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ABSTRACT
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The most commonly used version of a Linear Inverse Model (LIM) is

forced by state independent noise. Although having several desirable qual-

ities, this formulation can only generate long-term Gaussian statistics. LIM-

like systems forced by correlated additive-multiplicative (CAM) noise have

been shown to generate deviations from Gaussianity, but parameter estima-

tion methods are only known in the univariate case, limiting their use for the

study of coupled variability. In this paper we present a methodology to calcu-

late the parameters of the simplest multivariate LIM extension that can gener-

ate long-term deviations from Gaussianity. This model (CAM-LIM) consists

of a linear deterministic part forced by a diagonal CAM noise formulation,

plus an independent additive noise term. This allows the possibility of repre-

senting asymmetric distributions with heavier-or lighter-than-Gaussian tails.

The usefulness of this methodology is illustrated in a locally coupled 2 vari-

able ocean-atmosphere model of midlatitude variability. Here a CAM-LIM

is calculated from Ocean Weather Station data. Although the time resolved

dynamics is very close to linear at a time scale of a couple of days, significant

deviations from Gaussianity are found. In particular individual probability

density functions are skewed with both heavy and light tails. It is shown that

these deviations from Gaussianity are well accounted for by the CAM-LIM

formulation, without invoking nonlinearity in the time resolved operator. Es-

timation methods using knowledge of the CAM-LIM statistical constraints

provide robust estimation of the parameters with data lengths typical of geo-

physical time series, e.g., 31 winters for the Ocean Weather Station here.

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

4



1. Introduction44

Multivariate linear theory has been used to great success in practically all realms of climatic sci-45

ence. One widely applied linear method is the Linear Inverse Model (LIM) (Penland and Sardesh-46

mukh 1995) framework, in which a linear approximation to a system dynamics is empirically47

obtained from the a system’s covariance statistics. In this framework, a linearly stable system de-48

scribing the evolution of a “slow” variable anomalies (e.g. sea surface temperatures anomalies), is49

driven by Gaussian white noise representing the effect of unresolved “fast” variability (e.g. wind50

stress, convection, etc) on the slow variable (Papanicolaou and Kohler 1974; Penland 1996). It51

is a common practice to restrict the noise forcing the LIM to be state independent (additive), and52

while often providing valuable results, it is not required by these kinds of systems. This kind of53

model has been used successfully as a forecast tool (Newman 2013), and performs well when the54

underlying slow deterministic dynamics is linear or weakly non-linear.55

Despite the qualitative (and often quantitative) success of linear inverse models, these kind of56

models are unable in general to reproduce observed deviations from Gaussianity, when driven57

by additive Gaussian white noise. These deviations from Gaussianity are typified for example58

in skewed (asymmetric) or kurtotic (lighter or heavier than Gaussian distribution tails) probabil-59

ity density functions (PDFs). Deviations from Gaussianity in geophysical variables distributions60

are commonplace and well documented (e.g., Monahan 2004; Neelin et al. 2010; Ruff and Neelin61

2012; Stefanova et al. 2013; Loikith et al. 2013; Perron and Sura 2013; Cavanaugh and Shen 2014;62

Huybers et al. 2014; Loikith and Neelin 2015; Sardeshmukh et al. 2015), and can be generated63

through multiple dynamical processes. Perhaps the most intuitive of these mechanisms is through64

nonlinearity in the deterministic dynamics, with the models of Timmermann et al. 2001, Kratsov65

et al. 2005, Kondrashov et al. 2006, Chen et al. 2016 (among others), providing examples in the66

5



inverse modeling setting. Simple advective-diffusive prototypes for passive tracers under a mean67

gradient can produce distinct non-Gaussianity, most evidently at the distribution tails (Bourlioux68

and Majda 2002; Neelin et al. 2010). Other mechanisms that lead to non-Gaussianity include cross69

frequency coupling (Rennert and Wallace 2009), jet stream meandering (Luxford and Woollings70

2012), first passage processes (Stechmann and Neelin 2014; Neelin et al. 2017). Sura and Han-71

nachi (2015) provide a comprehensive review on the mechanisms that generate deviations from72

Gaussianity in the atmospheric sciences.73

Alternatively, even if the deterministic term (i.e., the term in which noise is not explicit) is linear,74

deviations from Gaussianity may arise through interactions between a slowly evolving system and75

fast transients forcing the system, if the fast transients depend on the state of the system (Sura76

et al. 2005). Strictly speaking, any differential equation with stochasticity in it represents a treat-77

ment of nonlinearity at some level. That is where dynamical stochasticity originates. A linear78

system forced with additive noise represents a coarse-graining long enough that all of the state79

dependence, if any, of the nonlinear effects is averaged out. In that case, the Central Limit The-80

orem (CLT) applies strongly enough to render the statistics of the measured state approximately81

Gaussian. When the timescale separation between the linear decay and the rapid non-linearities82

is too small to invoke such a strong version of the CLT, but is large enough to average out the83

details of the nonlinearities, the system may be modeled as a linear process with state dependent84

(multiplicative) noise. Thus, unlike additive noise, the multiplicative noise processes that drive the85

deterministic dynamics explicitly depend on the system state (e.g. sub-daily wind variance depen-86

dence on storminess or blocking, or surface fluxes depending on local stability). Multiplicative87

noise is well established as a source of non-Gaussianity (Penland 2003; Sura et al. 2005; Majda88

et al. 2008; Sardeshmukh and Sura 2009; Franzke et al. 2015; Sura and Hannachi 2015; Berner89

et al. 2017), and has been employed to model several aspects of climate variability including El90

6



Niño Southern Oscillation (Perez et al. 2005; Jin et al. 2007; Levine and Jin 2017), and extra91

tropical variability (Neelin and Weng 1999; Sura et al. 2005).92

For evaluation and comparison purposes, it is important to establish a baseline for variability,93

including deviations from Gaussianity, that can be explained through a multilinear deterministic94

system that integrates (possibly) state dependent noise. In order to do that it is necessary to have95

a simple methodology to extract the multiplicative noise information from data. This has proven96

difficult because the state dependent noise, as elaborated below, in general contributes to both the97

“signal” and the “noise”, so disentangling its contribution is not straightforward. Thus, despite98

important progress on the matter (e.g., Siegert et al., 1998; Peavoy et al., 2015), a simple method-99

ology to calculate the state dependent noise from data in a statistically consistent way has been100

lacking. The development of this methodology, tailored to linear deterministic systems driven by101

multiplicative noise, is the primary goal of this paper.102

In general, fast variability may depend not only on the magnitude of the system anomalies, but103

also on their sign. This to a first approximation can be modeled through a type of noise formula-104

tion termed Correlated Additive-Multiplicative (Müller 1987; Sura et al. 2006; Sardeshmukh and105

Sura 2009; Majda et al. 2009; Penland and Sardeshmukh 2012; Sardeshmukh and Penland 2015;106

