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ABSTRACT5

Tropical deep convective transition characteristics, including precipitation pickup, occurrence6

probability and distribution tails related to extreme events are analyzed using uncoupled and7

coupled versions of the Community Climate System Model (CCSM) under present-day and8

global warming conditions. Atmospheric Model Intercomparison Project-type simulations9

using a 0.5 degree version of the uncoupled model yield good matches to satellite retrievals10

for convective transition properties analyzed as a function of bulk measures of water va-11

por and tropospheric temperature. Present-day simulations with the 1.0 degree coupled12

model show transition behavior not very different from that seen in the higher resolution13

uncoupled version. Frequency of occurrence of column water vapor (CWV) for precipitating14

points shows reasonable agreement with the retrievals, including the longer-than-Gaussian15

tails of the distributions. The probability density functions of precipitating grid points col-16

lapse toward similar form when normalized by the critical CWV for convective onset in both17

historical and global warming cases. Under global warming conditions, the following state-18

ments can be made regarding the precipitation statistics in the model: (i) as the rainfall19

pickup shifts to higher CWV with warmer temperatures, the critical CWV for the current20

climate is a good predictor for the same quantity under global warming with the shift given21

by straightforward conditional instability considerations; (ii) to a first approximation the22

probability distributions shift accordingly, except that (iii) frequency of occurrence in the23

longer-than-Gaussian tail increases considerably, with implications for occurrences of ex-24

treme events, and thus (iv) precipitation conditional averages on CWV and tropospheric25

temperature show disproportionate increases at the highest values of each.26
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1. Introduction27

It is challenging for coupled global climate models to produce realistic simulations of28

precipitation regional patterns, temporal variations, and statistics such as frequency and in-29

tensity of rainfall (e.g., Covey et al. 2003; Trenberth et al. 2003; Meehl et al. 2005). Many30

climate models still leave much to be desired in simulating realistic precipitation statistics,31

although considerable progress is being made. Energy balance places constraints on the32

global-mean rainfall, but spatio-temporal patterns have more subtle constraints and hence33

can be difficult to model. Occurrence probability of precipitation is one major characteristic34

of rainfall that climate models have struggled to capture. Many weather and climate models35

tend to precipitate too frequently at low intensities, even when the simulated mean values36

are reasonable (Chen et al. 1996; Osborn and Hulme 1998; Dai et al. 1999; Trenberth37

et al. 2003; Dai and Trenberth 2004; Sun et al. 2005). This problem may be due in38

substantial part to issues in the convection parameterization schemes and their interactions39

with the large-scale dynamics in the models.40

Retrieved statistics of rainfall, similar to those reported in, for example, Bretherton et al.41

(2004), Peters and Neelin (2006, hereafter PN06) and Neelin et al. (2009, hereafter NPH09)42

can be used to constrain climate models and convective parameterizations. Bretherton et al.43

(2004) analyzed satellite microwave retrievals on daily and monthly time scales and found44

an exponential relationship between conditionally averaged precipitation and column rela-45

tive humidity. Examining conditional averages of microwave retrievals of precipitation on46

column water vapor (CWV)–both essentially instantaneous in time–PN06 noted a rapid pre-47

cipitation increase beyond a threshold value of CWV, much as one might expect from onset48

of convective conditional instability in a deep convection parameterization. Holloway and49

Neelin (2009, hereafter HN09) used in situ observations to evaluate this relationship to onset50

of conditional instability, and further showed that inclusion of substantial entrainment in51

the convective instability calculation was important to correctly obtain the pickup in precip-52

itation. CWV was shown to be a reasonable proxy variable for the effect of environmental53
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lower tropospheric moisture on conditional instability of an entraining plume, for which deep54

convective instability typically occurs only for sufficiently moist environment (as also noted55

in e.g., Brown and Zhang 1997; Kuang and Bretherton 2006; Del Genio and Wu 2010).56

NPH09 used precipitation and CWV from satellite retrievals and tropospheric temperature57

from reanalysis to provide a quantification of the role of tropospheric temperature in gov-58

erning the onset boundary for strong deep convection, and to examine related convective59

transition properties.60

In analyzing a complex system such as deep convection interacting with the large-scale,61

guidance from simpler prototypes can be useful. PN06 noted that the statistics have suf-62

ficient similarities to certain aspects of continuous phase transitions and related critical63

phenomena that this analogy could be used to suggest a set of inter-related properties to64

seek in the observations. These include clusters, power-law spatial and temporal correlations65

and power law event size distributions in measures of the smaller-scale convection (such as66

precipitation or cloud water), occurring near the onset of conditional instability at a criti-67

cal value, wc, of large-scale CWV. A natural next step was a model whose relationship to68

atmospheric prognostic equations could be more easily seen, and in which the relationship69

to observed probability density function (PDF) of CWV could be quantitatively examined.70

Stechmann and Neelin (2011) showed that a prognostic water vapor equation stochasti-71

cally forced across a parameterized precipitation onset exhibits properties including power72

law ranges in temporal correlation and event size distribution, and that reasonable matches73

to the observed estimates of PDFs of CWV arise straightforwardly from a Fokker-Planck74

equation in which precipitation acts as the drift term. Many of these properties can be75

interpreted in terms of a first-passage process (Stechmann and Neelin 2014) with stochastic76

forcing across thresholds for precipitation onset/termination. The forcing across this thresh-77

old can occur substantially by large-scale processes, suggesting that it should be possible to78

capture these PDFs reasonably well in climate models, even without a stochastic convective79

parameterization (for review see, e.g., Neelin et al. 2008), as will be addressed in part here.80
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In pragmatically assessing climate models against such statistics one of the more impor-81

tant characteristics is to correctly capture the transition from shallow to deep convection.82

Sahany et al. (2012, hereafter SNHN12) showed that the pickup in precipitation and the83

location of the onset of deep convection were simulated reasonably well with a relatively high84

resolution (0.5◦) version of the Community Atmosphere Model (CAM 3.5), primarily due to85

stronger entrainment rates included in the Neale-Richter (Neale et al. 2008) modified version86

of the Zhang and McFarlane convection scheme used in the model. The stronger entrainment87

led to the deep convective plumes becoming more sensitive to the ambient humidity of the88

environment (as represented by the model grid-box average moisture), such that instability89

for deep convection occurs only at higher free tropospheric water vapor.90

Both atmospheric water vapor content and global-mean precipitation are expected to in-91

crease under global warming, but the changes in spatio-temporal distribution of rain-rates is92

more important for societal impacts. Allan and Soden (2008) found that heavy rain events93

in satellite observations increased during warm periods and decreased during cold periods,94

but at a rate higher than that predicted by models. Chou et al. (2009) noted a general95

tendency for tropical precipitation anomalies in climate models under global warming to fol-96

low the ‘rich-get-richer’ effect (Chou and Neelin 2004) of increased precipitation in regions97

of climatological moisture convergence, although with regional-scale departures. O’Gorman98

and Schneider (2009) found that although theoretically the intensity of precipitation ex-99

tremes is expected to increase (for example, within high percentiles of daily rainfall) with100

increase of column water vapor under global warming, there is significant disagreement in101

regard to tropical rainfall extremes among climate models from the Coupled Model Inter-102

comparison Project phase 3 (CMIP3). For both precipitation extremes and their fractional103

changes under global warming the intermodel scatter in the tropics was found to be larger104

than that in extratropics. Muller et al. (2011) and Romps (2011) used convection resolving105

models under idealized radiative-convective equilibrium and found that intense precipita-106

tion increases with warming at close to the rate expected from Clausius-Clapeyron scaling.107
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O’Gorman (2012) reported an increase in simulated intensity of extreme precipitation events108

(for instance, in the 99.9 percentile of daily precipitation) over many regions under global109

warming conditions, although he found strong disagreement between climate models on the110

rate of increase over the tropics.111

Changes to the temperature profile under global warming will also prove relevant to112

our results. Santer et al. (2005) found amplification of surface temperature changes in the113

tropical upper troposphere in both observations and climate models over monthly time scales.114

However, over decadal time scales, while the model behavior was similar, there was lack of115

general agreement among the observational datasets. Chou et al. (2013) used model output116

from the CMIP3 and CMIP5 archives and found an increase in gross moist static stability117

over the tropics under global warming conditions.118

Here we analyze output from uncoupled and coupled versions of the National Center for119

