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ABSTRACT

Methodology is developed and applied to evaluate the characteristics of daily surface temperature distri-

butions in a six-member regional climate model (RCM) hindcast experiment conducted as part of the North

American Regional Climate Change Assessment Program (NARCCAP). A surface temperature dataset

combining gridded station observations and reanalysis is employed as the primary reference. Temperature

biases are documented across the distribution, focusing on the median and tails. Temperature variance is

generally higher in the RCMs than reference, while skewness is reasonably simulated in winter over the entire

domain and over the western United States and Canada in summer. Substantial differences in skewness exist

over the southern and eastern portions of the domain in summer. Four examples with observed long-tailed

probability distribution functions (PDFs) are selected for model comparison. Long cold tails in the winter are

simulatedwith high fidelity for Seattle,Washington, andChicago, Illinois. In summer, theRCMs are unable to

capture the distribution width and long warm tails for the coastal location of Los Angeles, California, while

long cold tails are poorly realized for Houston, Texas. The evaluation results are repeated using two addi-

tional reanalysis products adjusted by station observations and two standard reanalysis products to assess the

impact of observational uncertainty. Results are robust when compared with those obtained using the ad-

justed reanalysis products as reference, while larger uncertainties are introduced when standard reanalysis is

employed as reference.Model biases identified in this work will allow for further investigation into associated

mechanisms and implications for future simulations of temperature extremes.

1. Introduction

As a result of anthropogenic climate warming, mean

temperatures are expected to rise; however, changes in

temperature extremes are expected to be associated

with more substantial climate impacts (Field et al. 2012).

In particular, extreme warm events are expected to be-

come more common and severe while the opposite is

true for cold extremes (Solomon et al. 2007; Meehl and

Tebaldi 2004; Tebaldi et al. 2006; Meehl et al. 2007).

Such changes will likely expose populations to extreme

heat events that are unprecedented in the current cli-

mate (Meehl et al. 2009).

One particularly noteworthy example, the European

heatwave of 2003, caused widespread heat-related ill-

ness and claimed tens of thousands of lives (Luber and

McGeehin 2008). Events of this magnitude, while vir-

tually unprecedented in the current climate, are pro-

jected to become more frequent in the future because of

climate warming (e.g., Beniston 2004; Schär et al. 2004;
Stott et al. 2004). More recently, the 2011 Russian

heatwave was also associated with drastically elevated

mortality and morbidity resulting from heat stress and
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poor air quality associated with wildfires: some studies

have speculated that the extreme nature of this event

was related to a combination of natural variability

and anthropogenic climate forcing (Dole et al. 2011;

Rahmstorf and Coumou 2011; Otto et al. 2012). Recent

anomalous heat, including the hottest month on record

in the United States, coupled with severe drought has

had severe impacts on the U.S. agriculture sector (Karl

et al. 2012).

Because the relationship between changes in mean

temperature and its extremes is often nonlinear, rela-

tively small changes in the mean may be associated with

disproportionately large changes in extremes (Hegerl

et al. 2004; Griffiths et al. 2005). Therefore, proper

simulation of the probability distribution of temperature

anomalies is essential for a realistic representation of

extremes. Ruff and Neelin (2012, hereinafter RN2012)

analyzed surface temperature (Ts) probability distribu-

tions from station data and documented several exam-

ples of non-Gaussian, often asymmetric long-tailed

distributions. They further note the importance of daily

Ts distribution shape, especially the distribution tails, in

relation to future global warming. In estimating future

Ts threshold exceedances, they demonstrate that places

exhibiting near Gaussian tails are more sensitive to in-

cremental warming than places with long tails.

Observational evidence points to a recent increase in

temperature variance in the tropics as well as a ten-

dency toward more positive skewness globally (Donat

and Alexander 2012). On the other hand, Rhines and

Huybers (2013) suggest that observed changes in sum-

mertime extremes are primarily attributable to changes

in the mean rather than the variance. Lau and Nath

(2012) demonstrate shifts in the probability distribution

functions (PDFs) of daily maximum temperature in two

high-resolution global climate models (GCMs) by the

middle of the twenty-first centurywith only small changes

in PDF shape exhibited in some places.

To quantify uncertainty in simulations of future cli-

mate, it is important to bring as much observational

scrutiny as possible to historical climate model runs.

Model evaluation is critical for identifying the range of

error (magnitude, geographic distribution, sign) across

models for the same region. Comprehensive evaluation

of GCMs archived as part of phase 3 of the Coupled

Model Intercomparison Project (CMIP3) was perfor-

med by Gleckler et al. (2008); however, the demand for

more geographically specific climate projections has

increased the prominence of limited domain regional

climate models (RCMs). While the body of systematic

RCM evaluation work is less mature than that for GCM

evaluation, some studies have evaluated important

variables in RCMs. Kjellström et al. (2011) analyze

a suite of RCM hindcast and future projections driven

by reanalysis and multiple GCMs over Europe. Kim

et al. (2013) evaluate mean surface temperature, pre-

cipitation, and insolation using monthly mean data over

the conterminous United States using models from the

North American Regional Climate Change Assessment

Program (NARCCAP).

Specifically focusing on PDFs, Perkins et al. (2007)

introduced a PDF skill score to evaluate global models

and applied this method over Australia, using climato-

logically homogenous subregions to compute PDFs of

temperature and precipitation. Kjellström et al. (2010)
used this method to evaluate temperature and pre-

cipitation PDF structure over Europe while also eval-

uating daily temperature at multiple percentiles of

the distribution. Their results show that while some

models perform better than others, no model is sys-

tematically better or worse in every region or season,

suggesting substantial variability in the way RCM bias

is manifested.

Comprehensive evaluation of PDF morphology is

expected to provide information regarding model re-

presentation of extremes and to enhance mechanistic

understanding of processes responsible for genesis of

extremes. To this end, the present study evaluates RCM-

simulated PDF characteristics over North America. The

remainder of this paper is organized as follows. Section 2

describes the data and methodology used. Section 3

presents daily temperature bias at different percentiles of

the distribution, and section 4 evaluates model variance

and skewness across the domain and for select example

locations exhibiting non-Gaussian long-tailed PDFs. The

sensitivity of the evaluation results to the choice of ref-

erence dataset and interpolation procedure is presented

in the discussion in section 5, followed by concluding

remarks in section 6.

