMIP5 ensemble, rather than precipitation intensity within different vertical 

velocity regimes, principally accounts for the simulated precipitation errors in these models.  

Thus, inclusion of the vertical motion field in the MCA may be instructive.  We also envision 
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application of PUPs to single model ensembles in which a parameter or set of parameters is 

systematically varied.  In recent work, Bernstein and Neelin [2016] used a perturbed physics 

ensemble of the Community Earth System Model to demonstrate how the introduction of 

variation across parameters in convection schemes can significantly alter regional 

precipitation responses to global warming. By analyzing such simulations using PUPs, we 

can quantify the extent to which systematic variations in single or multiple parameters may 

contribute to distinct spatial patterns of model disagreement.   

 

Acknowledgments 

CMIP5 data were obtained from the Program for Climate Model Diagnosis and 

Intercomparison (PCMDI) data portal [http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html].  

BRL and MJN acknowledge the financial support of NSF-AGS-1312865, JDN and BL 

acknowledge the support of NSF-AGS-1540518 and NOAA NA14OAR4310274, and 

GL acknowledges the support of the Youth Innovation Promotion Association CAS and the 

Guangdong Natural Science Funds for Distinguished Young Scholar (2015A030306008).   



 

 
© 2016 American Geophysical Union. All rights reserved. 

References Cited 

Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. 

Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, and P. Arkin, 2003: The Version 2 

Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-

Present). J. Hydrometeor., 4,1147–1167. 

Anderson, B.T., B.R. Lintner, B. Langenbrunner, J.D. Neelin, E. Hawkins, and J. Syktus, 

2015:  Sensitivity of terrestrial precipitation trends to the structural evolution of sea surface 

temperature.  Geophys. Res. Lett., 42, 1190—1196, doi:10.1002/2014GL062593. 

Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014:  ENSO 

representation in climate models: From CMIP3 to CMIP5.  Clim. Dyn., 42, 1999–2018, 

doi:10.1007/s00382-013-1783-z. 

Bellucci, A., S. Gualdi, and A. Navarra, 2010: The double-ITCZ syndrome in coupled 

general circulation models: The role of large-scale vertical circulation regimes. J. Clim., 23, 

1127–1145. 

Bernstein, D. N. and J. D. Neelin, 2016: Identifying sensitive ranges in global warming 

precipitation change dependence on convective parameters. Geophys. Res. Lett., 43, 

doi:10.1002/2016GL069022. 

Bretherton, C. S., C. Smith, and J. M. Wallace, 1992:  An Intercomparison of Methods for 

Finding Coupled Patterns in Climate Data.  J. Clim., 5, 541–560. 

Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The 

Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. J. Clim., 12, 

doi:1175/1520-0442. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Brown, J. R., S. B. Power, F. P. Delage, R. A. Colman, A. F. Moise, and B. F. Murphy, 2011: 

Evaluation of the South Pacific Convergence Zone in the IPCC AR4 climate model 

simulations of the twentieth century. J. Clim., 24, 1565–1582.  

Brown, J. R., A. F. Moise, and F. P. Delage, 2012:  Changes in the South Pacific 

Convergence Zone in IPCC AR4 future climate projections.  Clim. Dyn., 39, 1–19. 

Brown, J. R., A. F. Moise, and R. A. Colman, 2013: The South Pacific Convergence Zone in 

CMIP5 simulations of historical and future climate. Clim. Dyn., 41, 2179–2197, doi: 

10.1007/s00382-012-1591-x. 

Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013a:  Diagnosing Northern 

Hemisphere Jet Portrayal in 17 CMIP3 Global Climate Models:  Twentieth Century 

Variability, J. Climate, 26, 4910–4929. 

Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013b:  Diagnosing Northern 

Hemisphere Jet Portrayal in 17 CMIP3 Global Climate Models:  Twenty-First-Century 

Projections, J. Climate, 26, 4930–4946. 

Deser, C., A. S. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change 

projections: The role of internal variability. Clim. Dyn., 38, 527–546, doi:10.1007/s00382-

010-0977-x. 

