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S1. Gap-filling methods for TMIv7.1 CWV 

The latest algorithm (version 7.1) adopted by the Remote Sensing Systems (RSS; Wentz et al. 2015) 

for column-integrated water vapor (CWV) and precipitation retrievals occasionally does not return a 

CWV value in the presence of precipitation. Figure S1 shows an example of this (chosen to illustrate a 

severe case, as opposed to a typical situation). One may note that regions with missing CWV, as 

indicated by black in the upper panel, coincide with regions of high precipitation, as indicated by warm 

colors in the lower panel. 

The probability of missing CWV is shown in Fig. S2. The probability depends primarily on precipitation 

rate and shows little sensitivity to bulk tropospheric temperature and basin. There is also no noticeable 

annual variability (not shown). Because the missing values are associated with higher precipitation, the 

raw TMIv7.1 data product has significant biases. This applies even to the climatology, for instance, when 

precipitation values without CWV retrievals are excluded, the annual mean precipitation rate over 

tropical oceans calculated using the TMIv7.1 data is reduced from ~ 3.1 to ~ 2.1 mm hr-1. As such, it is 

necessary to gap-fill the missing CWV values to avoid distortion of the desired precipitation-CWV 

relation. 

Three gap-filling methods are tested. The first approach fills the missing values using the available 

CWV value at the geographically nearest pixel. When there are multiple such pixels, the maximum 
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Figure S1: TMIv7.1 CWV (upper; units: mm) and precipitation rate (lower; units: mm hr-1) 

for TRMM descending passes on 12 October 2013. In the upper panel, regions of missing 

CWV are shown by black. The image in the lower panel is directly downloaded from the 

RSS website. The three tropical cyclones, from left to right, are Phailin, Nari, and Wipha. 



among the available CWV values is used. This method, referred to as “Nearest” here, is our default 

choice for CWV gap-filling. The second approach starts with identifying “holes” of missing CWV. For all 

pixels in each hole, we then fill missing values with the maximum CWV value on the circumference. This 

approach is referred to as “Max.” The third method, “Mean,” is similar to Max, but uses a mean instead. 

Among these three methods, Max assigns more high CWV values, and Mean assigns less high CWV 

values, while Nearest lies somewhere in between. A fourth method based on biharmonic spline 

interpolation provided by MATLAB (see https://www.mathworks.com/help/matlab/ref/griddata.html; 

option ‘v4’) has also been tested; the results are similar to Max, and hence is not presented here. 

The sensitivity of the convective transition statistics (and their spatial-resolution dependence) to gap-

filling is discussed in Section S4 (Figs. S7-S11). 

  

Figure S2: Probability of missing CWV 

as a function of precipitation rate and  

𝑞𝑠𝑎𝑡ෞ  (colors; units: mm) for four 

tropical ocean basins calculated using 

TMIv7.1 CWV and precipitation, and 

Reanalysis-2 temperature for 2005. 



S2. Bulk measures of tropospheric temperature 

In the presence of convection, the tropospheric temperature tends to exhibit vertically coherent 

structure (as in Fig. 4 of the main text). Therefore, bulk measures of tropospheric temperature, such as 

the column-integrated saturation humidity 𝑞𝑠𝑎𝑡ෞ  (units: mm) and mass-weighted column average 

temperature 𝑇̂ (units: K) are expected to be useful in characterizing convection, and different bulk 

measures are expected to yield similar characterization. To verify this assertion directly, Fig. S3 shows 

that the joint-PDF of 𝑞𝑠𝑎𝑡ෞ  and 𝑇̂ over tropical oceans are clearly well-correlated. 

 Figure 1 in the main text shows the convective transition statistics conditioned on 𝑞𝑠𝑎𝑡ෞ . The 

corresponding statistics conditioned on 𝑇̂ are shown in Fig. S4. As expected, statistics in these two 

figures demonstrate similar behaviors. 