2. Data and methodology

a. NARCCAP data

NARCCAPwas designed to serve the high-resolution

climate modeling needs of the United States, Canada,

and Mexico. All six RCMs used in this paper are dy-

namically downscaled hindcast experiments performed

for NARCCAP (Mearns et al. 2009, 2012, 2013; http://

www.narccap.ucar.edu). Information about the in-

dividual RCMs is presented in Table 1. In this work, all

hindcast model simulations were driven by large-scale

forcing from the National Centers for Environmental

Prediction (NCEP)–U.S. Department of Energy (DOE)

Reanalysis 2 (Kanamitsu et al. 2002).

While the official NARCCAP hindcast time period

spans 1979–2004, the period 1980–2003 is used to span
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the longest possible time period for which all models

have availableTs. The simulation domain covers most of

North America and some of the adjacent Pacific and

Atlantic Oceans. Each model is originally provided on a

50-km native curvilinear grid at 3-hourly temporal

resolution.

b. Reference data

The Wang and Zeng (2014) 2-m temperature dataset

based on the National Aeronautics and Space Admin-

istration (NASA) Modern Era-Retrospective Analysis

for Research and Applications (MERRA) reanalysis is

used as the primary reference. Described in Wang

and Zeng (2013), this is one of four datasets of hourly

gridded Ts based on four reanalysis products and the

Climate Research Unit Time Series version 3.10 (CRU

TS3.10; Mitchell and Jones 2005). To produce these

products, data from MERRA, the NCEP–National

Center for Atmospheric Research (NCAR) Reanalysis

1, the 40-yr European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-40),

and ECMWF Intermim Re-Analysis (ERA-Interim)

products are first interpolated to the 0.58 CRU TS3.10

grid. With the exception of MERRA, which is originally

available at hourly resolution, the reanalysis is temporally

interpolated to hourly resolution. Finally, the data are

bias corrected using the CRUTS3.10monthlymean daily

maximum and minimum temperature. The bias correc-

tion reduces the uncertainty inherent in the reanalysis.

No additional uncertainty is introduced by the tem-

poral interpolation for the MERRA-based product

(MERRA–CRU) and therefore this dataset is chosen as

the primary reference. Results were also computed us-

ing products based on the ERA-Interim and NCEP–

NCAR (ERA-40 did not have complete overlap with

the NARCCAP period) to assess uncertainty across the

suite of datasets. The sensitivity of the evaluation results

to the choice of dataset is discussed further in section 5a.

The NCEP North American Regional Reanalysis

(NARR; Mesinger et al. 2006) and standard MERRA

(Rienecker et al. 2011) products are also employed to

compare how the results change when using original

forms of reanalysis versus the CRU TS3.10 adjusted

products. Implications are discussed further in section

5a. NARR is produced on a Lambert conformal grid

with 32-km resolution. Developed by NASA’s Global

Modeling and Assimilation Office and disseminated by

the Goddard Earth Sciences Data and Information

Services Center (GES DISC), MERRA is originally on

a global 0.58 3 0.678 latitude–longitude grid.

c. Data processing methodology

The analyzed model and reference data comprise daily

means of the NARCCAP 3-hourly and the MERRA–

CRU hourly output respectively. All NARCCAP data

are interpolated to a common 0.58 latitude–longitude grid
mesh, the same as the MERRA–CRU grid. Data were

interpolated using a kriging algorithm implemented with

a thin plate spline (TPS) routine (Fields Development

Team 2006) using surface elevation as a covariate and

performed only over land grid points. The sensitivity of

the evaluation results to the choice of regridding scheme

is also evaluated using linear and cubic methods based on

Delaunay triangulation (Lee and Schachter 1980) and

discussed in section 5b.

All data are subset to a common land-only domain,

which covers the maximum possible spatial overlap of

all datasets. Temperature anomalies, obtained by sub-

tracting the daily climatological average from each daily

value, are used in the computation of several metrics in

this paper. Bukovsky (2012) found reasonable temporal

trend agreement between the NARCCAP models and

observations over this period so it was decided to not

remove any trends. Evaluation was performed for the

seasons of summer [June–August (JJA)] and winter

[December–February (DJF)]. The multimodel ensem-

ble mean is calculated by concatenating the daily data

from each of the six RCMs into one time series con-

sisting of six data points (one for eachRCM) at each grid

point at each time step.

TABLE 1. The RCMs and corresponding references evaluated in this study.

Model Model name References

CRCM Canadian Regional Climate Model Caya and LaPrise (1999)

ECP2 Scripps Experimental Climate Prediction Center Regional

Spectral Model

Juang et al. (1997)

HRM3 Third-generation Hadley Centre Regional Climate Model Jones et al. (2004)

MM5I Fifth-generation Pennsylvania State University (PSU)–NCAR

Mesoscale Model, Iowa State University version

Grell et al. (1993)

RCM3 International Centre for Theoretical Physics Regional Climate

Model version 3

Giorgi et al. (1993a,b)

WRFG Weather Research and Forecasting Model, Pacific Northwest National

Laboratory version

Skamarock et al. (2005)
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3. Percentile-based Ts evaluation

Temperature biases at three percentile thresholds of

the daily temperature distribution (5th, 50th, and 95th)

were calculated for eachmodel with respect toMERRA–

CRU. The 5th (95th) percentiles are chosen to be rep-

resentative of cold (warm) extremes and approximate

temperature in the tails of the distribution. Figures 1a–f

show the bias in median DJF temperature for each of the

sixNARCCAPRCMhindcasts.While the errors differ in

sign and magnitude, all models exhibit a warm bias over

the central and northern Great Plains. HRM3 exhibits

the largest warm biases with magnitudes exceeding 88C
over much of the domain while CRCM has an overall

cold bias.

All models have an area of positive median temper-

ature bias in JJA (Figs. 1g–l) over a portion of the Great

Plains with HRM3 again being the warmest (;68–88C).

All RCMs also exhibit a warm bias along the Pacific

coast of California and Baja California in JJA. This

systematic warm bias suggests that the RCMs are not

properly capturing the moderating influence of the rel-

atively cool Pacific Ocean along the coast. Overall, the

biases shown in both DJF and JJA are in qualitative

agreement with other studies that calculated bias in the

mean (Kim et al. 2013; Sobolowski and Pavelsky 2012;

Mearns et al. 2012) and daily maximum and minimum

temperature (Rangwala et al. 2012), suggesting that these

biases are robust features of the overall temperature

distribution and throughout the diurnal cycle. Much of

the warm bias over the western and southwestern United

States is coincident with a dry bias in mean precipitation

during the summer (Mearns et al. 2012). Bukovsky et al.