Fang, X.-H., F. Zheng, and J. Zhu, 2015: The cloud-radiative effect when simulating strength 

asymmetry in two types of El Niño events using CMIP5 models. J. Geophys. Res. Oceans, 

120, 4357–4369, doi:10.1002/2014JC010683. 

Folland, C. K., J. A. Renwick, M. J. Salinger, A. B. Mullan, 2002:  Relative influences of the 

Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone.  

Geophys. Res. Lett.,  29, Art #1643. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Ganachaud, A., et al. (2014), The Southwest Pacific Ocean circulation and climate 

experiment (SPICE), J. Geophys. Res. Oceans, 119, 7660–7686, doi:10.1002/2013JC009678. 

Gill, A. E., 1980: Some simple solutions for heat‐ induced tropical circulation. Q. J. R. 

Meteorol. Soc., 106, 447–462. 

Hirota N., Y. N. Takayabu, M. Watanabe, and M. Kimoto, 2011:  Precipitation 

reproducibility over tropical oceans and its relationship to the double ITCZ problem in 

CMIP3 and MIROC5 climate models. J. Clim., 24, 4859–4873. 

Hirota, N., and Y. N. Takayabu, 2013:  Reproducibility of precipitation distribution over the 

tropical oceans in CMIP5 multi-climate models compared to CMIP3.  Clim. Dyn., 41, 2909–

2920, doi: 10.1007/s00382-013-1839-0. 

Hirota, H., Y. N. Takayabu, M. Watanabe, M. Kimoto, and M. Chikira, 2014: Role of 

Convective Entrainment in Spatial Distributions of and Temporal Variations in Precipitation 

over Tropical Oceans. J. Clim., 27, 8707–8723. 

Huang, D.-Q., J. Zhu, Y.-C. Zhang, and A.-N. Huang, 2013: Uncertainties on the simulated 

summer precipitation over Eastern China from the CMIP5 models.  J. Geophys. Res. Atmos., 

118, 9035–9047, doi:10.1002/jgrd.50695. 

Hwang, Y.-T. and D. M. W. Frierson, 2013: Link between the double-Intertropical 

Convergence Zone problem and cloud bias over Southern Ocean. Proc. Nat. Acad. Sci., 110, 

4935–4940, doi: 10.1073/pnas.1213302110. 

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, 

V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom 

and New York, NY, USA, 1535 pp, doi:10.1017/CBO9781107415324. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Kiladis, G. N., H. von Storch, and H. van Loon, 1989: Origin of the South Pacific 

Convergence Zone. J. Clim., 2, 1185–1195, doi:10.1175/1520-0442. 

Langenbrunner, B., J. D. Neelin, B. R. Lintner, and B. T. Anderson, 2015:  Patterns of 

precipitation change and climatological uncertainty among CMIP5 models, with a focus on 

the midlatitude Pacific storm track.  J. Clim., 28, 7857–7872, doi:10.1175/JCLI-D-14-

00800.1. 

Li, J., X. Zhang, Y. Yu, and F. Dai, 2004:  Primary reasoning behind the double ITCZ 

phenomenon in a coupled ocean-atmosphere general circulation model.  Adv. Atmos. Sci., 21, 

857–867. 

Li G, Xie S-P (2012) Origins of tropical-wide SST biases in CMIP multi-model ensembles. 

Geophys. Res. Lett. 39, L22703, doi:10.1029/2012GL05377. 

Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multi-model ensemble: The excessive 

equatorial Pacific cold tongue and double ITCZ problems. J. Clim., 27, 1765–1780, doi: 

10.1175/JCLI-D-13-00337.1. 

Li, G., Y. Du, H. Xu, and B. Ren, 2015: An intermodel approach to identify the source of 

excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational 

datasets. J. Clim., 28, 7630–7640. 

Li, G., S.-P. Xie, Y. Du, and Y. Luo, 2016: Effects of excessive equatorial cold tongue bias 

on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 

multi-model ensemble. Clim. Dyn., DOI: 10.1007/s00382-016-3043-5. 

