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ABSTRACT

The total amount of precipitation integrated across a precipitation feature (contiguous precipitating grid

cells exceeding aminimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as

the rate of water mass lost or latent heat released (i.e., the power of the disturbance). The probability dis-

tribution of cluster power is examined over the tropics using Tropical Rainfall Measuring Mission (TRMM)

3B42 satellite-retrieved rain rates and global climate model output. Observed distributions are scale-free

from the smallest clusters up to a cutoff scale at high cluster power, after which the probability drops rapidly.

After establishing an observational baseline, precipitation from the High Resolution Atmospheric Model

(HiRAM) at two horizontal grid spacings (roughly 0.58 and 0.258) is compared. When low rain rates are

excluded by choosing a minimum rain-rate threshold in defining clusters, the model accurately reproduces

observed cluster power statistics at both resolutions. Middle and end-of-century cluster power distributions

are investigated in HiRAM in simulations with prescribed sea surface temperatures and greenhouse gas

concentrations from a ‘‘business as usual’’ global warming scenario. The probability of high cluster power

events increases strongly by end of century, exceeding a factor of 10 for the highest power events for which

statistics can be computed. Clausius–Clapeyron scaling accounts for only a fraction of the increased proba-

bility of high cluster power events.

1. Introduction

Extremes of precipitation intensity are projected to

change across all global warming scenarios in phases 3

and 5 of the Coupled Model Intercomparison Project

(CMIP3 and CMIP5) experiments (Tebaldi et al. 2006;

Kharin et al. 2007, 2013; O’Gorman and Schneider 2009;

Sillmann et al. 2013a,b). Tebaldi et al. (2006) review

historical and future simulations from a suite of nine

coupled global climate models across multiple emissions

scenarios, finding a clear signal of increased pre-

cipitation intensity emerging by end of century over the

globe. Kharin et al. (2007, 2013) also analyze a suite of

coupled climate models for consistency in projections of

extreme precipitation spanning the CMIP3 and CMIP5

experiments, finding shorter wait times for extreme

precipitation events by end of century relative to his-

torical climate and that the intensity of extreme pre-

cipitation events increases at a rate of 6% 8C21 of

warming across both CMIP3 and CMIP5 experiments.

Additionally, Sillmann et al. (2013b) find that several

metrics of precipitation extremes increase proportional

to warming.

Uncertainties regarding changes in precipitation ex-

tremes emerge in both observations (e.g., Easterling

et al. 2000; Alexander et al. 2006; Kharin et al. 2007,

2013; Lenderink and van Meijgaard 2008; Allan et al.

2010) and in global-scale simulations of extreme pre-

cipitation in recent climate and future climate (e.g.,

Tebaldi et al. 2006; Kharin et al. 2007, 2013; Allan and

Soden 2008; Allan et al. 2010; Sillmann et al. 2013a,b).

Kharin et al. (2007) hypothesize that, over the tropics,

uncertainty in simulated extreme precipitation results

from limitations in the representation of associated
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physical processes in climate models. Additionally,

simulated precipitation extremes from an ensemble of

19 CMIP3 models are lower than observed precipitation

extremes from 1987–2004 (Allan and Soden 2008). Chen

and Knutson (2008) note that, when considering ex-

treme precipitation events, modeled precipitation

should be analyzed as areal averages versus point esti-

mates. At regional scales, a survey of climate model

studies using multiple approaches (e.g., multimodel en-

sembles and downscaling) suggests that projected

changes to extreme precipitation event frequency and

intensity also exhibit large regional variability (e.g.,

Beniston et al. 2007; Kay and Washington 2008;

Seneviratne et al. 2012; Vizy and Cook 2012; Haensler

et al. 2013; IPCC 2013, 2014; Sylla et al. 2015).

Characterizing changes in the frequency and intensity

of organized convection, including in tropical cyclones,

is important because of their potential socioeconomic

impacts. Many studies into tropical cyclone changes

under global warming suggest that overall global tropi-

cal cyclone frequency will decrease by end of century

(e.g., Emanuel et al. 2008; Knutson et al. 2008, 2010,

2013; Bender et al. 2010), though tropical cyclone in-

tensity is projected to increase, both measured by higher

rain rates and hurricane category (e.g., Webster et al.

2005; Emanuel et al. 2008; Gualdi et al. 2008; Knutson

et al. 2008, 2013; Bender et al. 2010). Changes in tropical

cyclone intensity under global warming are further in-

vestigated in climate model simulations by Knutson

et al. (2013), Villarini et al. (2014), and Wehner et al.