(2012) found that the NARCCAP RCMs were unable to

properly develop a realistic monsoon structure, in par-

ticular over Arizona, contributing to a dry bias here. It is

FIG. 1. Bias (8C) of the 50th percentile of the daily surface temperature distribution for (a)–(f) DJF and (g)–(l) JJA for each RCM with

respect to MERRA–CRU as discussed in section 3.
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likely that the systematic warm bias is related to a dry soil

moisture bias resulting, at least in part, from an un-

realistically low production of convective precipitation

associated with the North American monsoon and cen-

tral plains mesoscale convective systems. Such processes

are likely not properly resolved at the 50-km resolution of

the NARCCAP simulations.

Figures 2a and 2c show maps of the total number of

RCMs that have bias of the same sign at the 5th, 50th,

and 95th percentiles (i.e., systematically cold or warm

biased across the distribution as estimated at these

thresholds). In general, much of the central and western

portions of the domain show a plurality of models with

a systematic bias in DJF while the same tendency occurs

for the northern and western regions in JJA. All RCMs

show a systematic warm bias in DJF over the Central

Valley of California except for CRCM, which has a sys-

tematic cold bias, as evident in Fig. 1. RCM counts are

low in the U.S. Midwest or over much of Ontario and

northern Quebec in Canada for JJA. These regions tend

to have warm biases at the 50th and 95th percentiles, but

cold biases at the 5th percentile (not shown).

For additional perspective, the domain is further de-

composed into four subregions (black boxed in Fig. 2a),

chosen to broadly represent climate regimes and de-

fined as follows: West, including the U.S. Pacific Coast

and Rocky Mountains; North, including the Canadian

Rockies east to Newfoundland; Central, including most

of the U.S. Great Plains; and East, covering the Great

Lakes region, theU.S. Southeast, and theAtlantic coast.

Figures 2b and 2d show scatterplots of the mean bias for

each RCM and each subregion at the 5th percentile

versus the 95th percentile. The diagonal black line in-

dicates where the RCMs would lie if they had the same

bias at both percentiles, indicating a completely sym-

metrical shift of the distribution tails, as estimated at

these percentiles. RCMs to the left of the diagonal line

have a wider PDF than MERRA–CRU while RCMs to

the right have a narrower PDF. Similarly, RCMs falling

in the lower left and upper right quadrants are colder

and warmer at both tails while the biases are of opposite

sign for each tail in the upper left and lower right

quadrants. In bothDJF and JJA,most models have a net

widening with fewer models showing a net narrowing.

In DJF, many of the RCMs fall near the one-to-one line,

consistent with the generally high values in Fig. 2a.

In the North subregion, MM5I and WRFG are outliers

with large net widening. The Central (squares) and East

FIG. 2. (left) Number of ensemble members out of six that have the same sign bias at the 5th, 50th, and 95th

percentiles of the temperature distribution for (a)DJF and (c) JJA.A value of 6 (0) indicates that all (no)RCMs have

positive or negative bias for all three percentiles. The black boxes in (a) outline the four subregions used in sub-

sequent analysis and are described in section 3. (right) The mean bias (8C) of the 5th vs the 95th percentiles of the

temperature distribution for each ensemble member for each subregion as outlined in (a), for (b) DJF and (d) JJA.

The color and symbol legends are in (d). The black diagonal line indicates where the symbol would lie if the bias were

the same for both percentiles. Results are discussion in section 3.
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(stars) subregions during JJA are the farthest away from

the one-to-one line, consistent with the low values in

Fig. 2c for the same regions.

Figure 3 shows the mean bias for nine percentiles

across the PDF for each RCM and the multimodel en-

semble in a similar format to that used in Kjellström
et al. (2010). Mean biases are computed for the East and

West subregions in DJF and the Central and North sub-

regions in JJA. The outstandingHRM3warm bias persists

across the distribution in both DJF and JJA Central sub-

region while CRCM is systematically among the coldest

RCMs. The intraensemble spread increases from low to

high percentiles for JJA Central subregion with very large

positive biases in the warm tail. While all RCMs produce

extreme heat events that are unrealistically severe over the

Central subregion, HRM3 stands out with a mean warm

bias of nearly 88C at the 99th percentile.

In some cases, the spread in bias within a subregion

can dampen the mean values plotted in Fig. 3. For ex-

ample, the mean bias at the 50th percentile for HRM3

JJA North subregion in Fig. 3d is small; however, in

Fig. 1i it is evident that some of this low bias is a result of

averaging warm and cold biases and not an indication of

superior model performance. Figure 4 uses a box-and-

whisker format to show the extent of the spread in biases

at the 5th and 95th percentiles. In many cases, the mean

biases in Fig. 3 are representative of the region. For ex-

ample, HRM3 shows a predominantly warm bias for all

four panels in Fig. 3. In many cases the RCMs showing

low mean bias in Fig. 3 also have a narrow range of bias

values, indicating highmodel fidelity. CRCM, ECP2, and

MM5I forDJFEast subregion and JJACentral subregion

exemplify this. In other cases, the box-and-whisker plot

identifies cases where the lowmean bias can be deceptive.

The WRFG 5th percentile mean biases are low for DJF

East and West subregions; however, there are a consid-

erable number of grid points with relatively large nega-

tive and positive biases. This is also the case for HRM3

JJA North subregion 5th and 95th percentiles, similar to

the 50th percentile bias in Fig. 1i.

4. Evaluation of variance and skewness

Whereas the analysis in section 3 focused on tem-

perature bias at multiple percentiles to estimate dif-

ferences in model-simulated PDFs, this section uses

higher-moment statistics to evaluate the shape of the

distributions. Because of the important relationship

between temperature variability, the length of the dis-

tribution tails, and extremes, the standard deviation

(SD) and skewness of model simulated Ts are compared

againstMERRA–CRU. In what follows, all analyses use

temperature anomalies to allow for easy comparison of

PDF shape between datasets as all have a mean of 0.

a. Standard deviation

The ratios between the SD of daily Ts for each model

and MERRA–CRU in DJF are displayed in Fig. 5.

