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ABSTRACT

The fast-wave limit is an approximation useful for understanding many aspects of tropical air-sea interaction.
It is obtained when the time scale of dynamical adjustment of the ocean by equatorial waves occurs fast compared
to the time scale on which the system is evolving through coupled processes. The linear and nonlinear behavior
of a simple coupled model is examined for the Pacific basin. It consists of an SST equation for an equatorial
band, shallow-water ocean dynamics in the fast-wave limit governing the thermocline, and an embedded surface
layer for equatorial Ekman pumping; it may be characterized as a simple fast-wave limit version of the Neelin
model, which is in turn a stripped-down version of the Zebiak and Cane model. It offers a converse approximation
to simple models that retain wave dynamics while eliminating SST time scales.

This simple model produces a rich variety of flow regimes. The first bifurcation can give westward-propagating,
stationary, or eastward-propagating variability according to the relative strength of the surface-layer and ther-
mocline processes and the atmospheric damping length. These parameter dependences can be largely explained
by reference to the simpler zonally periodic case, but the finite basin and zonally varying basic state introduce
east basin trapping. These weakly nonlinear regimes offer a simple analog of oscillations in a number of other
models. Some of the oscillations show thermocline evolution that could be easily mistaken for wave-dependent
behavior in other models. Over a substantial region of parameter space, two SST modes—one stationary and
one westward-propagating—have comparable growth rate in the linear problem. This introduces mode interaction
in the nonlinear problem. Relaxation oscillations at strong nonlinearity prove to be a very robust feature of the
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model, showing strong parallels to behavior noted in a hybrid coupled general circulation model.

1. Introduction

The El Nifio-Southern Oscillation (ENSO) phe-
nomenon is among the dominant sources of interan-
nual climate variability (e.g., Bjerknes 1969; Rasmus-
son and Carpenter 1982; Graham et al. 1987; Deser
and Wallace 1990; Rasmusson et al. 1990; Barnett
1991; Ghil and Vautard 1991). It is now generally un-
derstood that ENSO arises through interaction between
the tropical atmosphere and the tropical Pacific Ocean.
A number of models of varying levels of complexity
have captured interannual variability resembling
ENSO. These include full coupled ocean—atmosphere
general circulation models (GCMs) (e.g., Meehl 1990;
Philander et al. 1992; Lau et al. 1992; Neelin et al.
1992a; Nagai et al. 1992; Latif et al. 1993), hybrid
coupled GCMs consisting of an ocean GCM coupled
to a simpler atmospheric model (Neelin 1989a, 1990a;
Latif and Villwock 1990), intermediate models (e.g.,
Zebiak and Cane 1987; Battisti 1988; Anderson and
McCreary 1985), and a variety of simpler models. The
latter include linear instability studies used for under-
standing how large-scale coupled air-sea interaction
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gives rise to the interannual oscillations (e.g., Philander
et al. 1984; Hirst 1986, 1988; Wakata and Sarachik
1991).

Because subsurface memory associated with dy-
namical adjustment processes appears to play a signif-
icant role in setting the time scale of oscillation in some
models and apparently in the observed ENSO, consid-
erable attention has been given to a simple differential-
delay equation postulated by Suarez and Schopf (1988)
to explain the results of the Schopf and Suarez (1988)
model. A modified form of this “delayed-oscillator”
model was shown by Battisti and Hirst (1989) to give
a reasonable fit to the behavior of the Battisti (1988)
version of the Zebiak and Cane (1987) model. In this
model, local air-sea interaction in the eastern part of
the basin is assumed to produce a pure growth ten-
dency, while a delay representing the transit time of
Rossby wave propagation to the western boundary and
Kelvin wave propagation back to the coupling region
is essential for oscillation. More realistic formulations
of simple models in which equatorial wave time scales
are crucial to the dynamics are given by Cane et al.
(1990) and Schopf and Suarez (1990). A debate re-
garding the relevance of observations of off-equatorial
Rossby waves to this mechanism may be found in Gra-
ham and White (1988) versus Battisti (1989).

