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ABSTRACT

A simple stochastic model is designed and analyzed in order to further understand the transition
to strong convection. The transition has been characterized recently in observational data by an
array of statistical measures, including (i) a sharp transition in mean precipitation, and a peak in
precipitation variance, at a critical value of column water vapor (CWV), (ii) approximate power-law
in the probability density of precipitation event size, (iii) exponential tails in the probability
density of CWV values, when conditioned on either precipitating or non-precipitating locations,
and (iv) long and short autocorrelation times of CWV and precipitation, respectively, with
approximately exponential and power-law decays in their autocorrelation functions, respectively.
The stochastic model presented here captures these four statistical features in time series of CWV
and precipitation at a single location. In addition, analytic solutions are given for the exponential
tails in (iii), which directly relates the tails to model parameters. The model parameterization
includes three stochastic components: a stochastic trigger turns the convection on and off (a
two-state Markov jump process), and stochastic closures represent variability in precipitation and
in “external” forcing (Gaussian white noise). This stochastic “external” forcing is seen to be
crucial for obtaining extreme precipitation events with high CWV and long lifetimes, as it can
occasionally compensate the heavy precipitation and encourage more of it. This stochastic model
can also be seen as a simplified stochastic convective parameterization, and it demonstrates sim-
ple ways to turn a deterministic parameterization — the trigger and/or closure — into a stochastic one.

1. Introduction

The relationship between precipitation and water vapor
is crucial for predictions of precipitation. In the context of
convective parameterizations, for instance, one attempts
to represent the statistics of unresolved moist convection
in terms of the resolved water vapor and thermodynamic
state. While the main statistic of interest has tradition-
ally been mean values, it is becoming increasingly apparent
that a wide range of statistics may be valuable. Several re-
cent studies have documented an array of precipitation and
water vapor statistics, and, taken together, these statistics
can be seen as a characterization of the transition to strong
convection.

One aspect of the transition to strong convection is an
increase in precipitation with increasing column water va-

por (CWYV). Bretherton et al. (2004) found such an in-
crease in satellite microwave data on daily and monthly
time scales, and subsequent work has examined data on
shorter time scales. Peters and Neelin (2006) and Neelin
et al. (2009) showed that there is a critical value g, of the
CWYV ¢ beyond which the precipitation increases rapidly
as an approximate power law, (P) ~ (¢ — ¢.)?, for ¢ > q..
Since the observed value of 3 is less than 1, the rate of
increase in precipitation diminishes for higher values of
q. Also, the precipitation variance has a strong peak at
the critical value g.. This is one piece of the transition
to strong convection: mean precipitation is small for low
values of CWV and large for high values of CWV, and a
sharp, highly variable transition occurs near a critical value
of CWV.



Another aspect of the transition to strong convection is
the occurrence of extreme events. In this context, an “ex-
treme” event could mean high CWV, high precipitation
rate, and/or high total precipitation; and the importance
of these events depends on their frequency of occurrence.
Peters and Neelin (2006) and Neelin et al. (2009) showed
that high CWYV values — above a critical CWV value ¢, —
usually occur simultaneously with high precipitation rates.
Furthermore, these extreme events occur more frequently
than would be expected from Gaussian statistics, in the
sense that the frequency of occurrence of high CWV values
has a long tail with exponential decay as CWYV increases.
Another measure of extreme events is the total precipi-
tation in a precipitation event. It has been shown that
this measure, also called the “event size,” has a probability
density function (PDF) with smaller events having higher
probabilities (Peters et al. 2002; Neelin et al. 2008; Peters
and Neelin 2009). However, the PDF has a long tail with
power-law decay as event size increases, which is another
indication that exteme events occur somewhat frequently
and another way to quantify their frequency.

Finally, the transition to strong convection also includes
interesting temporal variability. In particular, many stud-
ies have shown a temporal relationship with increases in
lower-tropospheric water vapor leading increases in pre-
cipitation (Sherwood 1999; Sherwood and Wahrlich 1999;
Sobel et al. 2004; Mapes et al. 2006, 2009). In addition
to lower-tropospheric water vapor, CWV increases have
also been shown to lead precipitation increases (Holloway
and Neelin 2010). In this role of a convective precursor,
CWV is likely acting as a surrogate for lower-tropospheric
water vapor, since it has been shown that CWV variance
corresponds mainly to moisture variance in the lower free
troposphere around 800 hPa (Holloway and Neelin 2009).
These results quantify the probability of precipitation and
show that there tends to be a time lag before the initi-
ation of the next precipitation event, even in periods of
high CWV. This suggests that precipitation might not al-
ways initiate immediately when CW'V exceeds some critical
value, as might be expected from the notion of conditional
instability. Likewise, for parameterizations of precipita-
tion and convection, it may not be appropriate to model
the onset of precipitation as a fixed critical threshold of
CWV. Instead, it may be appropriate to model onset as a
stochastic switch that has a mean “critical value” as in the
notion of conditional instability, but which also has some
random variance about this mean critical value. Such a
model would be a “stochastic trigger” for the onset of pre-
cipitation/convection.

The observations described above should be useful in
guiding and constraining the development of convective pa-
rameterizations: Can one design a parameterization that
captures the observational features described above? Given
the nature of the observations, including the prominence of

extreme events, one might suspect that a stochastic param-
eterization is appropriate. In this direction, one might ask,
What is the simplest model that can capture all of the lo-
cal features of the transition to strong convection described
above?

The first purpose of this paper is to present such a sim-
ple stochastic model and to use it to lend insight into the
statistics of extreme precipitation events. The second pur-
pose of the present paper is to discuss this simple stochastic
model in the context of stochastic convective parameteriza-
tions. As will be discussed below, the model designed here
can be thought of in a number of ways: as, for instance,
a simplified version of some existing stochastic parameter-
izations; as a prototype around which a more comprehen-
sive parameterization could be built; or as a simple way to
“stochasticize” an existing deterministic parameterization
(Lin and Neelin 2000; Bright and Mullen 2002; Majda and
Khouider 2002; Majda et al. 2008; Majda and Stechmann
2008; Neelin et al. 2008; Plant and Craig 2008; Khouider
et al. 2010). In all of these contexts, a key strength of the
present model is its simplicity. As will be shown below, the
model is simple enough that one can often directly relate
the model parameters to the behavior of the model, which
then makes it possible to choose model parameters based
on observational data.

While the statistics described above are a significant
portion of the transition to strong convection, there are
other interesting statistics that will not be examined here.
Of particular note are statistics of spatial variability of
clouds and cloud clusters (Houze and Cheng 1977; Love-
joy 1982; Mapes and Houze Jr 1993; Neggers et al. 2003;
Nesbitt et al. 2006; Peters et al. 2009). The model of the
present paper will include a single column and will not ex-
plicitly include spatial variability or correlations between
columns. On a related note, one aspect of the observed spa-
tial variability is long-range spatial correlations, which is,
in turn, one of many aspects of the transition to strong con-
vection that resemble continuous phase transitions and/or
self-organized criticality from statistical physics (Peters et al.
2002; Peters and Neelin 2006; Neelin et al. 2009; Peters and
Neelin 2009; Peters et al. 2009, 2010). On the other hand,
Muller et al. (2009) offer a closely related (although dif-
ferently phrased) interpretation, for some aspects of the
transition to strong convection (the mean and variance of
precipitation as a function of CWV), making separate as-
sumptions for the stochastic variations across the transi-
tion. The present paper takes the pragmatic point of view
that the essential question is: What observed characteris-
tics can be imitated in simpler systems, both for under-
standing and for use in climate model parameterizations?