Lin, J.-L., 2007:  The double-ITCZ problem in IPCC AR4 coupled GCMs:  Ocean-

atmosphere feedback analysis.  J. Clim., 20, 4497–4525. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Lintner, B. R., and J. D. Neelin, 2008:  Eastern margin variability of the South Pacific 

Convergence Zone margin.  Geophys. Res. Lett., 35 (16), L16701, 

doi:10.1029/2008GL034298. 

Mantsis, D. F., B. R. Lintner, A. J. Broccoli, and M. Khodri, 2013:  Mechanisms of mid-

Holocene precipitation change in the South Pacific Convergence Zone.  J. Clim., 26, 6937–

6953, doi:10.1175/JCLI-D-12-00674.1. 

Matthews, A. J., 2012: A multiscale framework for the origin and variability of the South 

Pacific convergence zone. Q. J. R. Meteorol. Soc., 138, 1165–1178. 

Mechoso, C. R., and co-authors, 1995: The seasonal cycle over the tropical Pacific in coupled 

ocean-atmosphere general circulation models.  Mon. Weather Rev., 123, 2825–2838. 

Niznik, M. J., and B. R. Lintner, 2013:  Circulation, precipitation, and moisture relationships 

along the South Pacific Convergence Zone in reanalyses and CMIP5 models.  J. Clim., 26, 

10174–10192, doi:10.1175/JCLI-D-13-00263.1. 

Niznik, M. J., B. R. Lintner, A. J. Matthews, and M. J. Widlansky, 2015: The role of 

tropical–extratropical interaction and synoptic variability in maintaining the South Pacific 

Convergence Zone in CMIP5 Models. J. Clim., 28, 3353–3374, doi:10.1175/JCLI-D-14-

00527.1. 

North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982:  Sampling errors in the 

estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706. 

Oueslati, B., and G. Bellon, 2013: Convective Entrainment and Large-Scale Organization of 

Tropical Precipitation: Sensitivity of the CNRM-CM5 Hierarchy of Models. J. Clim., 26, 

2931–2946, doi:10.1175/JCLI-D-12-00314.1. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Oueslati, B., and G. Bellon, 2015: The double ITCZ bias in CMIP5 models: interaction 

between SST, large-scale circulation and precipitation. Clim. Dyn., 44, 585–607, doi: 

10.1007/s00382-015-2468-6. 

Power, S., 2011:  Understanding the South Pacific Convergence Zone and its impacts:  

International Workshop on the South Pacific Convergence Zone, Apia, Samoa, 24-26 August, 

2010.  Eos, 92, 55–56. 

Russo, S., and A. Sterl, 2012: Global changes in seasonal means and extremes of 

precipitation from daily climate model data. J. Geophys. Res. Atmos., 117, D01108, 

doi:10.1029/2011JD016260. 

Siongco, A. C., C. Hohenegger, and B. Stevens, 2014:  The Atlantic ITCZ bias in CMIP5 

models.  Clim. Dyn., 5, 1169–1180, doi: 10.1007/s00382-014-2366-3. 

Takahashi, K., and D. S. Battisti, 2007:  Processes controlling the mean tropical Pacific 

precipitation patterns:  II.  The SPCZ and southeast Pacific dry zone.  J. Clim., 20, 5696–

5706. 

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the 

experiment design. Bull. Amer. Meteor. Soc., 93, 485–498. 

Toreti, A., and P. Naveau, 2015: On the evaluation of climate model simulated precipitation 

extremes. Environ. Res. Lett., 16, 014012, doi:10.1088/1748-9326/10/1/014012. 

Vincent, D. G., 1994:  The South Pacific Convergence Zone (SPCZ):  A review.  Mon. Wea. 

Rev., 122, 1949–1970. 

Xie, P., and P. A. Arkin, 1997:  Global precipitation: A 17-year monthly analysis based on 

gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. 

