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ABSTRACT

A simple stochastic model is designed and analyzed in order to further understand the transition to strong

convection. The transition has been characterized recently in observational data by an array of statistical

measures, including (i) a sharp transition in mean precipitation, and a peak in precipitation variance, at

a critical value of column water vapor (CWV), (ii) an approximate power law in the probability density of

precipitation event size, (iii) exponential tails in the probability density of CWV values, when conditioned on

either precipitating or nonprecipitating locations, and (iv) long and short autocorrelation times of CWV and

precipitation, respectively, with approximately exponential and power-law decays in their autocorrelation

functions, respectively. The stochastic model presented here captures these four statistical features in time series

of CWV and precipitation at a single location. In addition, analytic solutions are given for the exponential tails,

which directly relates the tails to model parameters. The model parameterization includes three stochastic

components: a stochastic trigger turns the convection on and off (a two-state Markov jump process), and sto-

chastic closures represent variability in precipitation and in ‘‘external’’ forcing (Gaussian white noise). This

stochastic external forcing is seen to be crucial for obtaining extreme precipitation events with high CWV and

long lifetimes, because it can occasionally compensate for the heavy precipitation and encourage more of it. This

stochastic model can also be seen as a simplified stochastic convective parameterization, and it demonstrates

simple ways to turn a deterministic parameterization—the trigger and/or closure—into a stochastic one.

1. Introduction

The relationship between precipitation and water va-

por is crucial for predictions of precipitation. In the con-

text of convective parameterizations, for instance, one

attempts to represent the statistics of unresolved moist

convection in terms of the resolved water vapor and ther-

modynamic state. While the main statistic of interest has

traditionally been mean values, it is becoming increasingly

apparent that a wide range of statistics may be valuable.

Several recent studies have documented an array of pre-

cipitation and water vapor statistics, and, taken together,

these statistics can be seen as a characterization of the

transition to strong convection.

One aspect of the transition to strong convection is an

increase in precipitation with increasing column water

vapor (CWV). Bretherton et al. (2004) found such an

increase in satellite microwave data on daily and monthly

time scales, and subsequent work has examined data on

shorter time scales. Peters and Neelin (2006) and Neelin

et al. (2009) showed that there is a critical value qc of the

CWV q beyond which the precipitation increases rapidly

as an approximate power law hPi; (q 2 qc)
b, for q . qc.

Since the observed value of b is less than 1, the rate of

increase in precipitation diminishes for higher values of q.

Also, the precipitation variance has a strong peak at the

critical value qc. This is one piece of the transition to strong

convection: mean precipitation is small for low values of

CWV and large for high values of CWV, and a sharp, highly

variable transition occurs near a critical value of CWV.

Another aspect of the transition to strong convection

is the occurrence of extreme events. In this context, an

‘‘extreme’’ event could mean high CWV, high precipitation
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rate, and/or high total precipitation; and the importance

of these events depends on their frequency of occur-

rence. Peters and Neelin (2006) and Neelin et al. (2009)

showed that high CWV values—above qc—usually occur

simultaneously with high precipitation rates. Further-

more, these extreme events occur more frequently than

would be expected from Gaussian statistics, in the sense

that the frequency of occurrence of high CWV values

has a long tail with exponential decay as CWV increases.

Another measure of extreme events is the total precipi-

tation in a precipitation event. It has been shown that

this measure, also called the ‘‘event size,’’ has a proba-

bility density function (PDF) with smaller events having

higher probabilities (Peters et al. 2002; Neelin et al. 2008;

Peters and Neelin 2009). However, the PDF has a long

tail with power-law decay as event size increases, which

is another indication that extreme events occur some-

what frequently and provides another way to quantify

their frequency.

Finally, the transition to strong convection also in-

cludes interesting temporal variability. In particular,

many studies have shown a temporal relationship with

increases in lower-tropospheric water vapor leading in-

creases in precipitation (Sherwood 1999; Sherwood and

Wahrlich 1999; Sobel et al. 2004; Mapes et al. 2006,

2009). In addition to lower-tropospheric water vapor,

CWV increases have also been shown to lead pre-

cipitation increases (Holloway and Neelin 2010). In this

role of a convective precursor, CWV is likely acting as

a surrogate for lower-tropospheric water vapor, since it

has been shown that CWV variance corresponds mainly

to moisture variance in the lower free troposphere around

800 hPa (Holloway and Neelin 2009). These results quan-

tify the probability of precipitation and show that there

tends to be a time lag before the initiation of the next

precipitation event, even in periods of high CWV. This

suggests that precipitation might not always initiate im-

mediately when CWV exceeds some critical value, as might

be expected from the notion of conditional instability.

Likewise, for parameterizations of precipitation and con-

vection, it may not be appropriate to model the onset of

precipitation as a fixed critical threshold of CWV. In-

stead, it may be appropriate to model onset as a sto-

chastic switch that has a mean ‘‘critical value’’ as in the

notion of conditional instability, but which also has some

random variance about this mean critical value. Such a

model would be a ‘‘stochastic trigger’’ for the onset of

precipitation/convection.

The observations described above should be useful in

guiding and constraining the development of convective

parameterizations: can one design a parameterization that

captures the observational features described above? Given

the nature of the observations, including the prominence

of extreme events, one might suspect that a stochastic

parameterization is appropriate. In this direction, one might

ask: what is the simplest model that can capture all of the

local features of the transition to strong convection de-

scribed above?

The first purpose of this paper is to present such

a simple stochastic model and to use it to lend insight

into the statistics of extreme precipitation events. The

second purpose of the present paper is to discuss this

simple stochastic model in the context of stochastic con-

vective parameterizations. As will be discussed below, the

model designed here can be thought of in a number of

ways: for instance, as a simplified version of some exist-

ing stochastic parameterizations, as a prototype around

which a more comprehensive parameterization could be

built, or as a simple way to ‘‘stochasticize’’ an existing de-

terministic parameterization (Lin and Neelin 2000; Bright

and Mullen 2002; Majda and Khouider 2002; Majda et al.

2008; Majda and Stechmann 2008; Neelin et al. 2008; Plant

and Craig 2008; Khouider et al. 2010). In all of these con-

texts, a key strength of the present model is its simplicity.

As will be shown below, the model is simple enough that

one can often directly relate the model parameters to the

behavior of the model, which then makes it possible to

choose model parameters based on observational data.

While the statistics described above are a significant

portion of the transition to strong convection, there are

other interesting statistics that will not be examined

here. Of particular note are statistics of spatial vari-

ability of clouds and cloud clusters (Houze and Cheng

1977; Lovejoy 1982; Mapes and Houze 1993; Neggers

et al. 2003; Nesbitt et al. 2006; Peters et al. 2009). The

model of the present paper will include a single column

and will not explicitly include spatial variability or cor-

relations between columns. On a related note, one as-

pect of the observed spatial variability is long-range

spatial correlations, which in turn are one of many aspects

of the transition to strong convection that resemble con-

tinuous phase transitions and/or self-organized critical-

ity from statistical physics (Peters et al. 2002; Peters and

Neelin 2006; Neelin et al. 2009; Peters and Neelin 2009;

Peters et al. 2009, 2010). On the other hand, Muller et al.

(2009) offer a closely related (although differently phrased)

interpretation for some aspects of the transition to strong

convection (the mean and variance of precipitation as a

function of CWV), making separate assumptions for the

stochastic variations across the transition. The present pa-

per takes the pragmatic point of view that the essential

question is: what observed characteristics can be imitated

in simpler systems, both for understanding and for use in

climate model parameterizations?