Sardeshmukh et al. 2015; Franzke 2017) noise or CAM noise. Mathematically the CAM noise107

amplitude depends linearly on the state of the system, and this dependency is allowed to be asym-108

metric with respect to the mean. This asymmetry is expected in systems where the fast variability109

is modulated differently whether the system is in its positive or negative state, which naturally110

leads to skewness. This is the case when linearizing the effects of rapid wind variability on fluxes111

affecting ocean mixed layer dynamics (Sura et al. 2006; Sura and Newman 2008). For example112

Sura et al. 2006, studying an ocean mixed layer model, finds at least two (related) sources for113

this noise amplitude asymmetry. The first one arises due to ocean-atmosphere mean state temper-114
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ature differences. This affects the sensible and latent heat fluxes driven by rapid wind variability115

at the ocean-atmosphere interface, and can be mapped directly onto a CAM noise term. The sec-116

ond source arises due to the different sensitivity of boundary layer stability to positive or negative117

anomalies. This contribution, while not precisely following a CAM noise form (a piecewise linear118

function would be better), can be approximated by it.119

In addition to the noise amplitude asymmetry, the CAM noise linear state dependency is impor-120

tant because it modifies the probability of noise events as the system evolves, leading to higher121

probability of extreme events (at least in one tail), compared to similar systems forced by pure ad-122

ditive noise. In fact, in the univariate case it can be shown that the skewness S and excess kurtosis123

K−3 are related such that1 (Sura and Sardeshmukh 2008; Sardeshmukh and Sura 2009)124

K−3≥ 3
2

S2. (1)

Several variables have been found to follow such a parabolic K − 3 ≥ 3
2S2 − δ relationship125

(Sardeshmukh and Sura 2009; Sardeshmukh and Penland 2015; Sardeshmukh et al. 2015; Sura126

and Hannachi 2015), where δ > 0 is a small offset that occurs possibly due to sampling effects. In127

other words, this framework produces heavy tailed distributions (although considering the skew-128

ness generated one of the tails may be light at values less than about 10 standard deviations. At129

larger values, the tails behave similarly. We ignore these extreme tails in what follows.), and is an130

attractive candidate to correctly model extreme events (Sardeshmukh et al. 2015).131

Henceforth in this paper, we will consider the next step in complexity beyond estimating param-132

eters from the standard LIM (driven by additive noise) and LIM applied to the univariate CAM133

system (Sardeshmukh et al. 2015). That is, we consider a Linear Inverse Model driven by a sim-134

plified diagonal CAM noise formulation (CAM-LIM). Although this formulation neglects CAM135

1Note that Sardeshmukh et al. 2015 derives a stricter bound K− 3 ≥ 15
8 S2. This is discussed in section 3b in the context of the multivariate

system presented here.
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noise covariance and nonlocal state dependency (see for example Sardeshmukh and Sura 2009136

equations 4a-4b), it is a more general model than used in previous applications, and allows for the137

generation of deviations from Gaussianity in a linear deterministic setting.138

To calculate CAM noise in a LIM setting, consistency relations between the CAM-LIM parame-139

ters and the statistics generated by it will be derived. In this way a statistical dynamical description140

of a system is calculated, which can be employed for multiple purposes, including the construc-141

tion of realistic forecasts and representation of its scatter, as well as the study of the underlying142

processes that generated the observations. Importantly the employment of this model can be used143

as a baseline for the variability expected from deterministic linear dynamics, and raises the bar144

for claims of nonlinear behavior. In order to do this we use the Stratonovich Fokker-Planck equa-145

tion (Fokker 1914; Kolmogoroff 1931. See Gardiner 2010 for a discussion of Ito (Ito 1951) and146

Stratonovich (Stratonovich 1966) calculi) ;147

∂ p(x, t)
∂ t

=−∑
i

∂ (Ai(x, t)p(x, t))
∂xi

− 1
2 ∑

i, j,m

∂

∂xi
(
∂Fim(x, t)

∂x j
Fjm(x, t)p(x, t))

+
1
2 ∑

i, j,m

∂ 2

∂xix j
(Fim(x, t)Fjm(x, t)p(x, t)), (2)

which is the equation satisfied by the PDF of a deterministic system driven by Gaussian white148

noise:149

dxi

dt
= Ai(x, t)+∑

m
Fim(x, t)ηm. (3)

In this equation Ai encodes the deterministic dynamics and Fim the amplitude of noise process ηm150

affecting variable xi, and Ito’s circle is implied. For future reference we will clarify the terminology151

used in (2). The first term in that equation corresponds to the “deterministic drift”, the second152

term is known as the “noise induced drift” and is zero if the noise is independent of the state of153

the system, and the last term is usually called the “diffusion”. For a heuristic explanation of the154

noise induced drift see Sura and Newman 2008 (section 2). It is worth pointing out that in the LIM155
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framework, only a combination of deterministic drift and noise induced drift, known as effective156

drift, can be inferred from data, rather than the terms separately (Penland 2007). An important157

result from the framework presented herein is that, within the confines of this model (section 3),158

the deterministic and noise induced drifts can be separately resolved.159

Stochastic modeling has been used to study different aspects of climate variability (see Berner160

et al. 2017 for a review). In particular simplified versions of (3) have provided important insight161

into the nature of ocean-atmosphere interactions in the mid latitudes (e.g., Frankignoul and Has-162

selmann 1977, Hall and Manabe 1997, Barsugli and Battisti 1998, Sura et al. 2006, Sura and163

Newman 2008). We will illustrate the derivation of the CAM-LIM parameters, and the general164

usefulness of the model by constructing a 2 variable model of ocean-atmosphere thermal coupling165

in mid latitudes, empirically derived from an Ocean Weather Station data. The remainder of this166

manuscript is organized as follows. Section 2 presents a brief overview of the LIM framework.167

Section 3 introduces the CAM-LIM, some important simplifications, and the derivation of the pa-168

rameters of the model as a function of its statistical structure. Additionally the constraint (1) is169

updated to include the effects of the coupling. Section 4 exemplifies this in the previously men-170

tioned 2 variable thermal coupling model, and results are compared to the standard LIM modeling171

of the same system. Finally, section 5 concludes the paper.172

2. Brief Review of Linear Inverse Modeling173

In this section we present a brief overview of the LIM (Penland and Sardeshmukh 1995). In this174

framework an N component state vector of anomalies x evolve according to the following linear175
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equation (also written in component notation for future use):176

dx
dt

= Mx+Sη (4)

dxi

dt
=

N

∑
j=1

Mi jx j +
L

∑
l=1

Silηl. (5)

In this equation M is a constant N ×N matrix, S is a state independent N × L matrix of noise177

amplitudes, and η is a L component vector of Gaussian white noise processes. Note that the noise178

covariance matrix SST has an N×N dimensionality. The matrix M denotes the slow time resolved179

linearized dynamics, while the temporally unresolved fast variability is modeled by the noise input180

Sη . In this framework M is a stable operator so the system needs the stochastic input to generate181

variance. Here the diagonal terms (Mii < 0) correspond to an effective measure of dissipating182

processes that depend linearly on variable xi and the system is coupled through the Mi j (i 6= j)183

terms. Finally, the matrix M can be calculated from data (von Storch et al. 1988; Penland and184