FIG. 3. Mean bias averaged over the (a) East and (c) West subregions for DJF and (b) Central and (d) North

subregions for JJA for the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th percentiles. The line colors correspond

to the legend in (d) and the black line is the multimodel ensemble. The subregions are defined in Fig. 2a.
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Values greater (less) than one indicate where the model

has a higher (lower) SD than MERRA–CRU. To test

for significance, a bootstrapping procedure is applied as

follows. For a given RCM/MERRA–CRU pair for

a given year, the data pair is randomly determined to

remain the same or be swapped. In other words, if a coin

flip resulted in heads, the data pair would remain the

same. If a coin flip resulted in tails, the entire MERRA–

CRU and RCM 90-day (for DJF) season would be

swapped so that MERRA–CRU would have the RCM

data and the RCMwould have theMERRA–CRUdata.

This is repeated for each year, keeping the entire sea-

sons intact. Once a new randomly generated pair of

datasets is constructed, the ratio of the SD of the new

RCM to the new MERRA–CRU is computed. This is

repeated 1000 times and the ratio is determined to be

significant if the two-tailed p value is less than 0.01. Only

significant grid cells are shaded in Fig. 5. The RCMs

generally show values greater than one in the northern

portion of the domain, with the exception of RCM3, and

lower than or near one over the southern Great Plains

and southeastern United States.

In many examples (MM5I, CRCM, HRM3, and

WRFG) the most striking areas of positive bias are

present to the north of the region of maximum SD in

MERRA–CRU (Fig. 5a). The band of high variance

(stretching from the northwest corner of the domain

southeast along the eastern edge of the Canadian

Rockies and into the northernGreat Plains) is in an area

highly influenced by large temperature fluctuations due

to synoptic-scale weather events associated primarily

with warm advection from lower latitudes and cold ad-

vection from higher latitudes (Loikith et al. 2013). Areas

north of this region are among the coldest in the hemi-

sphere, limiting daily temperature variability on the cold

side of the PDF and leading to lower variance. For this

reason, much of the variability in daily temperature

occurs only on the warm side of the PDF here. This is in

contrast to the band of higher SD to the south, which is

characterized by a PDF that is more symmetrical about

the mean. The tendency for the models to have positive

SD bias north of this region of climatologically large

variance indicates that models expand this high variance

region substantially northward comparedwithMERRA–

CRU. One possible mechanism for this feature is a storm

track that is displaced or extended too far north. The

notable negative bias inHRM3 in the southern half of the

domain and positive bias in the northern third indicates

that the band of high variance apparent in MERRA–

CRU is diminished in the south and enhanced or ex-

tended in the north. Coupled with the outstanding warm

bias (Fig. 1c), this may suggest a storm track that is dis-

placed substantially northward.

Figure 6 shows the SD ratios for JJA. While the daily

temperature variability is lower in the summer com-

pared with winter, resulting in overall lower SD values,

the ratio is generally higher than for DJF. Overall, SD is

higher in all six models over most of the domain with

values below one in the north in CRCM, MM5I, and

RCM3. All RCMs experience a notable positive variance

FIG. 4. Box-and-whisker plots showing the temperature bias (8C) for every grid cell within the indicated subregion

for the 5th and 95th percentiles of the temperature distribution (indicated with a 5 and 95 after the RCM name

respectively). Plots are for seasons and subregions (a) DJF East, (b) JJACentral, (c) DJFWest, and (d) JJANorth as

in Fig. 3. The red line indicates the median temperature bias and edges of the blue box are at the 25th and 75th

percentiles. The black dashed lines extend to 1.5 times the interquartile range with outliers plotted as red plus signs.
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bias along and to the north of the Gulf of Mexico coast

where MERRA–CRU shows relatively small standard

deviations (;18–28C).
Notably, all datasets have higher SD along the Pacific

Coast. Climate variability here is influenced largely by

occasional offshore wind events producing anomalously

warm Ts values (e.g., Santa Ana events in southern

California; Hughes and Hall 2010). It is possible that the

positive SD bias is indicative of a tendency for more

frequent and/or intense offshore wind events. Ratios are

FIG. 5. (a) DJF standard deviation (8C) forMERRA–CRU. (b)–(h) Standard deviation ratios forDJF computed as

the ratio of the standard deviation of daily temperature anomalies for the RCM to the standard deviation of the daily

temperature anomalies for MERRA–CRU. Only grid cells determined to be statistically significant (two-tailed p

value ,0.01) according to a bootstrapping procedure are shaded (see section 4a for discussion).
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generally close to one and largely nonsignificant over

the U.S. Southwest and the Rocky Mountains.

Results of the evaluation of SD are summarized for

the four subregions in Table 2. The values represent

the spatial mean of the ratios as calculated and plotted

in Figs. 5 and 6, except all grid cells contribute to the

mean, not just significant ones. When averaged over the

subregions, variance ratios are generally very close to

one indicating that the variance over- or underestimates

are not too severe in most cases. The relatively large

ratios in JJA over the south-central United States are

reflected in the elevated mean values for the JJA Cen-

tral and East subregions. Of all regions and seasons, DJF

for the Central subregion shows the ratios closest to one

FIG. 6. As in Fig. 5, but for JJA.
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across the ensemble where synoptic-scale meteorology,

generally unimpeded by complex topography or coastal

zones, dominates daily temperature variability. This sug-

gests that the RCMs simulate storm strength and fre-

quency with reasonable fidelity here.

b. Ts skewness

As opposed to variance, which primarily describes the

width of the PDF, skewness is more directly related to

extreme values as it describes the shape of the tails and

the degree of PDF symmetry. The models capture the

MERRA–CRU (Fig. 7a) large-scale skewness pattern,

with positive skewness in the northeast, a large coherent

region of relatively strong negative skewness extending

from the northwest to the Great Lakes, and modest

skewness over the southeastern United States. The most

notable differences lie in the magnitude of skewness.

HRM3 is an outlier and has negative skewness extend-

ing much farther north thanMERRA–CRU, which may

have a physical relation to the fact that it is also the

warmest RCM at all percentiles (e.g., Fig. 1c). It is in-

teresting to note that the transition zone from primarily

negative (south) to positive (north) skewness corre-

sponds to the band where relatively few models have

bias of the same sign at all percentiles (Fig. 2). Models

may have difficulty accurately capturing this spatial

transition inTs regime, leading to errors in the simulated

PDF shape. Notably, no RCMs have the negative to

positive skewness transition biased to the south.