The paper is organized as follows. The stochastic model
is formulated in section 2. Numerical simulations and sim-
ple analytic solutions are presented and compared with ob-
servational data in section 3. Implications for convective



parameterizations are discussed in section 4. Finally, con-
clusions are summarized in section 5.

2. A stochastic model for tropical precipitation

What is the simplest model that can capture the obser-
vations of CWV and precipitation as described in section
1?7 The desired model should include, at a minimum, a
time-varying degree of freedom that represents the CWV
of a single column, which is denoted here as ¢(¢). Notice
that this model does not explicitly include spatial variabil-
ity or correlations between CWYV of different columns. As
described at the end of section 1, other interesting aspects
can be seen in observed relationships of neighboring loca-
tions or clusters of locations on mesoscales (Peters et al.
2009), but these aspects will not be included in the model
here. See section 4 for further discussion.

The time evolution of the CWYV is then given by the
differential equation ;

q
7= (1)
where the source S is specified below. Three aspects of the
source S will be defined stochastically below: a stochas-
tic trigger for the onset and demise of convection (sec-
tion 2a), a stochastic closure for precipitation (section 2b),
and a stochastic closure for “other” forcing (also in section
2b). This “other forcing” will represent some forcing that
would be accounted for by resolved dynamics if a large-
scale model with spatial variability were used; but it also
might represent some forcing that would be left unresolved,
as discussed further below.

a. Stochastic trigger

What conditions should describe the onset of precipita-
tion? Or, in other words, under what condition should the
precipitation parameterization be turned on? One com-
monly used “trigger” condition is to turn on precipitation
when ¢ > ¢. for some critical threshold value ¢. and to
turn off precipitation when ¢ < g.. This is a determinis-
tic trigger condition. On the other hand, there are many
unresolved factors, besides the resolved CWYV ¢, which af-
fect the onset of precipitation; hence, it may be best to
model the onset (and demise) of precipitation as a stochas-
tic switch or trigger (Lin and Neelin 2000, 2002; Majda
and Khouider 2002; Khouider et al. 2003). In this spirit,
a stochastic trigger is used here to turn the precipitation
parameterization on and off. Motivated by the stochas-
tic models of Majda and Khouider (2002) and Khouider
et al. (2003), a Markov jump process o(t) is used to indi-
cate whether the system is in the non-precipitating state
(0 = 0) or the precipitating state (¢ = 1) at each time ¢
(Lawler 1995; Gardiner 2004):

U(t)_{() &

1 &

non-precipitating
precipitating.

(2)

The source S in (1) will then take a different form depend-
ing on whether the system is in a non-precipitating state
or a precipitating state:
So if
where closures for Sy and S; are given below in section 2b.
In order to specify the dynamics of o(t), we must spec-
ify the probability of a jump from o = 0 to 0 = 1 (and vice
versa); these jumps correspond to the onset (and demise)
of precipitation events. An intuitive way to think of the
random jumps is the following. If o(¢) = 0 at some time ¢,
then the probability that precipitation turns on—i.e., the
probability that o(t + At) = 1—is given approximately by
ro1At, where ro1[g(t)] is the transition rate for the 0 — 1
transition from non-precipitating to precipitating. A tran-
sition rate 110[¢(t)] similarly defines the probability for the
1 — 0 transition from precipitating to non-precipitating.
The stochastic trigger is therefore specified once the tran-
sition rates 791(¢) and r19(q) are specified as functions of
q. The functions used here are shown in Fig. 1. They
have been defined to represent three atmospheric regimes:
a low-CWV regime, a high-CWV regime, and a middle
regime in between these two. If the atmosphere is suf-
ficiently dry, then transitions from the non-precipitating
state to the precipitating state are essentially not allowed
(by defining r¢; to be nearly zero), while transitions from
the precipitating state to the non-precipitating state are
allowed (by defining r19 to be positive). The opposite sit-
uation occurs if the atmosphere is sufficiently moist; and,
for moderate CWV wvalues, both transitions are allowed.
Each of these functions shown in Fig. 1 is a stretched and
shifted version of the tanh function:

fla) = ffoo+<f+oo—ffoo>% {1 + tanh (mﬂ (4

Qwidth

non-precipitating
precipitating

(3)

The four parameters that determine this function are the
asymptotic values of f at ¢ = £00, fio; the location of the
transition, ¢miq; and the “width” of the transition, qwidth-
The values of these parameters are given in Table 1 for each
of the functions from Fig. 1. These particular values were
chosen based on a combination of theory and observations,
but a discussion of this is delayed until section 4, after the
theory is presented in section 3b. Also note that, for any
single feature of interest, only a subset of these parame-
ters will be relevant; however, for achieving the full set of
features of interest, the full model and parameter set are
described in this section.

b. Stochastic closures for precipitation and forcing

If the value of o (t) is given as described above, then the
model (1) is fully specified once the sources Sy and Sy are
chosen. Since these sources are meant to represent a vari-
ety of different moistening processes, we choose stochastic



7'5 a

— 5

= R
% sl 0.25h \ - — —Tp
I \

g 7 \

;—3“ 11 \ 1.0h

1] \

c o T = — = = —
K]

B -1 : : .

S 40 50 60 70 80
= column water vapor (mm)

b

= | — — -p /

E - /

~ 6 - ’

E

L 4r /

]

o /

I

3

0 =
40 50 60 70 80
column water vapor (mm)
—
IE C
e
Z —_—— —_ — —

€ eof Dy e

c 2

S - - -2 [

£ 401 |

8

o /

20 J

c

Q

g 40 50 60 70 80
@

column water vapor (mm)

F1G. 1. Model parameters as functions of CWV. (a) Transi-
tion rates ro1(q) and r10(q) for the stochastic jump process
(trigger), o(t). (b) Deterministic parts, F(q) and P(q), of
the source term from (5). (c) Variances, D3(q) and D?(q),
of the stochastic part of the source term from (5).

TABLE 1. Parameter values that determine the functions
in Fig. 1 using the generic form of tanh in (4). Values
of CWV ¢ are given in units of mm, and units of other
quantities are shown in the first column.

f (units) f—oo f+oo Gmid Gwidth

ror (b 1) 0 1.0 6.0 20

rio (h1) 40 0 630 20
E (mm h™1) 0.2 02 N/A N/A

P(mmh') 20 100 645 1.0
D (mm2h-') 20 20 N/A N/A
D? (mm2h~') 160 64.04 645 1.0
D% (mm2?h™') 16.0 64.00 645 1.0
D% (mm2h~') 0.0 004 645 1.0

closures/forcing of the form

So = E(q) + Do(q) n(t)
Sy = P(q) + D1(q) n(t), (5)

where 7(t) represents Gaussian white noise with mean 0
and variance 1.