Sardeshmukh 1995) using:185

M =
1
τ

log(CτC−1
0 ). (6)

where Cτ =< x(τ)x(0)T > is the lag covariance matrix at lag τ , and C0 =< x(0)x(0)T > is the186

contemporaneous covariance matrix. Here <> denotes a long term average.187

Given an initial condition x(0), the most probable evolution x(t) of the system is (Penland 2007)188

x(t) = eMtx(0). (7)

There is one key difference in how this multilinear system behaves compared to its univariate189

version (x(t) = e−λ tx(0), λ > 0). In absence of stochastic forcing the one-dimensional system190

decays exponentially, while in the multilinear case short-term growth is possible if the dynamics191

of the system are non-normal (MMT 6=MTM, e.g. Boyd 1983, Farrell 1988, Borges and Hartmann192

1992, Penland and Sardeshmukh 1995, Moore and Kleeman 1999, Thompson and Battisti 2000,193
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Zanna and Tziperman 2005, Vimont 2010, Sévellec and Fedorov 2017, Martinez-Villalobos and194

Vimont 2017). This makes possible the use of this framework as a forecasting tool (Penland and195

Sardeshmukh 1995; Penland 1996; Johnson et al. 2000; Alexander et al. 2008; Newman et al.196

2011; Zanna 2012).197

There are balance conditions in the dynamics of stochastically generated systems that can be de-198

duced from the Fokker-Planck equation (2). In statistical steady state, the Fluctuation-Dissipation199

relation (e.g. Leith 1975, Penland and Matrosova 1994 , DelSole and Hou 1999, Ghil et al. 2002,200

Gritsun et al. 2008) relates the state variables covariance C0 =< xxT > to the noise processes201

covariance SST as:202

MC0 +C0MT +SST = 0 (8)

where we also write this relation in component notation for future reference203

∑
l
(Mnl < xlxk >+< xnxl > Mkl)+∑

m
SnmSkm = 0. (9)

This can be understood as a covariance budget, where the fluctuating stochastic input is dissipated204

by the deterministic dynamics, so statistical steady state is attained.205

The LIM framework is and has been used extensively to study the state of the tropical Pacific206

(Penland and Sardeshmukh 1995; Penland 1996; Newman et al. 2011; Vimont et al. 2014; Capo-207

tondi and Sardeshmukh 2015), tropical Atlantic (Penland and Matrosova 1998; Vimont 2012), as208

well as extra tropical dynamics (Alexander et al. 2008; Zanna 2012; Newman 2013; Newman et al.209

2016). In the tropical Pacific the forecast of sea surface temperature (SST) anomalies through this210

method is competitive compared to forecasts provided by General Circulation Models (Newman211

and Sardeshmukh 2017). The LIM framework provides a good description of the state variables212

contemporaneous and lagged covariances if the temporally resolved dynamics is close to linear,213

but it is not designed to account for long term deviations from Gaussianity, for example asymmet-214
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ric behavior between positive and negative anomalies, and different than Gaussian frequency of215

extreme events.216

3. Linear Inverse Model driven by Correlated Additive-Multiplicative noise (CAM-LIM)217

In this section we introduce a CAM-LIM framework, calculate several formulas to extract the218

multiplicative noise information from data, and derive and discuss the constraints that this formu-219

lation puts on the statistical moments generated.220

a. Model Derivation221

In order to retain the advantages of the LIM approach, and also account for deviations from222

Gaussianity while keeping the modifications to a minimum, we consider a LIM-type model driven223

by a simple CAM noise formulation, assuming diagonal dominance in the multiplicative term.224

Similarly to the standard LIM, a slow variable integrates fast random forcing, but in this case the225

random forcing amplitude depends on the slow variable state itself. The model is given as follows:226

dxi

dt
=

N

∑
j

Ai jx j +
N

∑
m=1

(Gi +Eixi)δimηm +
L

∑
m=N+1

Bimηm−Di (10)

Here xi corresponds to the i component of a state vector x of anomalies and A is an N×N matrix227

that encodes the linearized deterministic dynamics of the system. Entries Aii < 0 corresponds to228

deterministic dissipating processes that depend linearly on xi, and the system is coupled through229

the Ai j terms (i 6= j). The system is driven by L Gaussian white noise processes ηm whose ampli-230

tudes Fim (in keeping with the notation of equation 3) are given as follows231

Fim = (Gi +Eixi)δim for m = 1 to N

Fim = Bim for m = N +1 to L. (11)
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The first set of coefficients ((Gi +Eixi)δim) correspond to the CAM noise processes. Here Eixi232

corresponds to a “local” state dependency for the noise amplitude, and Gi accounts for the part233

of the additive noise that is correlated to the state dependent (multiplicative) noise. The second234

set of coefficients (Bim) denote the amplitude of additive noise processes uncorrelated to the CAM235

noise. For simplicity this formulation neglects direct nonlocal noise state dependency, although236

part of the nonlocal effects can be captured (if local and nonlocal variables are correlated) through237

this simple local state dependency. In this formulation the CAM noise processes affect the indi-238

vidual noise variances (as seen below), while the pure additive noise carries the noise covariances239

information. An important feature of this model is that the noise amplitude is asymmetric with240

respect to the mean, i.e. the magnitude of the CAM noise amplitude is zero at xi = −Gi
Ei

rather241

than at xi = 0. This will produce an expected mean noise induced drift that can be removed from242

the equation for the anomalies (10) by a term Di =
1
2EiGi (Sardeshmukh and Sura 2009). In the243

univariate case this model corresponds exactly to the one proposed and solved by Sardeshmukh244

and Sura 2009.245

The use of a diagonal CAM noise formulation (one independent process per variable) and the246

neglect of direct nonlocal noise state dependency are important simplifications, but allows us to247

calculate relatively simple formulas for the CAM-LIM parameters. Using this particular CAM248

noise formulation is the logical first step to introduce noise state dependency in a LIM framework,249

and it is in the spirit of, though more general than, the principle of diagonal dominance postulated250

by Sardeshmukh and Sura (2009, section 6). This principle states the increasing importance of251

the self correlation terms in representing the higher order statistics of a system, and explains the252

success of the univariate version of this model in representing the observed deviations from Gaus-253

sianity in several climate variables (Sardeshmukh and Sura 2009; Penland and Sardeshmukh 2012;254

Sardeshmukh et al. 2015; Sura and Hannachi 2015). Here in addition to the terms considered by255
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Sardeshmukh and Sura, coupling between the variables and noise covariance effects are incor-256

porated. This allows for the calculation of joint statistics. Despite these simplifications, in most257

cases the model will be enough to display a realistic representation of the emergent non-Gaussian258

behavior, while maintaining all the advantages of the standard LIM framework.259

Multiplying the Fokker-Planck equation (2) by the appropriate moment of x and integrating over260

from -∞ to ∞ we can calculate an equation for the first two moments of the system. In statistical261

steady state,262

d < xk >

dt
= ∑

l
(Akl +

1
2

E2
k δkl)< xl >= 0 (12)

d < xnxk >

dt
= ∑

l
((Anl +

1
2

E2
n δnl)< xlxk >+< xnxl > (Akl +

1
2

E2
k δkl))