The paper is organized as follows. The stochastic model

is formulated in section 2. Numerical simulations and
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simple analytic solutions are presented and compared

with observational data in section 3. Implications for

convective parameterizations are discussed in section 4.

Finally, conclusions are summarized in section 5.

2. A stochastic model for tropical precipitation

What is the simplest model that can capture the ob-

servations of CWV and precipitation as described in

section 1? The desired model should include, at a mini-

mum, a time-varying degree of freedom that represents

the CWV of a single column, which is denoted here as

q(t). Notice that this model does not explicitly include

spatial variability or correlations between CWV of dif-

ferent columns. As described at the end of section 1,

other interesting aspects can be seen in observed re-

lationships of neighboring locations or clusters of loca-

tions on mesoscales (Peters et al. 2009), but these aspects

will not be included in the model here. See section 4 for

further discussion.

The time evolution of the CWV is then given by the

differential equation

dq

dt
5 S, (1)

where the source S is specified below. Three aspects of S

will be defined stochastically below: a stochastic trigger

for the onset and demise of convection (section 2a),

a stochastic closure for precipitation (section 2b), and a

stochastic closure for ‘‘other’’ forcing (also in section 2b).

This ‘‘other forcing’’ will represent some forcing that

would be accounted for by resolved dynamics if a large-

scale model with spatial variability were used; but it also

might represent some forcing that would be left un-

resolved, as discussed further below.

a. Stochastic trigger

What conditions should describe the onset of precipi-

tation? Or, in other words, under what condition should

the precipitation parameterization be turned on? One

commonly used ‘‘trigger’’ condition is to turn on pre-

cipitation when q . qc for some critical threshold value

and to turn off precipitation when q , qc. This is a de-

terministic trigger condition. On the other hand, there

are many unresolved factors, besides the resolved CWV

q, that affect the onset of precipitation; hence, it may be

best to model the onset (and demise) of precipitation as

a stochastic switch or trigger (Lin and Neelin 2000, 2002;

Majda and Khouider 2002; Khouider et al. 2003). In this

spirit, a stochastic trigger is used here to turn the pre-

cipitation parameterization on and off. Motivated by the

stochastic models of Majda and Khouider (2002) and

Khouider et al. (2003), a Markov jump process s(t)

is used to indicate whether the system is in the non-

precipitating state (s 5 0) or the precipitating state (s 5 1)

at each time t (Lawler 1995; Gardiner 2004):

s(t) 5
0 5 non-precipitating

1 5 precipitating
.

�
(2)

In (1) S will then take a different form depending on

whether the system is in a nonprecipitating state or a

precipitating state:

S 5
S0 if non-precipitating

2S1 if precipitating
,

�
(3)

where closures for S0 and S1 are given below in section

2b.

To specify the dynamics of s(t), we must specify the

probability of a jump from s 5 0 to s 5 1 (and vice

versa); these jumps correspond to the onset (and de-

mise) of precipitation events. An intuitive way to think

of the random jumps is the following. If s(t) 5 0 at some

time t, then the probability that precipitation turns on—

that is, the probability that s(t 1 Dt) 5 1—is given ap-

proximately by r01Dt, where r01[q(t)] is the transition

rate for the 0 / 1 transition from nonprecipitating

to precipitating. A transition rate r10[q(t)] similarly de-

fines the probability for the 1 / 0 transition from pre-

cipitating to nonprecipitating. The stochastic trigger is

therefore specified once r01(q) and r10(q) are specified as

functions of q. The functions used here are shown in

Fig. 1. They have been defined to represent three at-

mospheric regimes: a low-CWV regime, a high-CWV

regime, and a middle regime in between these two. If the

atmosphere is sufficiently dry, then transitions from the

nonprecipitating state to the precipitating state are es-

sentially not allowed (by defining r01 to be nearly zero),

while transitions from the precipitating state to the non-

precipitating state are allowed (by defining r10 to be posi-

tive). The opposite situation occurs if the atmosphere

is sufficiently moist; and, for moderate CWV values, both

transitions are allowed. Each of these functions shown

in Fig. 1 is a stretched and shifted version of the tanh

function:

f (q) 5 f
2‘

1 ( f
1‘

2 f
2‘

)
1

2
1 1 tanh

q 2 qmid

qwidth

� �� �
.

(4)

The four parameters that determine this function are the

asymptotic values of f at q 5 6‘, f6‘; the location of the

DECEMBER 2011 S T E C H M A N N A N D N E E L I N 2957



transition qmid; and the ‘‘width’’ of the transition qwidth.

The values of these parameters are given in Table 1

for each of the functions from Fig. 1. These particular

values were chosen based on a combination of theory

and observations, but a discussion of this is delayed

until section 4, after the theory is presented in section

3b. Also note that, for any single feature of interest,

only a subset of these parameters will be relevant; how-

ever, for achieving the full set of features of interest,

the full model and parameter set are described in this

section.

b. Stochastic closures for precipitation and forcing

If the value of s(t) is given as described above, then

the model (1) is fully specified once the sources S0 and S1

are chosen. Since these sources are meant to represent

a variety of different moistening processes, we choose

stochastic closures/forcing of the form

S0 5 E(q) 1 D0(q)h(t),

S1 5 P(q) 1 D1(q)h(t), (5)

where h(t) represents Gaussian white noise with mean

0 and variance 1.

Physically, S0 is a parameterization of moistening

processes such as moisture convergence from mesoscale

and synoptic-scale waves; this is represented by a mean

moistening E(q) (for ‘‘evaporation,’’ even though it

parameterizes moistening in a broader sense) and by

a stochastic noise term D0(q)h(t), which could actually

be either positive or negative, corresponding to moisture

convergence or divergence, respectively, by the large-

scale flow. Similarly, P(q) is a parameterization of mean

precipitation, and D1(q)h(t) actually represents a com-

bination of two stochastic noise terms:

S1 5 [P(q) 1 DP(q)hP(t)] 1 DF(q)hF(t). (6)

In this form, S1 has been split into a contribution from

precipitation (in square brackets) and a contribution

from ‘‘external’’ forcing DF(q)h(t), which represents

processes such as moisture convergence/divergence

from mesoscale and synoptic-scale waves. One would

expect much of this external forcing to be accounted for

by resolved dynamics in large-scale models with spatial

variability, although it is possible that resolved dy-

namics would not account for the full intensity of

DFhF (t), as discussed further below. The definition (6)

separates D1(q) to emphasize that it includes a contri-

bution DP(q) due to variance in the precipitation rate

FIG. 1. Model parameters as functions of CWV. (a) Transition

rates r01(q) and r10(q) for the stochastic jump process (trigger) s(t).

(b) Deterministic parts E(q) and P(q) of the source term from (5).

(c) Variances D2
0(q) and D2

1(q) of the stochastic part of the source

term from (5).