Physically, Sy is a parameterization of moistening pro-
cesses such as moisture convergence from mesoscale and
synoptic scale waves; this is represented by a mean moisten-
ing E(q) (for “evaporation,” even though it parameterizes
moistening in a broader sense) and by a stochastic noise
term Dy(q) n(t), which could actually be either positive or
negative, corresponding to moisture convergence/divergence,
respectively, by the large-scale flow. Similarly, P(q) is a pa-
rameterization of mean precipitation, and D1 (q) n(t) actu-
ally represents a combination of two stochastic noise terms:

S1=[P(q) + Dp(q) np(t)] + Dr(q) nr(t) (6)

In this form, S; has been split into a contribution from
precipitation (in brackets) and a contribution from “exter-
nal” forcing D (q) n(t), which represents processes such as
moisture convergence/divergence from mesoscale and syn-
optic scale waves. One would expect much of this “exter-
nal” forcing to be accounted for by resolved dynamics in
large-scale models with spatial variability, although it is
possible that resolved dynamics would not account for the
full intensity of D np(t), as discussed further below. This
definition (6) separates D1 (q) to emphasize that it includes
a contribution Dp(q) due to variance in the precipitation
rate and a contribution Dp(g) due to variance in the “ex-
ternal forcing,” where D} = D% + D%. This also makes it
clear that the precipitation rate will be defined as

. _ 0 if o(t)=0
v = pioy < ooty it o1 O
If analyzed carefully in observations, the variability of these
physical processes might best be described by red noise or



even by Stratonovich white noise; here, however, to keep
the model as simple as possible, n(t) is taken to be white
noise in the Ito sense.

The forms of E(q), P(q), Dr(q), and Dp(q) are shown
in Fig. 1, and they are in the form of the tanh function from
(4) with parameter values given in Table 1. These partic-
ular values were chosen based on a combination of theory
and observations, but a discussion of this is delayed until
section 4, after the theory is presented in section 3b. Also,
the form of the tanh function was chosen partly to facili-
tate analytical work in particular regimes of interest. The
non-precipitating state has constant parameters £ = 0.2
mm h~! and D3 = 2.0 mm? h™! that do not depend on gq.
On the other hand, the precipitating state has parameters
P(q) and D?(q) that vary with CWV ¢. As was the case
for the transition rates ro;(q) and r10(q), the variations of
P(q) and D1(q) define three atmospheric regimes: a low-
CWYV regime, a high-CWYV regime, and a middle regime in
between these two. For simplicity, the function values are
roughly constant within each of the low-CWYV and high-
CWYV regimes, and the functions have smooth, yet some-
what sharp, transitions between these two regimes. The
low-CWYV regime is characterized by a weaker precipita-
tion rate of 2 mm h~! and a weaker stochastic variance of
16.0 mm? h™!; this could represent either the early stage
of development of a convective system or the final, dy-
ing stage of a convective system with stratiform rain; the
two alternatives would be distinguished by the previous
history of ¢(t). In contrast, the high-CWYV regime is char-
acterized by a stronger precipitation rate of 10 mm h~!
and a stronger stochastic variance of 64.0 mm? h~!; this
could represent a fully developed convective system with
heavy rainfall and with intense variations in moisture con-
vergence/divergence from updraft/downdraft circulations
and mesoscale and synoptic scale waves. The particular
value of 10 mm h~! was chosen based on the microwave es-
timate of observed rainfall (Hilburn and Wentz 2008) used
in Neelin et al. (2009) (noting that high-end rain rate esti-
mates differ in amplitude among observational products).
We emphasize that the intense stochastic forcing D1(q) 1(t)
could be either positive or negative; if positive, it represents
a moisture source from, for instance, mesoscale/synoptic
scale moisture convergence, and it could possibly be so in-
tense that it compensates (or over-compensates) the mois-
ture loss from precipitation.

To find numerical solutions of this stochastic model, the
following method is used. A uniform time step of 0.01 h
is chosen to be comparable with the 1-minute resolution
of the observational data analyzed by Holloway and Neelin
(2010). At each time step, the model variables are updated
in two stages: (i) the CWV ¢(t) is updated to q(t + At)
using dq/dt = S with the value of o(t) fixed, and (ii) o(t) is
updated to o(t + At) with the value of ¢(t + At) fixed. For
(i), the stochastic differential equation is advanced in time

using the Euler-Maruyama method (Higham 2001; Gar-
diner 2004). For (ii), the probability of switching states
in a time interval At is 1 — e "', where 7 is either ro;
or r19. Pseudo-random numbers are generated using the
Mersenne Twister algorithm (Matsumoto and Nishimura
1998), and random variables distributed uniformly on the
interval (0, 1] are converted to Gaussian distributed ran-
dom variables using the Box—Muller method (Ross 1998).
The model is advanced for 4 x 10% time steps, or approxi-
mately 4.5 years, which is comparable to the longest time
series of these fields, with similar temporal resolution, in
currently available observational records. An even longer
simulation of approximately 13.5 years was used for Figs.
3 and 4 below. Such a long time series is necessary be-
cause one focus of this paper is extreme events, which occur
somewhat rarely, and many samples of these events must
be gathered in order to accurately compute their statistics.

3. Properties of the transition in numerical simu-
lations and analytic solutions

In section 3a, it is shown that the simple model from
section 2 can capture all of the locally analyzed observa-
tions of the transition to strong convection, as described in
section 1. Also, in section 3b, simple analytic formulas are
derived for some features of the model behavior; these for-
mulas indicate how model behavior depends on parameter
choices, which lessens the need for exhaustive numerical
sensitivity studies.

a. Numerical simulations

Using the model formulation of section 2, a time se-
ries of CWV ¢(t) and the stochastic jump process o(t) is
created. Fig. 2 shows a sample of this time series over
different intervals of time, zooming in from the broad pic-
ture to detailed events: (a) a 100-day interval, (b) a 5-day
interval, and (c) and (d) 0.5-day intervals. In Fig. 2a, the
100-day interval shows that the CWV can take values rang-
ing from 30 to 80 mm, although the extreme values occur
somewhat rarely. An individual precipitation event begins
when o jumps from 0 to 1 and ends when o jumps from 1
to 0, although individual events occur on time scales much
shorter than 100 days and are therefore hard to identify in
Fig. 2a. Nevertheless, this plot shows that precipitation
events occur irregularly, and there are several periods of
up to one week when there is no precipitation at all (when
o = 0). Fig. 2b zooms in on a 5-day interval from Fig.
2a. This plot shows the synoptic scale and mesoscale vari-
ability, and it is comparable to the sample time series from
observational data in Holloway and Neelin (2010). Again,
precipitation events occur irregularly, and there are periods
of 1-2 days without precipitation as well as periods with
clusters of several precipitation events. Figs. 2c and 2d
zoom in on two different clusters of precipitation events;
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(c) and (d). Compare (b) with the observational data in Fig. 2 of Holloway and Neelin (2010).

these plots show five and three events, respectively.

In Fig. 2, the life cycles of the precipitation events are
highly variable, yet some of them appear to follow simi-
lar patterns. One might naively expect that precipitation
events always follow the pattern of the third event in Fig.
2d: initially, there is a period of slow moistening until the
atmosphere is moist enough to allow convection to initiate;
then precipitation begins and rapidly dries the atmosphere;
and, after precipitation has sufficiently reduced the mois-
ture level, the precipitation event ends. While this does
occur for some events in Figs. 2c¢ and 2d, there are other
events that do not follow this simple pattern, and those
events tend to occur with high CWV values and tend to
have long lifetimes. Two examples are the second event
in Fig. 2c and the first event in Fig. 2d. These events
follow a different pattern: precipitation begins, but CWV
increases after the initiation of convection; after initially
increasing, the CWYV eventually begins to decrease; and, af-
ter the CWV decreases sufficiently, the precipitation event
ends. The key difference here is that these events include
a period where CWV increases at the same time as heavy
precipitation. This requires significant moistening from the
“external” forcing Dp(q)n(t) from (5) and (6). Hence,
these extreme precipitation events represent events occur-
ring as part of mesoscale convective systems, hurricanes, or
other sources of intense variations in moistening/drying,

presumably from moisture convergence/divergence. It is
these extreme precipitation events that will strongly fac-
tor into some of the statistical measures described below.
We note that, in the observed system or a full atmospheric
model, there would be feedback between the convective
heating and moisture convergence which is not included
here.