+∑
m

BnmBkm +G2
nδnk +E2

n < x2
n > δnk = 0 (13)

Comparing to (9) and imposing that both standard LIM and CAM-LIM describe the first two263

moments of the system in the same way, the following relations obtain:264

Mkl = Akl +
1
2

E2
k δkl. (14)

(SST )nk = (BBT )nk +G2
nδnk +E2

n < x2
n > δnk (15)

These relations relate the parameters of a standard LIM to the parameters of a CAM-LIM. Here265

(14) makes explicit the partition of the effective dissipating processes Miixi into a deterministic266

part Aiixi, and a noise induced modification 1
2E2

i xi. Also (15) enforces that both standard LIM267

and CAM-LIM reproduces the same noise covariance, with the right hand side of the expression268

amounting to a partition of it between pure additive terms and CAM noise processes. Formulas to269

calculate all these terms from data are derived in the appendix, with some important ones repeated270

below.271
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Under CAM-LIM, it can be shown that the best prediction (in the mean square sense) of the272

evolution of the state vector 2 given a current state x(0) is also given by (7) (Penland 2007)273

x(t) = eMtx(0) (16)

which further justifies the use of the notation shown in (14). Also (14) and (16) reiterate the274

message that in general when calculating the matrix M from data, that determination not only275

includes the linearized deterministic drift, but also a noise-induced drift component that may be276

confused with deterministic dynamics (Penland and Matrosova 1994). Equation (13) generalizes277

the fluctuation-dissipation relation to include the extra CAM noise terms. From the Fokker-Planck278

equation we can also calculate an equation for the system (unnormalized) skewness (< x3
k >) and279

kurtosis (< x4
k >) budgets. Again, in statistical steady state:280

d < x3
k >

dt
= 3∑

l
Mkl < xlx2

k >+6EkGk < x2
k >+3E2

k < x3
k >= 0 (17)

d < x4
k >

dt
= 4∑

l
Mkl < xlx3

k >+6(∑
m

B2
km +G2

k)< x2
k >+12EkGk < x3

k >+6E2
k < x4

k >= 0.

(18)

Combining the information provided by the first four statistical moments (equations 12, 13, 17,281

18) we may find an expression for the CAM-LIM parameters as282

E2
j =

(−2K j j +3S j jS j j +6V j j)

3(K j j−1−S2
j j)

(19)

G j =−
1
2

C1/2
j j

E j
(E2

j S j j +S j j) (20)

(BBT ) j j =−(2V j j +E2
j )C j j−G2

j (21)

where matrices V, S, and K entries are defined as283

Vi j =
< xix j >

< x2
j >
≡

Ci j

C j j
Si j =

< xix2
j >

< x2
j >

3/2 Ki j =
< xix3

j >

< x2
j >

2 , (22)

2In this case the mean of the conditional PDF will not correspond in general to its most probable value (Penland 2007).
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matrices denoted with a bar are defined as284

V = MV S = MS K = MK, (23)

and Ci j denote particular entries of the covariance matrix C0 (C j j is the variance of variable x j).285

The non-diagonal elements of BBT are calculated using (15). Notice that S j j and K j j are just the286

skewness and kurtosis of variable x j. Note that in the multivariate case shown here variable xl287

influences xk (l 6= k) skewness and kurtosis through M. Analogous to the univariate case (Sardesh-288

mukh and Sura 2009) the statistics generated by the CAM-LIM are constrained in a distinctive289

way. These constraints are explored in more detail in the section below. Remaining aspects of the290

derivation are shown in the appendix.291

b. CAM-LIM constraints on the statistics292

In general, the moments of a CAM-LIM generated dataset (10) are necessarily constrained. The293

first constraint (denoted as C1) can be derived from (19) and is given as follows3 for variable x j294

C1(x j) =−K j j +
3
2

S j jS j j +3V j j ≥ 0. (24)

This constraint reduces to (1) in the univariate case (which is a good consistency check), and shows295

that given a non-zero real amplitude of the multiplicative noise term, the CAM-LIM will generate296

variability that is typically kurtotic. This is a manifestation of the increased chances for the system297

to make extreme event excursions, due to the noise amplitude state dependency.298

A second constraint arises because the pure additive covariance matrix BBT needs to be positive299

definite (see equation 15). This constraint (denoted as C2) may be written as300

C2 = det(BBT )≥ 0; (25)

3Notice that the denominator of (19) is always positive (Wilkins 1944).
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This constraint necessarily, but not sufficiently, requires the following inequality (denoted with a301

′
) to be satisfied as well (equation 21)302

C
′
2(x j) =−(2V j j +E2

j )C j j−G2
j > 0. (26)

The last inequality, given that C1 has already been satisfied, ensures that the additive noise vari-303

ances are positive. Basically this limits the contribution of the CAM noise to the total noise304

covariance. In the univariate case simultaneous consideration of constraints C1 and C2 leads to an305

stricter relation between kurtosis (K) and skewness (S) K− 3 ≥ 15
8 S2 (Sardeshmukh et al. 2015).306

Although a similar (but more complicated) relation could be derived in the multivariate case, here307

we keep both constraints separate. These relations will be explored in practice in section 4c.308

4. Modeling mid latitude ocean-atmosphere local coupling using CAM-LIM309

In this section we apply the CAM-LIM methodology to a simple dataset that has been investi-310

gated in the literature (Hall and Manabe 1997; Sura et al. 2006; Sura and Newman 2008). A simple311

model of ocean-atmosphere coupling in the mid latitudes is calculated from data, and compared312

to observations. The CAM-LIM parameters estimation procedure is described in detail, and the313

information provided by the constraints described above is used to improve the calculation of the314

parameters.315

a. The Models316

Simple linear stochastic models have been extensively used to study ocean-atmosphere interac-317

tions (e.g., Frankignoul and Hasselmann 1977; North and Calahan 1981; Kim and North 1992;318

Hall and Manabe 1997; Barsugli and Battisti 1998; Sura et al. 2006; Wu et al. 2006; Sura and319

Newman 2008; Smirnov et al. 2014). These kinds of systems are simple enough that can be320

regarded as a null hypothesis or baseline against which distinctively nonlinear variability can be321
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compared. Here we show the usefulness of this framework by modeling the local midlatitude322

ocean-atmosphere coupling using both standard LIMs and CAM-LIM frameworks. The CAM-323

LIM and standard LIM are given as follows324

dTi

dt
= ∑

j
Ai jTj + ∑

l>2
Bilηl +(Gi +EiTi)ηi−

1
2

EiGi CAM-LIM (27)

dTi

dt
= ∑

j
Mi jTj +∑

l
Silηl LIM (28)

where Ti is the i component (i = 1,2) of vector T = [Ta To]
T . Here Ta and To represent near sur-325

face atmospheric and surface oceanic temperature anomalies at a particular mid latitude location.326