Figure S3: Joint-PDF (log10) of 𝑞𝑠𝑎𝑡ෞ  and 

𝑇̂ over tropical oceans calculated using 

Reanalysis-2 temperature for 2005. 

The color advances when the values of 

the joint-PDF doubles (100.3 ~ 2). The 

gray dashed line represents the linear 

regression with slope ~ 4.9 mm K-1. 



 

  

Figure S4: Similar to Fig. 1 of the main text but conditioned on 𝑇̂ instead of 𝑞𝑠𝑎𝑡ෞ  as the measure of 

tropospheric temperature. Conditionally averaged precipitation rate (1st col. from left), conditional 

probability of precipitation (2nd col.), probability density function of all events (3rd col.) and 

precipitating events only (4th col.) as a function of CWV and 𝑇̂ (units: K) for four tropical ocean 

basins (20°S-20°N): western Pacific (WPac; 1st row), eastern Pacific (EPac; 2nd row), Atlantic (Atl; 3rd 

row), and Indian Ocean (Ind; 4th row). Results are shown using TMIv7.1 data and Reanalysis-2 

temperature for the period of 01 Jun 2002 – 31 May 2014 compiled at 0.25° (colored markers) and 

0.5° (black dots). Underpopulated bins at 0.25° (PDF < 10-5) are indicated by open circles, and 

those for 0.5° are omitted. Triangles represent the corresponding 𝑞𝑠𝑎𝑡ෞ  values. Here, precipitating 

events are defined by 𝑃 > 1.05 mm hr-1. The CWV data is gap-filled using nearest available values, 

and data from pixels within 2.5° of land are excluded to avoid potentially erroneous temperature 

values arising from spatial interpolation. 



S3. Estimating critical CWV 

The critical CWV 𝑤𝑐 is used to characterize the location of the strong increase in conditionally 

average precipitation and probability of precipitation, and related drops in probability of CWV. Here we 

detail how this is estimated from the statistics presented in Figs. 1 and S4. Throughout this study, we use 

the following estimator for 𝑤𝑐: the CWV value at which the asymptote of the conditional precipitation 

curve intersects with the CWV-axis, with the asymptote being approximated by the best-fit line of a 

segment of the precipitation pickup (recall Fig. 2 in the main text). In practice, the curves for some 

temperature bins may not reach the high precipitation regime so that their asymptotes (and hence the 

best-fit lines) are not sufficiently well-sampled for robust estimation. We thus work with the assumption 

that the precipitation pickup curves can be collapsed by shifting CWV by a suitable amount depending 

on the temperature, and the slope of the best-fit line does not depend strongly on temperature. One 

can refer to Figs. 2-3 in the main text, and Figs. S5-S11 below to assess the validity of this assumption. 

Consider the case where 𝑞𝑠𝑎𝑡ෞ  is used as the bulk temperature measure. We start with choosing a 

fixed reference precipitation rate 𝑃𝑟 (say, 1.05 mm hr-1 as used here). For each 𝑞𝑠𝑎𝑡ෞ , we can find the 

reference CWV 𝑤𝑟 at which the conditional precipitation equals 𝑃𝑟. Having found 𝑤𝑟(𝑞𝑠𝑎𝑡ෞ ), the 

assumption implies that the precipitation pickup curves can be collapsed by shifting CWV by 𝑤𝑟(𝑞𝑠𝑎𝑡ෞ ) 

for each 𝑞𝑠𝑎𝑡ෞ , i.e., expressing statistics as a function of 𝑐𝑤𝑣 − 𝑤𝑟(𝑞𝑠𝑎𝑡ෞ ) instead. After the curves 

collapse into a single cluster, one can then take a segment of the cluster with the precipitation rate 

falling within a certain range (here, 3 < 𝑃 < 5 mm hr-1) to find the best-fit line and its (shifted) CWV-

intercept. Note that the difference between 𝑤𝑟(𝑞𝑠𝑎𝑡ෞ ) and 𝑤𝑐(𝑞𝑠𝑎𝑡ෞ ) under this procedure is independent 

of 𝑞𝑠𝑎𝑡ෞ , and is typically around 1.75 mm (given by 𝑃𝑟 divided by the slope of the pickup curve, 𝛼). The 

value of 𝑤𝑟 would correspond approximately to the measure of critical used in Sahany et al. (2014). 