The autocorrelation function for the time series data is
shown in Fig. 3a for CWV and for precipitation. This is
in broad agreement with the autocorrelations from obser-
vational data in Fig. 1 of Holloway and Neelin (2010): the
CWYV is well-correlated with itself at much later times of
roughly 1 day, whereas the precipitation has appreciable
autocorrelation only for roughly 1 hour. This is further
confirmation of the realism of the variability in the model,
in addition to visual comparison of time series of ¢(t).

Furthermore, Figs. 3b and 3c indicate the functional
forms of the autocorrelation functions on mesoscale and
synoptic time scales. First, the CWV autocorrelation func-
tion is shown on a log-linear plot and has a roughly, but
not precisely, exponential form for lags of about 1 to 6 days.
Note that this stochastic model does not necessarily have
to have an exponential CWV autocorrelation function, yet
this form (approximately) arises. Second, the precipitation
autocorrelation function is shown on a log—log plot and has
a roughly power-law form for lags of about 30 minutes to



o
0

Column Water Vapor q 1

o
o
‘

autocorrelation coefficient
o
+

o
(¥
‘

~ precip

0 5 10 15 20
time lag (hours)

blO

autocorrelation coefficient
=
o
N

10 0 50 100 150 200
time lag (hours)

I
i

[any
o

I
N

I
w

[y
o
T
=

autocorrelation coefficient
[5=Y
o

I
-4

10 - | | !
10" 10° 10" 10°
time lag (hours)

FiG. 3. Autocorrelation as a function of time lag for col-
umn water vapor ¢ (solid) and precipitation (dashed). (a)
Lags of 0 to 24 hours, with linear-linear axis scaling. (b)
Lags of 0 to 240 hours, with log-linear axis scaling. (c)
Lags of 0.1 to 240 hours, with log—log axis scaling. Com-
pare to the observational data in Fig. 1 of Holloway and
Neelin (2010).

10%
X
XxxX
2 10% :
(8]
c
o
>
3 5
S 10°% :
© £
g k2
E
€ 107y )§5>°<§‘x ]
X
b 4
X X
0
10° ‘ ‘ 00
10" 10° 10" 10°

total precip (mm) in precipitation event

Fi1G. 4. Density function of total precip of precipitation
events. Compare to the power laws seen in Fig. 6b of
Neelin et al. (2008), in Fig. 1 of Peters and Neelin (2009),
and in Figs. 2 and 3a of Peters et al. (2010), for heavy
events with total size of greater than 1 mm.

roughly 4 days. The exponent of this power law is roughly
1, which is fairly close to that estimated from optical gauge
data (Holloway and Neelin 2010) of roughly 0.8. Hence,
while the precipitation autocorrelation time appears to be
short, there are also long-range correlations out to at least
4 days. The short time-scale end of this range, near 30
minutes, may be set here by model parameters. A likely
candidate is the timescale D?/P? ~ 0.6 h, which arises
from the precipitation scale P in the precipitating range
combined with a moisture scale D? /P (which arises in both
core and tail of the precipitating regime, discussed in sec-
tion 3b7 below). Beyond this, there is a range for which
there appears to be no clear time scale — a circumstance
that tends to lead to power-law behavior as summarized in
Peters and Neelin (2009).

To further isolate the behavior seen in Fig. 3, several
sensitivity studies (not shown) were carried out. Two cases
led to much more rapid decay of the precipitation autocor-
relation with no power-law range: a two-state jump process
alone or the full model with all white noise shut off (the
latter also yields more rapid exponential decay of CWV
autocorrelation than in Fig. 3). On the other hand, in
a version of the model with the stochastic jumps replaced
by a deterministic Heaviside function at ¢ = 61 mm, the
approximate exponential and power-law decays of Figs. 3b
and 3c were still produced. Thus the source of the power
law range in the autocorrelation clearly involves the rapid
switches of precipitation interacting with time-dependent
moisture variations, forced by the noise.

Fig. 4 shows the number of occurrences of the total
precipitation that falls in individual precipitation events,



defined as an uninterrupted sequence of time steps with
o = 1. For instance, Fig. 2c shows five events, and Fig.
2d shows three events. Fig. 4 shows that smaller events
are most common, and the PDF roughly follows two power
laws, one each for events smaller and larger than about
10 mm. Numerical sensitivity studies (not shown) indi-
cate that long, approximately power-law tails are roughly
representative of typical behavior, and they can even be
seen when the stochastic jumps are replaced by a deter-
ministic Heaviside function; i.e., while this data does not
always bear a precise linear fit, it is always slowly decaying
with significant contributions from extreme precipitation
events. This is in qualitative agreement with the observa-
tional data presented in Fig. 6b of Neelin et al. (2008), in
Fig. 1 of Peters and Neelin (2009), and in Figs. 2 and 3a
of Peters et al. (2010).

In fact, the approximate power-law decay in Fig. 4 also
bears quantitative comparison with observations. For the
heavy precipitation events of greater than about 10 mm,
the occurrence frequency in Fig. 4 falls by about 2 factors
of 10 over a range of about 1 factors of 10 in total precipita-
tion. This 2-to-1 ratio is also approximately seen in Neelin
et al. (2008) and Peters and Neelin (2009) for events with
similar total size of greater than 10 and 1 mm, resp.: the
PDF falls by about 4 factors of 10 over a range of about
2 factors of 10 in event size in both Neelin et al. (2008)
and Peters and Neelin (2009). Notice that this is differ-
ent from a second power law seen in the observations for
smaller event sizes with total precipitation of 0.001 to 1.0
mm, which is emphasized in Neelin et al. (2008), Peters and
Neelin (2009), and Peters et al. (2010) by the power law
fit lines. For these lighter precipitation events, the power
law is flatter, as is represented somewhat here in Fig. 4 for
lighter events of size 1 to 10 mm (although the slope ap-
pears to slightly differ from observations). Here, however,
the emphasis is on the the heavy precipitation events, for
which the power-law decay carries significance as a mea-
sure of extreme events and their frequency: a power law
decay indicates a relatively high frequency of occurrence
of extreme, high-total-precipitation events (relatively high
frequency in comparison to Gaussian, or even expoential,
decay).

Fig. 5 shows mean and variance of precipitation for
each value of ¢q. Near g ~ 67 mm, there is a rapid increase
of the mean and a sharp peak in the variance, in qualita-
tive agreement with the observational data in Figs. 1 and
4 of Neelin et al. (2009). Note that the precise functional
form of the mean here does not appear to be a power law
for high CWV, as it is in observations (Peters and Neelin
2006); such a detailed comparison is not the focus here.
Nevertheless, a power law could actually be achieved in this
model by giving P(q) a power law form for high CWV in-
stead of the simple tanh function; this is because the mean
precipitation is essentially equal to P(q) for high CWV,
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Fic. 5. Mean and variance of precip conditioned on the
value of ¢q. Thick gray line displays the value of ¢, 67 mm,
at which the precipitation variance is maximum. Compare
to the observational data in Fig. 1 of Peters and Neelin
(2006) and Figs. 1, 2, and 4 of Neelin et al. (2009).

where o is essentially always equal to 1. The mean and
variance were also previously recovered by the model of
Muller et al. (2009), which is a stochastic two-layer model
for a single column. The other local features of the transi-
tion to strong convection, however, were not demonstrated
in Muller et al. (2009); the model did not include evolution
in time.