Standard LIM and CAM-LIM parameters are defined as in (5) and (10) respectively, and can be327

calculated using (6) and (9) in the standard LIM case, and (6), (19), (20), and (21) in the CAM-328

LIM case. LIM and CAM-LIM parameters are related as in (14), and (15). Although nonlocal329

noise state dependency (i.e., dxi
dt = ...+Ei jx jη terms, i 6= j) is expected for this kind of interaction330

(e.g. Neelin and Weng 1999, Sura and Newman 2008), the simple CAM noise formulation used331

here provides satisfactory results (as seen below), especially compared to a standard LIM. Interest-332

ingly, within the confines of this model formulation, the noise part 1
2E2

i and deterministic part Aii333

contributions to Ti effective damping term Mii can be cleanly separated out using this framework.334

Below we show the result of the previously stated calculations.335

b. Models Parameter Estimation336

To estimate parameters for our models (27) and (28) we use Ocean Weather Station (OWS)337

data (For information on OWS see Diaz et al. 1987, and Dinsmore 1996), specifically OWS Papa338

(OWS P) in the North Pacific. OWS P is located far from strong currents (Hall and Manabe 1997),339

and is only affected weakly by ENSO (Alexander et al. 2002), thus providing an ideal location to340

construct these models.341
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We consider daily data from January 1 1950 to December 31 1980 (total 31 years). T̄a and T̄o342

climatologies are constructed using the annual mean plus the first three annual Fourier harmonics.343

Anomalies (Ta and To) are computed by subtracting the respective daily climatologies. The few344

unavailable daily values (∼ 1.5% of the total) are neglected when computing the climatologies,345

and February 29 values are neglected as well. A 3 day running mean is applied to the anomalies,346

and only “extended winter” (November to April) values are considered to construct the model.347

Finally Ta and To are standardized for easier comparison. Note that using standardized variables is348

only done for further plotting convenience. To help gauge the results the standard deviations are349

σ(Ta) = 1.30oC and σ(To) = 0.67oC.350

The parameter estimation algorithm starts with the calculation of M from data using (6). This351

requires T = [Ta To]
T contemporaneous and lag covariance matrices. For our calculations we use352

a lag τ of 6 days. Notice that both LIM and CAM-LIM generate the same lag covariance matrix as353

required by (7) and (16). Importantly, both linear models provide an excellent representation of the354

observed lag correlation functions, as seen in figure S1 (Supplemental Material). The remaining355

model parameters are calculated using (9) for the standard LIM case, and (19), (20), (21), (13),356

and (14) for the CAM-LIM case. The sensitivity of the Ei and Gi calculated values to the choice357

of lag is fairly minor, with maximum variations respect to the values quoted below of the order of358

∼ 10% for reasonable choices of lag (figure S2). The results for the CAM-LIM model are given359
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as follows:360

M =

−0.231 0.069

0.013 −0.025

 E1 = 0.139 E2 = 0.046 G1 =−0.397 G2 = 0.087

A =

−0.241 0.069

0.013 −0.026

 BBT =

0.222 0.037

0.037 0.028

 C0 =

 1 0.462

0.462 1

 .

(29)

We notice that the effect of the state dependent noise on the damping of each variable is relatively361

minor (compare A11 with M11 for example). The values of Ei (the amplitude of the multiplicative362

noise) and Gi (the amplitude of the additive noise correlated to the multiplicative noise) differ from363

what would be calculated in an univariate setting (uncoupled system, no noise covariance). For364

example E1 and E2 would be overestimated by 12% and 27% [calculated using equation 19 in the365

univariate case (Mi j = 0 when i 6= j), or alternatively using Sardeshmukh et al. 2015 equation 8]366

had we assumed individual, CAM noise driven, univariate models for Ta and To.367

It is tempting to compare the calculation of these parameters (29) to Sura and Newman (2008)368

modeling of the same dataset (their equations 29, 34, 36). Although superficially similar, the two369

models differ in several respects making the comparison difficult. The model presented here is370

totally empirical, while Sura and Newman’s takes into account the dynamical equations. Having371

somewhat different objectives, the two models make different assumptions which prohibit their372

direct comparison. For example while the CAM-LIM simplified noise formulation allows for a373

direct estimation of the noise amplitudes, it will not directly represent some of the nonlocal ef-374

fects in Sura and Newman’s model. It is important to emphasize that in the CAM-LIM case there375

are no assumptions as to where the noise is coming from, whereas Sura and Newman neglect376

some potentially important processes (ocean currents, vertical entrainment, variable mixed layer377

depth, mixing) in order to highlight deviations from Gaussianity arising from the effect of state378
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dependent rapid wind fluctuations on sensible and latent heat fluxes at the air-sea interface. Due379

to the positive mean climatological ocean-atmosphere temperature difference almost everywhere,380

models restricted to local air-sea interaction can only generate positive SST skewness (Sura and381

Sardeshmukh 2009). Although SST skewness is positive at OWS P, there are many parts of the382

globe where skewness is negative (Sura and Sardeshmukh 2008; Sardeshmukh and Penland 2015).383

Comparing to the dimensional reduction strategy employed in Sura and Sardeshmukh 2009 (their384

equation 16 or 19), CAM-LIM independent Ta deterministic components on (27) allows for the pa-385

rameterization of other processes, besides air-sea temperature difference. This implies that unlike386

models restricted to local air-sea interactions, CAM-LIM is able to generate negative SST skew-387

ness as well, if the data support it. Despite these differences, the two types of models (loosely388

speaking ”empirical” and ”dynamical”) are complementary and taken together help inform the389

relative importance of local air-sea interaction vs other processes.390

To compare both the standard LIM (28) and CAM-LIM (27) with observations we run both391

models 10 times for 1000 years each with the calculated parameters (29) using the stochastic392

Heun integration method (Rümelin 1982; Ewald and Penland 2009). We remove the first 50 years393

of each integration as spin up time, for a total of 9500 years of LIM and CAM-LIM generated time394

series. We use an integration time step of 3 minutes and collect daily output. This corresponds to395

9500 full years of (3 day running mean) daily values, or equivalently to 19157 extended winters396

of 181 days.397

Using the generated datasets we calculate the Ta and To joint PDFs produced by each model398

(Fig. 1b for standard LIM, and Fig. 1c for CAM-LIM), and we compare them with the observed399

joint PDF in figure 1a. The joint PDFs are calculated using a bivariate Gaussian kernel density400

estimator, and shading denotes the difference from a best fit bivariate normal distribution. As401

expected the standard LIM produces a Gaussian joint PDF. On the other hand, although there402
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are differences at the finer scale, the CAM-LIM performs noticeably better at reproducing the403

observed deviations from Gaussianity. Visually, some of the differences between the observed and404

CAM-LIM joint PDFs may look important, most strikingly what appears to be two local maxima405

separated by a local minimum. Here we note that similar “inhomogeneities” in the joint PDF406

do arise in other contexts, most notably in the study of atmospheric “regimes” (e.g., Kimoto and407