(2015). Decreases in the total number of tropical cy-

clones but increases in intense tropical cyclones in future

climate under global warming are described in Knutson

et al. (2013) and Wehner et al. (2015). Rainfall rates

associated with tropical cyclones are projected to in-

crease (Knutson et al. 2013; Villarini et al. 2014;Wehner

et al. 2015), scaling with the Clausius–Clapeyron (CC)

relationship in some regions (Knutson et al. 2013;

Villarini et al. 2014), but exceeding results expected

under CC scaling near centers of tropical cyclones

(Knutson et al. 2013; Wehner et al. 2015). More gener-

ally, changes in convective organization, as noted in

observations by Tan et al. (2015), may be important to

changes in precipitation extremes.

Work to better understand processes of convective

organization (e.g., Leary and Houze 1979; Houze 1982;

Houze 1989; Mapes and Houze 1993; Houze 2004) in

current climate includes studies of the self-aggregation

of tropical convection over smaller domains (e.g.,

Bretherton et al. 2005; Muller and Held 2012;

Khairoutdinov and Emanuel 2013; Wing and Emanuel

2014; Wing and Cronin 2016). The aggregation of con-

vection into clusters has been shown to be sensitive to:

hydrometeor parameterization (Bretherton et al. 2005);

Coriolis forcing (Bretherton et al. 2005); low cloud dis-

tribution (Muller and Held 2012); SST changes

(Khairoutdinov and Emanuel 2013); and advection of

moist static energy (Wing and Cronin 2016). Addition-

ally, Wing and Emanuel (2014) note that processes that

initiate the aggregation of convective cells into clusters

(e.g., atmospheric water vapor absorbing shortwave ra-

diation and surface heat flux) are different than pro-

cesses that maintain aggregation once it has already

occurred (e.g., longwave radiation feedback). Cluster

aggregation processes at smaller scales appear to con-

tinue into idealized large domains in modeling studies

(Holloway et al. 2012; Bretherton and Khairoutdinov

2015; Arnold and Randall 2015).

Observational studies of tropical precipitation clus-

ters over large domains include Mapes et al. (2009),

Peters et al. (2009, 2010, 2012), Wood and Field (2011),

and Skok et al. (2013). In Skok et al. (2013), space–time

clusters are defined to analyze precipitation statistics

associated with tropical cyclones, using satellite-

retrieved precipitation estimates from the Tropical

Rainfall MeasuringMission (TRMM) 3B42 data.Mapes

et al. (2009) examines cluster life cycle and size distri-

butions using IR and scatterometer datasets over the

tropics, noting that small clusters with brief lifespans

constitute the vast majority of oceanic storm clusters.

Wood and Field (2011) and Peters et al. (2009, 2010,

2012) analyze storm cluster organization using a variety

of observational datasets, noting that probability distri-

butions of cluster cloud area (Peters et al. 2009; Wood

and Field 2011), precipitation integrated across contig-

uous precipitating clusters [cluster power (Peters et al.

2012)] or precipitation accumulations [precipitation in-

tegrated across temporal events (Peters et al. 2010)]

follow a long, scale-free power law, with a distinct cutoff

(i.e., a more rapid drop in frequency of occurrence) at

large cluster area and high power. Cluster power be-

havior above the cutoff is different than behavior below

the cutoff, in part because different physical processes

drive daily tropical convection and tropical cyclones

(Peters et al. 2012). Furthermore, Peters et al. (2012)

noted that tropical cyclones provide significant contri-

butions to the tail in the large event regime. Neelin et al.

(2017) find changes in end-of-century precipitation ac-

cumulations, especially for changes in probability of

the very largest accumulations. This is associated with

the form of the distribution, and in particular with the

physics that determines how the cutoff scale changes

with warming, motivating examination here of analo-

gous behavior for spatial clusters.

There is a need for the validation of rainfall simu-

lations in climate models, especially extreme events in
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quantities likely important for changes under global

warming, such as measures of organized convection.

Distributions of precipitation integrated across a

cluster over the tropics are thus examined here for the

first time as (i) a potentially useful measure both as a

metric of model simulation in current climate and (ii)

as a measure of changes in tropical disturbances in

simulations of future climate. This integrated pre-

cipitation can be described as cluster power (defined

here as the instantaneous latent heat release in-

tegrated over a cluster of contiguous precipitating grid

cells). Distributions and tail sensitivity to the most

powerful storm clusters at a global scale are examined

in satellite observations with full spatial coverage and

compared to climate model simulations for the first

time, examining the relationship between cluster

power and rain rate across a global domain. We first

establish an observational baseline using satellite-

retrieved precipitation data to test its usefulness for

comparison to climate model output at two resolu-

tions. Second, we assess how reliably a high-resolution

climate model can simulate historical cluster power

distributions. Last, we apply output from future runs

of the same model to examine mid- and end-of-

century simulated cluster power distributions, quan-

tifying the influence of global warming on cluster

power behavior. These results for a high-resolution

model set the stage for further examination of lower-

resolution coupled models from the CMIP5 archive in

Quinn and Neelin (2017, hereafter Part II).