TABLE 1. Parameter values that determine the functions in Fig. 1

using the generic form of tanh in (4). Values of CWV q are given in

millimeters, and units of other quantities are shown in the first

column.

f f2‘ f1‘ qmid qwidth

r01 (h21) 0 1.0 61.0 2.0

r10 (h21) 4.0 0 63.0 2.0

E (mm h21) 0.2 0.2 N/A N/A

P (mm h21) 2.0 10.0 64.5 1.0

D2
0 (mm2 h21) 2.0 2.0 N/A N/A

D2
1 (mm2 h21) 16.0 64.04 64.5 1.0

D2
F (mm2 h21) 16.0 64.00 64.5 1.0

D2
P (mm2 h21) 0.0 0.04 64.5 1.0
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and a contribution DF(q) due to variance in the external

forcing, where D2
1 5 D2

P 1 D2
F . This also makes it clear

that the precipitation rate will be defined as

precip(t) 5
0 if s(t) 5 0

P(q) 1 DP(q)hP(t) if s(t) 5 1
.

�
(7)

If analyzed carefully in observations, the variability of

these physical processes might best be described by red

noise or even by Stratonovich white noise; here, how-

ever, to keep the model as simple as possible, h(t) is

taken to be white noise in the Ito sense.

The forms of E(q), P(q), DE(q), and DP(q) are shown

in Fig. 1, and they are in the form of the tanh function

from (4) with parameter values given in Table 1. These

particular values were chosen based on a combination of

theory and observations, but a discussion of this is de-

layed until section 4, after the theory is presented in

section 3b. Also, the form of the tanh function was

chosen partly to facilitate analytical work in particular

regimes of interest. The nonprecipitating state has con-

stant parameters E 5 0.2 mm h21 and D2
0 5 2:0 mm2 h21

that do not depend on q. On the other hand, the pre-

cipitating state has parameters P(q) and D2
1(q) that vary

with CWV q. As was the case for the transition rates

r01(q) and r10(q), the variations of P(q) and D1(q) define

three atmospheric regimes: a low-CWV regime, a high-

CWV regime, and a middle regime in between these

two. For simplicity, the function values are roughly

constant within each of the low-CWV and high-CWV

regimes, and the functions have smooth, yet somewhat

sharp, transitions between these two regimes. The low-

CWV regime is characterized by a weaker precipitation

rate of 2 mm h21 and a weaker stochastic variance of

16.0 mm2 h21; this could represent either the early stage

of development of a convective system or the final, dy-

ing stage of a convective system with stratiform rain; the

two alternatives would be distinguished by the previous

history of q(t). In contrast, the high-CWV regime is char-

acterized by a stronger precipitation rate of 10 mm h21

and a stronger stochastic variance of 64.0 mm2 h21; this

could represent a fully developed convective system with

heavy rainfall and with intense variations in moisture

convergence/divergence from updraft/downdraft cir-

culations and mesoscale and synoptic-scale waves. The

particular value of 10 mm h21 was chosen based on the

microwave estimate of observed rainfall (Hilburn and

Wentz 2008) used in Neelin et al. (2009) (noting that

high-end rain rate estimates differ in amplitude among

observational products). We emphasize that the intense

stochastic forcing D1(q)h(t) could be either positive or

negative; if positive, it represents a moisture source

from, for instance, mesoscale/synoptic-scale moisture

convergence, and it could possibly be so intense that it

compensates (or overcompensates) the moisture loss

from precipitation.

To find numerical solutions of this stochastic model,

the following method is used. A uniform time step of

0.01 h is chosen to be comparable with the 1-min reso-

lution of the observational data analyzed by Holloway

and Neelin (2010). At each time step, the model vari-

ables are updated in two stages: (i) the CWV q(t) is

updated to q(t 1 Dt) using dq/dt 5 S with the value of

s(t) fixed, and (ii) s(t) is updated to s(t 1 Dt) with

the value of q(t 1 Dt) fixed. For (i), the stochastic dif-

ferential equation is advanced in time using the Euler–

Maruyama method (Higham 2001; Gardiner 2004). For

(ii), the probability of switching states in a time interval

Dt is 1 2 e2gDt, where r is either r01 or r10. Pseudorandom

numbers are generated using the Mersenne Twister al-

gorithm (Matsumoto and Nishimura 1998), and ran-

dom variables distributed uniformly on the interval (0, 1]

are converted to Gaussian distributed random variables

using the Box–Muller method (Ross 1998). The model is

advanced for 4 3 106 time steps, or approximately 4.5 yr,

which is comparable to the longest time series of these

fields, with similar temporal resolution, in currently avail-

able observational records. An even longer simulation of

approximately 13.5 yr was used for comparison (see

Figs. 3 and 4). Such a long time series is necessary be-

cause one focus of this paper is extreme events, which

occur somewhat rarely, and many samples of these events

must be gathered in order to accurately compute their

statistics.

3. Properties of the transition in numerical
simulations and analytic solutions

In section 3a, it is shown that the simple model from

section 2 can capture all of the locally analyzed obser-

vations of the transition to strong convection, as de-

scribed in section 1. Also, in section 3b, simple analytic

formulas are derived for some features of the model

behavior; these formulas indicate how model behavior

depends on parameter choices, which lessens the need

for exhaustive numerical sensitivity studies.

a. Numerical simulations

Using the model formulation of section 2, a time series

of CWV q(t) and s(t) is created. Figure 2 shows a sam-

ple of this time series over different intervals of time,

zooming in from the broad picture to detailed events,

showing 100- (Fig. 2a), (b) 5- (Fig. 2b), and 0.5-day in-

tervals (Figs. 2c,d). In Fig. 2a, the 100-day interval

shows that the CWV can take values ranging from 30 to

80 mm, although the extreme values occur somewhat
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rarely. An individual precipitation event begins when s

jumps from 0 to 1 and ends when s jumps from 1 to 0,

although individual events occur on time scales much

shorter than 100 days and are therefore hard to identify

in Fig. 2a. Nevertheless, this plot shows that precipita-

tion events occur irregularly, and there are several pe-

riods of up to 1 week when there is no precipitation at all

(when s 5 0). Figure 2b zooms in on a 5-day interval

from Fig. 2a. This plot shows the synoptic-scale and

mesoscale variability, and it is comparable to the sample

time series from observational data in Holloway and

Neelin (2010). Again, precipitation events occur irreg-

ularly, and there are periods of 1–2 days without pre-

cipitation as well as periods with clusters of several

precipitation events. Figures 2c and 2d zoom in on two

different clusters of precipitation events; these plots show

five and three events, respectively.

In Fig. 2, the life cycles of the precipitation events

are highly variable, yet some of them appear to follow

similar patterns. One might naively expect that pre-

cipitation events always follow the pattern of the third

event in Fig. 2d: initially, there is a period of slow moist-

ening until the atmosphere is moist enough to allow con-

vection to initiate; then precipitation begins and rapidly

dries the atmosphere; and finally, after precipitation has

sufficiently reduced the moisture level, the precipitation

event ends. While this does occur for some events in

Figs. 2c and 2d, there are other events that do not follow

this simple pattern, and those events tend to occur with

high CWV values and tend to have long lifetimes. Two

examples are the second event in Fig. 2c and the first

event in Fig. 2d. These events follow a different pattern:

precipitation begins, but CWV increases after the initi-

ation of convection; after initially increasing, the CWV

eventually begins to decrease; finally, after the CWV

decreases sufficiently, the precipitation event ends. The

key difference here is that these events include a period

where CWV increases at the same time as heavy pre-

cipitation. This requires significant moistening from

DF(q)h(t) from (5) and (6). Hence, these extreme pre-

cipitation events represent events occurring as part of

mesoscale convective systems, hurricanes, or other sour-

ces of intense variations in moistening/drying, presumably

from moisture convergence/divergence. It is these ex-

treme precipitation events that will strongly factor into

some of the statistical measures described below. We

note that, in the observed system or a full atmospheric

model, there would be feedback between the convective

heating and moisture convergence that is not included

here.