Model fidelity in simulating skewness in winter is

likely indicative of differences in the simulation of large-

scale climate mechanisms, including mechanisms asso-

ciated with extremes (Loikith et al. 2013). Details of

these mechanisms and their relationship to extremes are

examined in an observational study by Loikith and

Broccoli (2012). For example, in winter the PDFs in the

northern region have long warm tails resulting from ad-

vection of relatively warm air from lower latitudes. Ad-

vection of cold anomalies of comparable magnitude from

the north rarely occurs because the air in this region is

climatologically among the coldest in the hemisphere,

reducing variability on the cold side of the tail as dis-

cussed in section 4a. Models that show more restricted

regions of positive skewness (e.g., HRM3 and MM5I)

would generate extremewarmevents less frequently than

in MERRA–CRU; models that show stronger positive

skewness in this region (e.g., RCM3 and WRFG) may

simulate the occurrence of warm advection events too

frequently in the region. In addition to having skewness

that is more positive than MERRA–CRU, WRFG also

has a colder background climate in this region (Figs. 1, 3),

with a warm bias to the south. Under conditions of

northward advection into the cold-biased region, extreme

warm anomalies may occur that contribute to the positive

skewness bias. RCM3 has similar skewness error as

WRFG, but with warm biases over this region and cold

biases to the south, making it more difficult to propose

a mechanism here.

Another illustrative example in DJF is the region of

negative skewness encompassing Oregon, Washington,

and British Columbia. Climate in this region is generally

dominated by cool maritime air that suppresses the oc-

currence of extreme warm events, especially close to the

coast. Extreme cold events occur when air originating

from high continental latitudes is advected into the re-

gion. Such events are rare, however, because inland

mountain ranges prevent cold, dense, and often shallow

Arctic air masses from advecting westward. Many RCMs

exhibit skewness that is more negative than the reference

here. This suggests that these datasetsmay generatemore

frequent, severe, and extensive extreme cold air out-

breaks than in reality. HRM3 and CRCM capture this

feature with the highest fidelity. Here, HRM3 is the only

model that generates substantially warm biases at the 5th

percentile (Fig. 3c), supporting the hypothesis that the

more negative skewness simulated bymostmodels results

from unrealistically frequent cold outbreaks. In all cases

except for HRM3, the biases at the 95th percentile are

warmer than at the 5th percentile, further contributing to

an asymmetry in model error that disproportionately af-

fects days in the cold tail.

Figure 8 shows skewness for JJA. MERRA–CRU

shows predominantly negative or weak skewness through-

out the domain with positive skewness along the Pacific

coast. The differences between the models and the refer-

ence data aremore substantial than inDJF; however,many

TABLE 2. Mean standard deviation ratios by subregion for DJF and JJA. All values are used including those from grid cells that are not

determined to be statistically significant.

CRCM ECP2 HRM3 MM5I RCM3 WRFG ENS

DJF 5th DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

West 1.1 1.1 1.2 1.2 1.0 1.2 1.1 1.1 1.1 1.2 1.1 1.2 1.1 1.2

North 1.1 1.0 1.1 1.1 1.1 1.1 1.3 1.0 1.0 1.0 1.2 1.2 1.2 1.1

Central 1.0 1.3 1.1 1.3 0.9 1.7 1.1 1.4 1.0 1.7 1.0 1.3 1.0 1.5

East 1.1 1.3 1.1 1.1 0.9 1.4 1.1 1.2 1.1 1.3 1.1 1.2 1.1 1.3
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features are realistically reproduced. For example, the

negative skewness over the Rocky Mountains is cap-

tured by all RCMs. This is coincident with low stan-

dard deviation ratios in Fig. 6, suggesting that the

RCMs are reproducing the PDFs with skill here. All

ensemble members also reasonably capture the band

of positive skewness along the Pacific coast. Here, the

moderating effects of the Pacific Ocean inhibit both

cold and warm extremes most of the time. Occasional

offshore wind events block the moderating effects of

the ocean and lead to large excursions on the warm

side of the distribution. The agreement here suggests

that the RCMs are able to realistically capture these

rare events.

FIG. 7. Skewness of DJF daily temperature anomalies for (a) MERRA–CRU (as reference), (b)–(g) the RCMs, and

(h) the multi-RCM ensemble. See section 4b for discussion.
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Skewness is not as well reproduced along the Gulf of

Mexico coast and over the eastern United States.

MERRA–CRU shows predominantly negative skew-

ness along the U.S. Gulf Coast, while all RCMs but

MM5I show predominantly positive skewness. This area

also coincides with large positive variance biases in

Fig. 6, with themost far reaching and strongest biases for

HRM3 and RCM3. These RCMs also show the largest

disagreement for skewness, indicating substantial error

in the overall RCM-simulated PDFs here. Along the

U.S. Gulf Coast during summer, daily temperature

variability is low and the occurrence of synoptic-scale

weather events that are often associated with advection

of anomalous Ts are rare. As a result, the tails of the

distribution are likely influenced largely by variations in

insolation, precipitation, and land surface conditions.

For example, soil moisture has been associated with the

occurrence and implicated as a source of amplification

FIG. 8. As in Fig. 7, but for JJA.
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and persistence for heat waves (Hong and Kalnay 2000;

D’Odorico and Porporato 2004; Fischer et al. 2007;

Loikith andBroccoli 2014).On the other hand, decreased

insolation because of clouds and evaporative cooling

from rain can result in anomalously cool temperatures

and climatologically humid air originating from the Gulf

of Mexico may enhance latent heat flux sufficiently to

limit extreme warm events here. This thermodynamic

limitation on extreme warmth combined with more op-

portunity for unusually cool days likely results in the

negatively skewed PDF here. The notable RCM dis-

agreement may result from difficulties in producing re-

alistic convective clouds and precipitation that result in

relatively large excursions on the cold side of the PDF.