2. Data and methods

Satellite-retrieved rain-rate data from the TRMM

3B42 program are used to build a baseline of cluster

power behavior. Data from sensors onboard the

TRMM spacecraft are merged with data from other

satellites to provide gap-free TRMM 3B42 rain-rate

data over oceans and land and are available beginning

in 1998 (Huffman et al. 2007; TRMM 2015). These data

have units of millimeters per hour and are available

every three hours over a 0.258 3 0.258 latitude–

longitude grid. For consistency with our comparisons

in Part II, we analyze twice daily TRMM 3B42 time

slices at 0000 and 1200 UTC. To calculate cluster

power, precipitating grid cells meeting a minimum

rain-rate threshold are first aggregated into distinct

clusters. From there, cluster power is expressed as the

instantaneous latent heat release integrated over a

cluster in units of gigawatts by multiplying rain rates by

the latent heat of condensation (2.5 3 106 J kg21),

which relates cluster power to the earth’s energy bud-

get. Cluster power can also be expressed equivalently

in terms of a mass budget as the integrated mass of

water lost per hour (kgH2Oh21) with 1GW equal to

1.4 3 106 kgH2Oh21 lost.

Precipitation data from the Geophysical Fluid

Dynamics Laboratory (GFDL) High Resolution

Atmospheric Model (HiRAM) at two horizontal

resolutions are incorporated into this study: 25

(HiRAM-C360) and 50 km (HiRAM-C180) (Zhao

et al. 2009, 2010; Chen and Lin 2011; Held and Zhao

2011; Zhao and Held 2010, 2012; Merlis et al. 2013;

Villarini et al. 2014; GFDL 2015). HiRAM output is

derived from the historical Atmospheric Model In-

tercomparison Project [AMIP (1979–2008)] and fu-

ture [SST2030 (2026–35) and SST2090 (2086–95)]

experiments, incorporating prescribed sea surface

temperatures (SSTs) from the Met Office Hadley

Centre Sea Ice and SST version 1.1 model (Rayner

et al. 2003) for the historical period, and greenhouse

gas and SST anomalies from the GFDL Earth System

Model, version 2 (GFDL-ESM2), for future runs.

Precipitation data are given at 3 h intervals in units of

precipitation flux (kgm22 s21), though to stay con-

sistent with the TRMM 3B42 retrieval, instantaneous

HiRAM cluster power snapshots from only 0000 and

1200 UTC with rain rates meeting a minimum threshold

are aggregated into distinct clusters. These clusters then

have their rate of water mass loss converted to instan-

taneous latent heat release, using the same method as

the TRMM 3B42 dataset. Next, we compare AMIP

simulation output with satellite-retrieved data to assess

its accuracy in simulating historical conditions. After

establishing an accurate AMIP baseline, we then use

these AMIP simulations for the comparison with future

climate simulations, with C360 data directly compared

to observed data because of their comparable spatial

resolution.

The binning procedure in building probability den-

sity functions (PDFs) for these distributions is as fol-

lows. One wants to have bin width increase smoothly as

probabilities drop, for which a bin width that is ap-

proximately constant in log space is suitable. It is im-

portant also to recognize that the increments of cluster

size are quantized to multiples of the minimum cluster

size. To ensure that the bin spacing is consistent with

this, bin widths are adjusted to the integer multiple of

the minimum cluster size that is closest to the asymp-

totic constant bin width chosen for the upper end of the

distribution. In practice, the variations in bin are small;

Table 1 of the supplementary information shows both

bin width and histogram counts Ni prior to normaliza-

tion by the width of bin i and the total counts for each

analysis presented. Error bars are given by 6Ni
1/2, with

the same normalization as the PDF. The minimum
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cluster size is set by the grid size and the minimum

precipitation threshold, so the same bin boundaries

apply to historical and future climate runs of the same

dataset. Cluster power distributions for 1 May–30 Sep-

tember are shown over a global tropics domain from

308S to 308N. To illustrate the extent to which cluster

power behavior is influenced by domain size, a north-

ern Atlantic–eastern Pacific domain, extending from

the equator to 308N and from 1408W across the

Americas and Atlantic Ocean to 08, is shown in the

supplementary information. Cluster power distribu-

tions were also examined over other domains, yielding

similar results.