The autocorrelation function for the time series data

is shown in Fig. 3a for CWV and for precipitation. This is

in broad agreement with the autocorrelations from ob-

servational data in Fig. 1 of Holloway and Neelin (2010):

the CWV is well correlated with itself at much later

times of roughly 1 day, whereas the precipitation has

appreciable autocorrelation only for roughly 1 h. This is

further confirmation of the realism of the variability in

the model, in addition to visual comparison of time se-

ries of q(t).

FIG. 2. Sample time series of q(t) and s(t). Temporal variations are shown over intervals of (a) 100, (b) 5, and (c),(d)

0.5 days. The box in (a) shows the data used in (b), and the two boxes in (b) show the data used in (c) and (d).

Compare (b) with the observational data in Fig. 2 of Holloway and Neelin (2010).
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Furthermore, Figs. 3b and 3c indicate the functional

forms of the autocorrelation functions on mesoscale

and synoptic time scales. First, the CWV autocorrela-

tion function is shown on a log–linear plot and has

a roughly, but not precisely, exponential form for lags

of about 1–6 days. Note that this stochastic model does

not necessarily have to have an exponential CWV au-

tocorrelation function, yet this form (approximately)

arises. Second, the precipitation autocorrelation func-

tion is shown on a log–log plot and has a roughly power-

law form for lags of about 30 min–4 days. The exponent

of this power law is roughly 1, which is fairly close to

that estimated from optical gauge data (Holloway and

Neelin 2010) of roughly 0.8. Hence, while the precip-

itation autocorrelation time appears to be short, there

are also long-range correlations out to at least 4 days.

The short time-scale end of this range, near 30 min, may

be set here by model parameters. A likely candidate is

the time scale D2
1/P2 ’ 0:6 h, which arises from the pre-

cipitation scale P in the precipitating range combined

with a moisture scale D2
1/P (which arises in both core and

tail of the precipitating regime, discussed in section 3b

below). Beyond this, there is a range for which there

appears to be no clear time scale—a circumstance that

tends to lead to power-law behavior as summarized in

Peters and Neelin (2009).

To further isolate the behavior seen in Fig. 3, several

sensitivity studies (not shown) were carried out. Two

cases led to much more rapid decay of the precipitation

autocorrelation with no power-law range: a two-state

jump process alone or the full model with all white noise

shut off (the latter also yields more rapid exponential

decay of CWV autocorrelation than in Fig. 3). On the

other hand, in a version of the model with the stochastic

jumps replaced by a deterministic Heaviside function at

q 5 61 mm, the approximate exponential and power-

law decays of Figs. 3b and 3c were still produced. Thus,

the source of the power-law range in the autocorrelation

clearly involves the rapid switches of precipitation inter-

acting with time-dependent moisture variations, forced

by the noise.

Figure 4 shows the number of occurrences of the total

precipitation that falls in individual precipitation events,

defined as an uninterrupted sequence of time steps with

s 5 1. For instance, Fig. 2c shows five events and Fig. 2d

shows three events. Figure 4 shows that smaller events

are most common, and the PDF roughly follows two

power laws, one each for events smaller and larger than

about 10 mm. Numerical sensitivity studies (not shown)

indicate that long, approximately power-law tails are

roughly representative of typical behavior, and they can

even be seen when the stochastic jumps are replaced by

a deterministic Heaviside function; that is, while these

FIG. 3. Autocorrelation as a function of time lag for column

water vapor (solid) and precipitation (dashed). (a) Lags of 0–24 h,

with linear–linear axis scaling. (b) Lags of –240 h, with log–linear

axis scaling. (c) Lags of 0.1–240 h, with log–log axis scaling. Com-

pare to the observational data in Fig. 1 of Holloway and Neelin

(2010).
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data do not always bear a precise linear fit, they are al-

ways slowly decaying with significant contributions from

extreme precipitation events. This is in qualitative agree-

ment with the observational data presented in Fig. 6b of

Neelin et al. (2008), in Fig. 1 of Peters and Neelin (2009),

and in Figs. 2 and 3a of Peters et al. (2010).

In fact, the approximate power-law decay in Fig. 4 also

bears quantitative comparison with observations. For

the heavy precipitation events of greater than about 10 mm,

the occurrence frequency in Fig. 4 falls by about 2 fac-

tors of 10 over a range of about 1 factor of 10 in total

precipitation. This 2-to-1 ratio is also approximately seen

in Neelin et al. (2008) and Peters and Neelin (2009) for

events with similar total size of greater than 10 and

1 mm, respectively: the PDF falls by about 4 factors of

10 over a range of about 2 factors of 10 in event size in

both Neelin et al. (2008) and Peters and Neelin (2009).

Notice that this is different from a second power law

seen in the observations for smaller event sizes with total

precipitation of 0.001–1.0 mm, which is emphasized in

Neelin et al. (2008), Peters and Neelin (2009), and Peters

et al. (2010) by the power-law fit lines. For these lighter

precipitation events, the power law is flatter, as is rep-

resented somewhat here in Fig. 4 for lighter events

1–10 mm in size (although the slope appears to slightly

differ from observations). Here, however, the emphasis is

on the heavy precipitation events, for which the power-

law decay carries significance as a measure of extreme

events and their frequency: a power-law decay indicates

a relatively high frequency of occurrence of extreme,

high-total-precipitation events (relatively high frequency

in comparison to Gaussian, or even exponential, decay).

Figure 5 shows the mean and variance of precipitation

for each value of q. Near q ’ 67 mm, there is a rapid

increase of the mean and a sharp peak in the variance, in

qualitative agreement with the observational data in

Figs. 1 and 4 of Neelin et al. (2009). Note that the precise

functional form of the mean here does not appear to be

a power law for high CWV, as it is in observations (Peters

and Neelin 2006); such a detailed comparison is not the

focus here. Nevertheless, a power law could actually be

achieved in this model by giving P(q) a power-law form

for high CWV instead of the simple tanh function; this is

because the mean precipitation is essentially equal to P(q)

for high CWV, where s is essentially always equal to 1.

The mean and variance were also previously recovered

by the model of Muller et al. (2009), which is a stochastic

two-layer model for a single column. The other local

features of the transition to strong convection, however,

were not demonstrated in Muller et al. (2009); the model

did not include evolution in time.

Which physical processes and which aspect of the

model create the variance peak in Fig. 5? Notice that the

precipitation, as defined in (7), is affected by both s(t)

and DPh(t). Is the variance peak in Fig. 5 due to the

variance in s(t), or to the Gaussian white noise fluctu-

ations DPh(t), or both? It is, in fact, s(t) that creates the

variance peak. This can be seen directly from Table 1:

since D2
P 5 0:04 mm2 h21 at most, and since the time step

is 0.01 h, the variance due to these fluctuations is at

most 4 mm2 h22. This would occur if s 5 1 always for

a particular value of q, and, in fact, it is the asymptotic

value of the precipitation variance in Fig. 5 for large

values of q. However, the peak variance is much larger

FIG. 4. Density function of total precipitation of precipitation events.