Atmospheric Research (NCAR) CCSM4 for both present-day and global warming conditions120

for the high emission scenario, Representative Concentration Pathway-8.5 (RCP8.5), to in-121

vestigate tropical precipitation transition statistics simulated by the model. This is the first122

time such precipitation transition statistics have been analyzed for a coupled model, both in123

the current climate and under global warming. Analysis for the uncoupled model (CAM3.5)124

is presented in section 2 (which includes methodological details and caveats on aspects of the125

retrievals for readers who might want to reproduce these figures as process-oriented diagnos-126

tics for their climate model of choice). Analysis for the coupled model (CCSM4), including127

changes under global warming, is presented in section 3. We analyze several aspects of128

precipitation transition statistics including the sharp pickup [PN06 and NPH09], probability129

of occurrence of CWV for precipitating grid points, and the convective onset boundary on130

an empirical temperature-CWV thermodynamic surface for the historical and RCP8.5. The131

simulated precipitation transition statistics for the historical period are compared with the132

corresponding retrievals from the Tropical Rainfall Measuring Mission [TRMM; Kummerow133

et al. (2000)] Microwave Imager (TMI) processed by Remote Sensing Systems (RSS) with134
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the Hilburn and Wentz (2008) algorithm [an updated version of Wentz and Spencer (1998)],135

and temperature profiles from the the ERA-40 reanalysis data set (Uppala et al. 2005).136

The precipitation transition statistics under global warming are then analyzed to help under-137

stand simulated changes in the properties of deep convection compared with those of present138

day. Behavior tends to be similar for different tropical ocean basins (NPH09, SNHN12), so139

examples from eastern and western Pacific are presented. In sections 4 and Appendix A an140

entraining plume model similar to HN09 has been used for buoyancy computations to ex-141

plain the characteristics of the convective onset boundary on the empirical thermodynamic142

surface for historical and global warming conditions.143

2. Deep convective transition characteristics from high144

resolution CAM simulations145

a. Precipitation pickup and estimation of onset boundary146

Figure 1a shows conditional average precipitation rate as a function of CWV binned at147

0.3 mm intervals for a range of bulk tropospheric temperatures T̂ (mass-weighted average148

over 200-1000 hPa) binned at 1 K intervals over the tropical eastern Pacific for the TMI149

conditioned with ERA-40 temperature profiles for the period 01 January 1998 to 31 August150

2002. Similar to what has been discussed in previous related work (PN06, NPH09 and151

SNHN12), the conditional average of the precipitation rate retrievals approaches a power-152

law relationship a(w−wc)
β, where w is CWV, above a threshold value referred to as wc and153

a is an amplitude factor. Similar analysis for a high-resolution (0.5◦) version of the NCAR154

CAM 3.5 (note the convective physics of CAM3.5 is very similar to CAM4, the atmospheric155

component of CCSM4), analyzed for the period 28 December 1994 to 01 January 2000,156

yields good agreement with observations, although the power-law exponents differ for the157

two cases. The almost linear pickup (i.e., β ≈ 1) seen in most model cases (departures158
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are discussed below) is primarily related to convective closure assumptions in the convective159

parameterization scheme, in which a linear relationship between cloud base mass flux and160

the entraining convective available potential energy (CAPE) is assumed. A relatively linear161

pickup of precipitation as a function of CWV has been noted in some cloud resolving model162

simulations (S. Krueger, pers. comm.) over limited time and space domains. These include163

a 5-year GCM simulation using the Multiscale Modeling Framework which uses embedded164

2D CRMs (with a domain size of 256 km).165

We emphasize, as noted in NPH09 and SNHN12, that one should be cautious in interpret-166

ing the microwave retrievals at high water vapor and precipitation. The retrieval estimates167

cloud water in the column, and the retrieved precipitation rate is based on empirical rela-168

tionships between cloud water and columnar rain rate [Hilburn and Wentz (2008); Wentz169

and Spencer (1998)]. Fewer occurrences of very high rain rate and CWV cases suggest that170

calibration will tend to be less reliable at high values. For instance, Seo et al. (2007) showed171

that the TMI-derived rain rates are underestimated by more than 50 percent at PR-derived172

rain rates of greater than 25 mm/h. Furthermore, CWV is not directly retrieved above173

rain rates about 15 mm/hr, and 25 mm/hr is considered an extreme upper bound on the174

algorithms ability to retrieve rain (Wentz and Spencer 1998). Thus, the apparent curvature175

in the retrievals at high CWV may well be associated with saturation of cloud water or176

retrieval error, and does not constitute a basis for comparison to the model. Rather, it is the177

location of the strong pickup that is of leading interest for model validation (and properties178

near this onset). PN06 checked the effects of using cloud water rather than precipitation179

retrievals and obtained very similar values for the estimated wc. See HN09 for verification of180

the onset dependence for the Atmospheric Radiation Measurement (ARM) Program [Stokes181

and Schwartz (1994); Mather et al. (1998)] in-situ (optical rain gauge and radiosonde)182

observations over the tropical western Pacific.183

A practical issue with asymptoting to a linear pickup is that the fitting procedure in the184

model can be prone to be affected by the “foot” region of transition from very low conditional185
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average precipitation at low CWV into the pickup regime. In CAM, there is a deterministic186

relationship between cloud base mass flux and entraining CAPE that yields zero below a187

threshold value, and then a linear increase. As outlined in NPH09 and HN09, CWV serves188

as a reasonable proxy for the water vapor effect on CAPE when there is sufficient entrain-189

ment, but unaccounted vertical degrees of freedom in using bulk measures of tropospheric190

temperature and moisture can act in a manner similar to a stochastic effect that smooths the191

onset in this foot region. To provide a clearer example of this, following Eq. (4) of NPH09,192

the conditional average precipitation will have effects that look approximately like193

〈P 〉 =

∫
P0(w∗ + ξ)p(ξ)dξ′ (1)

where w∗ = w/wc(T̂ ). The function P0 represents the precipitation as a function of w∗ under194

idealized conditions where vertical structures and other factors are controlled to only change195

in a highly prescribed manner such that the single vertical degree of freedom represented196

by CWV and T̂ approximately captures the water vapor-temperature dependence. The197

effects of departures from this idealized condition are summarized in ξ, which in the model198

is deterministic if the large-scale state is precisely known, but which can appear like a199

stochastic effect when one cannot control for all possible variations, with p(ξ) the PDF of200

ξ as it occurs in the model simulation. Because P0 will tend to look like the ramp function201

(zero then linear) that is built into the entraining CAPE dependence, this smoothing effect202

will tend to produce conditional average precipitation that is larger than P0 on the low203

CWV side of the pickup by averaging in some values from above the onset. Effects at high204

CWV will be discussed below. Similar effects plus measurement error would contribute in205

observations, but the foot region is systematically narrower in the retrievals than in the model206

(suggesting some combination of the model exaggerating this effect relative to observations207

and the retrieval errors not being so large as to compensate). To seek fitting techniques that208

characterize the strong pickup at the grid resolution while avoiding bias from the foot region209

and differences in curvature, we checked several variants of the procedures used in PN06,210

NPH09 and SNHN12.211
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In a first of two main variants, we estimate wc by estimating a power-law fit above a212

threshold precipitation value of 2.5 mm/hr and defining wc as the value at 2.5 mm/hr.213

Applying the threshold helps to keep the fit outside the range of the foot discussed above214

(although if applied to a new model or data set this should be verified). Defining wc at215

a precipitation threshold value greater than zero aims to accurately characterize the rapid216

onset of strong precipitation. This will tend to be at a slightly higher CWV value than217

where one might find the zero of the ramp function in the parameterization but it avoids218

attempting to extrapolate a fit that would be prone to error in the presence of the foot.219

Within this fitting approach we tested impacts of fitting individual values of β for each T̂ ,220

versus using a single value that best fits the curves with most data (as shown in Fig. 1a)221

or changing the threshold. The differences associated with different estimation procedures222

tend to be typically 1mm or less. The case shown also requires a minimum of 5 data counts223

in each conditional average.224

In the second variant, referred to as the ‘restricted-range fit’ we specify both an upper225

and lower bound for conditional average precipitation, 2.5-6 mm/hr, and use a linear fit226

within this range, defining wc as a value at 2.5 mm/hr as before. This fit is then iterated227

to include only a 5 mm CWV range above wc, as a safeguard against possibly noisy points228

at high water vapor where there are few counts. The range in both precipitation and in229

water vapor is narrow enough that differences in curvature at high water vapor and high230

precipitation tend to be excluded. This proves to be highly relevant not only for model231

to microwave retrieval comparison, but also within the model itself, since curvature of the232

model conditional average precipitation curve turns out to be substantial in global warming233

runs discussed below. One could consider using a narrower range, or even interpolating234

across 2.5 mm/hr but this would be prone to estimation effects in cases with shorter data235

sets or at high temperatures where there are fewer counts (a requirement of 10 counts in each236

point is illustrated here). Figure 1b shows results of this restricted-range fitting method. As237

expected, the critical values are very similar to those obtained by the first method, although238
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they do tend to move the CAM and TMI values slightly closer, due in large part to fitting239

over an approximately linear range in both. Effects of increasing the threshold number of240

data points in a bin from 5 in Fig.1a to 10 in Fig.1b are also evaluated, impacting a few of241

the highest ensemble-average precipitation values for T̂ values of 273 and 274.242

