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Abstract 32	  

An important step in projecting future climate change impacts on extremes involves quantifying 33	  

the underlying probability distribution functions (PDFs) of climate variables.  However, doing so 34	  

can prove challenging when multiple models and large domains are considered.  Here an 35	  

approach to PDF quantification using k-means clustering is considered.  A standard clustering 36	  

algorithm (with k=5 clusters) is applied to 33 years of daily January surface temperature from 37	  

two state-of-the-art reanalysis products, the North American Regional Reanalysis and the 38	  

Modern Era-Retrospective Analysis for Research and Applications.  The resulting cluster 39	  

assignments yield spatially coherent patterns that can be broadly related to distinct climate 40	  

regimes over North America, e.g., low variability over the tropical oceans or temperature 41	  

advection across stronger or weaker gradients. This technique has the potential to be a useful and 42	  

intuitive tool for evaluation of model-simulated PDF structure and could provide insight into 43	  

projections of future changes in temperature.   44	  

 45	  
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1.  Introduction 46	  

Although global warming impacts on climate are often framed in terms of mean change, the 47	  

potential changes in extremes arguably pose a greater concern for societal or ecosystem adaptive 48	  

capacity [Kharin et al. 2007; Trenberth et al. 2007; IPCC, 2012].  Nonlinear relationships 49	  

between changing means and extremes suggest that even small changes in the former can be 50	  

associated with large changes in the latter [Griffiths et al., 2005].  Quantifying vulnerability to 51	  

and risks associated with extreme climatic events—and more critically, projecting how such 52	  

risks may change in the future—requires detailed knowledge of the underlying probability 53	  

distribution functions (PDFs) of important climate variables.   Furthermore, in order to constrain 54	  

uncertainties in model simulations of future climate extremes, standardized metrics are required 55	  

to evaluate model fidelity.   56	  

Because climate change may alter multiple moments of the PDF of a climate variable 57	  

[Hannachi, 2006], evaluation metrics should give insight on multiple aspects of PDF structure.  58	  

For example, Donat and Alexander [2012] present evidence of increasing variance in the Tropics 59	  

since the mid-20th century as well as a tendency towards more positive skewness.  Additionally, 60	  

there can be considerable spatial variation or dependence on small-scale processes in these PDFs 61	  

[Easterling et al. 2000; Diffenbaugh et al. 2005].  While some theoretical guidance exists for 62	  

relating the governing dynamics of a system to its PDF characteristics [e.g., Bourlioux and 63	  

Majda, 2002; Sura and Sardeshmukh, 2008; Neelin et al., 2010; Stechmann and Neelin, 2011], 64	  

further effort is needed to apply theoretical understanding to climate variables in observations 65	  

and models.   66	  

Analyzing surface temperature (Ts) PDFs from the Global Surface Summary of the Day 67	  

product, Ruff and Neelin [2012] documented non-Gaussian, often asymmetric long tails 68	  
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occurring over a wide range of geographic and climatic settings.  They further noted how the 69	  

details of the PDF tails significantly impact the estimation of threshold exceedances. For 70	  

example, under a warming-induced shift of the distribution, locations with high-side Gaussian 71	  

tails would experience a greater increase in a given warm threshold exceedance relative to 72	  

locations with a fat (e.g., exponential) tail.  73	  

The size and scope of currently available observational and model data products present 74	  

practical challenges for generalizing the diagnosis, interpretation, validation, and 75	  

intercomparison of PDF characteristics.  Consequently, evaluation and comparison of large 76	  

observational and model data sets requires the development of flexible yet standardized and 77	  

readily applicable diagnostics to facilitate model evaluation, interpretation, and development.   78	  

To that end, we present results of a cluster analysis applied to Ts PDFs obtained from two 79	  

reanalysis products.  Our results demonstrate that a few stable PDF categories can be obtained 80	  

and related to some readily understood aspects of different climatic regimes.   81	  

 82	  

2.  Data sets and methodology 83	  

The North American Regional Reanalysis [NARR; Mesinger et al., 2006] is a high-resolution 84	  

reanalysis product covering North America. This dataset is derived from a data assimilation 85	  

scheme with near-surface observations ingested hourly, and atmospheric profiles of temperature, 86	  

winds, and moisture from rawinsondes and dropsondes ingested every three hours.  The native 87	  