Compare to the power laws seen in Fig. 6b of Neelin et al. (2008), in

Fig. 1 of Peters and Neelin (2009), and in Figs. 2 and 3a of Peters

et al. (2010), for heavy events with total size of greater than 1 mm.

FIG. 5. Mean and variance of precipitation conditioned on the

value of q. The thick gray line displays the value of q, 67 mm, at

which the precipitation variance is maximum. Compare to the

observational data in Fig. 1 of Peters and Neelin (2006) and Figs. 1,

2, and 4 of Neelin et al. (2009).
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than this and is therefore due to the variability in s(t). In

terms of physical processes, this means that the variance

peak is caused not by the precipitation fluctuations within

an individual event, but by the onset, and demise, of pre-

cipitation events (and all of the processes—cold pools,

gravity waves, etc.—that contribute to the onset and de-

mise). This is one example of the important role of s(t).

Figure 6 shows the number of occurrences of s 5 0

and s 5 1 for each value of q. This figure can be com-

pared with the observational data shown in Figs. 6,

9, and 10 of Neelin et al. (2009), where s 5 0 corre-

sponds to nonprecipitating points and s 5 1 corresponds

to precipitating points. The model results here are in

qualitative agreement with the observational data in

Neelin et al. (2009): the PDFs have roughly exponential

tails; overall, the nonprecipitating state occurs more fre-

quently than the precipitating state; on the other hand, for

sufficiently moist q values, the precipitating state occurs

more frequently than the nonprecipitating state; and the

most probable q value is slightly drier than the q value

where nonprecipitating and precipitating states are equally

probable (which is close to the q value of peak variance

from Fig. 5). In addition, the exponential decay rates in

Fig. 6 are in agreement with simple theoretical predic-

tions, as indicated by the thin gray line segments in Fig. 6,

and as described next.

b. Analytic solutions and interpretations

The exponential tails in Fig. 6 can be understood in

terms of simple stochastic processes with simple physi-

cal interpretations. Several cases are described in this

subsection. First, the general equation is described for

the PDF p(q, t) 5 [ p0(q, t), p1(q, t)]T of the stochastic

process of section 2. Next, specific limiting forms of the

general equation are considered and solved analytically.

Each of these specific limits applies to one of the expo-

nential tails seen in Fig. 6. Finally, some alternative

simplified cases are discussed.

1) GENERAL MASTER–FOKKER–PLANCK

EQUATION

Two types of stochastic processes enter into the model

formulated in section 2: (i) the stochastic closure/forcing

as a drift–diffusion process, whose PDF can be described

by a Fokker–Planck equation, and (ii) the stochastic

trigger as a Markov jump process, whose PDF can be

described by a Master equation (Lawler 1995; Gardiner

2004). The PDF of interest here is a q-dependent vector

PDF p(q, t) 5 [ p0(q, t), p1(q, t)]T, where pj(q, t) is the

probability that s(t) 5 j for j 5 0, 1.

First consider each of (i) and (ii) in isolation from the

other, from which the full dynamics can be built by adding

these two contributions. For the drift–diffusion process

(i), in isolation from (ii), the evolution is given by the

Fokker–Planck equations

›tp0 1 ›q(Ep0) 5 ›2
q

1

2
D2

0p0

� �
, (8)

›tp1 2 ›q(Pp1) 5 ›2
q

1

2
D2

1p1

� �
. (9)

On the other hand, for the jump process (ii), in isolation

from (i), the evolution is given by a Master equation

(Lawler 1995; Gardiner 2004):

›t

p0

p1

� �
5

2r01 r10

r01 2r10

� �
p0

p1

� �
. (10)

For the combination of (i) and (ii), the evolution is given

by a combined Master–Fokker–Planck equation, which

is a combination of (8), (9), and (10):

›t

p0

p1

 !
1›q

E 0

0 2P

 !"
p0

p1

 !#
5

1

2
›2

q

D2
0 0

0 D2
1

 !"
p0

p1

 !#

1
2r01 r10

r01 2r10

 !
p0

p1

 !
.

(11)

Since we are interested in understanding the stationary

PDF in Fig. 6, we use the steady-state version of this

equation:

FIG. 6. Density function of q conditioned on the value of s [i.e.,

conditioned on precipitating points (s 5 1) or on nonprecipitating

points (s 5 0) or on all points (s 5 0 or 1)]. Line segments display

theoretical slopes, whose formulas given in the annotated equa-

tions. Compare to the observational data in Figs. 5 and 9 of Neelin

et al. (2009).
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 !"
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 !#
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1
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D2
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1

 !"
p0

p1

 !#

1
2r01 r10

r01 2r10

 !
p0

p1

 !
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(12)

While this Master–Fokker–Planck equation is too com-

plicated to solve analytically, some limiting cases can be

solved analytically for each of the exponential tails in

Fig. 6, each of which corresponds to a different atmo-

spheric regime.

2) NONPRECIPITATING, LOW-CWV REGIME

Consider the nonprecipitating, low-CWV regime of

the general steady Master–Fokker–Planck equation in

(12). In other words, assume that the system essentially

remains in the nonprecipitating state s 5 0 (so that p1 ’ 0).

Also, assume that the CWV is low (less than roughly

60 mm) so that so that the probability of precipitation

onset is low: r01 ’ 0. In this case, the stationary PDF

p0(q) satisfies an approximate limiting form of (12):

E›qp0 5
D2

0

2
›2

qp0, (13)

where E and D0 take the constant, low-CWV limiting

values from Fig. 1 and Table 1. This Fokker–Planck

equation has solutions of the form

p0(q) 5 A exp
2E

D2
0

q

 !
, (14)

which is valid in the low-CWV regime. This process

gives intuitive insight into the dominant physical mech-

anisms in this case, as supported by the good agreement

with the model simulation: in Fig. 6 the slope of the thin

gray line from q 5 35 to 55 mm is given by 2E/D2
0. Note

that this limiting case is as if the CWV were evolving

according to

dq

dt
5 E 1 D0h(t), (15)

where a suitable boundary condition would be needed to

keep the system in the low-CWV regime and to produce

a stationary PDF. For the full model here, there is a

matching condition to the other CWV/precipitation re-

gimes; for an even simpler model presented below in

section 3b, piecewise matching is not necessary because

the solutions extend across several regimes. Also note

that in observations this part of the distribution (low

CWV, nonprecipitating) can vary considerably. The

dependence of E on q can be significant in affecting this,

but the details of this part of the distribution are not the

focus here.

3) PRECIPITATING, HIGH-CWV REGIME

Similarly, one can consider the precipitating case where

it is assumed that s 5 1 always and that the CWV is high

(greater than roughly 70 mm). In other words, it is as-

sumed that p0 ’ 0 and r10 ’ 0. In this case, the stationary

PDF p1(q) satisfies an approximate limiting form of (12):

2P›qp1 5
D2

1

2
›2

qp1, (16)

where it is understood that, in this approximate scenario,

P and D1 have constant values given by their asymptotic

values at high CWV. This Fokker–Planck equation has

solutions of the form

p1(q) 5 A exp 2
2P

D2
1

q

 !
, (17)

which is valid in the high-CWV regime. This is in good

agreement with the model simulation, as displayed in

Fig. 6 by the thin gray line from q 5 72 to 78 mm. This

limiting case is as if the CWV were evolving accord-

ing to

dq

dt
5 2P 1 D1h(t). (18)

This corresponds to a precipitating column with white

noise forcing, and, similar to (15), a boundary or matching

condition would be needed at the low-CWV end of this

regime in order to obtain a stationary PDF. Note that any

slowly varying functions P(q) and D1(q) should lead to

approximately exponential solutions, even if they are not

precisely constant functions. In fact, while it was assumed

that P and D1 were constant for the derivation presented,

a similar derivation would apply for general functions

P(q) and D1(q), in which case the solutions would not be

exactly exponential.