3. Analysis

a. Cluster power distributions: Observations

Previous cluster studies have analyzed cluster quan-

tities such as cloud area above a certain reflectivity

threshold (Wood and Field 2011), storm cluster area and

duration using IR imagery and scatterometer data

(Mapes et al. 2009), and cluster area and power using

satellite radar and passive microwave imagery (Peters

et al. 2009, 2012). In the case of radar imagery, these

have been for narrow swaths, limited by the radar swath

width. In Fig. 1, we form an observational baseline for

cluster power using satellite-retrieved rain-rate data,

evaluating the merged satellite TRMM 3B42 retrieval

at a global scale over land and ocean, so statistics are not

limited by swath width. Figure 1 examines TRMM 3B42

cluster power distributions for multiple rain-rate

thresholds at a global scale.

Across the tropics at multiple rain-rate thresholds

(Fig. 1), TRMM 3B42 cluster power distributions

follow a long, scale-free power law, similar to that in

Peters et al. (2012), who noted an exponent of 21.87 in

the TRMM radar 2A25 retrieval. The exponent here (as

estimated from the slope of the least squares best-fit line

over the power-law range at the 0.7mmh21 rain-rate

threshold in Fig. 1) is 21.50. In Fig. 1, the cutoff that

terminates the power-law range for all rain-rate

thresholds lies at approximately 105GW, with the fre-

quency of the highest power clusters for all distributions

falling off more rapidly after the cutoff. This cutoff also

appears to be insensitive to rain-rate threshold. Note

that the cluster power of the lowest power bin depends

on rain-rate threshold, simply because the minimum

cluster power is a function of the minimum rain rate

considered and the gridcell size. Cluster power distri-

butions must begin at a threshold-dependent minimum

power and are shifted slightly because this affects the

normalization of the probability distribution.

To provide further context for this distribution, Fig. S1

in supplemental information (SI) shows the distribution

of cluster area [previously examined in other datasets by

Mapes andHouze (1993) and Peters et al. (2009)], which

likewise exhibits an approximate power-law range fol-

lowed by a reduction in probability above the cutoff

scale. The cutoff scale for area is more dependent on the

rain-rate threshold than that for power. The total rate of

water loss from the cluster is a physically important

quantity, so herewe focus on cluster power. To provide a

sense of how the cluster power distribution might

change if evaluated over a particular subset of the

tropics, Fig. S2 in the SI shows comparable results for

the Atlantic–eastern Pacific region. The power-law

range has a similar exponent (21.42 vs 21.50), and the

cutoff occurs at a similar power.

Intriguingly, the form of the cluster power probability

distribution is similar to what occurs for temporal clus-

ters (i.e., accumulations of precipitation over events)

in a simple prototype model (Stechmann and Neelin

2011, 2014; Neelin et al. 2017) that also exhibits a power-

law range with approximately exponential cutoff. The

exponent of that simple configuration, 21.5, is close to

the exponent for precipitation integrated over spatial

clusters here. An apparent exponent of21.2 or steeper,

depending on convective parameters, was noted for the

power-law range in cluster area distributions in a similar

simple model (Hottovy and Stechmann 2015), but no

FIG. 1. Probability distributions of cluster power (i.e., pre-

cipitation integrated over clusters of contiguous pixels exceeding

the specified rain-rate threshold) expressed in units of latent heat

release (GW), with 1GW equivalent to 1.4 3 106 kgH2Oh21 in

integrated precipitation. Clusters are calculated from the TRMM

3B42 precipitation product, over the tropics, May–September

1998–2008. The least squares best-fit exponent before the cutoff

(fit over the scale-free range up to 105GW for the 0.7mmh21

threshold) is 21.50.
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quantitative prototype appears to exist yet for in-

tegrated cluster precipitation. For continuity with pre-

vious literature, probability distributions for cluster area

are shown for reference in Fig. S1. Similar to the power

distributions, an approximately power-law range is

found for cluster area, extending from the minimum

area (7 3 108m2) to a qualitatively similar cutoff at

around 3 3 1011m2, with an exponent of approxi-

mately 21.7. The cutoff for area distributions ex-

hibits slightly more dependence on rain-rate threshold.

We choose the integrated precipitation–power for the

cluster for the remainder of this work because of its

greater physical importance as a result of the corre-

spondence to total water loss–latent heat release from

the cluster.