NARR data are available on a Lambert Conformal grid (3-hourly, approximately 32 km).   88	  

Additionally, Ts data is analyzed from the Modern Era-Retrospective Analysis for Research 89	  

and Applications [MERRA], developed by NASA’s Global Modeling and Assimilation Office 90	  

and disseminated by the Goddard Earth Sciences Data and Information Services Center 91	  
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[Rienecker et al., 2011].  MERRA assimilates observations from multiple sources including 92	  

weather stations and balloons, satellite data, ships, buoys, and aircraft. This data product is 93	  

defined on a global, regular uniform grid at a spatial resolution of 0.5° latitude x 0.67° longitude, 94	  

coarser than NARR, but finer than other widely used reanalysis products.  Because of the 95	  

different grid nests for NARR and MERRA, the latter covers more of the Earth at lower latitudes 96	  

than the NARR domain.  While other reanalysis products cover this domain, these two were 97	  

chosen because the relatively high resolution allows for analysis of regional scale phenomena.           98	  

To construct PDFs, daily January Ts data are first de-seasosonalized by removing the daily 99	  

climatology over the 33-year (1979-2011) period; long-term linear trends are also removed for 100	  

individual grid points.  Only January is considered here for demonstration purposes. Anomalies 101	  

are computed so that all grid points have a mean of 0, allowing for systematic comparison of 102	  

PDFs across the domain. Anomalies for all 1023 days are sorted into bins of 0.5 K width using 103	  

d=152 bins at all gridpoints and normalized by the total number of days.  While this results in 104	  

many grid points having multiple bins with zero counts, d=152 was necessary to span the range 105	  

of temperature anomalies at all grid points. Next, k-means cluster analysis is applied to group the 106	  

PDFs.  Clustering is performed on the log of probability (log10[bin count(i)/1023 where 107	  

i=1,2,…152) to increase the weight of distribution tails in the clustering. In other words, the 108	  

clustering algorithm seeks k sets among these vectors of length d of the log of probabilities, over 109	  

the data set of n spatial points, that minimizes the within-cluster sum of squares of the distance in 110	  

the d-dimensional space. 111	  

 Here, k=5 clusters is used for demonstration purposes.  While the choice of k = 5 clusters is 112	  

arbitrary, in a simple sensitivity analysis in which the number of clusters was varied from three 113	  

to eight, we found the results for k = 5 to be straightforward to interpret physically.  The optimal 114	  
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number of clusters and associated sensitivities will be explored in more detail in ongoing work 115	  

that applies this methodology to evaluation of climate models.   116	  

 117	  

3.  Results and discussion 118	  

Fig. 1 depicts the standard deviation (SD) and skewness of the daily Ts variability. In general, 119	  

MERRA has smaller SD along the margins of sea ice (Labrador Sea, Bering Sea) while NARR 120	  

has smaller values over western Canada and Alaska.  The overall geographic pattern of skewness 121	  

is very similar in both products.  Moreover, both products are able to capture local features such 122	  

as the band of positive skewness over the coastal waters adjacent to California and much of Baja 123	  

California caused by offshore winds that induce strong positive temperature excursions, e.g., the 124	  

Santa Ana winds in southern California [Hughes and Hall, 2010]. Loikith and Broccoli [2012] 125	  

document similar skewness structure using coarser resolution gridded daily Ts observations.  In a 126	  

simple sensitivity analysis where the data were divided into two equal temporal intervals, the SD 127	  

and skewness values did not change appreciably in most of the domain, suggesting these patterns 128	  

and values are stable with respect to time period at least over the late 20th and early 21st 129	  

centuries.  130	  

Although the spatial patterns of 2nd and 3rd moment statistics in Fig. 1 capture important 131	  

features of daily Ts variability, PDF modality is not readily discernable in terms of a single 132	  

moment. In this sense, it may be instructive to consider diagnostics of the overall shape of the 133	  