This case lends insight into the ‘‘extreme’’ precip-

itation events that occur at high CWV values and have

large precipitation rates in the mean. The analytic so-

lution suggests that the frequency of occurrence of these

events decays exponentially as q increases, with a decay

rate of 2P/D2
1. Since D2

1 5 D2
P 1 D2

F ’ D2
F , this decay is

determined by the mean P and the variance D2
F of ex-

ternal moistening/drying processes. If D2
F of this external
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forcing were small (relative to P), then the exponential

decay would be very rapid, and large values of CWV

would not be observed in nature. However, that is not

the case: since D2
F is somewhat comparable to P in mag-

nitude, a slower exponential decay with a long tail is ob-

served, and large values of CWV are observed relatively

frequently.

4) PRECIPITATING, LOW-CWV REGIME

Consider now the case of low CWV (less than roughly

60 mm). For such low CWV values, the probability of

precipitation onset is essentially zero. In (12), this cor-

responds to the approximation r01 ’ 0, which decouples

the equation for p1:

2P›qp1 5
D2

1

2
›2

qp1 2 r10p1. (19)

This equation has exponential solutions for the pre-

cipitating state of the form

p1(q) 5 A exp(m1q), m1 5
2P 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 1 2D2

1r10

q
D2

1

. 0 .

(20)

This curve is shown in Fig. 6 by the thin gray line from

q 5 50 to 56 mm, and it is in good agreement with p1

from the model simulation. This case corresponds to the

PDF of precipitation events at the end of their lifetimes:

it is a competition among P(q), DF(q)h(t), and the event-

ending stochastic jump from s 5 1 to s 5 0. Also notice

that this case is evidence of stochastic hysteresis in the life

cycle of some precipitation events. Since the probability of

precipitation onset is essentially zero for roughly q ,

58 mm, the events that contribute to this tail likely began

at high CWV values and ended at low CWV values. Such

behavior is made possible by s(t), which allows pre-

cipitation events to continue, with some probability, even

after CWV has been reduced significantly. This may

represent stratiform rain at the end of a precipitation

event.

5) NONPRECIPITATING, HIGH-CWV REGIME

Similarly, consider the case of high CWV (greater than

roughly 70 mm). For such high CWV values, the proba-

bility that a precipitation event ends is essentially zero. In

(12), this corresponds to the approximation r10 ’ 0, which

decouples the equation for p0:

E›qp0 5
D2

0

2
›2

qp0 2 r01p0. (21)

This equation has exponential solutions of the form

p0(q)5A exp(2m0q), m0 5
2E 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 1 2D2

0r01

q
D2

0

. 0 .

(22)

This curve is shown in Fig. 6 by the steep thin gray line

from q 5 64 to 68 mm, and it is in good agreement with

p0 from the model simulation. This is relatively good

agreement with the model simulation in light of the

scarce samples of these events. This case corresponds to

the PDF of a nonprecipitating column just before the

onset of precipitation: it is a competition among mean

moistening E, D0h(t), and the event-beginning jump

from s 5 0 to s 5 1.

6) INCORRECT CASE THAT SHOWS THE

IMPORTANCE OF STOCHASTIC VARIANCE

Note that a slightly simpler case than the combined

Master–Fokker–Planck equation would also give expo-

nential tails. If the ›2
qp diffusion part of (12) is ignored,

the result is a system with the competing effects of de-

terministic drift and stochastic jumps. While a simplified

version of this system also has stationary PDF solutions

with exponential tails, the analytic solutions do not agree

with the numerical solutions in Fig. 6. The slopes that

would result would be m1 5 r10 /P and m0 5 r01/E, and

their numerical values would be roughly 4 and 5 times

steeper than those shown in Fig. 6. In other words, the

precipitating state would be seen much more rarely at

low CWV values, and the nonprecipitating state would be

seen much more rarely at high CWV values. This is be-

cause the stochastic forcing Di(q)h(t) (associated with

moisture convergence variations) plays an important role

in forcing the CWV, in addition to the mean components

P(q) and E( p); and the interaction of this with the jump

process is important in (20) and (22).

7) SIMPLIFIED CASE WITHOUT EXPLICIT JUMPS

Another simple case lends further insight into the form

of the PDFs in Fig. 6, which display cores that appear

approximately Gaussian and tails that appear approxi-

mately exponential. Suppose the CWV evolves by the

equation

dq

dt
5 S(q) 1 Dh(t), (23)

where S(q) changes continuously from 1E at low CWV

to 2P at high CWV. This q-dependent drift S(q) is meant

to implicitly include the effect of the stochastic jumps. In

this case, the Fokker–Planck equation for p(q, t) is
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›tp 1 ›q(Sp) 5
D2

2

� �
›2

qp, (24)

which has stationary solutions that satisfy

›q log p 5
2

D2
S(q) (25)

and thus

p(q) 5 A exp
2

D2

ðq

q
ref

S(q9)dq9

#
,

"
(26)

where qref is a reference value that can conveniently be

taken equal to the midpoint qmid of the transition region.

As a simple, concrete example, S(q) could be chosen

to have the piecewise linear form

S(q) 5

1E* if 2‘ , q , 2q*

Sa 2
S*
q*

q if 2q* , q , 1q*

2P* if 1q* , q , 1‘

,

8>>>><
>>>>:

(27)

where q is given relative to qmid, and 2q
*

is the width

of the transition region. This replaces the effect of s(t)

by a linear transition from constant evaporation E
*

to

constant precipitation P
*
, with S

*
5 (P

*
1 E

*
)/2. The

asymmetry between E
*

and the larger P
*

is measured by

Sa 5 (P
*

2 E
*
)/2.

Because (25) gives the slope of the PDF on the log

plot, as in Fig. 6, it provides a straightforward view of

the relation between core and tail regimes. Below the

transition region, the slope is constant—that is, the PDF

is exponential with a decay scale E*/D2 that corresponds

to (14), except that we have neglected the variation of D

from the nonprecipitating to precipitating regime. Above

the transition region, the PDF is likewise exponential

with slope 2P*/D2 that corresponds to (17). Within the

transition region, the slope varies linearly (i.e., log p has

a quadratic term). If there were no asymmetry between

E
*

and P
*

(i.e., Sa 5 0), there would be an exactly

‘‘Gaussian’’ core in the transition region:

p(q) 5 A exp 2
S*

D2q*
q2

 !
, 2q* , q , 1q*. (28)

In presence of asymmetry, this is modified by an expo-

nential term, corresponding to the tilt of the quadratic

core in plots of logp. From (25), it may be seen that in

this solution the slope of the exponential tail (in log p)

necessarily matches the slope of the core at the bound-

ary of the transition region when S(q) is continuous.

Note that the moisture scale associated with this Gaussian

is approximately the same as the moisture scale of the ex-

ponential tail (17) in the precipitating high-CWV regime

D2
1/P.

This simple case provides a prototype for the PDF of

all points (precipitating and nonprecipitating) in Fig. 6.