The critical values found by the procedure just outlined, and hence the resulting collapsed statistics, 

are reasonably insensitive to the reference 𝑃𝑟 and the specified precipitation range. There are, however, 

occasions for which special care is necessary. An example of such occasion (but without the proper care 

for demonstration purposes) is shown in Figs. S8 and S11 below for the 274-K 𝑇̂-bin in the tropical 

western Pacific (WPac). In this case, the conditional precipitation as a function of CWV (gap-filled by 

Mean) has an irregular behavior for precipitation rate around 𝑃𝑟, leading to a 𝑤𝑟 sensitive to 𝑃𝑟, and 

hence an unsatisfactory collapse. In this particular case, a set of carefully chosen 𝑃𝑟 (and precipitation 

range in some other cases) can resolve the issue. There are, however, cases where the precipitation 

pickup is too irregular compared with observation (e.g., non-monotonic as a function of CWV) and the 

procedure outlined above would simply fail (e.g., output from a model with ill-constrained convective 

parameterization; not shown). 

Note that in some of the figures presenting the collapsed statistics, the colored markers and black 

dots represent statistics compiled at different resolutions using the same gap-filling method (Figs. 2, S5, 

S6, and S9-S11), respectively, and represent statistics using different gap-filling at the same resolution in 

the others (Figs. S7-S8). Figures S5-S6 show the same statistics as in Fig. 2 in the main text, but include 

other basins. In all of these figures, the black-dot statistics are collapsed by using the critical values 

calculated for the colored-marker statistics. Since the lower-resolution conditional precipitation usually 

does not reach the high precipitation regime, this approach enables us to collapse the lower-resolution 

(black-dot) statistics without choosing a different range of precipitation, and still leads to a satisfactory 

collapse. One can assess this last assertion, and the sensitivity of the critical values and the collapsed 



statistics to the resolution/gap-filling as indicated by the differences between the color-marker and 

black-dot statistics, by referring to these figures (with the exception of the 274-K 𝑇̂-bin for WPac in Fig. 

S8).  



 

  

Figure S5: Convective transition statistics for each ocean basin, as in Fig. S4 for 0.25° (colored 

markers) and 0.5° (dots), but for each 𝑇̂ shifted by the corresponding critical CWV 𝑤𝑐 (as in Fig. 

3g), and with PDFs scaled. The best-fit lines for conditional precipitation rates (leftmost col.) are 

shown as gray dash-dot line, with slope indicated by 𝛼. The top row is identical to the bottom row 

in Fig. 2. 



 

  

Figure S6: Same as Fig. S5, but conditionally averaged by 𝑞𝑠𝑎𝑡ෞ  as in Fig. 1. The top row is identical 

to the top row in Fig. 2. 



S4. Sensitivity of convective transition statistics (and their spatial-resolution-dependence) to gap-

filling 

In this section, we examine the sensitivity of the convective transition statistics (and their 

dependence on spatial-averaging) to the adopted gap-filling method. As mentioned in Section S3, in Figs. 

S7-S11, the black-dot statistics are collapsed by using the critical values calculated for the colored-

marker statistics. 

Figures S7 shows the (collapsed) statistics at 0.25° compiled using TMIv7.1 data with CWV gap-filled 

by Max (colored markers) and Nearest (default; black dots). The two methods lead to very similar 

results. Noticeable differences include the slope of the precipitation pickup and the PDF at high CWV — 

the former method results in a steeper pickup in terms of conditional precipitation and probability, and 

more frequent occurrences of CWV exceeding critical. Figure S8 is similar to Fig. S7, but with statistics 

for Max replaced by Mean. The latter method leads to a less steep precipitation pickup, and slightly less 

frequent occurrences of CWV above critical. 