Interannual oscillations, however, are also possible
in which the time scale of wave dynamics does not play



1524

a crucial role. Neelin (1991; N91 hereafter) introduced
the “fast-wave limit” as a useful approximation to such
“oscillations. In this limit, dynamical adjustment by
equatorial waves occurs on time scales much faster than
the time scale of SST evolution by coupled processes.
Wave dynamics is important in setting up the ocean
state at any given time, but the time scale is not im-
portant to the coupled dynamics. The slow modes in
this limit are referred to as “SST modes” since they
are associated with the time derivative of the SST
equation, although their form and time scale is strongly
determined by coupled processes. Neelin (1991) pro-
vides simple analytic solutions for SST modes in the
fast-wave limit for the periodic-basin case and shows
by distorted physics experiments that the fast-wave
limit provides a useful approximation to the oscillations
in certain flow regimes in a hybrid coupled GCM.
Jin and Neelin (1993a,b) and Neelin and Jin (1993)
(collectively referred to as JN hereafter) show that the
various modes are all fundamentally related, although
they exhibit different behavior in different parts of pa-
rameter space. The linear models of Cane et al. (1990)
and Schopfand Suarez ( 1990) and the nonlinear model
of Miinnich et al. (1991) are formulated in a special
case of the ““fast-SST limit,” the converse to the fast-
wave limit, in which the time scale of SST is assumed
to adjust quickly compared to the time scale of equa-
torial wave adjustment. By examining the eigenmodes
of the system, linearized about climatology, JN show
that most important modes in the fast-wave limit and
in the fast-SST limit are continuously connected and
that these limits offer alternate approximations to the
same eigensurface. In the most realistic part of param-
eter space, both wave time scales and SST time scales
are important to the mixed SST/ocean dynamics
modes. The very different regimes of behavior for these
modes within a small region of parameter space help
to explain the variety of results obtained for interannual
phenomena. in coupled GCMs (Neelin et al. 1992a).
Our purpose here is to examine the nonlinear be-
havior of SST modes in the fast-wave limit in a finite
basin. A linear analysis of the modes leading to the
primary bifurcations is included as a prelude to the
nonlinear results. The model includes an SST equation
similar to that used in intermediate models, and be-
cause this includes the most important nonlinearities,
considerable insight into the flow regimes can be gained
from this case. The only qualitative difference to be
expected is that some of the bifurcations that appear
in this model as stationary bifurcations would have
oscillatory counterparts in a model with finite wave
time scales. A surface of codimension-two bifurcations
separates these regimes, as discussed in JN. Any sta-
tionary state of the system at finite wave time scales,
on the other hand, has an identical solution in the fast-
wave limit. We emphasize that the model is intended
to offer a converse approximation to the assumptions
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of the fast-SST limit models such as Cane et al. (1990)
and that the fundamental questions of interest are 1)
what nonlinear coupled behavior can be found in a
coupled model that does not depend on wave time
scales, and 2 ) how this can inform our analysis of more
complex coupled models.

We limit our examination to the use of forward time
integration and the eigenvalue problem for the system
linearized about a climatological stationary state. The
time integration provides an indication of the transient
behavior as well as the attractors of the system in a
manner comparable to that available in more complex
models. The primary bifurcations are all easily iden-
tifiable from this and the linear analysis. It also provides
a good indication of the types of higher bifurcations
and strongly nonlinear flow regimes that would be en-
countered in a more thorough exploration. Because
the climatological stationary state is constructed by
flux correction in a manner similar to hybrid and in-
termediate coupled models, bifurcations involving
large-amplitude anomalies are not necessarily realistic
but they can provide insight into similar regimes in
the more complex models. We outline parallels be-
tween this and more complex models in the spatial
and temporal evolution of the flow field in the various
regimes. The complexity of the phenomena that arise
even without wave time scales proves to be remarkable.

After describing the model in section 2, we present
the linear analysis in section 3 and nonlinear results
in section 4. In both cases, the dependence of the system
on coupling strength, atmospheric damping length, and
the relative strength of surface-layer and thermocline
feedbacks is examined. Section 5 provides summary
and discussion.

2. The model

The strongest SST response to upwelling, zonal ad-
vection, and thermocline depth anomalies is confined
to a fairly narrow band along the equator for the phe-
nomena being considered. Although observed SST
anomalies may have somewhat different meridional
scales at different longitudes, for purposes of under-
standing, the SST anomaly can be taken to have fixed
meridional structure. The N91 model exploits this by
treating the SST equation for an equatorial band, with
fixed meridional dependence of the forcing felt by the
atmospheric component. The resulting model is essen-
tially a stripped-down version of the Zebiak and Cane
(1987) intermediate model, exhibiting most of the most
crucial dynamics, but is simple enough to solve ana-
lytically in some cases. Although the model is three-
dimensional (albeit with limited vertical degrees of
freedom), in the fast-wave limit it reduces to a partial
differential equation in longitude and time only. The
version used here is closely related to a fast-wave limit
version of the model presented in Neelin and Jin
(1993).
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a. Atmospheric component