Figures 7 and 8 are quantitatively summarized using

a Taylor diagram in Fig. 9. Consistent with the qualita-

tive discussion above, all RCMs perform similarly well

in DJF with the exception of HRM3.While all ensemble

members exhibit larger spatial variance of skewness

than MERRA–CRU, as indicated by variance ratios

greater than one, the spatial variances of skewness for

CRCM and the ensemble are the closest to the refer-

ence. Figure 9 reflects the large differences between

MERRA–CRU and the RCMs for JJA skewness, with

HRM3 showing the largest error for JJA as well. All

RCMs in JJA also have variance ratios greater than one

except for ECP2 while the multi-RCM ensemble (ENS)

has nearly the same variance as MERRA–CRU.

c. Individual cases

The PDFs for four individual grid points are plotted in

Fig. 10. Each case corresponds to an example identified

in RN2012 as having non-Gaussian behavior in at least

one tail. All locations are chosen as the closest grid point

to the actual observation station located at the major

airport for each city used in RN2012. The 0.58C resolu-

tion of the data makes it difficult to make a fair quan-

titative grid point to station comparison, especially in

areas of complex terrain. Therefore these examples are

intended as a qualitative evaluation of the ability of the

RCMs to reproduce key features of the probability

distributions documented in RN2012. All distributions

are defined as frequencies of occurrence computed from

temperature anomalies binned every 0.58C. For refer-

ence, Gaussian PDFs are plotted with the same SD as

MERRA–CRU.

All datasets exhibit a short warm tail and a long cold

tail in DJF for Seattle (Fig. 10a) and Chicago (Fig. 10b),

supported by the negative skewness values. In both of

these locations, RN2012 show long cold tails, with the

asymmetry more pronounced in Seattle. In the scenario

of a uniform shift in the PDF toward warmer conditions,

both locations would experience a greater increase in

warm extremes compared with locations with a long

warm tail and a smaller decrease in cold extremes

compared with a location with a Gaussian or short cold

tail. In general, the multimodel ensemble variance and

skewness are very similar in both cases. Figure 8 in-

dicates that in all datasets, Seattle is positioned near the

strongest (coastal) part of a long, large-scale feature of

negative skewness that stretches from the U.S. West

Coast to near Chicago. This suggests a substantial role of

large scales in the air mass advection creating these long

cold tails. While this may make it less surprising that the

models do qualitatively well at capturing the long tail in

this region, it also helps to boost confidence in using

these models to predict changes in this feature.

Figure 10c is for Houston, Texas, where RN2012 show

a wide cold tail, similar toMERRA–CRU. For this case,

all RCMs show a wider distribution at both tails (with

the exception of WRFG on the cold side) with a fairly

symmetrical multi-RCM ensemble distribution. The

larger variance and wider tails suggests that the RCMs

may oversimulate conditions such as anomalously low

soil moisture associated with extreme warmth while also

oversimulating days with heavy rainfall and low in-

solation associated with cool conditions.

FIG. 9. Taylor diagram comparing the spatial patterns of skew-

ness for DJF (red) and JJA (blue). The values along the radial axes

are the ratio of the RCM spatial standard deviation of skewness to

the reference spatial standard deviation of skewness. The azi-

muthal axis is the pattern correlation and the distance from the

REF point (MERRA–CRU) is equivalent to the centered root-

mean-square error, normalized by the reference spatial standard

deviation. Skewness values are weighted by the square root of the

cosine of latitude before computing the Taylor diagram metrics.

Each RCM is labeled by a number as defined in the legend in the

upper-right corner of the figure.
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RN2012 show wide warm tails for JJA in Los Angeles

and nearby Long Beach, California, using station data.

In this region, the prevailing surface wind trajectory is

from the relatively cool Pacific Ocean, preventing large

temperature excursions on both sides of the PDF while

infrequent offshore wind events can cause large excur-

sions on the warm side. This feature is not well captured

by the MERRA–CRU distribution or the majority of

the RCMs. This may reflect the complex terrain and

sharp climate gradients that lie between the coast

(where the station observations are taken in RN2012)

and the warmer interior. There is, however, reasonable

agreement in the shape of the distributions at this grid

cell, with notable symmetry apparent for all datasets.

CRCM stands out as very closely matching MERRA–

CRU here as well. It is encouraging that the RCMs are

able to reproduce many of the observed features of the

distribution in this complex region; however, for more

societally relevant evaluation and model projections,

higher resolution is a necessity here.

5. Discussion

The results presented in this work are based on a sin-

gle reference dataset and interpolation scheme both

deemed to be superior over other possible choices.

These choices, while deliberate, introduce a level of

subjectivity to the analysis. This section explores the

sensitivity of the results to these choices.

a. Sensitivity to choice of reference data

This evaluation required a reference dataset pro-

viding Ts at relatively high spatial and temporal resolu-

tion over North America. Reanalysis meets these

criteria; however, the MERRA–CRU dataset was cho-

sen because it has the virtue of being bias corrected with

in situ observations. Nonetheless, observational un-

certainty can be similar in magnitude to individual

model biases, presenting a challenge in model evalua-

tion (Gómez-Navarro et al. 2012). In this section the

sensitivity of the evaluation results to the choice of

reference is explored using four additional datasets

(section 2b). Two of the datasets are computed using

the same methods used in creating MERRA–CRU and

two are standard reanalysis products. For brevity, this

section focuses on the bias of median temperature for

DJF and JJA and JJA skewness, although all metrics

are impacted to some degree by the choice of reference.

Figure 11 shows theDJF and JJA bias inmedianTs for

all four datasets in reference to MERRA–CRU. Dif-

ferences between MERRA–CRU and ERA-Interim–

CRU and NCEP–CRU products are generally between

FIG. 10. Sample probability distributions of temperature anomalies for four locations corresponding approxi-

mately to examples presented in RN2012, as discussed in section 4c. Temperature anomalies are binned every 0.58C
and the bin counts are normalized by the maximum bin count for each dataset and plotted on a log scale. The black

X’s are forMERRA–CRUand the colored dots are for the individual RCMs as defined in the legend at the bottom of

the figure. The ENS is represented by black dots. The dashed curve is a Gaussian fit to the MERRA–CRU distri-

bution using the standard deviation of the entire distribution. The skewness (SK) and the standard deviation (SD) of

MERRA–CRU (in boldface) and the multi-RCM ensemble are indicated at the top right of each panel.
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218 and 118C. While the CRU TS3.10–based bias cor-

rection reduces uncertainty relative to the original re-

analysis, sources of uncertainty remain. For example,

the bias correction is only performed using monthly

means from CRU TS3.10, introducing some uncertainty

at the daily and subdaily time scales. Additional uncer-

tainty arises from the temporal interpolation used to

produce data at hourly time steps for the non-MERRA

products. The uncertainty is nevertheless reduced in

these datasets compared with the unadjusted reanalyses

(Wang and Zeng 2013).