To further examine how the gap-filling method impacts the sensitivity of the statistics to spatial 

resolution, Figs. S9-S11 show the collapsed statistics compiled using TMIv7.1 CWV data gap-filled by Max 

(0.25° and 1.5°), Nearest (0.25° and 1°), and Mean (0.25° and 0.5°), respectively. The choices of 

resolution for Max and Nearest are the lowest resolution up to which a noticeable difference starts to 

appear. Here we should leave aside the conditional probability and PDF of precipitating events since 

they are expected to be sensitive to resolution. Max leads to the conditional precipitation most robust 

to spatial resolution, with the slope of the asymptote being almost invariant up to 1.5°, while Mean 

results in the least robust conditional precipitation and a noticeable reduction in the slope for 0.5° 

compared to 0.25°. 

Overall, Max assigns more high CWV values and leads to statistics most robust to spatial-averaging, 

Mean is at the other end of the spectrum, and Nearest lies somewhere in between. For comparison 

purposes, Nearest is chosen as the default gap-filling method for this study. Although currently available 

observational datasets cannot provide sufficient information to favor one method over another, Yano et 

al. (2012) analyzed output from a cloud-resolving model (CRM) and concluded that the conditional 

precipitation as a function of CWV is indeed very robust to spatial-averaging. In light of the CRM study, 

our default choice of gap-filling may be too conservative, and Max leads to statistics more consistent 

with the CRM simulation in terms of being insensitive to spatial resolution. 

  



 

  

Figure S7: Convective transition statistics as in Fig. S4 for 0.25° (colored markers), but with CWV 

gap-filled using Max. The black dots are a duplication of the colored markers in Fig. S4 (the 

statistics for 0.25° with CWV gap-filled using Nearest). 



 

  

Figure S8: Convective transition statistics as in Fig. S4 for 0.25° (colored markers), but with CWV 

gap-filled using Mean. The black dots are a duplication of the colored markers in Fig. S4 (the 

statistics for 0.25° with CWV gap-filled using Nearest). The 274-K 𝑇̂-bin for WPac requires the 

additional effort of choosing a larger 𝑃𝑟 to collapse the statistics, which is not done here for 

illustration purpose (Section S3). 



 

  

Figure S9: Convective transition statistics as in Fig. S5 for 0.25° (colored markers) and 1.5° (black 

dots), both with CWV gap-filled using Max. 



 

  

Figure S10: Convective transition statistics as in Fig. S5 for 0.25° (colored markers) and 1° (black 

dots), both with CWV gap-filled using Nearest. 



 

 

 

 

  

Figure S11: Convective transition statistics as in Fig. S5 for 0.25° (colored markers) and 0.5° (black 

dots), both with CWV gap-filled using Mean. The 274-K 𝑇̂-bin for WPac requires the additional 

effort of choosing a larger 𝑃𝑟 to collapse the statistics, which is not done here for illustration 

purpose (Section S3). 

 



S5. Joint-PDF of CWV relative to critical and precipitation for different temperature and basin 

Figure S12 shows the joint-PDF of CWV relative to critical and precipitation rate given different 𝑞𝑠𝑎𝑡ෞ  

bins and tropical ocean basins. Note that the 70-mm panel for the tropical western Pacific (WPac) is 

identical to Fig. 7a in the main text. These joint-PDFs are similar across the most common range of 𝑞𝑠𝑎𝑡ෞ  

and basins. 

  

Figure S12: Joint-PDF of CWV relative to critical (colors) and precipitation rate for the four most 

probable 𝑞𝑠𝑎𝑡ෞ  bins for each tropical ocean basin. The joint-PDF is normalized for each 𝑞𝑠𝑎𝑡ෞ . 



S6. Geographic distribution of bulk tropospheric temperature 

Figure S13 shows the probability of occurrences of 𝑇̂ (bin-width 1 K) as a function of geographical 

location. The most probable 𝑇̂-bin is 271 K in all tropical ocean basins but the tropical western Pacific, 

where the most probable 𝑇̂ is 272 K. Events with 𝑇̂ lower than 270 K mostly occur at latitudes around or 

higher than 20°, but occasionally in the tropical eastern Pacific and Atlantic. These cold events in the 

tropics, judged from their geographical distribution, are likely due to systems from the extratropics. 