We display these values as an onset curve shown on a temperature-water vapor thermo-243

dynamic plane (Fig. 1c) similar to that shown in NPH09 and SNHN12. The critical value244

wc is seen to have a simple dependence on the bulk tropospheric temperature, increasing245

approximately linearly with T̂ both in observations and the model, at a rate slower than246

that of column saturation. Model results have a similar behavior to that seen in observations247

for both fitting methods. The separation from saturation is due to the onset of conditional248

instability for deep convection typically occurring before the environment is fully saturated249

(as measured by the average across the grid cell). It was suggested in SNHN12 that the slope250

in the temperature-water vapor plane depends on a number of factors including the vertical251

profile of the temperature changes, and, importantly from the point of view of model vali-252

dation, the representation of entrainment in the model convective parameterization. With253

sufficient entrainment in the lower free troposphere the observed onset boundary could be254

approximately matched. SNHN12 argued that this is consistent with entrainment providing255

the mechanism that yields the observed sensitivity to environmental water vapor above the256

boundary layer. Figure 1c also shows the onset curve for the tropical western Pacific as an257

indicator of how similar the results are for different tropical basins (see SNHN12 for compar-258

ison to Atlantic and Indian cases in CAM and PN09, NPH09 for comparison in retrievals).259

For brevity, the tropical eastern Pacific is used as an example for most onset figures, return-260

ing to Western and Eastern Pacific comparisons in Fig. 6, where the Eastern Pacific shows261

more distinct changes in frequency of occurrence of rescaled CWV for precipitating points.262

The estimated wc values in the model are slightly lower than those for observations for263

the entire range of tropospheric temperatures analyzed, even after the modified procedure264

is used, and this is consistent with visual inspection of Fig. 1a where the rapid pickup of265
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precipitation typically occurs at a slightly lower water vapor for each temperature. However,266

for a given T̂ the model column saturation value is slightly lower than the observed due to267

differences in mean vertical structure, so the subsaturation is more comparable. Furthermore,268

considering how easy it is for this onset curve to be dramatically off from the observed if269

entrainment is changed (SNHN12), and that the model was never tested against the statistics270

during the tuning process, the agreement of this onset curve is impressive.271

Contours of conditional average precipitation in Fig. 1c emphasize that the onset curves272

lie parallel to the precipitation contours in the region of strong gradient. For temperatures273

where there are high data counts, the fitting methods give onset curves very similar to a274

2.5 mm/hr precipitation contour. The difference in the estimated wc values from the two275

fitting methods for the TMI observations averaged over all T̂ values is about 0.8 mm. This276

difference can also be visualized in Fig. 1c as the narrow white region between the solid black277

line and the shaded region above. For the model, as expected, the alternative fitting method278

does not introduce much difference in the estimated wc values: only −0.03 mm averaged over279

the T̂ range used. Comparing the difference between the estimated critical values between280

TMI-ERA40 and CAM3.5, for the restricted-range fit the average value is 1.2 mm, less281

than half of the corresponding difference in column saturation values (2.7 mm) between the282

model and ERA-40 owing to differences in their vertical temperature structures. In short,283

the model matches the onset boundary of the retrievals about as well as can be currently284

expected. Given the similarity of the results for both fitting methods, subsequent plots will285

display results using the first method, with values from the second method discussed where286

appropriate.287

b. Frequency of occurrence (PDFs)288

Figure 2 shows the PDF of column water vapor rescaled by the corresponding critical289

values for each of the T̂ , considering only the precipitating points. The distributions are290

shown as occurrences in each bin of 1◦C in T̂ and of 1 mm (TMI) or 0.5 mm (CAM) in291
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CWV. They have been displayed as the number of counts instead of normalizing, (either292

across CWV for each T̂ or across both variables) because normalization corresponds to a293

simple vertical shift of each curve in the logarithmic y-axis, and the absolute number of294

occurrences is also relevant. Compared to normalization for each T̂ , this choice also spreads295

the curves in the y-direction and allows the relative importance of each T̂ to be seen. Because296

the shape is not altered if one were to switch to units for a normalized probability density297

function, in the following discussion, we use the term PDF interchangeably to refer to these298

curves.299

Figure 2a is similar to that shown as Fig. 5b in NPH09. As discussed in NPH09, the300

occurrence frequency features a Gaussian core with a peak near the critical value (around301

0.9), and a longer-than-Gaussian tail on each side that over a certain range can resemble an302

exponential decay. The long tail above wc is associated with much more frequent excursions303

into the heavy precipitation regime than one would expect from extrapolation of the Gaussian304

core, and thus is of interest for understanding occurrence of extreme events. As emphasized in305

NPH09, due caution is needed in interpreting microwave retrievals in the high precipitation306

regime. This is further discussed in Section 2c, since these PDFs potentially represent a307

significant point of comparison for models.308

In Fig. 2b we show a similar figure using the 0.5 degree CAM3.5 precipitation and col-309

umn water vapor binned by T̂ values computed at a coarse resolution of 2.5 degrees, to make310

a more direct comparison to the observations. The overall shape of the distribution is very311

similar to that observed although there are also differences. The Gaussian core near points312

below wc is clear in the model output. Within the region above this, just below wc, we313

can distinguish two regimes. From slightly below critical (around 0.95) up to w/wc values314

of around 1.1, there is an interval in which the occurrence probability decreases much less315

quickly than would be suggested by the Gaussian core. This is the regime that corresponds316

to the longer-than-Gaussian tail seen in observations. At values greater than about 1.1 the317

occurrence probability drops quickly, corresponding to the regime where column saturation318
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has been encountered. In other words, the longer-than-Gaussian tail occurs in the interval319

between the onset of conditional instability and column saturation. The cutoff near satu-320

ration may be seen more clearly in Fig. 2c where the native model resolution is used to321

compute the T̂ values. A similar feature is seen in the retrieval analysis for T̂=269-270K,322

associated with a consistency check in which instantaneous cases for which CWV from TMI323

exceeds column saturation from ERA-40 are excluded in the computation. For T̂=272-274K,324

a retrieval algorithm internal cutoff at 75 mm limits the upper end of the TMI values.325

c. Caveats and interpretation of model-retrieval comparison326

In Section 2a, concerns regarding high rain-rate microwave retrievals were treated by327

showing that the onset boundary for rapid precipitation pickup is robust to excluding these.328

For the PDFs in Fig. 2, this is the first comparison to climate model results and the329

high-CWV regime will prove of interest in the global warming behavior (section 3) but the330

CWV retrievals can have a nontrivial error in the precipitating regime. A brief discussion of331

caveats and the extent to which the model provides interpretation of retrieval PDF features332

is appropriate.333

Regarding the existence of a Gaussian core with longer-than-Gaussian tails, there are a334

number of lines of corroborating evidence that these represent physically reasonable behavior335

regimes. Neelin et al. (2010) discuss how such long tails are typical of a class of tracer336

advection problems with a maintained gradient [Pierrehumbert (2000); Bourlioux and Majda337

(2002); Majda and Gershgorin (2013)], and can be found in PDFs for chemical tracers in338

models and independent retrievals. This establishes a simple mechanism that would apply to339

CWV distributions generally (not just precipitating points.) Lintner et al. (2011) examine340

the relationship of such tails in water vapor distributions to circulation using a number of341

data sets.342

In CAM, the simulation of corresponding core/tail behavior for CWV PDFs for precipi-343

tating points suggests that these features are reasonably straightforward to obtain, at least344
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in a model that can realistically simulate the position of the convective onset boundary rela-345

tive to saturation (since the long tail exists in the interval between these). It is worth noting346

that this is an emergent behavior, for which the model has never been examined or tuned.347

The width of Gaussian core is comparable to that of the retrievals. The PDFs in the model348

differ somewhat more in terms of the shape for different T̂ than is seen in the microwave349

retrievals, especially for the tail for the lowest and highest temperatures.350

In assessing at what level of detail the retrievals can be trusted, it is useful to consider351

what aspects of convective-scale or large-scale physics might contribute to the PDF, as352

well as sources of retrieval error. In the simple model of Stechmann and Neelin (2011),353

similar distributions could be mimicked by including: (i) a CWV-dependent precipitation354

pickup; (ii) a stochastic representation of large-scale (i.e., larger than grid scale) moisture355

convergence; (iii) a stochastic precipitation component assumed to arise from subgrid scale356

effects; and (iv) a stochastic transition from shallow to deep convection that represents the357

effects of degrees of freedom not captured by gridscale CWV. The Gaussian core depends358

quantitatively on all four, while the high-CWV tail depends primarily on the first three.359

They note that the effects of (ii) and (iii) were largely indistinguishable, while Stechmann and360