The differences between standard reanalysis and

MERRA–CRU are much greater. NARR shows biases

as large as 4–68C in DJF while the unadjusted MERRA

Ts is warmer than MERRA–CRU by a similar margin.

JJA differences are similar to DJF in magnitude, except

both NARR andMERRA show similar primarily warm

biases. The biases in NARR and MERRA compared

with MERRA–CRU are as large as or larger than some

of the RCM biases for median temperature. As such,

evaluation results could be quite different if either re-

analysis was used as the primary reference. Table 3 shows

FIG. 11. Bias (8C) of the 50th percentile of the daily surface temperature distribution for (a),(e) ERA-Interim–

CRU, (b),(f) NCEP–CRU, (c),(g) MERRA, and (d),(h) NARR in reference to MERRA–CRU. Bias maps of

temperature are for DJF in (a)–(d) and JJA in (e)–(h). See sections 2 and 5a for further information on datasets.
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how the RMS of the spatial bias changes depending

on the reference data used. Differences are very small

between the CRU TS3.10 adjusted datasets; however,

biases computed using NARR or MERRA show greater

differences resulting in larger or smaller error depending

on the RCM. These results suggest caution should be

exercised if using traditional reanalysis as an observa-

tional basis for model evaluation of 2-m temperature.

JJA skewness is also associated with relatively large

reference data uncertainty in some regions. The left

column of Fig. 12 shows JJA skewness for the CRU-

based datasets and the right column for traditional re-

analysis. All datasets capture the positive skewness

along the Pacific coast and the negative skewness over

the western mountains of the United States and Canada

consistently. These are the same features that the RCMs

exhibited high fidelity in reproducing. The largest dif-

ferences are in the southern United States, especially

along the Gulf of Mexico coast. All datasets show neg-

ative skewness over this region except for MERRA.

The CRU TS3.10 bias-corrected MERRA shows some

positive skewness over Texas and northern Mexico, but

this feature is greatly diminished over the non-bias-

correctedMERRA. If theRCMperformancewere to be

judged using all reference datasets but MERRA, the

results would be qualitatively similar, showing consis-

tently low fidelity. However, if MERRAwere employed

as the reference dataset, the RCMs (WRFG in partic-

ular) would show substantially higher fidelity. While not

shown here, other work further implicates MERRA as

an outlier. Loikith and Broccoli (2012) show negative

skewness in this region in July using gridded tem-

perature observations from the Hadley Centre Global

Historical Climatology Network–Daily (HadGHCND)

dataset (Caesar et al. 2006). Perron and Sura (2013) also

show negative skewness over most of the southern

United States using NCEP–NCAR Reanalysis 1 and

Cavanaugh and Shen (2014) show negative skewness

over the same regions using station data. RN2012 show

a long cold tail using station data at Houston. It is pos-

sible that similar processes contribute to the seemingly

spurious positive skewness in MERRA and in the

RCMs: improper representation of convective clouds

and precipitation and/or incomplete or incorrect cou-

pling with the land surface.

b. Sensitivity to interpolation procedure

Kriging is chosen as the primary interpolation scheme

for this study because it results in less smoothing of spatial

detail than averaging-based interpolation methods and is

capable of producing values outside the range of inputs.

This is particularly true when using surface elevation as

a covariate, as is done here. Kriging also better preserves

high-frequency variations in the data and terrain in-

fluences on Ts, which makes it an attractive method for

this work. However, the data interpolated with kriging

yield very similar results to data interpolated using linear-

and cubic-based Delaunay triangulation.

To quantify the similarity, the root-mean-square

(RMS) value of the spatial bias for the 5th (95th) per-

centiles of DJF (JJA) temperature for each subregion is

shown in Table 4 for all three interpolation methods.

Overall, the results are insensitive to the choice of re-

gridding with most cases showing the same or nearly the

same RMS bias for all three methods. There is some in-

dication of kriging resulting in a reduction in overall bias

in some regions with complex topography. For example,

many RCMs show a cold bias over the Central Valley of

California. This bias is reduced in the kriging-based re-

sults compared with the Delaunay triangulation-based

results, likely resulting from the elevation correction (not

shown). In addition to impacting extremes, interpolation

can have an effect on variance, especially if averaging is

performed. The standard deviation ratios, however, are

similarly insensitive to the choice of interpolation based

on these three relatively sophisticated techniques.

TABLE 3. The root-mean-square value of the spatial bias for the entire domain computed relative to each reference dataset (rows) for each

RCM (columns). The top rows are for DJF and the bottom for JJA.

CRCM ECP2 HRM3 MM5I RCM3 WRFG

DJF

MERRA–CRU 2.7 3.2 6.4 2.6 4.0 3.5

ERA-Interim–CRU 2.6 3.3 6.4 2.5 4.1 3.4

NCEP–CRU 2.8 3.2 6.2 2.5 4.0 3.4

MERRA 2.8 3.5 6.6 2.8 4.4 3.1

NARR 3.9 2.2 4.8 2.0 2.7 4.0

JJA

MERRA–CRU 2.0 1.9 3.8 1.9 1.7 1.9

ERA-Interim–CRU 2.1 1.9 3.8 1.9 1.7 2.0

NCEP–CRU 2.1 1.8 3.6 2.0 1.8 2.0

MERRA 2.9 1.3 2.9 2.8 2.1 1.5

NARR 3.0 1.2 2.7 2.8 2.2 1.7
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6. Summary and conclusions

Multiple methodologies are employed to evaluate

daily surface temperature distributions from a suite of six

NARCCAPRCMhindcast experiments against a dataset

based on MERRA reanalysis and CRU TS3.10 gridded

surface temperature observations, with sensitivity to

choice of reference data and interpolation methods also

examined. RCMbiases are identified and quantifiedwith

many RCMs showing systematic, and in some cases

large, biases in the temperature distribution at all per-

centiles (Figs. 1–4). In many cases, additional PDF

structure biases are found. While temperature biases,

especially those that are systematic across the entire

probability distribution, can be accounted for and cor-

rected in model output, error in model-simulated PDF

FIG. 12. Skewness of JJA daily temperature anomalies for (a) MERRA–CRU, (b) ERA-Interim–CRU,

(c) NCEP–CRU, (d) MERRA, and (e) NARR as discussed in section 5a.