Some of the coldest and warmest events in the tropics tend to happen near the south Asian continent in 

the Bay of Bengal and Arabian Sea, likely caused by the circulation pattern driven by the local land-sea 

contrast. 

  

Figure S13: PDF of 𝑇̂ on a log10-scale as a function of geographical location calculated using 

Reanalysis-2 temperature for the period of 1 June 2002 – 31 May 2014. The color advances 

whenever the PDF doubles (100.3 ~ 2). The sum of the PDFs over all 𝑇̂ (including < 267 K and > 274 

K) equals one. 



S7. CWV relative to critical as an indicator of precipitation 

Section 4 (with Fig. 5) in the main text discusses how CWV relative to critical can be used as an 

indicator of precipitation. This section provides additional information complementing that discussion. 

Note that the geographical patterns (not the magnitudes) in Figs. 5 and S14 are robust to the CWV offset 

and precipitation threshold. 

Figure S14a shows the probability of CWV exceeding critical (offset by -1.5 mm; to be consistent with 

Fig. 5), exhibiting a geographical pattern similar to that of the probability of precipitation (Fig. 5a) and 

precipitation climatology (Fig. S14b). The most outstanding feature here is the sharp contrast between 

the major convergence zones and other regions. Note that the corresponding CWV climatology in Fig. 

S14c, without taking into account the dependence of the critical CWV on temperature, reveals a gentler 

spatial variation, although the overall pattern still resembles that of precipitation. 

While it has been demonstrated that CWV relative to critical is a useful proxy for precipitation, given 

that the chances of CWV exceeding critical are low (~ 25% in the major convergence zones as in Fig. 

S14a), and that there are below-critical precipitating events, the contribution of above-critical events to 

the overall precipitation still has to be quantified. Figure S14d shows the conditional probability of CWV 

exceeding critical given precipitation, which exhibits a geographical pattern and magnitude similar to the 

fraction of total precipitation from above-critical events shown in Fig. 5e. In most places in the tropics, 

Figure S14: (a) The probability of CWV exceeding critical (offset by -1.5 mm) as a function of 

geographical location, calculated using TMIv7.1 CWV and Reanalysis-2 temperature. (b) The 

precipitation climatology calculated using TMIv7.1 precipitation. (c) Same as in (b) but for CWV. 

(d) The conditional probability [𝑃𝑟𝑜𝑏(𝑐𝑤𝑣 > 𝑤𝑐 − 1.5 𝑚𝑚ȁ𝑃 > 0.25 𝑚𝑚 ℎ𝑟−1)] calculated 

using TMIv7.1 data and Reanalysis-2 temperature. Here, (a)-(s) are for the same period 01 Jun 

2002 – 31 May 2014 and resolution 0.25°, and the critical CWV 𝑤𝑐(𝑞𝑠𝑎𝑡ෞ ) is as in Fig. 3 (top 

center; in the main text) averaged over four basins. 



the conditional probability and fraction are higher than 60%, indicating that above-critical events are 

indeed the major contributor to precipitation. The spatial pattern, when compared to that of the 

precipitation climatology, shows much weaker spatial contrast, and seems capable of capturing the 

seasonal shift of precipitation. For instance, one may notice the high values in Figs. S14d and 5e in the 

tropical eastern Pacific between 0° and 10°S, reflecting the occurrences of deep convective events in this 

region during the boreal spring (not shown). Since these events are rare, they barely make a dent in Figs. 

S14a and S14b (255°-275°). 