PDFs, especially if such diagnostics are sufficiently limited, i.e., the number of shape categories 134	  

is small.  To this end, we apply the k-means cluster method.  Fig. 2 depicts the PDFs associated 135	  

with each of the clusters, showing cluster-mean PDFs (thick lines) and ±1 SD (shading; 136	  

calculated as the SD of all the points of the cluster within each temperature bin).  Maps of the 137	  
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pointwise cluster assignments are in Fig. 3.  Here the colors plotted on the map correspond to the 138	  

individual PDFs that comprise the mean PDFs in Fig. 2, e.g., the red curve in Fig. 2 is the mean 139	  

of the PDFs for each red-shaded grid point in Fig. 3.  The mean SD and skewness values, 140	  

computed as the average of all gridpionts within the cluster, are indicated in Fig. 2. The clusters 141	  

are numbered based on the mean SD of all gridpoints within the cluster from high (C1) to low 142	  

(C5) SD values.  143	  

The gridpoints falling into C1 consist largely of sub-Arctic regions and are characterized by 144	  

high temperature variance, as evident by the wide PDF, and relatively large spread within the 145	  

cluster, reflecting significant local variations.  This region matches the band of high SD in Ts 146	  

(Fig. 1) and includes the transition zone from predominantly negative skewness to the south and 147	  

positive skewness to the north reflected in the symmetrical PDF. This region is subject to strong 148	  

anomalous Ts advection associated with synoptic-scale weather events [Loikith and Broccoli, 149	  

2012] across a gradient such that either colder or warmer air masses can be advected into the 150	  

region. 151	  

C2 exhibits relatively high variance and encompasses the Arctic as well as the continental 152	  

mid-latitudes.  The Arctic is an area of predominantly positive skewness while a mixture of 153	  

negative and positive skewness occurs over the continental mid-latitudes (Fig. 1).  This 154	  

combination is reflected in the symmetrical mean PDF. While the two regions described by this 155	  

cluster have little in common climatologically, different mechanisms may allow for similar PDF 156	  

characteristics, especially variance.  The Arctic (C2) has lower variance than areas to the south 157	  

(C1) since the region is among the coldest in the hemisphere, thus precluding outbreaks of 158	  

extreme cold air (in an anomalous sense) that can occur at lower latitudes. The mid-latitude 159	  

region is within the main storm track, but has lower variance compared with areas immediately 160	  
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to the north (C1) due in part to the modification of extreme cold airmasses as they move 161	  

equatorward. 162	  

C3 encompasses the southwestern United States, northern Mexico, and the coastal waters of 163	  

southern Alaska, the northern Gulf of Mexico, and the western Atlantic Ocean. Included in C3 164	  

are coastal regions of high temperature gradient on the West Coast and regions of high oceanic 165	  

temperature gradient off the East Coast of the US. Comparing to Fig. 1, C3 includes some ocean 166	  

regions with relatively high variance as well as the southwestern portion of the continent which 167	  

has relatively low variance for a continental region.  The mean PDF also exhibits negative 168	  

skewness, especially evident over coastal Alaska.  Here, the negative skewness is likely caused 169	  

by extreme cold outbreaks associated with advection from the continental interior combined with 170	  

a limited warm tail associated with the moderating effect of the ocean.  The region over the 171	  

Atlantic has high storm frequency in the winter, which elevates the temperature SD relative to 172	  

other marine regions. 173	  

C4 and C5, describing the mid-latitude oceans and Tropics respectively, have the smallest 174	  

variance of the five clusters, associated with a smaller temperature gradient in the Tropics, and 175	  

with the moderation of advective effects by ocean heat capacity over C4.  A substantial part of 176	  