The atmospheric component is a simplified version
of the Gill (1980) model. Since the atmospheric ad-
justment time is fast compared with the time scales of
the ocean and the ENSO cycle, the atmosphere is as-
sumed to be instantaneously in equilibrium with the
oceanic evolution. The atmospheric model equations
on the equatorial 8 plane, under standard nondimen-
sionalization, are just

qua — YaUg + 059 = 0,
Yally + ayad’ =0,

(2.1a)
(2.1b)

€Xd + Ou, + 0,0, = —0, (2.1¢)

where €¥ is a nondimensionalized Rayleigh friction due
to boundary-layer turbulence; u,, v, and ¢ are bound-
ary-layer winds and geopotential perturbations, re-
spectively; and Q is a forcing term that is closely related
to latent heating and is parameterized to be propor-
tional to the SST perturbation, an approximation that
may be justified in terms of several physical mecha-
nisms (Lindzen and Nigam 1987; Neelin and Held
1987; Neelin 1989b).

As the atmosphere and oceans have different merid-
ional length scales, the SST perturbation is projected
onto Hermite functions, y,(y,), where y, is meridional
distance normalized to the atmospheric radius of de-
formation:

Q=T'(x) 2 Sa(X)¥n(ya).

n=0

Wind stress on the ocean surface is by definition
proportional to the atmospheric boundary-layer wind.
The zonal wind stress anomaly along the equator can
thus be written as

1 X
T’=u§Aea[—Soe"“"L T'(s)e“ds
w

oo}

-2 (-1

n=2

n! 2n-—1
(n/2)(n—1)

[(l’l"‘ I)Sn+%Sn—2]
XE
X e(2n—l)e,,xf Tl(s)e“@"“)‘asds], (2.2)

where the sum is over even values of # and where ¢, is
the Rayleigh friction redimensionalized as an inverse
damping length scale. The amplitude factor A measures
the strength of the wind stress feedback per unit SST
anomaly for standard values of the atmospheric model,
while the relative coupling coefficient u is a convenient
parameter for changing the strength of the coupling. It
is convenient to scale wind stress by (pH) ™!, the mass
per unit area of the ocean above the thermocline, so
A =A%/ (pH), with A* in PaK™!, and +' thus denotes
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the acceleration due to zonal wind stress on the ocean.
The value of 4* used here is on the high side (compared
for instance to JN), resulting in bifurcations at corre-
spondingly lower pu.

Two alternate cases have been used for the meridi-
onal structure of the atmospheric forcing. The first as-
sumes that the SST perturbation projects primarily
onto Sy, that is, that the SST structure can be approx-
imated by a Gaussian with a half-width of the atmo-
spheric radius of deformation, typically estimated in
the range 5°-10° latitude. Since this is somewhat larger
than typical SST or heating anomalies, the effects of
using a delta-function y dependence (i.e., very narrow
Q) were tested as an alternate approximation. For this
case, S, = w7 1/2(=1)"*27"[1/(n/2)!] and the series
must be carried to fairly large truncation. The wind
stress near the equator is rather similar to the Sy case,
however, and numerical runs with both formulas show
similar evolutions of SST. The bifurcations are slightly
shifted between the two cases, but the qualitative be-
havior is extremely similar. Therefore, the runs pre-
sented here are all with the simpler case, for which

3 e
7= p.eaA{— e3"“xf T'(s)e 3= ds
2 N
B f T’(s)e‘“sds]. (2.3)
2 Xw

b. Ocean component
1) OCEAN COMPONENT EQUATIONS

The ocean component is based on a modified shal-
low-water model with a fixed-depth mixed layer and a
lower undercurrent layer (Cane 1979), and is closely
related to the model employed in N91 and JN except
that only the fast-wave limit is considered.