Soc., 78, 2539–2558. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on 

CMIP5 climate model biases. Nature Clim. Change, 4, 201–205, doi:10.1038/nclimate2118. 

Widlansky, M. J., A. Timmermann, K. Stein, S. McGregor, N. Schneider, M. H. England, M. 

Lengaigne, and W. Cai, 2013: Changes in South Pacific rainfall bands in a warming climate. 

Nature Climate Change, 3, 417–423, doi:10.1038/NCLIMATE1726. 

Yin, X., A. Gruber, and P. A. Arkin, 2004:  Comparison of the GPCP and CMAP Merged 

Gauge–Satellite Monthly Precipitation Products for the Period 1979–2001.  J. Hydrometeor., 

5, 1207–1222. 

Zheng, Y., J.-L. Lin, and T. Shinoda, 2012: The equatorial Pacific cold tongue simulated by 

IPCC AR4 coupled GCMs: Upper ocean heat budget and feedback analysis. J. Geophys. Res., 

117, C05024, doi:10.1029/2011JC007746.  



 

 
© 2016 American Geophysical Union. All rights reserved. 

Table 1:  List of model centers/groups and associated acronyms of the models analyzed. 

 

Modeling center/group/country 

Historic 

Ensemble 

acronym 

Pre-industrial 

control length 

(years) 

AMIP-

ensemble 

acronym 

Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM), Australia  

ACCESS1-0 500 ACCESS1-0 

ACCESS1-3 500 ACCESS1-3 

 

Beijing Climate Center, China Meteorological Administration 

   

bcc-csm1-1 400 bcc-csm1-1 

bcc-csm1-1-m 
500 

bcc-csm1-1-m 

Beijing Normal University BNU-ESM 560 BNU-ESM 

Canadian Centre for Climate Modelling and Analysis CanESM2 1000 CanAM4 

 

National Center for Atmospheric Research  

 

CCSM4 1050 CCSM4 

CESM1-BGC 500   

CESM1-CAM5 300 CESM1-CAM5 

 

Centro Euro-Mediterraneo per I Cambiamenti Climatici 

    

CMCC-CESM 275   

CMCC-CM 300 CMCC-CM 

CMCC-CMS 500   

CMCC-CM5 850   

Centre National de Recherches Météorologiques    CNRM-CM5 

CSIRO with Queensland Climate Change Centre of Excellence CSIRO-Mk3-6-0 500 CSIRO-Mk3-6-0 

EC-EARTH consortium EC-EARTH 450 EC-EARTH 

LASG, Institute of Atmospheric Physics, Chinese Academy of 

Sciences   

FGOALS-g2 700 FGOALS-g2 

   FGOALS-s2 

 

 

NOAA Geophysical Fluid Dynamics Laboratory 

  

  

GFDL-CM3 500 GFDL-CM3 

GFDL-ESM2G 500   

GFDL-ESM2M 500   

   GFDL-HIRAM-C180 

   GFDL-HIRAM-C360 
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NASA Goddard Institute for Space Studies  

GISS-E2-H 240   

GISS-E2-R 550 GISS-E2-R 

Met Office Hadley Centre (additional HadGEM2-ES realizations 

contributed by Instituto Nacional de Pesquisas Espaciais)    

   HadGEM2-A 

HadGEM2-AO 700   

HadGEM2-CC 240   

HadGEM2-ES 575   

Institute for Numerical Mathematics inmcm4 500 inmcm4 

 

Institut Pierre-Simon Laplace 

  

IPSL-CM5A-LR 1000 IPSL-CM5A-LR 

IPSL-CM5A-MR 300 IPSL-CM5A-MR 

IPSL-CM5B-LR 700 IPSL-CM5B-LR 

 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies 

   

MIROC5 700 MIROC5 

MIROC-ESM 530   

MIROC-ESM-

CHEM 

250   

Max Planck Institute for Meteorology  

MPI-ESM-LR 1000 MPI-ESM-LR 

MPI-ESM-MR 1000 MPI-ESM-MR 

 