Figure 2 displays typical satellite-retrieved cluster

morphology at the lowest and highest minimum rain-rate

thresholds considered in this study (0.1 and 0.7mmh21)

for a sample day in 2004. Most clusters at the 0.1mmh21

rain-rate threshold with high cluster power ($105GW)

resemble tropical cyclones, mesoscale convective sys-

tems, ITCZ-like features, or the tail ends of midlatitude

fronts that occasionally pass between 208 and 308N and

between 208 and 308S. At the 0.7mmh21 rain-rate

threshold, the overall structure of most features remains

the same, with only some trimming on the edges of

the largest features. These examples of cluster morphol-

ogy are provided simply to illustrate the phenomena

that are being condensed into the distributions and

provide a sense of why little variation in cluster power

behavior across rain-rate thresholds occurs in the obser-

vational distributions.

b. Cluster power distributions: Historical HiRAM
output

Figures 3–5 quantify how the HiRAM at two hori-

zontal resolutions approximates observed cluster power

behavior. Figure 3 compares HiRAM cluster power

distributions at multiple rain-rate thresholds, while

Fig. 4 displays HiRAM distributions at two resolutions.

Figure 5 overlays HiRAM-C360 and TRMM 3B42

cluster power distributions at two rain-rate thresholds.

Like the TRMM 3B42 dataset (Fig. 1), HiRAM

cluster power distributions (Figs. 3,4) are also scale-free

along a power-law range, have a cutoff around 105GW,

and display little sensitivity to rain-rate threshold along

the power-law range before the cutoff. Additionally,

HiRAM distribution least squares best-fit exponents

(for the 0.7mmh21 threshold) range from21.36 to21.39

(depending on horizontal resolution), similar to the

TRMM 3B42 analysis (21.50, Fig. 1). The lower-

resolution simulation (HiRAM-C180) has a shorter scale-

free region because of coarser resolution resulting in a

larger minimum cluster area and hence larger minimum

cluster power. The HiRAM-C180 PDF is slightly farther

from the observations in the sense that probability density

drops slightly less steeply than that of C360. Otherwise, its

FIG. 2. Examples of precipitation clusters from the selected TRMM 3B42 time slice for

rain-rate thresholds of (top) 0.1 and (bottom) 0.7mmh21. The spatial distribution of each

cluster is shown with the power integrated over the cluster given by the legend.
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scale-free power-law range and cutoff closely parallel that

from the higher-resolution simulation (Fig. 4).

Tail behavior sensitivity to rain-rate threshold is

quantified in Fig. 3. While TRMM 3B42 distributions

exhibit little sensitivity, HiRAMdistributions do exhibit

substantial sensitivity above the cutoff for low rain-rate

thresholds. At rain-rate thresholds below 0.3mmh21,

the cutoff shifts toward higher power. This finding is

consistent with previous findings that global climate

models can overestimate light precipitation coverage

(e.g., Dai 2006). Beginning at a rain-rate threshold of

0.3mmh21 and above, tails of the distributions con-

verge, suggesting that it is important to exclude low rain

rates from clusters and that higher minimum rain-rate

thresholds are more robust for comparison with obser-

vations. For an illustration of the spatial behavior of

modeled precipitation clusters, refer to Figs. S3 and S4

in the SI.

The comparison between TRMM 3B42 and HiRAM-

C360 cluster power distributions in Fig. 6 shows that, in

general, the tail of themodeled power distribution at the

0.7mmh21 rain-rate thresholdmore closely parallels the

TRMM 3B42 distribution. Although their least squares

best-fit exponents are slightly different [21.39 for

HiRAM-C360 (Fig. 3) and 21.50 for TRMM 3B42 in

(Fig. 1)] and the tail of the TRMM 3B42 distribution is

longer, the tails for both distributions at high power are

very similar.

We also ask how HiRAM-C360 cluster power distri-

butions compare to distributions from a synthetic time

series created from the same data that deliberately

removes any spatial relations beyond those that would

occur from the climatological probability of pre-

cipitation (Fig. 5). Clusters can occur even in simple

systems in which there is no spatial correlation and

FIG. 3. As in Fig. 1, but for GFDLHiRAMAMIP simulations at

two resolutions (C180 and C360). For readability, HiRAM-C180

AMIP distributions have been shifted up vertically by a decade.

The least squares best-fit exponent before the cutoff is 21.36 for

HiRAM-C180 and 21.39 for HiRAM-C360.

FIG. 4. As in Fig. 3, but comparing modeled cluster power

probability distributions between resolutions for the 0.7mmh21

rain-rate threshold, with no vertical shift of the HiRAM-C180

distribution. Note that the normalization differs simply because the

coarse-resolution model does not extend to as small a minimum

cluster size.