Ghil 1993, Smyth et al. 1999), where they are usually explained as arising through nonlinear408

deterministic dynamics. It is shown below that those inhomogeneities in this case likely appear409

due to limited sampling and are well explained by the CAM-LIM framework.410

Given the extended LIM and CAM-LIM integrations one may ask how the observations compare411

with LIM and CAM-LIM integrations of the same length. Figure 2 shows the difference between412

the observed joint PDF and Monte-Carlo estimates for the LIM joint PDF (2a) and CAM-LIM413

joint PDF (2b). For each model Monte-Carlo PDF estimates are obtained for each of 617 different414

31 year periods (181 extended winter days per year) contained within the respective 9500yr sim-415

ulations, and averaged to obtain the dashed curve. Shading indicates regions where the observed416

PDF falls outside of the 2.5th or 97.5th percentile calculated from the 617 LIM and CAM-LIM417

PDF estimates. Comparing 2a and 2b it is visually apparent that the observed variability can be418

better explained through the CAM-LIM formulation. Although there are some spots where the419

observed and CAM-LIM joint PDFs are different (at the 95% confidence level), noticeably for420

strong positive Ta, for the most part the CAM-LIM provides a good model to explain the observed421

variability, including the deviations from Gaussianity. We note that both LIM and CAM-LIM have422

problems explaining the largest Ta anomalies, although that problem is much more reduced in the423

CAM-LIM case. Here we point out that the inhomogeneities in the observed joint PDF are non424

significant and can be well explained by a CAM-LIM null hypothesis at the 95% confidence level.425

In addition, only one local maxima in the observed joint PDF deviates significantly from Gaussian426
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as seen in fig. 2a. Given the good correspondence between observed and CAM-LIM joint PDFs,427

it is suggested that even a coarse noise state dependency, as presented here, may significantly428

improve coupled variability statistics.429

A similar analysis can be conducted for the distribution of the individual variables. Figure 3430

shows the observed, standard LIM and CAM-LIM generated Ta and To cumulative density func-431

tions (CDFs) in a linear axis. Similarly as before confidence intervals are calculated using a432

Monte-Carlo procedure. An important difference between the standard LIM and CAM-LIM is433

that CAM-LIM generates asymmetric confidence intervals, –with narrower spread for positive Ta434

and negative To, where the noise amplitudes are smaller (see equation 29)–, whereas the LIM435

generates symmetric confidence intervals. The top panels (3a,b) show the CDFs in the middle436

range of the data (between -2 and 2 standard deviations). Both observed Ta (3a) and To (3b) CDFs437

are well within the 95% confidence interval generated by both LIM and CAM-LIM (not shown),438

although even in this range the CAM-LIM fit is noticeably better. The middle panel and lower439

panel shows the CDFs at the negative tails (3c,d) and positive tails (3e,f) respectively. For clarity440

figures 3c-f are also shown in a logarithmic y axis in figure S3. As seen in these panels, it is for441

extreme events where the differences between the standard LIM and CAM-LIM are most evident.442

With the exception of the largest positive Ta anomalies (Ta > 2.5σ(Ta) ≈ 3.3oC, see figure S3c),443

the CAM-LIM produces a better fit of the observed variability at the tails, including both light and444

heavy tails. For example this is seen in the heavier than Gaussian tail of negative Ta, and the lighter445

than Gaussian tail of negative To. With only the aforementioned exception, the observations stay446

within the 95% confidence level generated by the CAM-LIM realizations, whereas for the most447

part that is not the case for the standard LIM, where only the To negative tail is well captured. To448

put numbers in perspective, a negative Ta value of 3 standard deviations (an anomaly of ∼−4oC)449

occurs 5 times more frequently in both observations and CAM-LIM, than in the standard LIM.450
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A general understanding of the data distribution, including the behavior of the tails, can be found451

by calculating the distribution’s skewness and kurtosis. Table 1 shows the observed skewness and452

kurtosis, as well as the values calculated using the full LIM and CAM-LIM integrations. As453

expected the standard LIM skewness and kurtosis matches the ones of a Gaussian distribution.454

Even though the match is not perfect, it is evident that the CAM-LIM provides a closer match to455

observations.456

There is an important degree of variability in the statistics as a function of the length of the457

data segment considered for the calculations. Figure 4 shows the skewness (S) and excess kurtosis458

(K−3) distributions when partitioning the standard LIM and CAM-LIM generated time series in459

segments of 31 winters (the length of the OWS P observations) as done before. First, note that460

although the fitting works better for Ta than To, in both cases the observed skewness and excess kur-461

tosis are within the 95% confidence interval generated by the CAM-LIM realizations. Conversely462

the observed skewness and kurtosis values fall outside the standard LIM confidence interval in all463

cases, implying that the observed deviations from Gaussianity are a feature of this locally coupled464

system, and are not due to limited sampling. Second, note that the values of skewness and kurtosis465

in the different CAM-LIM realizations are fairly variable. For example there are several segments466

where To and Ta excess kurtosis is bigger than 2 (K−3 99th percentiles are 2.21 and 3.36 respec-467

tively), implying a much higher than average number of extreme events over that interval. On the468

other hand, for example, there are segments where To excess kurtosis is negative, meaning that469

although the system generates long-term heavy tailed variability, quiet extreme events periods are470

not unusual. This variability shows that the CAM-LIM generative process (equation 27) supports471

a wide range of 31 years climates. This implies that for this system important swings, owing to472

internal dynamics, in the number of extreme events decade to decade, or even century to century,473
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is what is normal, rather than the anomaly. This has important consequences, for example, for474

hypothesis testing of extreme events (Sardeshmukh et al. 2015).475

c. Parameter Estimation and CAM-LIM generated statistical constraints476

In this section we analyze how well the parameter calculation algorithm (19), (20), (21) performs477

on the CAM-LIM generated variability, that uses (29) as input parameters. This is an important478

self-consistency check as the output parameters from the estimation procedure should match the479

input parameters. When using the full CAM-LIM integration as our time series we retrieve the480

following values:481

M =

−0.232 0.068

0.013 −0.025

 E1 = 0.140 E2 = 0.046 G1 =−0.397 G2 = 0.085

A =

−0.241 0.068

0.013 −0.026

 BBT =

0.224 0.037

0.037 0.028

 . C0 =

1.001 0.462

0.462 1.004

 .