Meteorological Research Institute  

   

   MRI-AGCM3-2H 

   MRI-AGCM3-2S 

MRI-CGCM3 500 MRI-CGCM3 

Norwegian Climate Centre  

NorESM1-M 250 NorESM1-M 

NorESM1-ME 500   
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Figure 1:  a) Model ensemble mean (MEM) DJF precipitation climatology for the 36 

member CMIP5 historic simulation ensemble analyzed in the present study.  The solid gray 

contour denotes the 4 mm day
-1

 precipitation isoline, which delineates the region of strongest 

deep convection in the Tropics.  b) Departure of the MEM from Global Precipitation 

Climatology Project [GPCP; Adler et al. 2003] rainfall.  The solid and dashed gray contours 

denote the 4 mm day
-1

 isolines from the MEM and GPCP, respectively.  
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Figure 2: 1
st
 PUP of DJF-mean precipitation climatologies for the historic CMIP5 

simulations.  a) The 1
st
 PUP spatial pattern (EOF), in units of mm day

-1
.  The solid and 

dashed contours represent the 4 mm day
-1

 isolines for models with positive and negative 

weights, respectively.  Stippled areas pass the bootstrap significance test at the 99% 

confidence level (see text). b) Model weights (PCs) for PUP 1, in units of standard deviation.  

Error bars represent the range of weights that can arise from internal variability using model 
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pre-industrial control runs (see text).  c) Regression of the model‘s SST (shading) and 850 mb 

winds (vectors) based on the weights shown in b) and scaled by 1 standard deviation.  

Vectors are plotted when the regression slope of at least one component passes a two-sided 

test for difference from zero at the 95% confidence level. 

  



 

 
© 2016 American Geophysical Union. All rights reserved. 

 

 

Figure 3:  As in Figure 2, but for the 2
nd

 PUP. 
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Figure 4:  Scatterplot of historic ensemble 1
st
 PUP model weights (x-axis) versus 2

nd
 PUP 

model weights (y-axis).  The gray line depicts a quadratic polynomial best fit curve to the 

data. 
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Figure 5:  (a) 1
st
 and (b) 2

nd
 PUP spatial patterns (EOFs) of JJA-mean precipitation 

climatologies for the historic CMIP5 simulations (shading, in units of mm day
-1

).  For 

reference, the solid black contour represents the 4 mm day
-1

 isoline for the MEM for JJA.  

Vectors represent the regression of 850 mb winds onto the model weights for each mode and 

scaled by 1 standard deviation.  Vectors are plotted when the regression slope of at least one 

component passes a two-sided test for difference from zero at the 95% confidence level.  
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Figure 6: Leading PUP for maximum covariance analysis (MCA) applied to the DJF-mean 

cross-covariance matrix of normalized (a) precipitation and (b) SST for the N = 36 historic 

CMIP5 simulations.  The top panel depicts the precipitation field (in units of mm day
-1

) while 

the bottom panel depicts the SST field (in units of °C).  Model weights for precipitation and 

SST (in units of standard deviation) appear in (c) and (d), respectively. 
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Figure 7:  As in Figure 1, but for the 30 member AMIP-style ensemble. 
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Figure 8:  1
st
 PUP of DJF-mean precipitation climatologies for the AMIP-style simulations.  

a) The 1
st
 PUP spatial pattern (EOF), in units of mm day

-1
.  The solid and dashed contours 

represent the 4 mm day
-1

 isolines for models with positive and negative loadings of this 

spatial pattern, respectively.  Vectors correspond to the regression of 850 mb winds on the 

weights shown in b).  b) Model weights (PCs) for mode 1, in units of standard deviation. 
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Figure 9:  (a) 1
st
 and (b) 2

nd
 PUP spatial patterns of DJF interannual precipitation standard 

deviations for the historic CMIP5 simulations, in units of mm day
-1

.   (c) 1
st
 and (d) 2

nd
 PUP 

model weights, in units of standard deviation.   

 