The SST equation governs the thermodynamics of
a box whose depth is that of the upper mixed-layer,
H,, and whose width, L,, is characteristic of the width
of upwelling. Since temperatures outside the box are
fixed or parameterized, an upstream advection scheme
is employed for vertical and meridional advection to
ensure suitable behavior. For total SST, this gives

w 2UN
72 1/2(T Tow) — #(—vn) i
X(T—Tn)+er(T—Tp)=0, (2.4)

where T is the temperature of the equatorial surface
box and #(w) = 1 (tanh(w/Aw) + 1) is a continuous
approximation to the Heaviside function used to switch
between upwelling and downwelling cases in the up-
stream differencing scheme. As Aw — 0, # approaches
the Heaviside function (Aw = 1 cm day ! is used, two
orders of magnitude less than typical w values). The
use of analytic functions ensures nice properties for the
phase-space flow. The Newtonian cooling term, with

0T+ #(w)
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inverse damping time, ¢, represents all one-dimen-
sional vertical processes, which include mixing, sea
surface sensible and latent heat fluxes, and longwave
and shortwave radiation. Here 7 is the equatorial SST
value at the state of radiative-convective mixing equi-
librium in absence of large-scale horizontal dynamics
in the upper ocean or atmosphere; Ty is the fixed off-
equatorial SST, which could be specified as a function
of longitude but is here treated as constant. North—
south asymmetries in off-equatorial SST are not treated
here. Zonal advection of SST is neglected in (2.4); in
the linear case, it acts similarly to upwelling pertur-
bations and tends to be smaller (in the fast-wave limit,
for models of this type). It is neglected for simplicity
and to emphasize the effect of the upwelling-down-
welling nonlinearity as cleanly as possible.

The subsurface temperature, T, is parameterized
on the thermocline depth departure from its no-motion
value, such that a deeper thermocline yields warmer
temperatures of the water being upwelled. For the
equatorial band SST equation, only the equatorial
value of the thermocline depth departure, 4., is re-
quired. An analytic function for this dependence is
used:

Tow = Tso + (To — Tio) tanh( he;*ho) , (2.5)
such that T, cannot exceed 7, and cannot go below
To — 2(To — Ty). This provides a physically realistic
nonlinearity and, with the upwelling-downwelling non-
linearity, guarantees that SST anomalies will remain
bounded. Here T is the temperature at an offset —4,
from the thermocline, say 20°C, where 4, controls the
asymmetry of the thermocline depth dependence and
H* controls the maximum rate of change. Positive A,
is appropriate since it gives a larger T, dependence
on s, when the thermocline is shallower than its average
value. Values were chosen to give reasonable sensitivity
of temperature to thermocline depth anomaly in the
eastern part of the basin. The parameterization (2.5)
is used for total 4, departure from its rest value and
employs an analytic function to ensure nice properties
of the phase space flow; it is not expected to give as
good fit for interannual anomalies as the Zebiak and
Cane (1987) parameterization from which it was in-
spired. Their version, however, suffers from the draw-
back that the Jacobian of the flow is undefined at the
climatology, and our concern here lies more with
qualitative properties than the exact amplitude of the
anomalies.

The currents and thermocline perturbations are
governed by linear dynamics, with contributions from
two components,

w=w,+ wy,
U= u;+ Uy

V=04 U, (2.6)
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with subscript m representing the contribution at the
surface of the vertical mean currents above the ther-
mocline and subscript s representing the contribution
of vertical shear currents associated with the fixed-depth
surface layer. The vertical mean component is governed
by shallow-water dynamics. In the fast-wave limit, these
contributions are small and the approximation

Up = V=W, =0 (2.7)
is used. The vertical shear currents are governed by
steady equations dominated by damping due to inter-
facial stress between the layers of damping time e; ',
following Zebiak and Cane (1987). Only the values
affecting the equatorial band are required; these are

us = byt
W = (“bw + H,buax)'r

vy = —b,L,(2H,) ', (2.8)
where b, ~ H,/H,¢; and b,, ~ (H,8/¢;)b,, where H,
= H — H, is the depth of the second layer. Here u;, w;
now denote equatorial values within the box and the
meridional currents at the boundary of the box, vy,
have been evaluated from the continuity equation:

2 w_¥ u
L, H, o
In the fast-wave limit, the thermocline height along
the equator, 4., is in Sverdrup balance to a good ap-
proximation:

(2.9)

where g is the reduced gravity parameter for the shal-
low-water ocean. In integral (dimensional) form,

goh, =,

he=hg—g™ f 7(s)ds,

X

(2.10)

where A is the thermocline depth anomaly at the east-
ern coast. In a finite basin, the specification of Ag is
potentially important since it contains all the infor-
mation about the boundary conditions and the effects
of wave dynamics. For most of the runs discussed here,
the following boundary condition for (2.9) is used,
which applies when the meridional scales of the wind
stress are sufficiently large compared to ocean damping
(in dimensional form):

h o J‘XE ( ) i I/Zd
= 8 XWTS L S,

where L = xz — xy is the basin length. The effects of
alternate versions of the boundary conditions are dis-
cussed with the derivation below. Equations (2.10) and
(2.11) provide all the necessary information from the
shallow-water component of the system since the ther-
mocline height along the equator is what is required

(2.11)
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for the SST equation and since vertical mean currents
are small. The y dependence of the ocean fields could
be generated diagnostically if desired. It is emphasized
that (2.11) includes the net effects of equatorial ad-
justment in the x-y plane, which results in east-west
asymmetry due to the 8 effect.