Neelin (2014) show that simplifications without (iv) can capture qualitative aspects in some361

circumstances. In CAM, the convection parameterization is deterministic and precipitation362

rate depends on the entraining CAPE with a specified dissipation time scale. One can363

infer that the shape of the CAM PDF must thus be due to large-scale forcing pushing the364

column thermodynamic conditions back and forth across the conditional instability onset365

boundary for deep convection, with occasional events strong enough to push the system366

farther than typical above this onset despite the one-hour dissipation time scale. Near the367

onset boundary, the effects of vertical degrees of freedom that affect entraining CAPE but368

are not controlled for by CWV and T̂ would tend to impact the PDFs diagnosed as a function369

of these quantities.370

In observations, each of these physical processes can expected play a role, but imperfectly371
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known retrieval errors can also affect the PDF. The procedure for estimating variations of re-372

trieved CWV against radiosondes is limited in part by differences associated with mismatches373

in spatial and temporal co-location and point observations versus spatial averages. In rain-374

ing conditions, an estimated 3.7 mm must accordingly be discounted from the 5 mm RMS375

difference between retrievals of spatially averaged water vapor and neighboring sonde points,376

implying a little over 3 mm from other sources (Wentz and Spencer 1998). Conservatively377

taking this as translating to a random error standard deviation 0.05 in w/wc would suggest378

that CAM (with no random error) is simulating an overly wide core. However, Lintner et al.379

(2011), using independent upward-looking radiometer instrumentation at Nauru, find CWV380

PDFs for precipitating points with widths comparable to those seen here. Furthermore, most381

of the remaining 3 mm RMS in the satellite microwave retrieval-radiosonde differences is not382

random instrument error but rather comes from variations of hydrometeors and water vapor383

at smaller spatial scales than the horizontal and vertical spatial averaging footprint of the384

retrieval. These thus represent an atmospheric signal of small-scale variations, i.e., of one of385

the physical effects that contributes to core width in CAM. Overall, until the microwave re-386

trievals can be further calibrated for these purposes, quantitative differences between model387

and retrieval PDFs should be viewed with caution. The model results for changes in these388

PDFs discussed in section 3 may motivate such calibration efforts. Lastly, we note an ambi-389

guity in the appropriate spatial scale for comparison. In section 3, we use an approximately390

1◦ version of the model (versus 0.5◦ in this section). Similar results are obtained at the re-391

spective gridscales, presumably because the parameterized convective plumes interact with392

gridscale moisture and temperature such that the model behaves similarly at the smallest393

scales available to it. Systematic assessment across resolution would be desirable in future;394

here we provide a first assessment of changes in these statistics at the available resolution.395
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3. Changes in convective transition statistics and onset396

threshold under global warming397

a. Precipitation pickup and critical surface398

Precipitation pickup over the tropical eastern Pacific similar to Fig. 1 is shown for 20-year399

time intervals from the historical (Fig. 3a) and Representative Concentration Pathways 8.5400

(RCP8.5; Fig. 3b) runs for the NCAR CCSM4 from the CMIP5 archive. For the historical401

run, model output is analyzed for the period 1981-2000. For a given T̂ bin the conditional402

average precipitation rates do not reach quite as high values as the corresponding 0.5 degree403

values for similar CWV due to the coarser 1 degree resolution. The precipitation pickup for404

the different T̂ bins is similar to that seen in Fig. 1a. The curvature seen for the highest405

CWV bin will be discussed below.406

For the RCP8.5 run the 20-year period corresponding to the end-of-century (EoC; 2081-407

2100) has been analyzed. The mean warming for the region is about 4 K, so the curves408

for 273 through 278 K in Fig. 3b are most comparable to those shown for the historical409

run in Fig. 3a. To facilitate comparison to the onset values for the historical run, curves410

are included for a larger range of temperatures, displaying bins from 270 K, even though411

this temperature is now uncommon in the warmer climate. In Fig. 3b it can be seen412

that the pickup in precipitation shifts to higher values of CWV for warmer temperatures,413

as expected qualitatively. Quantification of how the onset shifts will be analyzed in more414

detail by comparing the increase in wc with T̂ in the historical and end-of-century case.415

In particular it will be of interest to know how this increase compares to that given by a416

constant relative humidity case, in which the moisture content of the atmosphere increases417

at around 7 % / K, by the Clausius-Clapeyron equation (Trenberth et al. 2005; Dai 2006;418

Soden et al. 2005).419

Before doing this, we note that the curvature of precipitation rate at high values of CWV420

in the warmest two T̂ bins is so substantial in the global warming case that a linear fit does not421
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work well over the full range above wc. These are thus fit with β= 0.7. Using the restricted422

fitting-range approach of Fig. 1b continues to work well in this circumstance, and gives very423

similar values of wc. One simple argument that can explain this curvature is related to the424

effect that gives smoothing at the foot of the pickup, described in (1). Since CWV and T̂425

do not contain full information about the temperature and moisture vertical structures that426

affect the onset of conditional instability, variations of these can create departures that at427

high CWV will tend to be biased towards sampling less unstable conditions and reducing the428

conditional average precipitation. A numerical example of the effects summarized in (1) may429

be seen in Muller et al. (2009) producing a curvature comparable to that seen in Fig. 3b. One430

would expect stronger curvature at higher values of T̂ to be associated with larger variations,431

and this appears to be consistent with effects seen in PDFs of precipitating points discussed432

in Section 3b. However, because there is limited confidence in how to determine curvature433

for surface precipitation at high CWV from the available observations in present-day, we434

simply note this effect as a possibility for future investigation.435

We further note that in addition to a higher conditional average precipitation at high436

water vapor and temperature in the global warming case, precipitation variance increases437

strongly. In the historical run, precipitation variance tends to peak or plateau slightly above438

critical, with peak value tending to increase with temperature (figure not shown). In the439

global warming case, the corresponding T̂+4 K curve has roughly 3 times the peak value440

of variance as its counterpart in the historical run. Because this occurs in the supercritical441

range, we are cautious regarding possible observational constraints on this behavior, but we442

note it because other precipitation extreme event statistics in the model would be likely to443

reflect it.444

We now return to the leading order question of how the onset of convection changes.445

Figure 4a shows the precipitation pickup from the historical run for each of the T̂ bins446

shown in Fig. 3a, but as a function of the rescaled column water vapor (w/wc). The447

precipitation rates are also rescaled by the amplitude factor a of the power-law fit. The448
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normalized pickup curves show a nice collapse for all the T̂ values analyzed, thus confirming449

the usefulness of the rescaled parameter (w/wc), and adding credibility to the procedure450

used to estimate the wc values. This figure is similar to Fig. 2 of NPH09. Even under global451

warming conditions (Fig. 4b) the collapse still occurs for most of the T̂ bins excepting the452

highest bins (corresponding to the change in shape of the curve at the highest T̂ seen in Fig.453

3 for the EoC case discussed above) and noting that a larger range of T̂ has been included454

to have some overlap between historical and global warming cases.455

Figure 5a shows the deep convective onset boundary on a temperature-CWV thermody-456

namic surface, similar to Fig. 3a of NPH09. Important changes in the onset curves can be457

seen as one moves from current climatic conditions to a warmer climate. The deep convec-458

tive onset shape under global warming has the same elements as in the historical case: at459

sufficiently high temperatures it inclines away from the saturation curve with the separation460

between the onset of conditional instability and saturation increasing with T̂ . Note that a461

larger range of T̂ values has been used for the global warming case to allow comparison with462

the corresponding values for the historical.463

One of the simplest conjectures of how this shift in onset boundary under global warming464

occurs is to ask if adding 4 degrees (the average increase in T̂ over the tropical eastern465

Pacific in CCSM4 during the EoC as compared to historical) to the historical T̂ values and466

multiplying the saturation fraction of the wc values to the corresponding saturation CWV467

(for T̂ + 4) under global warming yields wc estimates close to the ones shown in Fig. 5a.468

Historical values shifted by this method indeed yield critical values close to estimated for EoC469

(see Fig. 5b). Section 4 provides an analysis of why this approximation works reasonably470

well using a simple conditional instability calculation with information about the CCSM471

change in temperature profile under global warming.472
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b. Probability density function of precipitating points473

Figure 6 shows the occurrence probability of precipitating points for the tropical eastern474

and western Pacific for the historical and RCP8.5 model outputs. The figure is similar to that475

shown in Fig. 2 for the observations and the uncoupled version of the model run at a higher476

resolution (0.5 degree CAM3.5). The curves on the panels are color-coordinated such that a477

given T̂ under the historical period has the same color and marker as the corresponding (T̂478

+ 4) curve in the EoC. Since the average increase in T̂ under global warming over the two479

basins is around 4 K, the curves of the same color represent similar temperatures relative480

to the mean of their respective climates and may reasonably be compared. In general, the481

curves for the most commonly occurring temperatures tend to exhibit a similar form of these482

PDFs for precipitating points for different values of T̂ , for both tropical eastern and western483