FIG. 5. Observed (TRMM 3B42) and modeled (HiRAM-C360

AMIP) tropics cluster power probability distributions for May–

September 1998–2008 for rain-rate thresholds 0.3 and 0.7mmh21.

Also plotted are cluster probability distributions at each rain-rate

threshold from a synthetic time series created by random selections

from 1979–99 HiRAM-C360 AMIP data that preserve probability

distributions at each point but not spatial correlations (see text).

The distributions for the 0.7mmh21 rain-rate threshold have been

shifted up vertically by two decades to improve readability.
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under certain circumstances these can have power-law

distributions [Stauffer and Aharony (1994); for discus-

sion in a meteorological context see, e.g., Peters et al.

(2009)]—due diligence thus requires that we verify that

the reproduction of observed cluster distributions by

HiRAM is well distinguished from such a simple case.

The synthetic time series is analogous to a statistical null

hypothesis model, in that strong differences between

HiRAM-C360 cluster power distributions and those of

the synthetic time series provide evidence that spatial

relations simulated dynamically in the model are key to

producing the PDF. To build the synthetic time series

that preserves rain-rate probabilities while artificially

removing these spatial relations, we select rain-rate

values for each grid cell from random time steps at the

same spatial location using HiRAM-C360 data from

1 May–30 September 1979–99. The rain-rate probabili-

ties as a function of space are preserved, but all other

spatial autocorrelation effects are destroyed. Clusters

are then evaluated from the synthetic time series at rain-

rate thresholds of 0.3 and 0.7mmh21 just as for the ac-

tual HiRAM-C360 output, and the PDFs are compared.

The synthetic time series distributions clearly have dif-

ferent structures than the observed–HiRAM distribu-

tions; the power-law range, if present, is too short to be

clearly seen, and distinct cutoffs occur at relatively low

cluster power. This comparison suggests that the fea-

tures of the observed cluster PDF captured by HiRAM

are not obtained just by chance occurrence of neigh-

boring raining points.

c. Cluster power distributions: Future HiRAM output

Changes in the frequency of high cluster power events

(e.g., tropical cyclones) may have large societal re-

percussions. As a result, we examine changes in future

cluster power distributions (Figs. 6, 7) by comparing

historical (AMIP), midcentury (SST2030), and end-of-

century (SST2090) cluster power distributions at the

0.7mmh21 rain-rate threshold used in this study. His-

torical, midcentury, and end-of-century distributions are

very similar to each other before the cutoff, following

the same long, scale-free power-law range (Fig. 6). By

end of century, there is a clear signal in both simulations

that indicates a shift toward higher power in the tail

region, implying more frequent intense storm clusters

(Fig. 6). This increase (for the highest three bins for

which statistics can be calculated, which span a factor of

4 in storm power: 2–8 3 105GW) is a factor of approx-

imately 3, 10, and almost 20, respectively, as indicated on

Fig. 7a for the highest-resolution simulation by end of

century. Figure 7b shows an alternate means of dis-

playing this information as a form of risk ratio (Otto

et al. 2012): specifically, showing the ratio of the prob-

ability density. This increases rapidly for the largest

cluster sizes, similar to time-domain results for accu-

mulations (Neelin et al. 2017), which exhibited an ap-

proximately exponential increase for the largest

accumulations. The end of century also has events of

unprecedented size, as may be seen in Fig. 7a, but these

are not shown in Fig. 7b since theywould be estimated as

infinite ratio. Figure 7b also shows a test of robustness

of the binning procedure, showing two cases with

slightly smaller asymptotic bin widths, for which the

last bin with nonzero counts in the historical period is

shifted by approximately half a bin width and almost

one bin width, respectively. These yield highly consis-

tent results over the portion of the curve that they es-

timate. Additionally, if instead of considering changes

to the probabilities of fixed bins, we consider how the

tail of the distribution extends, the probability corre-

sponding to the highest power bin in the historical pe-

riod shifts to higher power: for the end of century, this

probability occurs for a power that has increased by

roughly a factor of 1.4 relative to current climate

(Fig. 7a).

Other studies (e.g., Knutson et al. 2013; Villarini et al.