2) DERIVATION OF THE OCEAN BOUNDARY
CONDITION

The vertical-mean motions above the thermocline
are governed by the shallow-water equations in the
longwave approximation. In nondimensional form,
with zonal distance scaled by the basin width, L, and
meridional width scaled by the oceanic radius of de-
formation, Lp, but with time scaled appropriately for
coupled SST evolution, these are

(00, + up — yv,, +0ch =1
Yy, + 81 =0

(80, + €)h + Oty + 9y, = O, (2.12)

where § is the relative adjustment time coefficient,
which measures the ratio of the time scale of oceanic
adjustment (in the zonal direction) by wave dynamics
to the time scale of adjustment of SST by coupled feed-
back and damping processes. In the most physically
realistic part of parameter space, é is of order unity
[see Neelin and Jin (1993) for a detailed scaling]. The
fast-wave limit is defined by & — 0, in which the wave

dynamics time scales are fast compared to the coupled

time scales affecting SST. Oceanic dissipation processes
are represented by the damping time scale ¢!, which
is fairly long, so that ¢ < 1 is a useful approximation;
= (250 days)™! yields nondimensional ¢ = 0.25.
For simplicity, the case where zonal wind stress has
a fixed y structure is taken. Consider first the case where
the wind has an exponential (oscillatory and/or grow-
ing) time dependence, as for a linear coupled mode:

(X, ¥) = e”'1.(X)Y (),

where Y(y) = e, The Gaussian y dependence is
simply a means of assessing the effects of meridional
structure in the stress field, which prove to be second-
ary. The meridional length scales of the atmosphere,
L, =~ 10°, on the order of the atmospheric radius of
deformation, are much larger than the oceanic radius
of deformation, L, ~ 3°, so that « = L}/(2L3)
~ 0.05, even smaller than e,

For this time dependence, we define i = b5 + €. As
the fast-wave limit is approached, that is, for frequen-
cies and growth rates small compared to the inverse of
the Kelvin wave crossing time, the ocean comes into
balance to O(¢?) in thermocline depth and O(¢) in
currents, which can be driven by the small wind stress
curl. Thus, the weak zonal currents are O[max(¢,a)],
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while at the equator the Sverdrup balance (2.9) holds
locally to O[max(¢?,¢a)] for thermocline depth.
For the boundary condition on (2.9), the results of
Cane et al. (1990) can be employed. The response of
the shallow-water ocean at the eastern boundary, for

-wind stress of the assumed form, is

he = oot f‘ To(5) sin2¢s s i \\72
£ o (& cos2¢s + isin2¢s)/?  \sin2¢ /|
(2.13)

This expression can be sensitive to the order in which
limits are taken {see Cane and Sarachik (1981)], but
the fast-wave limit (§ — 0) is well defined in a physi-
cally appropriate manner by keeping finite damping
or letting damping go to zero only after taking other
limits. Equation (2.13) can be used as is but simplifies
for €2 < 1 (without yet making assumptions about the
relative size of € and «) to

1
hE=f0 're(s)(—s—a)vgds. (2.14)

s+ =
2e

When the atmospheric response has much larger
meridional scale than the SST perturbation, that is, for
a/2e <€ 1, the second term in the denominator can be
neglected, leading to the simplified form (2.11).

Numerical runs using (2.13) or (2.14) with various
values of « and e show very similar flow regimes to
those obtained using (2.11). Two such figures are
shown in the brief reply by Neelin et al. (1992b), which
correspond to Figs. 4 and 5 of this paper but use (2.14)
with a/(2¢) = 0.1 (corresponding, for instance, to
oceanic damping time 250 days and atmospheric me-
ridional scale 10°) instead. The features are almost
identical. For larger values of a/(2¢), some quantitative
changes may be noted but the qualitative behavior is

TABLE 1. Standard parameter values.