(30)

The retrieved parameters compare very well with the input (29) with differences starting on the482

third decimal value, showing that the methodology is self-consistent (i.e., input parameters are re-483

lated to the statistics generated from (19, 20, 21)). As is the case for most stochastically generated484

systems, a long segment of data is needed for the retrieved parameters (30) to match the input485

parameters (29), and there will be some inherent variability when using shorter segments of the486

data, as shown below.487

Although the observational input data (and by construction the full CAM-LIM integration) sat-488

isfy the CAM-LIM constraints (24, 25, 26), for short enough segments of the data sampling vari-489

ability may cause these constraints to be not satisfied. Practically this becomes a problem because490

these “short enough” segments may be longer than the available data set for a particular appli-491
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cation. To partially overcome this we need a redefinition of the sample statistics that take into492

account constraints (24, 25, 26). This can be done in several ways. Taking into account the infor-493

mation provided by the constraints we choose a simple redefinition of matrix K on equation (22)494

(recall the entry K j j corresponds to variable j kurtosis) as the rescaled matrix (1+α)K (α ≥ 0).495

This is similar to the methodology used by Sardeshmukh et al. (2015) in the univariate version of496

this problem. The strategy is as follows. We increase α up to the point the first constraint (24) is497

satisfied for both variables4. But, as α is increased the second constraint (25) may or may not be498

satisfied. In most cases increasing α just to the point where the first constraint is satisfied results499

in E j values that are barely above zero, implying large G j values in order to satisfy the skewness500

and kurtosis budgets (17,18). If a particular G j is too large (26) is likely not satisfied. This implies501

that given the statistics, E j and G j values are constrained to be inside a surface defined by C1 (24)502

and C2 (25,26). Basically, increasing α allows us to find the interval of values that E j and G j can503

take to stay inside that surface. Although we are not guaranteed an unbiased calculation of E j and504

G j, following this procedure, we recover values that are at least within the much narrower band of505

possible values.506

As an example, figure 5 shows the histogram of E1 retrieved values when using data segments507

that match the length of the observational input (31 winters, 31× 181 = 5611 daily values, fig.508

5a,c), and 100 winters (100×181= 18100 daily values, fig. 5b,d) of the full CAM-LIM integration509

(∼ 3.47×106 daily values). For visual clarity there is a kernel density estimation of the distribution510

of E1 values superimposed to each histogram. In each 31 or 100 winters partition we show two511

different cases, one denoted “α = 0” and one denoted “α varying”. The α = 0 case shows the512

distribution of the retrieved values for the segments where both constraints (24, 25) are satisfied513

4This provides a conservative estimate. In this step we may choose to calculate the constraint variable by variable, and some variables may be

recovered faster.
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without modification of matrix K (38% for the 31 winters segment length case, and 69% of the time514

for the 100 winters case, see Fig. 5e), and the α varying case the distribution of retrieved values515

after the procedure described above is followed (K redefined as (1+α)K; note that this includes516

the α = 0 instances). The bright green point denotes the value of the input E1 parameter calculated517

from the observational data (equation 29). Figure 5e shows the percentage of times where the518

constraints are satisfied as a function of α . Some general takeaways from this figure are as follows.519

As might be expected, the longer the segment considered, the better representation of the long520

term statistics, and the faster (24) and (25) are satisfied (Fig. 5e). Also expectedly, segments521

that satisfy the aforementioned constraints without modification of K (α = 0) provide a better522

match of the long term statistics, though considerable sampling variability exists. Finally, although523

it can be further refined, the procedure of redefining the sample K matrix produces reasonable524

estimations, meaning that in this case approximated values can be retrieved by redefinition of the525

sample statistics. This result may prove useful in practice when using CAM-LIM to model other526

systems. Note that in general the noise terms are much harder to estimate. For example a length527

of 500 winters is needed for the standard deviation of E1 retrieved values to be within 10% of the528

input value (29). On the other hand, as expected, the “effective drift” values are estimated much529

faster, for example only needing segments of ∼ 25 winters for the M11 retrieved values standard530

deviation to be within 10% of the M11 input value.531

5. Concluding Remarks532

In this paper we consider a natural extension of the Linear Inverse Model framework. Here in533

addition to an additive Gaussian white noise component, the system is driven by a simple state534

dependent noise formulation, termed CAM noise (Sardeshmukh and Sura 2009). Compared to a535

standard LIM, this framework generates the same (lag and contemporaneous) covariance structure536
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and the same expected evolution of anomalies, while at the same time generating skewness and537

excess kurtosis. One important result is that the statistical moments generated by this system are538

constrained. One of the constraints identified here generalizes the well known univariate CAM539

noise constraint (equation 1) between skewness (S) and kurtosis (K) to include the effects of cou-540

pling and noise covariance. In common with the univariate case, the coupled time series generated541

are typically kurtotic, making this an attractive framework to model extreme events frequencies in542

many cases. The univariate constraint has been shown to be relevant for different climate variables543

(Sardeshmukh and Sura 2009; Sardeshmukh and Penland 2015; Sardeshmukh et al. 2015). We544

expect the multivariate constraint (24) to provide additional information for coupled datasets.545

We illustrate the general framework by using a locally coupled model of ocean-atmosphere in-546

teraction in mid latitudes. We calculated the model parameters using available sea surface temper-547

ature Ts and near surface atmospheric temperature Ta at an Ocean Weather Station. We show that,548

compared to a standard LIM, the CAM-LIM better reproduces the joint PDF of Ta and To as well549

as the individual PDFs. Importantly, both light and heavy tails are better described by the CAM-550

LIM formulation, which may be of interest also in the modeling of lighter than Gaussian tails (e.g.551

Loikith and Neelin 2015). Practical issues related to the implementation of the model, including552

the amount of data needed, were also discussed. An important point here is that knowledge of the553

statistical constraints arising from this framework can be used to improve the parameter estimation554

in cases where there is insufficient data to adequately resolve the statistics of the system.555

Although here we presented the concrete example of a mid latitude coupled model, we picture556

this framework to have wide applicability. In specific, any system where the time resolved dy-557

namics is reasonably linear, but significant deviations from Gaussianity are present, is susceptible558

to be modeled using CAM-LIM. Here we note that the model has been tested in other contexts,559

including higher dimensional systems, with good results (Martinez-Villalobos 2016). Implicit in560
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the derivation of this framework is a separation of the dynamics between slow and fast timescales.561

Here we argue (together with many other studies) for the importance of the fast unresolved part of562

the dynamics in shaping not only the variance of the resolved dynamics, but also the mean state563

(through the noise induced drift), asymmetry in the PDF, and the behavior of the extremes. The564

tool presented here can be valuable to quantify these effects.565
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APPENDIX569

Appendix: Derivation of CAM-LIM parameters.570

The starting point here is the Fokker-Planck equation (2) which applies to a system of the form571

(3). First we start by rewriting (10) as572

dxi

dt
=

N

∑
j

Ai jx j +
N

∑
m=1

BM
imηm +

L

∑
m=N+1

BA
imηm−Di (A1)

Here < ηm(t) >= 0, < ηm(t)ηn(t ′) >= δ (t− t ′)δmn, and we have explicitly separated the CAM573

noise coefficients BM
im = (Gi +Eixi)δim and pure additive noise coefficients BA

im = Bim. Writing574

(A1) in equation (3) form we have575

Ai = Ai jx j−Di

Fim = BM
im (m = 1 to N)

Fim = BA
im (m = N +1 to L) (A2)
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Separating the Fokker-Planck equation (2) into its deterministic drift (DD), noise-induced drift576

(ND), and diffusion (DI) parts, we have577

d p
dt

= DD+ND+DI (A3)