C4 is also to the south of the main storm track.  C5 is south of the storm track and experiences 177	  

smaller effects by mid-latitude synoptic-scale weather variability.  The mean PDF of C4 (and C5 178	  

for NARR) is characterized by a long cold tail, likely reflecting the occasional incursion of cold 179	  

air masses from across the temperature gradient on the mid-latitude side. The relatively short 180	  

warm tail likely reflects the small gradient toward warmer tropical temperatures; as such it is not 181	  

possible to strongly increase temperatures by warm advection.   182	  
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The approach described here yields a first view of regional distributions of PDFs; however, 183	  

to emphasize differences in PDF shape, cluster analysis is applied to PDFs computed from 184	  

anomalies normalized by their SD.  If all the distributions were Gaussian the normalization 185	  

would tend to collapse them into a single cluster, so this approach can be anticipated to give a 186	  

view of the prevalence of non-normality.  Fig. 4 shows an example in which three clusters are 187	  

used to group PDFs of normalized temperature anomalies. The PDF cluster assignments reflect 188	  

the higher-order moments of skewness and kurtosis. While skewness appears to be the most 189	  

apparent characteristic for clustering, kurtosis is also influential with C1 having the highest 190	  

kurtosis.  191	  

 192	  

4.  Summary and conclusions 193	  

Variations in Ts PDFs over a large geographic area encompassing North America and 194	  

surrounding oceans are examined using simple k-means clustering.   In both datasets, the cluster 195	  

analysis yields stable, spatially coherent patterns that can be understood in terms of distinct Ts 196	  

regimes, such as smaller variability over tropical oceans and larger variability over the high 197	  

latitude continental interior.  The shape of the reconstructed PDF for each cluster, along with the 198	  

geographical distribution of the clusters, fit well with physical interpretations in terms of 199	  

temperature advection in the presence of a maintained background temperature gradient and 200	  

advection by synoptic-scale events.  In general, temperature variances appear to be the leading 201	  

determinant in defining clusters.  Skewness, also affects some cluster assignments, suggesting 202	  

cluster-based approaches are useful for identifying regions with common PDF shape.  By 203	  

normalizing the temperature anomalies by their SD, it is possible to use cluster analysis to group 204	  
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PDFs based on higher moment statistics, providing important information for characterizing 205	  

regional sensitivity of temperature extremes to future warming. 206	  

Future work will focus on developing the cluster analysis approach outlined in this paper for 207	  

categorizing PDF characteristics in regional climate model (RCM) simulations for the purpose of 208	  

evaluating model data against observations/reanalysis.  While other methodologies exist for 209	  

systematic PDF evaluation, the ability of this tool to be used over large domains or numbers of 210	  

gridpoints makes it particularly versatile.  For example, Perkins et al. (2007) developed and 211	  

applied a PDF skill score for model evaluation over Australia using relatively homogenous sub-212	  

regions.  Their technique provides a concise and standardized way to evaluate models; however 213	  

the clustering method has the advantage that it works over large inhomogeneous domains. 214	  

Furthermore, this approach may serve to identify regions where future changes in Ts or other 215	  

climate variables are likely to be relatively homogeneous.  As such, this method may provide a 216	  

foundation for elucidating changes in future climate extremes. 217	  
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Figure Captions 317	  

Figure 1.  Maps of the standard deviation of January temperature (top) and skewness of January 318	  

temperature (bottom) for NARR (left) and MERRA (right).   319	  

 320	  

Figure 2.  The mean PDF of each cluster for NARR (left) and MERRA (right).  Each curve is the 321	  

average of the PDFs from all gridpoints that were assigned to the indicated cluster.  The shaded 322	  

region surrounding each curve gives ± 1 standard deviation within each temperature bin 323	  

computed from the set of PDFs over all the spatial points in the cluster.  The black curve is a 324	  

Guassian fit to the core of the mean PDF for cluster 1, for reference.  The y-axis is the log of the 325	  

probability (plotted on a linear scale).  The average standard deviation (SD) and skewness (SK) 326	  

values for all the grid points assigned to each cluster are indicated in the legend. 327	  

 328	  

Figure 3.  Maps of cluster assignments for NARR (top) and MERRA (bottom).  The assignment 329	  

is color coded to match the colors in Figure 2 and the associated cluster number is indicated on 330	  

the map.   331	  

 332	  

Figure 4.  Same as Figure 2, except the cluster analysis is applied to PDFs of normalized 333	  

temperature anomaly and only k=3 clusters was used.  The average skewness (SK) and kurtosis  334	  

(KT) of all points in each cluster is indicated in the legend. 335	  

 336	  
 337	  
 338	  

 339	  

 340	  
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Figure 4. 365	  
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