Which physical processes and which aspect of the model
create the variance peak in Fig. 57 Notice that the pre-
cipitation, as defined in (7), is affected by both o(t) and
Dpn(t). Is the variance peak in Fig. 5 due to the variance
in o(t), or to the Gaussian white noise fluctuations Dp 7(t),
or both? Tt is, in fact, o(¢) that creates the variance peak.
This can be seen directly from Table 1: since D% = 0.04
mm? h™' at most, and since the time step is 0.01 h, the
variance due to these fluctuations is at most 4 mm? h=2.
This would occur if ¢ = 1 always for a particular value of
q, and, in fact, it is the asymptotic value of the precipi-
tation variance in Fig. 5 for large values of q. However,
the peak variance is much larger than this and is therefore
due to the variability in o(¢). In terms of physical pro-
cesses, this means that the variance peak is caused not by
the precipitation fluctuations within an individual event,
but by the onset, and demise, of precipitation events (and
all of the processes — cold pools, gravity waves, etc. — that
contribute to the onset and demise). This is one example
of the important role of the stochastic jump process o(t).

Fig. 6 shows the number of occurrences of ¢ = 0 and
o = 1 for each value of ¢q. This figure can be compared
with the observational data shown in Figs. 6, 9, and 10
of Neelin et al. (2009), where o = 0 corresponds to non-
precipitating points and o = 1 corresponds to precipitating
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FiG. 6. Density function of ¢ conditioned on the value
of o, i.e., conditioned on precipitating points (o = 1) or
on non-precipitating points (o = 0) or on all points (o =
0 or 1). Line segments display theoretical slopes, whose
formulas given in the annotated equations. Compare to
the observational data in Figs. 5 and 9 of Neelin et al.
(2009).

points. The model results here are in qualitative agree-
ment with the observational data in Neelin et al. (2009):
the PDFs have roughly exponential tails; overall, the non-
precipitating state occurs more frequently than the precip-
itating state; on the other hand, for sufficiently moist ¢
values, the precipitating state occurs more frequently than
the non-precipitating state; and the most probable ¢ value
is slightly drier than the ¢ value where non-precipitating
and precipitating states are equally probable (which is close
to the ¢ value of peak variance from Fig. 5). In addition,
the exponential decay rates in Fig. 6 are in agreement with
simple theoretical predictions, as indicated by the thin gray
line segments in Fig. 6, and as described next.

b. Analytic solutions and interpretations

The exponential tails in Fig. 6 can be understood in
terms of simple stochastic processes with simple physical
interpretations. Several cases are described in this sub-
section. First, the general equation is described for the
PDF p(q,t) = (po(q,t), p1(q,t))T of the stochastic process
of section 2. Next, specific limiting forms of the general
equation are considered and solved analytically. Each of
these specific limits applies to one of the exponential tails
seen in Fig. 6. Lastly, some alternative simplified cases are
discussed.

1) GENERAL MASTER-FOKKER—PLANCK EQUATION

Two types of stochastic processes enter into the model
formulated in section 2: (i) the stochastic closure/forcing
as a drift—diffusion process, whose PDF can be described
by a Fokker—Planck equation, and (ii) the stochastic trigger
as a Markov jump process, whose PDF can be described
by a Master equation (Lawler 1995; Gardiner 2004). The
PDF of interest here is a ¢g-dependent vector PDF p(q,t) =
(po(q,t),p1(q,t))T, where p;(g,t) is the probability that
o(t)=jfor j=0,1.

First consider each of (i) and (ii) in isolation from the
other, from which the full dynamics can be built by adding
these two contributions. For the drift—diffusion process (i),
in isolation from (ii), the evolution is given by the Fokker—
Planck equations

1

3rpo + 0y(Epo) = 05 (§D§ po) ; (8)
1

Oip1 — 0y(Ppy) = 0} <§D%p1> ; 9)

On the other hand, for the jump process (ii), in isola-

tion from (i), the evolution is given by a Master equation
(Lawler 1995; Gardiner 2004):

8t(p0 ):( —To1 T10 ) (po ), (10)
i Tor  —T10 p1
For the combination of (i) and (ii), the evolution is given

by a combined Master—Fokker—Planck equation, which is a
combination of (8), (9), and (10):

o () +al(5 %) ()]
= (0 o))
cmee ()

Since we are interested in understanding the stationary
PDF in Fig. 6, we use the steady-state version of this equa-

tion:
E 0 Do
(6 %) ()]
_ 1l Di 0 2 ( Po
— Lot K o o )aq o
+( —To1 T10 ) ( Po ) (12)
Tor  —T10 P
While this Master—Fokker—Planck equation is too compli-
cated to solve analytically, some limiting cases can be solved

analytically for each of the exponential tails in Fig. 6, each
of which corresponds to a different atmospheric regime.



2) NON-PRECIPITATING, LOW-CWYV REGIME

Consider the non-precipitating, low-CW'V regime of the
general steady Master—Fokker—Planck equation in (12). In
other words, assume that the system essentially remains in
the non-precipitating state o = 0 (so that p; ~ 0). Also,
assume that the CWYV is low (less than roughly 60 mm) so
that so that the probability of precipitation onset is low:
ro1 ~ 0. In this case, the stationary PDF pg(q) satisfies an
approximate limiting form of (12):

Dj
2
where E and Dy take the constant, low-CWV limiting val-
ues from Fig. 1 and Table 1. This Fokker—Planck equation
has solutions of the form

Edypo = D0, (13)

2F
po(q) = A exp (D—gq) ,

which is valid in the low-CWYV regime. This process gives
intuitive insight into the dominant physical mechanisms in
this case, as supported by the good agreement with the
model simulation: in Fig. 6 the slope of the thin gray line
from g = 35 to 55 mm is given by 2E/D2. Note that this
limiting case is as if the CWV were evolving according to

d

q
— =FE+ Dy n(t
dt + 077(),

where a suitable boundary condition would be needed to
keep the system in the low-CWYV regime and to produce a
stationary PDF. For the full model here, there is a match-
ing condition to the other CWV /precipitation regimes; for
an even simpler model presented below in section 3b7,
piecewise matching is not necessary because the solutions
extend across several regimes. Also note that in observa-

(14)

(15)

tions this part of the distribution (low CWV, non-precipitating)

can vary considerably. The dependence of E on ¢ can be
significant in affecting this, but the details of this part of
the distribution are not the focus here.