TABLE 4. The root-mean-square value of the spatial bias for each subregion for data interpolated using (left) kriging-, (center) linear-, and

(right) cubic-based interpolation methods. Values for DJF (JJA) are for the 5th (95th) percentiles of the temperature distribution.

CRCM ECP2 HRM3 MM5I RCM3 WRFG

DJF 5th

West 3.2, 3.2, 3.2 1.8, 2.0, 2.0 5.7, 5.8, 5.8 1.9, 1.9, 1.9 2.0, 2.1, 2.1 2.6, 2.7, 2.7

North 3.9, 3.8, 3.9 3.3, 3.6, 3.6 6.2, 6.2, 6.2 3.8, 3.7, 3.8 6.3, 6.4, 6.4 5.5, 5.4, 5.5

Central 1.6, 1.6, 1.6 1.3, 1.3, 1.3 7.6, 7.6, 7.6 1.4, 1.4, 1.4 2.1, 2.1, 2.1 3.2, 3.2, 3.2

East 2.3, 2.2, 2.3 1.2, 1.3, 1.3 4.9, 5.2, 5.1 2.1, 2.2, 2.3 2.8, 2.8, 2.8 2.6, 2.7, 2.7

JJA 95th

West 2.3, 2.2, 2.2 3.0, 3.1, 3.1 6.3, 6.2, 6.2 2.1, 2.1, 2.2 2.8, 2.8, 2.9 2.2, 2.2, 2.2

North 2.2, 2.3, 2.3 2.8, 3.0, 3.0 3.8, 3.9, 4.0 2.5, 2.6, 2.6 1.9, 1.9, 1.9 3.0, 3.0, 3.1

Central 2.7, 2.7, 2.7 3.6, 3.6, 3.6 7.9, 7.9, 7.9 2.3, 2.2, 2.3 4.0, 3.9, 4.0 3.4, 3.3, 3.4

East 2.0, 1.9, 1.9 1.2, 1.3, 1.3 4.4, 4.3, 4.3 0.9, 0.9, 1.0 1.9, 1.9, 1.9 1.3, 1.3, 1.3
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morphology is more problematic. In particular, error

related to the tails of model-simulated PDFs will impact

the accuracy with which models simulate extremes.

Variance is generally higher than MERRA–CRU

across all RCMs in the northern portion of the domain in

winter and throughout the domain in summer while in

winter variance is smaller or similar to MERRA–CRU

in the south (Figs. 5 and 6). The low variance bias over

the U.S. Southwest in JJA coincides with reasonable

skewness agreement suggesting PDF shape is well re-

produced by the RCMs over this region of complex

terrain. Conversely, large positive variance biases over

the eastern and southeastern portions of the domain

coincide with large RCM-reference disagreement for

skewness, indicating difficulty in simulating PDF shape

here and suggestive of problems with simulating tem-

perature extremes. Several factors may be related to

these discrepancies including differing cloud and pre-

cipitation representation and how the air temperature is

coupled with land surface characteristics. In the winter,

the major patterns in skewness (i.e., positive skewness in

the northeastern part of the domain and negative

skewness to the south) are realistic in most models

(Fig. 7).

Comparison of temperature PDFs for selected loca-

tions to those previously analyzed from station data

(Fig. 10) can be particularly useful when interpreted in

light of these skewness maps. Long cold tails in the

distribution of wintertime daily temperature anomalies

seen for locations such as Seattle and Chicago are rea-

sonably well simulated in the models. These are part of

a coherent region of negative skewness that stretches

from the U.S. Northwest to the Great Lakes region that

is likewise reproduced in the models with reasonable

fidelity. Long warm tails in the summer temperature

distribution for the Los Angeles region are not captured

by the RCMs or reference data, likely because the grid

resolution is too coarse to accurately reflect the coastal

climate of Los Angeles. The RCMs are unable to cap-

ture the key features of the distribution tails for Hous-

ton. For such features that validate reasonably well, the

models may be used in future work to further analyze

the dynamics yielding the long tails. Predictions of

changes in extreme temperature occurrences, such as

under global warming, may also be more reliable for

these regions where the tail characteristics for present

climate are comparable to observations. On the other

hand, identifying regions such as along theGulf ofMexico

in the summer where the skewness and tail characteristics

do not validate well can help pinpoint regions where

confidence would currently be lower in statements about

extreme temperature occurrences, and where model de-

velopment efforts might productively be focused.

The impact that the choice of reference dataset can

have makes interpretation of evaluation results difficult

if not properly assessed. Based on three reanalysis–CRU

TS3.10 combined datasets, results appear robust with

little difference depending on which of the three refer-

ences are used. Results differ considerably in some cases

if standard MERRA or NARR datasets are used as

reference. These differences include larger or smaller

total temperature bias and substantial differences in JJA

skewness, with meaningful implications for the inter-

pretation of model performance. The use of unadjusted

reanalysis alone would make it difficult to constrain ref-

erence data uncertainty as different reanalysis assimila-

tion procedures can result in large biases (e.g., Wang and

Zeng 2013). This further suggests that caution in the

choice of reference data should be exercised and in-

dicates a need for more high temporal and spatial reso-

lution Ts observation products.

An important future direction in understanding RCM

PDF uncertainty, and the inherent relationship this un-

certainty has to temperature extremes, is to use this in-

formation to investigate mechanisms that are linked to

model error. While evidence exists connecting extreme

temperature events to larger-scale, low-frequency modes

of climate variability such as ElNiño–SouthernOscillation

and the Arctic Oscillation (Kenyon and Hegerl 2008),

which largely occur outside of the domain of these RCMs,

Loikith and Broccoli (2014) show that in many places ex-

treme temperatures are also associated with local, ampli-

fied, transient weather events that could be examined on

an RCM domain. Evaluation of such mechanisms will

further identify discrepancies in dynamical processes.

Additional analysis of model-simulated soil moisture,

cloud cover, and precipitation will also be useful for un-

derstanding error in summertime extremes.
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