Using (A2) DD, ND, and DI are given as follows;578

DD =−
N

∑
i, j

Ai j
∂

∂xi
(x j p)+

N

∑
i

Di
∂ p
∂xi

(A4)

ND =−
N

∑
i, j

1
2

E2
i δi j

∂

∂xi
(x j p)−

1
2

N

∑
i

EiGi
∂ p
∂xi

(A5)

DI =
1
2

N

∑
i=1

(G2
i

∂ 2 p
∂x2

i
+2EiGi

∂ 2(xi p)
∂x2

i
+E2

i
∂ 2(x2

i p)
∂x2

i
)

+
1
2

N

∑
i, j

L

∑
m=N+1

BimB jm
∂ 2 p

∂xix j
(A6)

Equations (A5), and (A6) make explicit the CAM-noise processes enter the system in both noise579

induced drift and diffusion parts, while the pure additive noise processes only enter in the diffusion.580

Equations (A4) and (A5) can be combined into an “effective” drift (ED, ED = DD+ND) term as581

ED =−
N

∑
i, j

Mi j
∂

∂xi
(x j p). (A7)

Here Mi j = Ai j +
1
2E2

i δi j as (14) and we have identified the mean noise induced drift response Di582

to be equal to 1
2EiGi. After all previous steps the Fokker-Planck equation is the addition of (A6)583

and (A7)584

d p
dt

=−
N

∑
i, j

Mi j
∂

∂xi
(x j p)+

1
2

N

∑
i=1

(G2
i

∂ 2 p
∂x2

i
+2EiGi

∂ 2(xi p)
∂x2

i

+E2
i

∂ 2(x2
i p)

∂x2
i

)+
1
2

N

∑
i, j

L

∑
m=N+1

BimB jm
∂ 2 p

∂xix j
. (A8)

Multiplying (A8) by the appropriate moment and integrating from −∞ to ∞ we obtain equations585

(12, 13, 17, 18) in the main text. Focusing in the diagonal terms, and in statistical equilibrium, this586
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implies the following set of equations that need to be satisfied simultaneously587

d < xk >

dt
=

N

∑
j=1

Mk j < x j >= 0 (A9)

d < x2
k >

dt
= 2

N

∑
j=1

Mk j < x jxk >+G2
k +E2

k < x2
k >

+
L

∑
m=N+1

(Bkm)
2 = 0 (A10)

d < x3
k >

dt
= 3

N

∑
j=1

Mk j < x jx2
k >+6EkGk < x2

k >

+3E2
k < x3

k >= 0 (A11)

d < x4
k >

dt
= 4

N

∑
j=1

Mk j < x jx3
k >+6G2

k < x2
k >

+12EkGk < x3
k >+6E2

k < x4
k >

+6
L

∑
m=N+1

(Bkm)
2 < x2

k >= 0. (A12)

Here (A9) is used to eliminate the mean terms (< x j >= 0). Then (A10) and (A12) are used to588

simultaneously eliminate Gk and B2
km terms, obtaining the expression for E2

k (equation 19 main589

text), as a function of M (previously calculated using (6)), and the system statistics. Here we590

can calculate Ak j = Mk j− 1
2E2

k δk j. Interestingly, the skewness budget (A11) is independent of the591

pure additive noise amplitude. We use that information to calculate Gk (equation 20 main text)592

as a function of M, Ek, and the statistics of the system. Finally ∑
n+l
m=n+1(Bkm)

2 (equation 21 main593

text) is calculated as the remainder needed to close the variance budget. It is well known that594

only the quadratic expression ∑
n+l
m=n+1(Bkm)

2 rather than the individual amplitude terms Bkm can595

be extracted from data (e.g. Monahan 2004, Sura and Newman 2008). In this simplified system596

there are unique expressions for Ek (up to a ± sign) and Gk, but if more complex CAM noise597

formulations are specified, only quadratic Ek, and Gk forms will be extracted from data.598
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TABLE 1. Observed and modeled skewness and kurtosis.

Variable Skewness Kurtosis

Ta (obs) -0.51 3.78

Ta (CAM-LIM) -0.55 3.80

Ta (LIM) 0 3.00

To (obs) 0.51 3.94

To (CAM-LIM) 0.41 3.61

To (LIM) 0.01 3.00
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FIG. 1. Three day running mean To and Ta joint PDFs (solid), calculated using a Observed data 1950-1980

November - April, b LIM full integration, c CAM-LIM full integration. Shading denotes differences from a best

fit bivariate Gaussian distribution. Units are of standard deviation.
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FIG. 2. Comparison of Ta, To observed joint PDF (solid) and (a) LIM and (b) CAM-LIM generated joint

PDFs of the same length as the observations (617 realizations). The dashed line denotes the average of the 617

LIM and CAM-LIM realizations, and shading denotes region where the observed joint PDF is outside the 2.5

and 97.5 percentile estimated from the LIM and CAM-LIM realizations.
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FIG. 3. Ta (left panel, a, c, e) and To (right panel, b, d, f) LIM generated (red), CAM-LIM generated (blue),

and observed (green dashed) cumulative density functions. Solid red and blue lines denote the average of 617

different LIM and CAM-LIM realizations the same length as the observations, with confidence intervals showing

the region within the 2.5 percentile and 97.5 percentile of the realizations (LIM red error bars, CAM-LIM blue

shading). Units are of standard deviation. Top panel (a, b) shows the middle range of the data (between -2 and 2

standard deviations), middle panel (c, d) shows the negative tail, and the bottom panel (e, f) the positive tail. All

CDFs are estimated using an Epanechnikov kernel (Epanechnikov 1969; Bowman and Azzalini 1997). Figures

c-f are also shown in a logarithmic y axis in figure S3.
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FIG. 4. An estimation of (Ta, To) skewness (a, c), and (Ta, To) excess kurtosis (b, d) distributions using an

Epanechnikov kernel. This is calculated by dividing the full LIM (blue solid), and CAM-LIM (red dashed)

generated datasets into segments the length of the observed dataset (617 realizations). In each subplot the light

green circle denotes the observed skewness or excess kurtosis, and the black circles denote the 2.5 and 97.5

percentile bounds. The observed values are within the 95% confidence level generated by the CAM-LIM and

outside the confidence level generated by the LIM in all cases.
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FIG. 5. A histogram (with an Epanechnikov kernel estimated PDF superimposed) of E1 retrieved values

calculated using segments of (a, c) 31 winters length, and (b, d) segments of 100 winters length of the full

CAM-LIM generated dataset. Here we show two different cases. (a, b) Shows the histogram of the retrieved

values using segments where constraints (24) and (25) are satisfied (α = 0), and (c, d) Shows retrieved values

for all segments, after the methodology outlined in section 4c is followed (α varying). In this case for each

segment we use a redefined matrix (1+α)K, with α > 0 increasing from 0 (with increments of 0.01) up to the

point where (24) and (25) are satisfied. The histogram represents the probability for a value inside of each bin

(of width 0.02) to be retrieved, and the PDF is normalized to match the height of the histogram. e Shows the

percentage of segments where constraints are satisfied as a function of α , for both 31 and 100 winters segments

length.
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