3) PRECIPITATING, HIGH-CWYV REGIME

Similarly, one can consider the precipitating case where
it is assumed that o = 1 always and that the CWYV is high
(greater than roughly 70 mm). In other words, it is as-
sumed that pg ~ 0 and 719 =~ 0. In this case, the stationary
PDF p1(q) satisfies an approximate limiting form of (12):

Di
—Paqpl = 76(1]91, (16)
where it is understood that, in this approximate scenario,
P and D; have constant values given by their asymptotic

values at high CWV. This Fokker—Planck equation has so-
lutions of the form

2P

p1(q) = A exp <—D—%q) , (17)
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which is valid in the high-CWYV regime. This is in good
agreement with the model simulation, as displayed in Fig.
6 by the thin gray line from ¢ = 72 to 78 mm. This limiting
case is as if the CWV were evolving according to

dgq

—=—-P+D t).
ar + D1 n(t)

(18)
This corresponds to a precipitating column with white noise
forcing, and, similar to (15), a boundary or matching con-
dition would be needed at the low-CWV end of this regime
in order to obtain a stationary PDF. Note that any slowly
varying functions P(q) and D;(q) should lead to approxi-
mately exponential solutions, even if they are not precisely
constant functions. In fact, while it was assumed that P
and D; were constant for the derivation presented, a sim-
ilar derivation would apply for general functions P(g) and
D1(q), in which case the solutions would not be exactly
exponential.

This case lends insight into the “extreme” precipita-
tion events that occur at high CWV values and have large
precipitation rates in the mean. The analytic solution sug-
gests that the frequency of occurence of these events decays
exponentially as ¢ increases, with a decay rate of 2P/D?.
Since D} = D% + D% ~ D%, this decay is determined by
the mean precipitation rate P and the variance D% of “ex-
ternal” moistening/drying processes. If the variance D% of
this “external” forcing were small (relative to P), then the
exponential decay would be very rapid, and large values of
CWYV would not be observed in nature. However, that is
not the case: since D% is somewhat comparable to P in
magnitude, a slower exponential decay with a long tail is
observed, and large values of CWV are observed relatively
frequently.

4) PRECIPITATING, LOW-CWYV REGIME

Consider now the case of low CWV (less than roughly
60 mm). For such low CWV values, the probability of
precipitation onset is essentially zero. In (12), this corre-
sponds to the approximation r9; ~ 0, which decouples the
equation for p;:
D2

—132171 — T10P1-

—Poyp1 = 5

(19)

This equation has exponential solutions for the precipitat-
ing state of the form

—P+ \ P2 + 2D2T10
= 57 L= >0

(20)
This curve is shown in Fig. 6 by the thin gray line from
q = 50 to 56 mm, and it is in good agreement with p;
from the model simulation. This case corresponds to the
PDF of precipitation events at the end of their lifetimes: it
is a competition among mean precipitation P(q), stochastic

p1(q) = A exp(miq), my



“external” forcing Dr(q) n(t), and the event-ending stochas-
tic jump from o = 1 to ¢ = 0. Also notice that this case
is evidence of stochastic hysteresis in the life cycle of some
precipitation events. Since the probability of precipitation
onset is essentially zero for roughly ¢ < 58 mm, the events
that contribute to this tail likely began at high CWV val-
ues and ended at low CWV values. Such behavior is made
possible by the stochastic switch o(t), which allows precipi-
tation events to continue, with some probability, even after
CWYV has been reduced significantly. This may represent
stratiform rain at the end of a precipitation event.

5) NON-PRECIPITATING, HIGH-CWV REGIME

Similarly, consider the case of high CWV (greater than
roughly 70 mm). For such high CWV values, the proba-
bility that a precipitation event ends is essentially zero. In
(12), this corresponds to the approximation r19 ~ 0, which
decouples the equation for pg:

Dj

anpo = 5

spo — To1Po; (21)

This equation has exponential solutions of the form

—E+ \/E2 +2D?
— + 2+ oL
D
0

(22)
This curve is shown in Fig. 6 by the steep thin gray
line from ¢ 64 to 68 mm, and it is in good agree-
ment with py from the model simulation. This is rela-
tively good agreement with the model simulation in light
of the scarce samples of these events. This case corresponds
to the PDF of a non-precipitating column just before the
onset of precipitation: it is a competition among mean
moistening F, stochastic external forcing Do n(t), and the
event-beginning stochastic jump from ¢ =0 to o = 1.

po(q) = A exp(—moq), mo

INCORRECT CASE THAT SHOWS THE IMPORTANCE OF
STOCHASTIC VARIANCE

6)

Note that a slightly simpler case than the combined
Master—Fokker—Planck equation would also give exponen-
tial tails. If the 8§p diffusion part of (12) is ignored, the
result is a system with the competing effects of determin-
istic drift and stochastic jumps. While a simplified version
of this system also has stationary PDF solutions with ex-
ponential tails, the analytic solutions do not agree with the
numerical solutions in Fig. 6. The slopes that would result
would be my = r19/P and mgy = r91/F, and their numer-
ical values would be roughly 4 and 5 times steeper than
those shown in Fig. 6. In other words, the precipitating
state would be seen much more rarely at low CWYV values,
and the non-precipitating state would be seen much more
rarely at high CWV values. This is because the stochastic
forcing D;(q) n(t) (associated with moisture convergence
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variations) plays an important role in forcing the CWV, in
addition to the mean components P(q) and F(q); and the
interaction of this with the jump process is important in
(20) and (22).

7) SIMPLIFIED CASE WITHOUT EXPLICIT JUMPS

Another simple case lends further insight into the form
of the PDFs in Fig. 6, which display cores that appear ap-
proximately Gaussian and tails that appear approximately
exponential. Suppose the CWV evolves by the equation

dg -
= = 5(a) + D), (23)
where S(q) changes continuously from +FE at low CWV to
—P at high CWV. This ¢-dependent drift S(g) is meant
to implicitly include the effect of the stochastic jumps. In

this case, the Fokker—Planck equation for p(g,t) is

0ep + 94(Sp) = (D*/2)9;p, (24)
which has stationary solutions that satisfy
92 _
0ylogp = 7555(4) (25)
and thus
2 a Q / /
plg) = Aexp | 55 [ Sd)dd' ), (26)
Qref

where ¢ is a reference value which can conveniently be
taken equal to the midpoint gpiq of the transition region.

As a simple, concrete example, S(q) could be chosen to
have the piecewise linear form

+F, if —oo<qg< —qs
S(q) =13 Sa— %q if  —q.<qg<+g. (27)

where g is given relative to gmiq, and 2¢, is the width of the
transition region. This replaces the effect of the stochastic
switch o(t) by a linear transition from constant evaporation
E. to constant precipitation Py, with S, = (P. + E.)/2.
The asymmetry between F, and the larger P, is measured
by S, = (P. — E.)/2.

Because (25) gives the slope of the PDF on the log plot,
as in Fig. 6, it provides a straightforward view of the re-
lation between core and tail regimes. Below the transition
region, the slope is constant, i.e. the PDF is exponential
with a decay scale g; that corresponds to (14), except that
we have neglected the variation of D from the nonprecipi-
tating to precipitating regime. Above the transition region,
the PDF is likewise exponential with slope — 5*2 that cor-
responds to (17). Within the transition region, the slope
varies linearly, i.e., log p has a quadratic term. If there were




no asymmetry between F, and P, i.e., S, = 0, there would
be an exactly “Gaussian” core in the transition region

Sk
p(q) = Aexp (—DQq*

q2) : —G < q < +q.. (28)
In presence of asymmetry, this is modified by an exponen-
tial term, corresponding to the tilt of the quadratic core
in plots of logp. From (25), it may be seen that in this
solution the slope of the exponential tail (in logp) neces-
sarily matches the slope of the core at the boundary of
the transition region when S(g) is continuous. Note that
the moisture scale associated with this Gaussian is approx-
imately the same as the moisture scale of the exponential
tail (17) in the precipitating high-CWYV regime, D?/P.