It illustrates one simple way of producing a distribution

with exponential tails and a (modified) Gaussian core, in

which S is approximately independent of q in each of the

tail regions, changing sign smoothly in the core region.

Although the simple case can yield asymmetry between

the two tails, it is missing some features. Comparison of

this simple case to (14) and (17) shows that the increase

in the stochastic noise coefficient D1(q) in the full model

must be important to the angle between the core region

and the tail at high CWV, a feature seen in observations.

The simple case does not distinguish precipitating and

nonprecipitating points, but it can be useful as a foil to

ask what features depend on the Markov jump process

in the more complex case of the PDF of precipitating

points. Consider the transition from (9), valid in the high

CWV regime, to (19), valid in the low CWV regime. In

(9), the balance is between drift and diffusion terms, as

in the simple solution above. The increase of r10 as one

transitions to low CWV creates a core that involves

a three-way balance between it and the drift and the

diffusion terms, transitioning to the exponential solution

(20) where the coefficients become constant.

PDFs similar to this simple case have recently been

identified for several tracers, including CWV, in data

from observations, models, and reanalysis (Neelin et al.

2010; Lintner et al. 2011). We note that PDFs of similar

form can be produced purely from passive scalar ad-

vection–diffusion [see Bourlioux and Majda (2002) and

related work]. In that case the core–tail relations depend

on the characteristics of a flow field, not on explicit tracer

sinks as in the solutions here. In either case, a represen-

tation of vertical motion/moisture convergence drives the

excursions of moisture, and the question is whether it is

limited by an actual sink (such as P) or by interplay with

a cross-flow as in Bourlioux and Majda (2002). Both are

potentially realistic factors in more complex models or

nature, and a more unified understanding of these pro-

cesses in a simple system that contains both processes will

be of interest.

Simple stochastic models provide formulas for the

exponential tails in terms of model parameters. This

suggests that the observed exponential PDF from Peters

and Neelin (2006) and Neelin et al. (2009) could be used

to constrain the parameters of a stochastic convective

parameterization. In fact, many of the parameter choices

used here were motivated by this consideration. This

topic will be discussed further in section 4.
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4. Implications for convective parameterizations

We now discuss the stochastic model from three per-

spectives: as a simplified version of some existing sto-

chastic parameterizations, as a prototype around which

a more comprehensive parameterization could be built,

and as a simple way to ‘‘stochasticize’’ an existing de-

terministic parameterization.

Several existing stochastic parameterizations include

the two stochastic elements used here—stochastic clo-

sure and trigger—but they are in slightly different forms,

and they are not explicitly identified using this terminol-

ogy. The distinction between the closure and the trigger

can be blurry in some circumstances, but it is still used

here as a useful organizing principle. The two examples

considered here include the models of Lin and Neelin

(2000, 2002, 2003) and the models of Majda and Khouider

(2002), Khouider et al. (2003), Katsoulakis et al. (2006),

Majda et al. (2008), Majda and Stechmann (2008), and

Khouider et al. (2010). One of the main differences be-

tween these two examples is in the type of stochastic

process that is used: Gaussian processes in the former

and Markov jump processes in the latter.

In the first example models, in the notation of Lin and

Neelin (2000), the convective heating Qc is given by

Qc }
1

tc

H(C1 1 j)(C1 1 j), (29)

where tc is the convective relaxation time scale,H is the

Heaviside function, C1 is a measure of the convective

available potential energy (CAPE), and j is Gaussian

red (not necessarily white) noise. This is a simplified,

stochastic version of the parameterization of Betts and

Miller (1986), which is recovered by setting j 5 0. While

the distinction between closure and trigger is somewhat

blurry here, this parameterization does include both

aspects.

In the second example models, in the notation of

Majda and Khouider (2002) and Khouider et al. (2003),

each column is broken into many subcolumns. Each sub-

column x is assigned a stochastic jump process sI(x, t)

that can take the value sI 5 0 or sI 5 1. In each column

[X, X 1 DX), the subgrid scales can be represented by an

average over l subcolumns:

sI(X , t) 5
1

l
�

x2[X,X1DX)

sI(x, t). (30)

This could allow, for instance, the possibility of having

convection in a fraction of the column, since sI can take

any of the l 1 1 values from 0, 1/l, 2/l, . . . 1. Again, while

the distinction between closure and trigger is somewhat

blurry here, this parameterization does include both

aspects.

The model of the present paper is a combination of

the methods from these two examples. The Gaussian

stochastic closures/forcings Di(q)h(t) are motivated by

the first set of example models above, and s(t) is moti-

vated by the second set of example models above.

As a second perspective, one could view the present

paper’s stochastic model as a prototype around which

a more comprehensive parameterization could be built.

In this respect, the key aspects of this model are that it is

simple and that the model parameters can easily be

constrained by observations (Neelin et al. 2008). Indeed,

in this paper, the values of several model parameters

were chosen based on the observations of Neelin et al.

(2009) described in section 1 and based on the sim-

ple theory from section 3b. The values of P(1‘) and

DP(1‘) were chosen based on the mean and variance of

precipitation from the observational record. The value

of D1(1‘) was chosen based on the theoretical expo-

nential tail p1(q) 5 A exp[2(2P/D2
1)q] and the expo-

nential tail from the observational data. The values of E

and D0 were partly based on the theoretical exponential

tail p0(q) 5 A exp[1(2E/D2
0)q] and the exponential tail

from the observational data. The values of r01 and r10

were partly based on the theoretical exponential tails

p0(q) 5 A exp[2m0q] and p1(q) 5 A exp[1m1q] and the

exponential tails from the observational data. And the

tanh form of the transition rates was chosen with a sharp

transition near q ’ 60–64 mm to be in agreement with

the critical CWV from the observational record (Neelin

et al. 2009).

Furthermore, there are even more observational sta-

tistics available that could be used to constrain exten-

sions of this stochastic parameterization. For instance,

this model did not include the effects of atmospheric

temperature, which have been documented by Neelin

et al. (2009). The model also did not include details of

the vertical structure of the atmospheric thermodynamic

state, and it did not include details of spatial variability,

even though several interesting statistics have been docu-

mented by Holloway and Neelin (2009) and Peters et al.

(2009) for the former and latter, respectively. [Methods for

including vertical structure and spatial variability in simple

stochastic models have also been introduced by the sto-

chastic multicloud model of Khouider et al. (2010) and

the coarse-grained stochastic models of Khouider et al.

(2003).] Given this suite of observational constraints, the

strength of the model presented here is that it takes a form

that is easily related to statistics from observations: pa-

rameters can be constrained a priori via simple formulas,

rather than a posteriori via numerous lengthy simulations

over a large parameter space. However, it remains to be

DECEMBER 2011 S T E C H M A N N A N D N E E L I N 2967



seen whether this type of theory-based parameter tuning

can be done reliably in a more complex situation with

full vertical resolution and/or spatial variability. In ad-

dition, while many features were constrained here by the

observational record, some features were not. For in-

stance, no simple theory was given for the power laws in

the autocorrelation functions in Fig. 3 or the event-size

PDF in Fig. 4, although mechanisms have been identi-

fiable in similar systems (Sornette 2004). If a theory for

these approximate power laws can be formulated in

future work, then this would provide further observa-

tional constraints for model parameters.

Finally, as a third perspective, one could view the present

paper’s stochastic model as a simple way to ‘‘stochasticize’’

an existing deterministic convective parameterization.