Pacific, and for both historical and the RCP8.5 global warming scenario, similar to that seen484

in observations and the uncoupled version of the model. The fact that normalization by wc485

brings the main features of the PDFs into line irrespective of resolution, ocean basin, and for486

both coupled and uncoupled versions of the model, adds to the credibility of the usefulness487

of critical column water vapor as a measure of the deep convective onset.488

For the historical runs, the results are not very different from the uncoupled version,489

although it is at a coarser resolution (1 degree vs 0.5 degree). Comparing the model output490

for the historical and the RCP8.5 global warming conditions, it can be seen that the shift491

in the distribution to higher values of T̂ under global warming is, to a first approximation,492

well predicted by the corresponding shift in the critical point, especially for the Gaussian493

core of the distribution. However, the global warming case tends to exhibit (Figs. 6c-d), a494

slight enhancement of the longer-than-Gaussian part of the range relative to the Gaussian495

part. It is particularly distinct for T̂ = 277 K over the tropical eastern Pacific (see Fig. 6c),496

which almost has a second peak near saturation.497

The increase in frequency of occurrence in the super-critical range (above wc) appears498

consistent with changes in extreme events in a warmer climate noted in other studies ,499
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e.g., O’Gorman (2012), but gives a complementary view on the manner in which they500

arise. The critical point corresponds to the onset of deep convective conditional instability501

(Neelin et al. 2008), and in the climate model the convective scheme attempts to keep the502

system near this, with a timescale of 1 hour for dissipating entraining CAPE. The super-503

critical range corresponds to dynamical driving strong enough to push the system beyond the504

typical convective quasi-equilibrium range represented by the Gaussian core. In the warmer505

climate, especially at the warmer temperatures, this occurs more often. This diagnostic does506

not yield an answer to exactly why this is occurring, but helps to quantify its occurrence. In507

the model, when this occurs very strongly it can push the system all the way to saturation, in508

which case large-scale condensation is activated in addition to the parameterized convective509

precipitation. This likely accounts for the peak near saturation for T̂ = 277 K in Fig. 6c.510

While the specific way that this behavior in the supercritical range is represented in the511

model may be imperfect, one may infer from the presence of a longer-than-Gaussian range512

in current climate in both model and retrievals that this is a representation of a real behavior513

regime that deserves additional scrutiny, as elaborated in the Discussion.514

c. Events constituting the tail of the distribution515

In order to get a sense of the spatial structure of the events that constitute the tail516

of the distribution, especially for the higher T̂ values that show significant changes under517

global warming, we examine maps of instantaneous precipitation and normalized CWV,518

superimposed on maps of T̂ . CWV is normalized by the critical value corresponding to519

the temperature at that location, i.e. w/wc(T̂ ) is calculated (with wc linearly interpolated520

between T̂ values) and displayed for selected contours near critical. Figure 7 shows repre-521

sentative snapshots from both historical and EoC. The figures show large areas with w/wc522

greater than 0.95, with localized pockets reaching values of 1.05 or higher. The location of523

peak precipitation generally coincides with those having highest values of w/wc. The highest524

T̂ values occur within the warm core of convective storms, a feature also seen in observations,525
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although large temperature gradients are quickly damped out by wave dynamics away from526

strong storms. The convective events range from the more localized ones to well-organized527

synoptic scale events, including some suggestive of easterly waves or tropical storms, and528

both larger and smaller convective cloud clusters. The basic characteristics of these events529

appear not to be distinctly different under global warming conditions – high water vapor530

(relative to wc) points simply tend to occur more frequently and at higher associated pre-531

cipitation intensities than in the historical period.532

4. A simple prototype for the shift in the convective533

onset boundary534

The conjecture presented in Fig. 5b using the historical wc values to predict those for535

the EoC works reasonably well, so it is useful to understand why in more detail. A set of536

plume buoyancy computations with a prescribed entrainment rate, under idealized changes537

to the temperature and moisture profile, are carried out similar to a subset of those in538

SNHN12. Specifically, an air parcel is initialized with the temperature and specific humidity539

values of the idealized environment (discussed below) at the 1000 hPa level, and ascends540

with a vertically constant mixing coefficient of 0.002 per hPa (case ‘C2’ from SNHN12),541

conserving its total water and ice-liquid water potential temperature. For the historical542

case, multiples of vertically constant temperature perturbations of 0.2 K are added to a base543

state temperature profile over Nauru (an ARM observation site over the tropical western544

Pacific), obtained by averaging profiles conditioned on high values of CWV (> 66 mm;545

see HN09 for details), representative of conditions favouring deep convection. Tropospheric546

relative humidity is varied in the range of 51-99% in increments of 2% using a vertically547

constant profile above 800 hPa, and a blending region up to 950 hPa tapering (6.5% per548

50 hPa) to a surface relative humidity value of 85%, typical of deep convective cases over549

Nauru (HN09). Entraining CAPE contours of 100 J/kg are used as a measure of the deep550
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convective onset boundary unless the free troposphere reaches saturation, in which case551

large-scale precipitation is assumed to onset.552

The resulting precipitation onset boundary is seen in Fig. 8 as a function of CWV and553

bulk tropospheric temperature T̂ . At low values of T̂ , the onset curve runs parallel to the554

column saturation curve (slightly below since the boundary layer is not saturated). As T̂555

increases, the onset of conditional instability occurs at progressively lower free tropospheric556

relative humidity, resulting in a curve that angles away from the saturation boundary. This557

effect depends on the vertical profile associated with the temperature increases, and on the558

effects of entrainment of moist vs. drier air in the lower free troposphere. Essentially, in559

the model and in prior work with reanalysis (SNHN12), the temperature increases sampled560

within current climate tend to be associated with temperature profiles modestly more con-561

ducive to conditional instability, and thus the entraining parcel is buoyant at slightly lower562

values of environmental relative humidity. For the sake of simplicity and graphical clarity,563

the case shown here uses a vertically constant increment of temperature relative to a refer-564

ence profile. This slightly exaggerates the angle of the onset boundary relative to saturation,565

with the onset boundary almost constant in CWV. Changing the temperature profile to566

increase slightly with height, or increasing the entrainment, causes this boundary to angle567

upward as a function of T̂ (see SNHN12 for examples including reanalysis temperature profile568

changes and the precise parcel computation from the CCSM convective scheme). Appendix569

A elaborates on this in more detail.570

With this as our prototype for the observed and modeled precipitation onset in the571

historical case, we can now create a simple prototype for the changes under global warming.572

For the EoC computations, the CCSM4 temperature profile anomaly (EoC-Hist.) over Nauru573

(shown as an inset in Fig. 8) is added to the observed base temperature profile used for the574

historical case. This warmer profile is then used as a base profile to which the same set575

of temperature and free tropospheric relative humidity perturbations are added as in the576

historical case. In other words, we assume that the natural variations in the warmer climate577
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sample a similar set of perturbation temperature and free tropospheric relative humidity578

profiles as in the historical climate, but all are shifted by the average temperature profile579

anomaly that the model simulates for the global warming case relative to the historical580

period. The onset boundary for EoC in Fig. 8 exhibits features much like the historical581

case. The lower-T̂ segment of the curve is governed by saturation, and the higher-T̂ segment582

by conditional instability with a very similar angle to column saturation as seen in the583

historical case (the column saturation curve for EoC is not quite the same as that for the584

historical because the vertical structure of the temperature differs slightly).585

The entire structure of the onset boundary at EoC shifts to higher values of CWV and T̂586

in a manner dictated by the global warming temperature anomaly profile in this prototype.587

This shift does not follow the angle of the historical onset curve in the CWV-T̂ plane simply588

because the global warming temperature anomaly vertical profile is different. The global589

warming anomaly profile (Fig. 8 inset) increases with height in a manner similar to a590

moist adiabat (although modified by entrainment and freezing parameterizations), with a591

shape generally consistent with those noted in other models (Santer et al., 2005). However,592

the prototype suggests that the onset boundary at EoC can be obtained from that in the593

historical case by simple conditional instability calculations if one trusts the climatological594

mean temperature anomaly vertical structure simulated by CCSM for the global warming595

case. Furthermore, the prototype suggests that the CCSM EoC temperature anomaly has596

a vertical profile that yields results from the conditional instability calculation that can be597

reasonably approximated by a constant relative humidity assumption. Appendix A shows a598

variant of Fig. 8 that permits the slight departures from constant relative humidity to be599

seen.600

Overall, this provides an economical explanation of the features of the onset boundary601

seen in CCSM (Fig. 5a) for both historical and EoC cases. In CCSM and observations,602

the vertical temperature structures sampled in natural variability tend to be slightly more603

unstable at warmer temperature for a given relative humidity (see also SNHN12). The604
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prototype allows the different effects of the global warming temperature profile to be seen in605

a very simple context and also explains why a constant relative humidity assumption works606

as a reasonable approximation for obtaining the EoC onset boundary from the historical607

boundary (Fig. 5b). These calculations also provide the caveat that the shift under global608

warming for the conditional instability portion of the precipitation onset boundary depends609

on trusting the model simulation of the change in the vertical temperature profile under610

global warming.611

5. Discussion612

Recent availability of precipitation-related variables at high spatio-temporal resolution613

have made it possible to estimate statistics, which might be termed fast-process diagnostics,614

that can help us to understand and constrain the fast-physics processes that play a major role615

in the global hydrological cycle. Sets of related statistics for the onset of tropical precipitation616

have been documented by recent studies, e.g., Bretherton et al. (2004), PN06, NPH09, and617

can serve as additional validation metrics for climate models. Because the statistics often618

rely on satellite retrievals that can have their own inherent uncertainties, the comparison619

to models can also provide a consistency check on observations. Using outputs from both620

uncoupled and coupled versions of the NCAR CCSM some of the deep convective onset621

characteristics are analyzed including pickup of precipitation, and probability distributions622

for precipitating points as a function of column water vapor. After comparing to statistics623

from satellite retrievals in current climate, we ask how the model-simulated statistics change624

under global warming.625

a. Simulations for current climate626

Analysis of model output from an uncoupled version of the NCAR CCSM, run in an627