This simple case provides a prototype for the PDF of
all points (precipitating and nonprecipitating) in Fig. 6.
It illustrates one simple way of producing a distribution
with exponential tails and a (modified) Gaussian core, in
which the drift term S is approximately independent of ¢
in each of the tail regions, changing sign smoothly in the
core region. Although the simple case can yield asymmetry
between the two tails, it is missing some features. Com-
parison of this simple case to (14) and (17) shows that the
increase in the stochastic noise coefficient, D1(g), in the
full model must be important to the angle between the
core region and the tail at high CWV, a feature seen in
observations. The simple case does not distinguish precip-
itating and nonprecipitating points, but it can be useful
as a foil to ask what features depend on the Markov jump
process in the more complex case of the PDF of precipitat-
ing points. Consider the transition from (9), valid in the
high CWYV regime, to (19), valid in the low CWV regime.
In (9), the balance is between drift and diffusion terms,
as in the simple solution above. The increase of rig as
one transitions to low CWV creates a core that involves a
three-way balance between it, the drift and the diffusion
terms, transitioning to the exponential solution (20) where
the coefficients become constant.

PDFs similar to this simple case have recently been
identified for several tracers, including CWV, in data from
observations, models, and reanalysis (Neelin et al. 2010).
We note that PDFs of similar form can be produced purely
from passive scalar advection—diffusion [see Bourlioux and
Majda (2002) and related work]. In that case the core-tail
relations depend on the characteristics of a flow field, not
on explicit tracer sinks as in the solutions here. In either
case, a representation of vertical motion/moisture conver-
gence drives the excursions of moisture, and the question
is whether it is limited by an actual sink (such as P) or
by interplay with a cross-flow as in Bourlioux and Majda
(2002). Both are potentially realistic factors in more com-
plex models or nature, and a more unified understanding
of these processes in a simple system that contains both
processes will be of interest.
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In summary, simple stochastic models provide formu-
las for the exponential tails in terms of model parameters.
This suggests that the observed exponential PDF from Pe-
ters and Neelin (2006) and Neelin et al. (2009) could be
used to constrain the parameters of a stochastic convective
parameterization. In fact, many of the parameter choices
used here were motivated by this consideration. This topic
will be discussed further in section 4 below.

4. Implications for convective parameterizations

We now discuss the stochastic model from three per-
spectives: as a simplified version of some existing stochas-
tic parameterizations, as a prototype around which a more
comprehensive parameterization could be built, and as a
simple way to “stochasticize” an existing deterministic pa-
rameterization.

Several existing stochastic parameterizations include the
two stochastic elements used here — stochastic closure and
trigger — but they are in slightly different forms, and they
are not explicitly identified using this terminology. The dis-
tinction between the closure and the trigger can be blurry
in some circumstances, but it is still used here as a useful
organizing principle. The two examples considered here
include the models of Lin and Neelin (2000, 2002, 2003)
and the models of Majda and Khouider (2002), Khouider
et al. (2003), Katsoulakis et al. (2006), Majda et al. (2008),
Majda and Stechmann (2008), and Khouider et al. (2010).
One of the main differences between these two examples
is in the type of stochastic process that is used: Gaussian
processes in the former, and Markov jump processes in the
latter.

In the first example models, in the notation of Lin and
Neelin (2000), the convective heating Q.. is given by

Qe ~H(CY +8)(Cr +0), (20)

(&

where 7. is the convective relaxation timescale, H is the
Heaviside function, C] is a measure of the convective avail-
able potential energy (CAPE), and ¢ is Gaussian red (not
necessarily white) noise. This is a simplified, stochastic
version of the parameterization of Betts and Miller (1986),
which is recovered by setting £ = 0. While the distinction
between closure and trigger is somewhat blurry here, this
parameterization does include both aspects.

In the second example models, in the notation of Majda
and Khouider (2002) and Khouider et al. (2003), each col-
umn is broken into many sub-columns. Each sub-column z
is assigned a stochastic jump process o (x,t) that can take
the value oy = 0 or o7 = 1. In each column [X, X + AX),
the sub-grid scales can be represented by an average over
[ sub-columns:

1
6I(X7t) = 7

>

ze[X,X+AX)

U[(l‘,t). (30)



This could allow, for instance, the possibility of having con-
vection in a fraction of the column, since &; can take any
of the [ 4+ 1 values from 0, 1/1, 2/1, ... 1. Again, while the
distinction between closure and trigger is somewhat blurry
here, this parameterization does include both aspects.

The model of the present paper is a combination of the
methods from these two examples. The Gaussian stochas-
tic closures/forcings D;(q) n(t) are motivated by the first
set of example models above, and the stochastic trigger o (t)
is motivated by the second set of example models above.

As a second perspective, one could view the present pa-
per’s stochastic model as a prototype around which a more
comprehensive parameterization could be built. In this re-
spect, the key aspects of this model are that it is simple
and that the model parameters can easily be constrained
by observations (Neelin et al. 2008). Indeed, in this paper,
the values of several model parameters were chosen based
on the observations of Neelin et al. (2009) described in sec-
tion 1 and based on the simple theory from section 3b.
The values of P(+00) and Dp(+00) were chosen based on
the mean and variance of precipitation from the observa-
tional record. The value of D;(400) was chosen based on
the theoretical exponential tail p1(q) = A exp[—(2P/D?)q]
and the exponential tail from the observational data. The
values of E and Dy were partly based on the theoretical
exponential tail po(q) = A exp[+(2E/D3)q] and the ex-
ponential tail from the observational data. The values
of the transition rates rp; and 719 were partly based on
the theoretical exponential tails py(q) = A exp[—mgq]| and
p1(q) = A exp[+miq] and the exponential tails from the
observational data. And the tanh form of the transition
rates was chosen with a sharp transition near ¢ ~ 60 — 64
mm to be in agreement with the critical CWV from the
observational record (Neelin et al. 2009).

Furthermore, there are even more observational statis-
tics available that could be used to constrain extensions of
this stochastic parameterization. For instance, this model
did not include the effects of atmospheric temperature,
which have been documented by Neelin et al. (2009). The
model also did not include details of the vertical structure
of the atmospheric thermodynamic state, and it did not in-
clude details of spatial variability, even though several in-
teresting statistics have been documented by Holloway and
Neelin (2009) and Peters et al. (2009) for the former and
latter, respectively. [Methods for including vertical struc-
ture and spatial variability in simple stochastic models have
also been introduced by the stochastic multicloud model of
Khouider et al. (2010) and the coarse-grained stochastic
models of Khouider et al. (2003).] Given this suite of ob-
servational constraints, the strength of the model presented
here is that it takes a form that is easily related to statistics
from observations: parameters can be constrained a-priori
via simple formulas, rather than a-posteriori via numerous
lengthy simulations over a large parameter space. However,

13

it remains to be seen whether this type of theory-based
parameter tuning can be done reliably in a more complex
situation with full vertical resolution and/or spatial vari-
ability. In addition, while many features were constrained
here by the observational record, some features were not.
For instance, no simple theory was given for the power laws
in the autocorrelation functions in Fig. 3 or the event-size
PDF in Fig. 4, although mechanisms have been identifiable
in similar systems (Sornette 2004). If a theory for these
approximate power laws can be formulated in future work,
then this would provide further observational constraints
for model parameters.

