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Eastern margin variability of the South Pacific Convergence

Zone: Supplement
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1. Janury SPCZ region climatology

Figure S1 illustrates climatologies of CMAP precipitation
[Xie and Arkin, 1997] and NCEP Reanalysis [Kalnay et
al., 1996] 850 mb specific humidity and 925 mb horizon-
tal winds for January. Note the low-level, predominantly
easterly trade wind inflow into the eastern portion of the
SPCZ and the relatively low values of specific humidity
in the southeast Pacific dry descent region.
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Figure S 1: January climatology of the South Pacific
Convergence Zone region. Shown are the CMAP precip-
itation (shading; in units of mm day−1) and the NCEP
Reanalysis specific humidity at 850 mb (line contours; in
units of g kg−1) and 925 mb winds (vectors). The values
plotted are averages over 1979-2006.

2. Overview of the idealized SPCZ
prototype

The vertically-integrated, steady-state temperature (T )
and moisture (q) equations are:

0 = Ms∇ · v + P + Rnet + H (S-1)

and

0 = E − P + Mqpq∇ · v − (uq∂x + vq∂y)q (S-2)

Here, P is precipitation; Rnet, H , and E are, respec-
tively, the total column (shortwave and longwave) radia-
tive heating, sensible heating, and latent heating; ∇·v is
vertical convergence; and uq and vq are, respectively, the
projections of zonal and meridional winds onto the verti-
cal structure of the moisture profile. Equations (S-1) and
(S-2) have been cast in a moist static energy formulation:
Ms is related to the vertical structure of dry static en-
ergy, s = gz + cpT , where cp is the specific heat capacity
at constant pressure, while Mqp is related to the change
of q in the vertical.

Equation (S-1) can be used to eliminate ∇ · v from
(S-2). The parameters E (= 110 W m−2), H (= 0 W
m−2), and Ms (= 3.3 K) are prescribed as constants over
the domain of interest, 160◦W-100◦W and 30◦S-10◦N,
with values estimated from the NCEP Reanalysis for the
southeast Pacific descent region. Similarly, uq and vq are
set to -5.0 m s−1 and 2.5 m s−1, in approximate agree-
ment with the observed low-level values in the southeast
Pacific trade wind region. Rnet is separated into clear-
sky (Rclear

net ) and cloudy-sky (Rcloud
net ) components, with

Rclear
net = -130 W m−2 and Rcloud

net = csP , where cs = 0.2
following Bretherton and Sobel [2002].

P is represented using a Betts and Miller [1986] formu-
lation, P = (cP ∆p/g)τ−1

c (q − qc) = ǫc(q − qc), i.e., con-
vection relaxes tropospheric moisture toward a reference
profile qc over an adjustment timescale τc. Recent empiri-
cal work [Bretherton et al., 2004; Peters and Neelin, 2006]
appears to demonstrate the existence of critical values of
column-integrated water vapor governing the transition
between nonconvecting and strongly convecting condi-
tions in the Tropics. This critical threshold, qc, depends
principally on T [Neelin et al., 2008], as in the Betts and
Miller case, although the functional dependence of P on
q and qc appears to be a nonlinear power law rather than
a simple linear function. Within the convecting region,
Mqc = Mqpqc, is prescribed constant.

The general solution of (S-2) is:

qj
i (x, y) = [qj

0(x, y) + q∗i ]eλizj(x,y)f j
i (x, y) − q∗i (S-3)

The subscript i refers to either the nonconvecting re-
gion (i = 1) or the convecting region (i = 2), while
the superscript j refers to the portion of the domain for
which y > κx (j = 1) or y ≤ κx (j = 2), where κ =
vq/uq . Definitions of the parameters in (S-3) are: λ1 =
MqpM−1

s Rclear
net , λ2 = −McM

−1
s ǫc(1 − MqcM−1

c cs), q∗1 =
λ−1

1 E, and q∗2 = λ−1
2 [E+MqcM−1

s Rclear
net +ǫcqcM

−1
s (Mc−

Mqccs)], where Mc = Ms −Mqc is the gross moist stabil-
ity of the convecting region. The function zj(x, y) equals
u−1

q x or v−1
q y for j = 1 or j = 2, while qj

0(x, y) equals
q0y(y − κx) or q0x(x − κ−1y), with q0y = q(0, y) and
q0x = q(x, 0) representing the values of q along the east-
ern and southern domain boundaries, respectively. Fi-

nally, f j
1 (x, y) = 1, while f j

2 (x, y) = (
qc+q∗

1

q
j
0
(x,y)+q∗

1

)−λ2/λ1 .

In the absence of horizontal advection for the selected
values of E and ∇ · v, q∗1 > qc, which means that the en-
tire domain would convect. For the convecting region in
the “strict quasi-equilibrium” limit of τc → 0 [Emanuel

et al., 1994], qj
2(x, y) → qc in (S-3), yielding convecting

region precipitation that is spatially homogeneous and
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equal to

P =
MsE + MqcRclear

net

Mc − Mqccs
(S-4)

We further note that the factors controlling the posi-
tion of the convective margin and the width of the anoma-
lies are closely related. For example, for x < κy, the
location of the convective margin is xc = uqλ

−1
1 ln[(1 +

qcλ1/E)/(1 + λ1q0x/E)] while the width of the anoma-
lous region, which is related to the standard deviation of
xc, σxc , has uq replaced by the standard deviation of the
wind variations, σuq . Expanding for small qλ1/E gives
{xc, σxc} = {uq , σuq}(qc − q0x)/E.
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