2014; Wehner et al. 2015) have compared changes in

modeled rain rates under global warming scenarios with

changes expected under CC scaling of humidity, so to

test a possible physical explanation for the increased

probability of intense storm clusters by end of century,

FIG. 6. As in Fig. 3, but displaying a comparison of HiRAM

cluster power probability distributions at two resolutions for his-

torical (AMIP, May–September 1998–2008) and future (SST2030

and 2090, May–September 2026–35 and 2086–95, respectively)

simulations for the 0.7mmh21 rain-rate threshold. HiRAM-C180

cluster power distributions have been shifted up vertically by

a decade for readability.
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we examine changes to cluster power distributions

under a realistic global warming scenario. The differ-

ence in mean global temperature between HiRAM-

C360 SST2090 and AMIP experiments is 12.16K,

within the range of temperature increase projected by

IPCC (2013). Assuming a 7% increase in specific hu-

midity per 1-K warming under the CC relationship, this

represents a possible 15.12% increase in precipitation

under global warming. Given this warming, we multiply

HiRAM-C360 AMIP rain rates (at the 0.7mmh21

threshold) by a factor of 1.15, recluster (keeping the

same threshold), and then reanalyze this CC-scaled

dataset, comparing its distribution of cluster power to

HiRAM-C360 AMIP and SST2090 distributions.

The application of a CC-scaling factor to theHiRAM-

C360 AMIP dataset does increase frequency of the most

powerful storm clusters and shift the tail region of the

CC-scaled dataset toward higher power compared to the

original HiRAM-C360 AMIP dataset (Fig. 7c). How-

ever, this application appears to only account for a

fraction of the increased probability of the most intense

storm clusters, suggesting that the increased probability

of the most intense storm clusters by end of century is

significantly higher than that expected based on a simple

CC scaling of precipitation intensity. Knutson et al.

(2013) andWehner et al. (2015) also found that rain-rate

increases surrounding the cores (e.g., within 200 km) of

intense tropical cyclones under global warming exceed

rain-rate increases that would be expected solely under

CC scaling of precipitation, hypothesizing a link be-

tween this exceedance and the dynamics driving the

intensity around the cores of intense tropical cyclones.

Wang et al. (2015) also note a link between an increase

in precipitation rates near storm centers, CC scaling, and

the dynamics affecting the convergence near storm

centers. In a different study, Knutson et al. (2015) find

that, where end-of-century SST increases are particu-

larly large, though not uniform globally, the amount of

precipitation associated with intense hurricanes also

increases at a rate exceeding CC scaling of precipitation.

Although detailed analysis of spatial structures is be-

yond the scope of this work, Fig. S4 provides examples

of storms from the large-power end of the distribution

for reference.

4. Summary and discussion

Observed cluster power distributions are found to

follow a long, scale-free power law between 10 and 105

GW, with a rapid drop off in the frequency of storm

clusters with high cluster power thereafter. In units of

mass loss, the cutoff near 105GW is equivalent to ap-

proximately 1011 kg h21. The phenomena leading to

FIG. 7. (a) As in Fig. 6, but for the change in the distribution of

cluster power between historical (AMIP) and future (SST2090)

simulations for the 0.7mmh21 rain-rate threshold using the higher-

resolution HiRAM (C360), with probability increase factors

displayed for selected bins above the cutoff (vertical arrows).

Horizontal arrow shows the estimated power increase for the

probability value at the highest bin that can be estimated in current

climate. (b) The change in cluster power distribution displayed as

a risk ratio of the probability density for the end of century to that

in the historical period. Magenta line shows the risk ratio as esti-

mated from the curves in (a); black and gray curves show tests of

sensitivity to alternate bin-width choices: asymptotic bin widths of

0.1920 (black) and 0.1960 (gray). (c) Black and magenta curves are

as in Fig. 7a, with an additional comparison (red) to the AMIP

dataset with a CC-scaling factor applied (see text).
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these clusters range from convective phenomena at the

gridcell scale (approximately 25 km) and mesoscale

clusters through ITCZ disturbances and tropical cy-

clones. The cutoff at high power is largely independent

of rain rate in the observations, and here is found in a

dataset not limited by swath width, or land versus ocean

retrievals. This suggests that some set of physical factors

within the tropical climate system and the meteorology

of storm aggregation must lead to the existence of the

cutoff, as further discussed below.

HiRAM simulations at both resolutions for the histor-

ical period accurately reproduce observed distributions

using a minimum rain-rate threshold of 0.7mmh21, with

similar least squares best-fit exponents over the power-law

range (21.5 for TRMM 3B42 and 21.39 and 21.36 for

HiRAM-C360 and HiRAM-C180, respectively). At both

model resolutions, the cutoff at high power is correctly

produced near 105GW, suggesting that model resolution

has little impact on simulating cluster power. HiRAM

cutoff values are sensitive to rain-rate threshold, as a re-

sult of the overly widespread occurrence of low rain rates,

but agree well provided the threshold is not too low.