Finally, as a third perspective, one could view the present
paper’s stochastic model as a simple way to “stochasticize”
an existing deterministic convective parameterization. This
could be done by adding a stochastic component to ei-
ther the convective closure or trigger (or both). The ap-
proach of “stochasticizing” a convective parameterization
has been taken in earlier work, in which many different ap-
proaches have been presented (Lin and Neelin 2000; Bright
and Mullen 2002; Lin and Neelin 2002; Majda and Khouider
2002; Khouider et al. 2003; Lin and Neelin 2003; Kat-
soulakis et al. 2006; Song et al. 2007; Majda et al. 2008; Ma-
jda and Stechmann 2008; Plant and Craig 2008; Khouider
et al. 2010).

Here, as in Majda and Khouider (2002) and other work,
we advocate the stochastic jump process o(t) as a simple
way to implement a stochastic trigger with several impor-
tant features. Any deterministic trigger condition of the
form H(q — g.) could be turned into a stochastic trigger by
creating a stochastic jump proces o(t), as in this paper, to
replace the Heaviside function H. This type of stochastic
trigger o (t) was crucial for the strong peak in precipitation
variance in Fig. 5, and it may play a role in reproducing
the event-size PDF in Fig. 4. It also allows precipitation to
occur occasionally at moderate or low CWV values, which
reproduces the exponential tail p1(q) = A exp[+miq] from
Fig. 6, in agreement with the observation record (Neelin
et al. 2009); and it allows the analytic representation of
p1(q) = A exp[+maq] as described in section 3b.

In addition, the results here also demonstrated the im-
portance of intense stochastic “external” forcing, Dp n(t).
This was crucial for obtaining extreme precipitation events
with high CWV and long lifetimes, as it could occasionally
compensate the heavy precipitation and encourage more
of it. These extreme events could be seen in individual in-
stances in Figs. 2c and 2d and in statistical measures such
as the event-size PDF in Fig. 4 and the exponential tail
at high CWV from (17) and Fig. 6. In an atmospheric
simulation with spatial variability, one would expect much
of the stochastic “external” forcing to be represented by
resolved dynamics. However, it is also possible that the re-
solved variance would not account for the full intensity of
Dpn(t). A similar parameterization could be used to ac-



count for unresolved variance, as in Lin and Neelin (2000,
2002, 2003).

5. Concluding discussion

A simple stochastic model was designed and studied in
order to further understand the transition to strong con-
vection. The transition has recently been characterized by
an array of statistical measures (Peters and Neelin 2006;
Neelin et al. 2008, 2009; Peters and Neelin 2009; Holloway
and Neelin 2010), which were summarized in section 2. It
was shown that the simple model from section 2 captures
the following four local statistical features from the obser-
vations:

i. Autocorrelation functions of CWV and precipitation
with long and short autocorrelation times, respec-
tively, and with approximate exponential and power-
law decays, respectively [compare Fig. 3 here with
Fig. 1 of Holloway and Neelin (2010)].

ii.
size [compare Fig. 4 here with Fig. 6b of Neelin et al.
(2008), with Fig. 1 of Peters and Neelin (2009), and
with Figs. 2 and 3a of Peters et al. (2010)].

Sharp transition in mean of precipitation, and peak in
variance of precipitation, near a critical CWV value
[compare Fig. 5 here with Figs. 1 and 4 of Neelin
et al. (2009)].

iii.

Exponential tails in PDF's of CWV values conditioned
on precipitating points [p1(¢)] and non-precipitating
points [po(q)], and maxima in PDFs located at CWV
values just below the critical CWV value [compare
Fig. 6 here with Figs. 5 and 9 of Neelin et al. (2009)].

iv.

Furthermore, the slopes of the exponential tail of the PDF's
were predicted with simple analytic solutions (section 3b).
This directly ties model behavior to model parameter val-
ues. With knowledge of the PDFs from observational data
(Neelin et al. 2009), it provides a way to constrain model
parameters via simple formulas, rather than via model sim-
ulations over parameter space. At the same time, however,
the PDF slopes are built into the model in some sense,
whereas one might like to have the slopes arise from some
fundamental physical postulates.

Given the agreement of the model results with the ob-
served statistics, further insight can be gained into the
nature of the observed statistics. For instance, the peak
in precipitation variance was tied to stochastic transitions
in o(t) between the precipitating and non-precipitating
states, rather than to fluctuations in the precipitation rate
from Dpn(t). As another example, evidence of stochas-
tic hysteresis was seen in the low-CWYV exponential tail in
the CWV PDF of precipitating points. These precipitating
points likely began their life cycle at higher CWV values

Approximate power laws in PDF of precipitation event-
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and continued to exist even after CWV was reduced signif-
icantly. This behavior is made possible by the stochastic
switch o(t). On the other hand, the stochastic switch is
not essential to the power law in precipitation autocorre-
lation, which can also be reproduced with a deterministic
switch. As yet another example, the stochastic “external”
forcing, Dpn(t), was seen to be crucial for obtaining ex-
treme precipitation events. This stochastic forcing Dp 7(t)
is meant to represent the various moistening/drying pro-
cesses associated with deep moist convection, such as mois-
ture convergence/divergence from mesoscale and synoptic
scale waves, updraft/downdraft circulations, etc. These
mechanisms occasionally were strong enough to compen-
sate the drying from precipitation and to allow extreme
precipitation events with high CWV values and long life-
times. Omne question that remains is whether, in large-
scale models with spatial variability, the resolved dynam-
ics would account for the full intensity of the stochastic
forcing Dp n(t). In nature these extreme events would
typically be associated with upward motion and moisture
convergence in systems such as tropical waves, mesoscale
convective systems, hurricanes, etc.

The stochastic model was also discussed in the con-
text of stochastic convective parameterizations in section
4. The model presented here has three stochastic compo-
nents, each of which is treated separately: a stochastic trig-
ger and stochastic closures for precipitation and for forcing.
The stochastic trigger is a two-state Markov jump process
o(t), which takes the value o = 0 when there is no convec-
tion and ¢ = 1 when there is convection. The transition
rates for o(t) depend on the current atmospheric thermo-
dynamic state through the CWV: ro1[q(t)] and r10[q(t)].
On the other hand, the stochastic closures for precipita-
tion and “external” forcing take the form D(q) n(t), where
n(t) is Gaussian white noise and D(q) is a CWV-dependent
variance function. These stochastic components — trigger
and closures — are partly motivated by the earlier work of
Majda and Khouider (2002); Khouider et al. (2003, 2010)
and of Lin and Neelin (2000, 2002, 2003), respectively.
Each of these stochastic components offers a simple way to
“stochasticize” an existing deterministic convective param-
eterization. The simplicity of these stochastic components
offers some important advantages: it allows the separate
roles of the stochastic jumps o(t) and the Gaussian process
n(t) to be distinguished, and it allows model parameters to
be tied directly to observed statistics.

The stochastic model presented here could also be used
as a prototype around which a more comprehensive param-
eterization could be built. For instance, this model did not
include the effects of atmospheric temperature, whose ef-
fects on the observed statistics have been documented by
Neelin et al. (2009). The model also did not include details
of the vertical structure of the atmospheric thermodynamic
state, and it did not include details of spatial variability,



even though several interesting statistics have been docu-
mented by Holloway and Neelin (2009) and Peters et al.
(2009) for the former and latter, respectively. Methods for
including vertical structure and spatial variability in simple
stochastic models have also been introduced by the stochas-
tic multicloud model of Khouider et al. (2010) and the
coarse-grained stochastic models of Khouider et al. (2003)
and Katsoulakis et al. (2006). A combination of these ideas
should be a fruitful direction of future research.
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