AMIP mode at a fairly high spatial resolution of 0.5 degree, yields a good match to previ-628
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ously reported deep convective transition statistics using observations (PN06; NPH09). The629

precipitation pickup is similar to the findings of SNHN12, including the simulation of the630

dependence of the convective onset boundary in a thermodynamic plane of column water631

vapor and a bulk measure of tropospheric temperature T̂ . From SNHN12 it is known that632

this depends on the model’s convective parameterization having a reasonable representation633

of entrainment, and that it can be captured by column conditional instability calculations,634

either using the exact convective calculation used in the model, or related simplifications.635

Assessing the probability distributions for precipitating grid points, the model distri-636

butions exhibit a Gaussian core just below critical, with a longer-than-Gaussian tail that637

extends above the critical point for the onset of deep convection in agreement with the638

satellite retrieval data sets. In this regard, the model can be viewed as corroborating the639

retrieval-based statistics which, despite validating well against in situ observations at par-640

ticular locations (HN09), should be viewed with caution in the high water vapor and pre-641

cipitation range. As expected, the model exhibits a neat cut off at column saturation, such642

that the longer-than-Gaussian portion is restricted to a range between the Gaussian core643

and saturation. Degrading the model temperature observations to a grid comparable to644

temperature reanalysis affects the distribution tails modestly, suggesting this is a useful step645

when comparing models to observations, but the basic structure of the core-tail behavior646

is robust to this. NPH09 had been cautious in interpreting the long tails until subsequent647

studies showed the widespread existence of comparable tails in reanalysis, model simulations648

and retrievals of other tracers (Neelin et al. 2010, Lintner et al. 2011). Simple stochastic649

models can yield such tails under plausible assumptions (Stechmann and Neelin 2011). Here,650

the CAM simulation of the longer-than-Gaussian tail range provides evidence that this can651

be straightforward to simulate in a full atmospheric model for this high CWV, high pre-652

cipitation regime. Of course, this regime can only be captured if the onset of conditional653

instability occurs sufficiently below column saturation, so the reasonable simulation of the654

onset boundary as seen in the CAM is a prerequisite.655
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The same set of convective onset statistics for the 20-year period 1980-1999 from the656

CMIP5 historical run for CCSM4 at 1 degree resolution are highly comparable to those of657

the uncoupled atmospheric model outputs at 0.5 degree resolution. Thus the fully coupled658

model statistics agree well with the uncoupled versions of the model, and these are not659

highly sensitive to resolution. The occurrence probability of precipitating points shows660

similarly good agreement with observations, including the longer-than-Gaussian tail related661

to extremes in convection. The core and the tail each exhibit more variation from one662

tropospheric temperature bin to another in both uncoupled and coupled simulations than in663

the observational estimates. While this is a next order effect, it appears to be an important664

one for questions of global warming as discussed below.665

b. Changes under global warming666

Because the coupled version of the model shows broad agreement with the observations667

for the present-day conditions in terms of some of the deep convection statistics analyzed in668

this study, it is tempting to investigate how these convection-related statistics evolve under669

a warmer climate. Comparing convective onset statistics from years 2081-2100 of CCSM4670

output for the CMIP5 RCP-8.5 global warming scenario to the historical case suggests a671

number of points: (i) The abrupt pickup in rainfall and the corresponding critical value of672

CWV shift to higher values of moisture as the system shifts to warmer temperatures, as673

expected. The convective onset curve in the temperature-water vapor plane continues to674

have a dependence more complex than saturation, since this boundary seems to be set by675

the onset of conditional instability for deep convection (as shown for the historical period676

in NPH09 and SNHN12). (ii) The way this onset curve temperature dependence changes677

under global warming differs from a simple extension of the temperature dependence in the678

historical period because the vertical structure of the temperature change differs. Taking an679

idealized column conditional instability calculation for the historical temperature-moisture680

dependence and adding the tropical mean temperature change profile associated with global681
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warming provides a simple prototype for the end-of-century onset boundary. The global682

warming case can be roughly approximated by using column relative humidity at each bulk683

temperature to shift the curve from the historical period. However, the column calculation684

shows that this is only an approximation and underlines the caveat that this would be685

sensitive to the vertical structure of the temperature change. (iii) The critical value of686

CWV continues to strongly govern the frequency of occurrence of precipitating points under687

global warming. To a first approximation, the PDF of precipitating points as a function of688

CWV for a given temperature remains the same when column water vapor is normalized689

by the critical value (and each temperature is shifted by the mean increase). However, this690

normalization allows modest changes in the shape of the PDF to be seen, and these are691

particularly noticeable at water vapor values above critical. (iv) Specifically, the longer-692

than-Gaussian tail above critical CWV, which occurs in both observations and model in693

the historical period, tends to have increased probability in the end-of-century period under694

global warming in the model. This occurs in the high water vapor regime between the695

Gaussian core just below critical and a cutoff at saturation. For most temperatures, this696

above-critical probability increase is seen as a modification of the slope of the longer-than-697

Gaussian tail (although for the eastern Pacific at the highest temperature the modification698

is sufficient to yield a secondary peak in the PDF in the super-critical range). (v) As699

a result, conditional average precipitation pickup curves and precipitation variance as a700

function of CWV reach substantially higher values than in historical simulations. Synoptic701

examination of events in which super-critical CWV values occur suggests that these events702

are not qualitatively different from those simulated in the historical period. It simply more703

often occurs that points in the center of convective clusters or storms reach very high water704

vapor and associated high precipitation rates.705

One can now ask to what extent the comparison of modeled convective onset statistics706

to observed estimates in the historical period may permit inference as to the trustworthi-707

ness of the model simulated statistics under global warming. First, we have a reasonable708
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understanding of the way conditional instability sets the critical value for the convective709

onset boundary in the historical period and evidence that the model does a good job at710

simulating this for the type of temperature variations encountered within historical climate.711

This boosts confidence in the model prediction of the way this shifts under global warming712

(although the conditional instability calculation suggests that this shift could be sensitive713

to the details of the simulated vertical temperature structure). The shift in the convective714

onset boundary governs leading order effects in the shifts of frequency of occurrence.715

The clearest differences in CWV distributions for precipitating points at EOC occur in716

the longer-than-Gaussian tail above critical, and this is associated with excursions above the717

onset of conditional instability (into the range between this and saturation) happening more718

readily in the global warming simulation. Since the distributions are examined with respect719

to CWV normalized by a critical value that has increased roughly proportional to column720

saturation, any changes in distribution that would be directly due to saturation changes721

are already taken into account. This would include not only the shift in the mean of the722

distribution but any stretching that was simply proportional to the change in saturation.723

The change in the shape of the distribution tails must thus be associated with more complex724

effects, such as a dynamical response of the model storm systems. The longer-than-Gaussian725

tail shows more variation when evaluated as a function of tropospheric temperature in the726

historical period in the model simulations than in the observational estimates. However,727

there are sufficient caveats on the combination of microwave retrievals and reanalysis tem-728

peratures in the observational estimates in this high water vapor, high precipitation range729

that this does not necessarily imply lower trust in the model simulated tails. Rather, the730

importance of the changes in these tails for the extreme event statistics in the global warming731

simulation should be taken as motivation for acquiring additional observational data in this732

range and comparing the behavior of additional models.733
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APPENDIX A739

Interpretations of the CCSM4 Convective Onset Bound-740

ary from Idealized Plume Buoyancy Computations741

Figure 9 repeats the idealized calculation of Section 4, presenting it in terms of relative742

humidity, and then further breaking it down in a way that helps to visualize the role of com-743

peting effects associated with the vertical profile of temperature changes in the environment744

on the conditional instability boundary. Writing the moist static energy of the environment745

as746

h = s(T ) + Lq, (A1)

the effect of the environment on parcel stability has two components associated with envi-747

ronmental temperature T and environmental moisture q, respectively, and these can vary748

independently. Temperature of course directly affects the environmental dry-static energy749

s(T ) = cpT + φ(T ), with φ(T ) =

∫ ps

p

RT (p′)dlnp′ (A2)

where φ(T ) is the geopotential. Environmental temperature also affects the specific humidity750

of environmental air that is entrained, when considering a given relative humidity. We can751

express the temperature-moisture plane in terms of relative humidity in the free troposphere,752

i.e., q in (A1) is expressed as753

q = rqsat(T ) (A3)

where r is the relative humidity. In the idealized calculation, r is taken as constant for754

pressures less than 800 mbar, transitioning to a specified value at 10000 millibars as described755

in section 4.756

For a non-entraining plume, rising from specified temperature and relative humidity at757