A first step in posing the question of what processes

might be important to this distribution shape is to ask

whether the HiRAM simulation of the atmospheric dy-

namics driving the aggregation of neighboring contiguous

precipitating grid cells can be distinguished from simpler

processes that might be hypothesized to account for some

of the effects. The simplest process that can create clus-

ters potentially exhibiting such a distribution, including a

power-law range under certain circumstances, would be

one in which precipitation occurs with observed proba-

bilities but without the dynamical information of spatial

relations. Constructing a synthetic time series from the

HiRAM-C360 data but with the spatial relation between

grid cells destroyed by randomizing the time step from

which the rain-rate sample is drawn provides a simple foil

that acts like a null hypothesis. The cluster power distri-

butions resulting from the synthetic time series are

quantitatively well distinguished from the observed and

HiRAM distributions. This verifies that the atmospheric

dynamics driving cluster distributions in HiRAM are

more complex than simply yielding reasonable proba-

bilities of precipitation.

The long scale-free range in both observations and

HiRAM but not in the simplest case tested by the syn-

thetic time series suggests that the length and slope of the

scale-free range, as well as the apparent change of dy-

namical regimes at the cutoff, constitute interesting tar-

gets for explanation in modeling of cluster aggregation.

Theory has recently been developed for the distribution

of precipitation accumulation—the integral of pre-

cipitation over the time for which it exceeds a specified

threshold—which is the analog in the time domain of the

cluster power integrated over spatially continuous points.

The accumulation distribution with a power-law range

followed by a roughly exponential cutoff seen in observa-

tions (Peters et al. 2010) andmodels (Neelin et al. 2017) can

be mimicked by stochastic models for the prognostic col-

umn moisture equation (Stechmann and Neelin 2014;

Neelin et al. 2017). In the time domain case, fluctuations of

moisture convergence drive variations ofmoisture, with the

time derivative of moisture providing a memory of pre-

vious states. Precipitation accumulation corresponds to the

physical effect of the integrated loss ofmoisture. The cutoff

scale is set by the interplay between the magnitude of the

moisture convergence fluctuations and the integrated loss

and thus increases under global warming as moisture con-

vergence fluctuations increase (Neelin et al. 2017).Creating

analogous theory for the spatial case is desirable but is a

nontrivial undertaking, given the complex processes cre-

ating horizontal relations between neighboring columns,

including moisture transport by convergent and rotational

components of the flow, gravity wave dynamics, and radi-

ative interactions. We conjecture that model experiments

in idealized domains or with interventions in model dy-

namics that have been used to study various aspects of

aggregation (e.g., Bretherton et al. 2005; Muller and Held

2012; Holloway et al. 2012; Khairoutdinov and Emanuel

2013; Wing and Emanuel 2014; Wing and Cronin 2016;

Bretherton and Khairoutdinov 2015; Arnold and Randall

2015)might feasibly be used to determine if the cutoff scale

found here corresponds to any fundamental physical scale

of the system.

Because the cutoff affects the probability of the

highest cluster power events, potentially very important

for human impacts, changes to cluster power distribu-

tions under global warming are examined. HiRAM

cluster power distributions at both resolutions from the

future SST2030 and SST2090 experiments have the

same long, scale-free range as historical HiRAMoutput,

but the cutoff tends to shift toward higher power. A

natural simple hypothesis to compare against for the

increased probability of more intense storms by end of

century is a CC scaling of the precipitation to factor in

the simplest impacts of temperature on specific humid-

ity. Specifically, a CC-scaling factor of 7% increase per

degree of warming under the projected change to mean

global temperature (2.16K, calculated using HiRAM-

C360 AMIP and SST2090 temperature data) was

applied to the HiRAM-C360 AMIP dataset before

running the same clustering and binning procedures.

The resulting cluster power distribution with this hy-

pothetical CC-scaled precipitation lies between the

original AMIP and SST2090 cluster power distributions,

indicating that the change in future cluster power
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distributions considerably exceeds expectations based

on a simple CC scaling of rain rates.

The shift of the cutoff toward higher cluster power in

the warmer climate has a substantial impact on the fre-

quency of occurrence of the largest storms. The proba-

bility of high cluster power events for the end of century

relative to the historical period increases rapidly beyond

the historical cutoff. These increases substantially exceed

a factor of 10 for the highest bin for which cluster power

statistics can be computed in the historical period.

Phrased another way, at the corresponding value of

probability for the highest bin in which statistics can be

computed for the historical period, the end of century

clusters would be roughly 40% more powerful.
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