Figure 5f in the main text demonstrates a potential application of using CWV relative to critical as a 

predictor of precipitation. The false positive rate of this (i.e., the conditional probability of no 

precipitation given CWV exceeding critical) is given by the conditional probability shown in Figs. 5b, 5c, 

and 5d (more precisely, one minus the conditional probability), and varies weakly with geographical 

location. The actual magnitude of the false positive rate depends on the spatial-temporal resolution of 

precipitation in which one is interested, as well as the CWV offset and precipitation threshold. The false 

negative rate (the chances of having precipitation given CWV below critical) is given by (one minus) the 

conditional probability in Fig. S14d. While the exact magnitude of the false negative rate depends on the 

resolution, CWV offset, and precipitation threshold, it is expected to be lower than 40% in regions 

including the major convergence zones based on Fig. S14d. There are regions with high false negative 

rates, but mostly inside regions with climatologically low precipitation. 

  



S8. Low bias of conditional precipitation associated with ground-based CWV measurements 

In Fig. 3 of the main text, the conditional precipitation and probability of precipitation compiled using 

the ARM site data from Manus and Nauru show significant low bias for the highest CWV bins (relative to 

critical; 𝑐𝑤𝑣 − 𝑤𝑐 > 5 mm) compared to those from the satellite retrievals. To test whether the bias 

results from the “wet-window” problem associated with the ground-based MWR CWV measurements, 

Fig. S15 shows the conditional precipitation and conditional probability as in Figs. 3a-3b, but with the 

ground-based precipitation at Manus and Nauru being replaced by 3B42 precipitation around the 2 

islands (a 2.25°x2.25°-average). Since the ground-based data and 3B42 have different temporal 

frequency/averaging, the necessary interpolation/matching has been performed. In Fig. S15, the low 

bias for the statistics for Manus and Nauru persists. 

An additional combination of TMIv7.1 CWV and 3B42 precipitation gives results quantitatively similar 

to those shown in Figs. 1-3, except for the slope of the precipitation pickup is slightly smaller (not 

shown), with no signs the low bias for the highest CWV bins. Given this, and the low bias for Manus and 

Nauru in Figs. 3 and S15, we conclude that this bias must be caused by the ground-based CWV 

measurements, and very likely, the “wet-window” problem. Specifically, high CWV events (relative to 

Figure S15: Similar to Fig. 3 of the main text but with the ground-based precipitation from the Manus 

and Nauru ARM sites replaced by the TRMM 3B42 precipitation averaged around the sites (2.25° x 

2.25°). (Left) Collapsed conditional precipitation complied using different datasets, including (i) 

TMIv7.1 CWV and precipitation (colored dots) with underpopulated bins plotted as open circles, (ii) 

TMIv7.1 CWV and PR 2A25 precipitation (gray dots) excluding underpopulated bins, and (iii) ARM 

site CWV and 3B42 precipitation (2.25°-averaged) for Manus (diamonds) and Nauru (squares) Islands 

in the tropical western Pacific (WPac). Reanalysis-2 temperature is used for (i)-(iii). For (i) and (ii), 

bins from all four basins are plotted, with data at 0.25° resolution for 01 Jun 2002 – 31 May 2014 and 

coastal regions excluded. For (iii), the curves are shifted by the corresponding 𝑤𝑐 given the 

temperature (𝑞𝑠𝑎𝑡ෞ  or 𝑇̂) time series according the 𝑤𝑐-temperature relation for WPac. (Right) Same as 

in the left panel, but for conditional probability of precipitation defined by 𝑃 > 1.05 mm hr-1. 



critical) with strong precipitation are missing from the CWV timeseries, and the gap-filling, through 

interpolation, assigns to these events CWV values lower than that happened, while high CWV 

events associated with weak/no precipitation are not affected as much, resulting in the low bias 

for the highest 𝑐𝑤𝑣 − 𝑤𝑐 bins. The results here further suggest (i) the adopted gap-filling for 

ground-based CWV time series cannot satisfactorily restore the missing information; (ii) for 

𝑐𝑤𝑣 − 𝑤𝑐 > 5 mm, the CWV data is no longer trustworthy, and (iii) the temperature 

dependence of critical must be considered in determining this trustworthiness. 
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