1000 mbar, the buoyancy at any given level in the free troposphere would only be affected by758

the temperature profile of the environment relative to the moist adiabat specified by the 1000759
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mb values. The value of q or r above the starting level would be irrelevant to the buoyancy.760

In contrast, an entraining plume is also affected by the moisture of the environment, as761

different values of environmental h are mixed into the parcel during ascent. As a result,762

higher moisture tends to yield greater conditional instability for a given temperature profile.763

When the temperature profile is changed slightly, the relative humidity needed to achieve764

the onset of conditional instability changes accordingly, and the idealized calculations aim765

to develop intuition for this.766

For certain changes in temperature profile, the onset of conditional instability occurs at767

lower relative humidity for higher temperatures, as occurs when sampling temperatures in768

present-day observations (Fig. 1c), or for similar sampling of the model in both present-day769

and end of century conditions (Fig. 5a). In the idealized calculation, this is illustrated by770

adding vertically constant temperature perturbations to the base state profile, which is more771

destabilizing in terms of the change of the temperature profile than either perturbations772

of a moist adiabat or the temperature change associated with global warming in CCSM.773

Increasing temperature would yield increased conditional instability unless r decreases, so774

the curve of constant entraining CAPE that marks the stability boundary must slope towards775

lower r with higher T (black solid curve in Fig. 9).776

If the temperature change has a different vertical profile, the net effect of the respective777

tendencies due to the temperature profile and to r can be different. In particular, if the778

temperature increases sufficiently with height, as occurs for the global warming temperature779

change profile, then the effect is closer to neutral in terms of requiring little change in r to780

achieve the onset of conditional instability. In Fig. 9, the shift associated with adding the781

global warming temperature change profile to the base profile is indicated by the red arrow.782

The slope of this line is still slightly negative, i.e., to obtain the same value of entraining783

CAPE, r must decrease slightly. However, this decrease is small enough that one could784

plausibly consider using a constant relative humidity approximation, with suitable caveats.785

In particular, modest differences in the vertical profile of the global warming temperature786
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change could affect this significantly.787

Within the warmer climate, the convective onset boundary simulated in CCSM has sim-788

ilar slope to that in the historical period (Fig. 5) but the entire onset structure is shifted.789

In the idealized calculation, the global warming case uses a new base state profile, i.e. the790

historical base state plus global warming change profile from CCSM (black dot on the EoC791

curve in Fig. 9). Variations about this within the warmer climate are represented by again792

using the vertically constant profile added to the new base state profile, as described in sec-793

tion 4 . This results in a curve (purple curve in Fig. 9) with similar slope in the r-T̂ plane794

to that seen in the historical period but shifted by an amount given by the global warming795

temperature change. This shift (red arrow in Fig. 9) is at a different angle in the r-T̂ plane796

because the global warming temperature structure from the model is less destabilizing (for a797

given r) than the temperature structure typifying the variations sampled within a given cli-798

mate. The shift puts the point for the new base state at just slightly lower free tropospheric799

relative humidity than the corresponding point on the current climate onset boundary. The800

idealized Historical and EoC curves continue along r=1 for the part of the diagram in which801

conditional instability of entraining plume does not occur for r < 1 because the onset of802

precipitation would instead occur by large-scale saturation. Note that these features of Fig.803

9 correspond exactly to those in Fig. 8, described in section 4, but with the moisture axis804

given in terms of r.805

To further develop intuition regarding the impacts of different effects of the environmen-806

tal profile on the stability boundary for entraining plumes, consider two additional idealized807

calculations for the Historical case (dashed blue lines in Fig. 9). It is of interest to dis-808

tinguish between 1) the direct effects of the environmental temperature profile on stability,809

largely via the comparison between the environmental temperature and that of the entrain-810

ing parcel lifted from 1000 mbar, and 2) the effects that occur via qsat in A1 and A3, which811

depend entirely on the impact of the entrained air on the parcel. To visualize the effects812

associated with the direct effect of temperature on s, this calculation is repeated with no813
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temperature perturbation applied in qsat(T ), referred to as the s-only case. Initial parcel814

properties at 1000 mbar are still as described in section 4. Dry static energy increases815

then tend to decrease conditional instability unless r increases, so the s-only case stability816

boundary must slope towards higher r with higher T. The complementary qsat-only case re-817

peats the idealized calculation with no temperature perturbation applied in any part of the818

calculation except the environmental qsat. The temperature increases in this case increase819

environmental moisture and thus the buoyancy of entraining parcels unless r decreases, so820

the stability boundary must slope towards lower r with higher T. This negative slope is821

larger in magnitude than the positive slope of the s-only case, indicating that this effect822

is stronger. As a result, in the full calculation where both temperature effects on s and823

qsat are included, the stability boundary has negative slope in the free-tropospheric relative824

humidity-temperature plane. In a CWV-temperature plane, this corresponds to the onset825

boundary angling away from saturation as a function of temperature as seen in Fig. 8.826

In summary, this idealized conditional instability calculation provides a succinct proto-827

type for the convective onset boundary as seen in both current climate and simulated global828

warming climate and for the shift between these. At a given environmental relative humidity,829

environmental temperature changes yield competing tendencies between the effects of s and830

qsat on the stability of an entraining parcel. Slight differences in the profile of temperature831

change can yield substantial differences in the slope of the convective onset boundary in832

a temperature-moisture or temperature-relative humidity plane. For the vertical profile of833

global warming temperature change in CCSM4, the onset boundary for current climate is834

shifted in a manner that is sufficiently similar to what would be obtained from a constant835

relative humidity assumption that the latter can be used as reasonable approximation to836

attain the future onset boundary from the onset boundary in the historical period.837
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List of Figures958

1 (a) Conditional average precipitation as a function of CWV for different bins959

of T̂ over the tropical eastern Pacific from TMI using the ERA-40 temper-960

ature profiles and a 0.5 degree resolution version of CAM3.5. Power-law fit961

lines (solid curves, see text) are shown above the critical value wc, where pre-962

cipitation undergoes a rapid increase (vertical dashed lines starting at P=2.5963

mm/hr connect the fit curves to the estimates of wc on the x-axis). A power-964

law exponent of 0.23 is fit for the TMI retrieval whereas for the model it is 1.965

(b) As in (a) but for a linear fit over a restricted range. (c) The critical column966

water vapor wc from retrievals (TMI) and model (CAM3.5) as a function of967

bulk tropospheric temperature T̂ . Critical values from two fitting methods,968

corresponding to (a) and (b), are shown for eastern Pacific TMI and CAM3.5.969

Western Pacific values from CAM 3.5 are shown for the first method. Con-970

tours of CAM3.5 conditional average precipitation are shown in background971

(dashed lines). Also shown for reference are the values for column saturation972

(dash-dotted) from both ERA-40 and CAM3.5. 44973
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2 Log-linear plot of the frequency of occurrence (Np) of CWV rescaled by the974

corresponding onset threshold values wc(T̂ ) for precipitating points over the975

tropical eastern Pacific binned for T̂ values at 1 K intervals (curve shapes976

are the same as PDFs aside from a shift corresponding to a normalization977

constant). (a) TMI precipitation and column water vapor binned by ERA-40978

temperatures, (b) 0.5 degree CAM3.5 precipitation and column water vapor979

binned by bulk tropospheric temperatures computed at a coarsened resolution980

of 2.5 degrees for a better comparison with panel (a), and (c) 0.5 degree981

CAM3.5 precipitation and column water vapor binned by bulk tropospheric982

temperatures computed at native model resolution. Gaussian fits (parabolas)983

to the core and exponential fits (straight lines) to the tail are shown for selected984

T̂ curves to aid comparison. Vertical bars indicate column saturation values985

corresponding to T̂ values of the same color. 45986

3 Precipitation pickup for 1 degree CCSM4 over the tropical eastern Pacific,987

similar to Fig. 1a: (a) Historical (1981-2000), and (b) End-of-century (EoC;988

2081-2100) for the Representative Concentration Pathway 8.5 (RCP8.5) sce-989

nario. 46990

4 Ensemble average precipitation over the tropical eastern Pacific as a function991

of column water vapor rescaled by the corresponding wc for each of the T̂ bins992

at 1 K intervals: (a) Historical, and (b) EoC for RCP8.5 warming, showing993

the collapse of the curves over the range of T̂ . 47994
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5 (a) Deep convective onset boundary for the tropical eastern Pacific similar to995

Fig. 1b for the historical and EoC. Also shown for reference are the corre-996

sponding saturation values for the two cases. (b) Similar to (a), except that997

only the EoC values are retained, and a new curve with wc values projected998

from the historical values by a simple conjecture. Specifically, the wc projec-999

tions are obtained by shifting the historical T̂ by 4 K (approximate change1000

in T̂ over tropical eastern Pacific at EoC), and multiplying the correspond-1001

ing historical saturation fraction by the EoC column saturation values for the1002

shifted T̂ (see text for details). 481003

6 Similar to Fig. 2 with the left column for the historical and right for the EoC1004

for tropical eastern and western Pacific (top and bottom rows, respectively).1005