This could be done by adding a stochastic component to

either the convective closure or trigger (or both). The

approach of ‘‘stochasticizing’’ a convective parameteri-

zation has been taken in earlier work, in which many dif-

ferent approaches have been presented (Lin and Neelin

2000; Bright and Mullen 2002; Lin and Neelin 2002;

Majda and Khouider 2002; Khouider et al. 2003; Lin and

Neelin 2003; Katsoulakis et al. 2006; Song et al. 2007;

Majda et al. 2008; Majda and Stechmann 2008; Plant and

Craig 2008; Khouider et al. 2010).

Here, as in Majda and Khouider (2002) and other

work, we advocate s(t) as a simple way to implement

a stochastic trigger with several important features. Any

deterministic trigger condition of the form H(q 2 qc)

could be turned into a stochastic trigger by creating a

s(t), as in this paper, to replaceH. This type of stochastic

trigger was crucial for the strong peak in precipitation

variance in Fig. 5, and it may play a role in reproduc-

ing the event-size PDF in Fig. 4. It also allows pre-

cipitation to occur occasionally at moderate or low CWV

values, which reproduces the exponential tail p1(q) 5

A exp[1m1q] from Fig. 6, in agreement with the ob-

servation record (Neelin et al. 2009); and it allows the

analytic representation of p1(q) 5 A exp[1m1q] as de-

scribed in section 3b.

In addition, the results here also demonstrated the

importance of intense stochastic ‘‘external’’ forcing

DFh(t). This was crucial for obtaining extreme pre-

cipitation events with high CWV and long lifetimes, as it

could occasionally compensate for the heavy precipita-

tion and encourage more of it. These extreme events

could be seen in individual instances in Figs. 2c and 2d

and in statistical measures such as the event-size PDF in

Fig. 4 and the exponential tail at high CWV from (17)

and Fig. 6. In an atmospheric simulation with spatial

variability, one would expect much of the stochastic

external forcing to be represented by resolved dynamics.

However, it is also possible that the resolved variance

would not account for the full intensity of DFh(t). A

similar parameterization could be used to account for

unresolved variance, as in Lin and Neelin (2000, 2002,

2003).

5. Concluding discussion

A simple stochastic model was designed and studied

in order to further understand the transition to strong

convection. The transition has recently been character-

ized by an array of statistical measures (Peters and

Neelin 2006; Neelin et al. 2008, 2009; Peters and Neelin

2009; Holloway and Neelin 2010), which were summa-

rized in section 1. It was shown that the simple model

from section 2 captures the following four local statis-

tical features from the observations:

1) autocorrelation functions of CWV and precipitation

with long and short autocorrelation times, respec-

tively, and with approximate exponential and power-

law decays, respectively [compare Fig. 3 here with

Fig. 1 of Holloway and Neelin (2010)];

2) approximate power laws in PDF of precipitation

event size [compare Fig. 4 here with Fig. 6b of

Neelin et al. (2008), with Fig. 1 of Peters and Neelin

(2009), and with Figs. 2 and 3a of Peters et al. (2010)];

3) a sharp transition in the mean of precipitation and

a peak in variance of precipitation, near a critical

CWV value [compare Fig. 5 here with Figs. 1 and 4 of

Neelin et al. (2009)]; and

4) exponential tails in PDFs of CWV values condi-

tioned on precipitating points p1(q) and nonprecipi-

tating points p0(q), and maxima in PDFs located

at CWV values just below the critical CWV value

[compare Fig. 6 here with Figs. 5 and 9 of Neelin

et al. (2009)].

Furthermore, the slopes of the exponential tail of the

PDFs were predicted with simple analytic solutions

(section 3b). This directly ties model behavior to model

parameter values. With knowledge of the PDFs from

observational data (Neelin et al. 2009), it provides a

way to constrain model parameters via simple formulas,

rather than via model simulations over parameter space.

At the same time, however, the PDF slopes are built into

the model in some sense, whereas one might like to have

the slopes arise from some fundamental physical postu-

lates.

Given the agreement of the model results with the

observed statistics, further insight can be gained into the

nature of the observed statistics. For instance, the peak

in precipitation variance was tied to stochastic transitions

in s(t) between the precipitating and nonprecipitating

states, rather than to fluctuations in the precipitation
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rate from DPh(t). As another example, evidence of sto-

chastic hysteresis was seen in the low-CWV exponential

tail in the CWV PDF of precipitating points. These pre-

cipitating points likely began their life cycle at higher

CWV values and continued to exist even after CWV was

reduced significantly. This behavior is made possible by

the stochastic switch s(t). On the other hand, the sto-

chastic switch is not essential to the power law in pre-

cipitation autocorrelation, which can also be reproduced

with a deterministic switch. As yet another example, the

stochastic ‘‘external’’ forcing DFh(t) was seen to be crucial

for obtaining extreme precipitation events. This DFh(t) is

meant to represent the various moistening/drying pro-

cesses associated with deep moist convection, such as

moisture convergence/divergence from mesoscale and

synoptic-scale waves, updraft/downdraft circulations,

etc. These mechanisms occasionally were strong enough

to compensate for the drying from precipitation and to

allow extreme precipitation events with high CWV values

and long lifetimes. One question that remains is whether,

in large-scale models with spatial variability, the resolved

dynamics would account for the full intensity of DFh(t).

In nature these extreme events would typically be asso-

ciated with upward motion and moisture convergence in

systems such as tropical waves, mesoscale convective

systems, hurricanes, etc.

The stochastic model was also discussed in the context

of stochastic convective parameterizations in section 4.

The model presented here has three stochastic compo-

nents, each of which is treated separately: a stochastic

trigger and stochastic closures for precipitation and for

forcing. The stochastic trigger is a two-state Markov

jump process s(t), which takes the value s 5 0 when

there is no convection and s 5 1 when there is convec-

tion. The transition rates for s(t) depend on the current

atmospheric thermodynamic state through the CWV:

r01[q(t)] and r10[q(t)]. On the other hand, the stochastic

closures for precipitation and external forcing take the

form D(q)h(t), where h(t) is Gaussian white noise and

D(q) is a CWV-dependent variance function. These sto-

chastic components—trigger and closures—are partly

motivated by the earlier work of Majda and Khouider

(2002), Khouider et al. (2003, 2010), and Lin and Neelin

(2000, 2002, 2003), respectively. Each of these stochastic

components offers a simple way to stochasticize an existing

deterministic convective parameterization. The simplicity

of these stochastic components offers some important

advantages: it allows the separate roles of the stochastic

jumps and the Gaussian process to be distinguished, and

it allows model parameters to be tied directly to observed

statistics.

The stochastic model presented here could also be

used as a prototype around which a more comprehensive

parameterization could be built. For instance, this model

did not include the effects of atmospheric temperature,

whose effects on the observed statistics have been docu-

mented by Neelin et al. (2009). The model also did not

include details of the vertical structure of the atmospheric

thermodynamic state, and it did not include details of

spatial variability, even though several interesting sta-

tistics have been documented by Holloway and Neelin

(2009) and Peters et al. (2009) for the former and latter,

respectively. Methods for including vertical structure

and spatial variability in simple stochastic models have

also been introduced by the stochastic multicloud model

of Khouider et al. (2010) and the coarse-grained sto-

chastic models of Khouider et al. (2003) and Katsoulakis

et al. (2006). A combination of these ideas should be

a fruitful direction of future research.
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