As in Fig. 2, the procedure tends to collapse in occurrence statistics of rescaled1006

column water vapor for precipitating points for different values of T̂ confirming1007

that the leading effects are controlled by the critical values. 491008

7 Instantaneous snapshots of precipitation, T̂ , and rescaled CWV (w/wc;with1009

wc linearly interpolated as a function of T̂ for each of the grid points), for1010

the historical (a-c), and EoC (d-f), in chronological order. Dotted lines with1011

shading are for T̂ , solid lines with shading for precipitation, and solid black1012

contours for w/wc. The snapshots have been chosen from the tail of the1013

distribution for the higher T̂ from the historical and EoC, such that each of1014

them has at least one grid point with w/wc near 1.1, representing the extremes. 501015
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8 Precipitation onset boundary, similar to that shown in Figs. 1c and 5, but for1016

a simplified prototype using idealized perturbations to Nauru profiles. Con-1017

tours of 100 J/kg entraining CAPE computed by a one-dimensional entraining1018

plume model, or free tropospheric saturation (seen at lower T̂ -values, see text),1019

are shown as a measure of the onset boundary of precipitation (by conditional1020

instability or large-scale saturation) for the historical and EoC. The model1021

and the procedure are similar to that discussed in SNHN12. For the histori-1022

cal computations vertically constant temperature perturbations of 0.2 K are1023

applied to the Nauru mean state conditioned on high values of CWV repre-1024

sentative of deep convective cases, whereas for the EoC, similar perturbations1025

are applied to the conditioned temperature profile shifted by the CCSM4 tem-1026

perature anomaly profile over Nauru for the EoC (shown in the inset). The1027

corresponding column saturation curves are shown for comparison. 511028

9 Simplified prototype for the onset boundary for the present day (solid black1029

curve marked historical) and global warming (solid purple curve marked EoC).1030

These curves correspond to Fig. 8, except that the moisture axis is given in1031

terms of free-tropospheric relative humidity. The red arrow indicates shift1032

associated with global warming temperature change profile. Temperature1033

changes along the historical and EoC curves have a different vertical profile1034

(as in Fig. 8). Dashed lines for the historical case show calculations that1035

examine the effects of temperature via dry static energy ‘s’ and ‘qsat’ in the1036

conditional instability calculation that defines the onset boundary. 521037
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Fig. 1. (a) Conditional average precipitation as a function of CWV for different bins of T̂
over the tropical eastern Pacific from TMI using the ERA-40 temperature profiles and a 0.5
degree resolution version of CAM3.5. Power-law fit lines (solid curves, see text) are shown
above the critical value wc, where precipitation undergoes a rapid increase (vertical dashed
lines starting at P=2.5 mm/hr connect the fit curves to the estimates of wc on the x-axis). A
power-law exponent of 0.23 is fit for the TMI retrieval whereas for the model it is 1. (b) As in
(a) but for a linear fit over a restricted range. (c) The critical column water vapor wc from
retrievals (TMI) and model (CAM3.5) as a function of bulk tropospheric temperature T̂ .
Critical values from two fitting methods, corresponding to (a) and (b), are shown for eastern
Pacific TMI and CAM3.5. Western Pacific values from CAM 3.5 are shown for the first
method. Contours of CAM3.5 conditional average precipitation are shown in background
(dashed lines). Also shown for reference are the values for column saturation (dash-dotted)
from both ERA-40 and CAM3.5.

44



269

270

271

272

273

274

^
T

N
P

1

E. Pac.
Precipitating points

w/wc

w/wc

w/wc

0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5

(a)

269

270

271

272

273

274

^
TN

P

10.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5

(b)

269

270

271

272

273

274

^
T

N
P

105

106

104

103

102

10

1

105

106

104

103

102

10

1

105

104

103

102

10

1

10.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5

(c)

    longer-than-Gaussian

Critical

G
auss

ia
n c

ore

Column
saturation

Fig. 2. Log-linear plot of the frequency of occurrence (Np) of CWV rescaled by the cor-

responding onset threshold values wc(T̂ ) for precipitating points over the tropical eastern
Pacific binned for T̂ values at 1 K intervals (curve shapes are the same as PDFs aside from
a shift corresponding to a normalization constant). (a) TMI precipitation and column water
vapor binned by ERA-40 temperatures, (b) 0.5 degree CAM3.5 precipitation and column
water vapor binned by bulk tropospheric temperatures computed at a coarsened resolution
of 2.5 degrees for a better comparison with panel (a), and (c) 0.5 degree CAM3.5 precipita-
tion and column water vapor binned by bulk tropospheric temperatures computed at native
model resolution. Gaussian fits (parabolas) to the core and exponential fits (straight lines)
to the tail are shown for selected T̂ curves to aid comparison. Vertical bars indicate column
saturation values corresponding to T̂ values of the same color.
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Fig. 3. Precipitation pickup for 1 degree CCSM4 over the tropical eastern Pacific, similar
to Fig. 1a: (a) Historical (1981-2000), and (b) End-of-century (EoC; 2081-2100) for the
Representative Concentration Pathway 8.5 (RCP8.5) scenario.
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Fig. 4. Ensemble average precipitation over the tropical eastern Pacific as a function of
column water vapor rescaled by the corresponding wc for each of the T̂ bins at 1 K intervals:
(a) Historical, and (b) EoC for RCP8.5 warming, showing the collapse of the curves over the
range of T̂ .
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Fig. 5. (a) Deep convective onset boundary for the tropical eastern Pacific similar to Fig. 1b
for the historical and EoC. Also shown for reference are the corresponding saturation values
for the two cases. (b) Similar to (a), except that only the EoC values are retained, and a new
curve with wc values projected from the historical values by a simple conjecture. Specifically,
the wc projections are obtained by shifting the historical T̂ by 4 K (approximate change in T̂
over tropical eastern Pacific at EoC), and multiplying the corresponding historical saturation
fraction by the EoC column saturation values for the shifted T̂ (see text for details).
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Fig. 6. Similar to Fig. 2 with the left column for the historical and right for the EoC
for tropical eastern and western Pacific (top and bottom rows, respectively). As in Fig. 2,
the procedure tends to collapse in occurrence statistics of rescaled column water vapor for
precipitating points for different values of T̂ confirming that the leading effects are controlled
by the critical values.
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Fig. 7. Instantaneous snapshots of precipitation, T̂ , and rescaled CWV (w/wc;with wc

linearly interpolated as a function of T̂ for each of the grid points), for the historical (a-
c), and EoC (d-f), in chronological order. Dotted lines with shading are for T̂ , solid lines
with shading for precipitation, and solid black contours for w/wc. The snapshots have been
chosen from the tail of the distribution for the higher T̂ from the historical and EoC, such
that each of them has at least one grid point with w/wc near 1.1, representing the extremes.

50



Hist. Onset Boundary

EoC Onset Boundary

Hist. C
olumn Saturation

EoC C
olumn S

aturatio
n

120

100

80

60

40
268 270 272 274 276 278 280

200-1000 hPa Temperature (K)

C
W

V
 (

m
m

)

TEoC - THist

P
re

s
s
u

re
 (

h
P

a
) 200

400

600

800

1000

Temp. diff. (K)
0 1 2 3 4 5 6 7

Fig. 8. Precipitation onset boundary, similar to that shown in Figs. 1c and 5, but for a
simplified prototype using idealized perturbations to Nauru profiles. Contours of 100 J/kg
entraining CAPE computed by a one-dimensional entraining plume model, or free tropo-
spheric saturation (seen at lower T̂ -values, see text), are shown as a measure of the onset
boundary of precipitation (by conditional instability or large-scale saturation) for the histori-
cal and EoC. The model and the procedure are similar to that discussed in SNHN12. For the
historical computations vertically constant temperature perturbations of 0.2 K are applied to
the Nauru mean state conditioned on high values of CWV representative of deep convective
cases, whereas for the EoC, similar perturbations are applied to the conditioned temperature
profile shifted by the CCSM4 temperature anomaly profile over Nauru for the EoC (shown
in the inset). The corresponding column saturation curves are shown for comparison.
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Fig. 9. Simplified prototype for the onset boundary for the present day (solid black curve
marked historical) and global warming (solid purple curve marked EoC). These curves corre-
spond to Fig. 8, except that the moisture axis is given in terms of free-tropospheric relative
humidity. The red arrow indicates shift associated with global warming temperature change
profile. Temperature changes along the historical and EoC curves have a different vertical
profile (as in Fig. 8). Dashed lines for the historical case show calculations that examine
the effects of temperature via dry static energy ‘s’ and ‘qsat’ in the conditional instability
calculation that defines the onset boundary.

52