Parameter Symbol Value

Atmospheric model amplitude

factor A* 0.05 PaK™!
Surface-layer coefficient 8 1.0
Atmospheric damping € (6000 km)™!
Damping time for shear current &' 2 days
SST damping rate &' 180 days
Reduced gravity parameter g 2X1072ms™?
Offset parameter in Ty, hy 30m
Sensitivity parameter in Ty, H* 50 m
Depth of layer above thermocline H 200 m
Depth of surface layer H, 50 m
Depth scale for vertical advection Hip 100 m
Radiative-equilibrium SST Ty 30°C
Off-equatorial SST Ty 30°C
Temperature at no-motion

thermocline T, 22°C
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the same. Thus, for the figures presented here, (2.11)
is used.

All of the above versions of the boundary condition
contain the effects of equatorial wave dynamics on the
adjusted ocean (although by definition the wave time
scales are too fast to be important). It is of interest to
test the effects of an alternate boundary condition that
ignores the east-west asymmetry introduced by Kelvin
and Rossby waves. The very simplest boundary con-
dition is one of mass balance across the basin. The
zonal mean over the basin of the thermocline depth
departure from the no-motion level is forced to be zero;
that is, no net mass is transported onto or off the equa-
tor. Away from the fast-wave limit, in regimes where
wave time scales are important, this would be an im-
portant effect. In the fast-wave limit, the impact tends
to be modest. Discussion of the results from this alter-
nate boundary condition is given in section 4a.2 in the
flow regime where it should have the greatest impact.

¢. Climatological state and coupling

A smooth function that resembles the observed wind
stress of the Pacific along the equator is used to set up
the basic state,

_ 0.06Pa
pH -

]l

{0.12 - cosz[(x - xo)*i}} . (2.15)

0

with xo = 0.57 L. The ocean basic-state variables, T,
Ts, W, Un, and A, are obtained from (2.4), (2.5),
(2.8),and (2.10)-(2.11) with 7 given. The basic-state
SST, vertical velocity, and thermocline depth departure
are shown in Fig. 1 for standard parameter values. The
SST has a very strong cold tongue in the eastern basin,
with a shallow thermocline and strong upwelling region
on and to the west, which resembles the observed cli-
matology of the tropical Pacific to a reasonable extent.

The coupled system is set up using one-way flux
correction, with wind stress given by

T=77+7, (2.16)
where 7’ is derived from the atmospheric response to

SST anomalies,
T"=T7-T. (2.17)

There is thus always a climatological stationary state,
7 =0, T' = 0 in both linear and nonlinear cases. For
sufficiently small u, the coupled system always decays
to this climatological basic state at a rate given by a
combination of the damping term in the SST equation
and damping effects due to basic-state upwelling. At
zero coupling, the constructed climatological state is
thus unique.

The only respect in which the ocean model as used
for the climatology and perturbations differs is that it
is convenient to introduce a relative surface-layer coef-
ficient &, that affects only the anomalous surface-layer
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FiG. 1. The basic state of the tropical Pacific Ocean along the
equator as used in the model: (a) Sea surface temperature (°C); (b)
vertical velocity (m day™'); and (c) thermocline depth departure
from no-motion state (m).

currents. These can thus be reduced or even turned off
to examine their effects without affecting the clima-
tology. Thus, (2.8) is modified to

w=w+ —b,, + H\b,0;)7'

vy = Oy — 8;b L, (2H,) 7 '7. (2.18)
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To summarize, the coupled system consists of the
SST equation (2.4), with subsurface temperatures,
surface-layer currents, and equatorial thermocline
depth given by (2.5), (2.18), and (2.10)-(2.11), re-
spectively, plus the atmospheric model (2.2) or (2.3)
coupled using the definitions (2.16)~(2.17). Standard
values of the parameters are given in Table 1.

3. Linear analysis

For the model linearized about the climatological
mean state of section 2b, the zonal eigenvalue problem
is considered in a finite basin. A time-dependence
exp(At) is assumed, and a simple matrix eigenvalue
problem in x is obtained with the same finite differ-
encing used in the nonlinear model. Typically, 40 to
50 points in x are sufficient for convergent results for
the gravest modes.

Before discussing the finite-basin results, it is useful
to summarize the periodic-basin case of N91. Several
mechanisms, each corresponding to a term of the SST
equation but with atmospheric feedback, contribute to
growth of the SST modes. The dependence of these
terms on zonal wavenumber differs but tends to favor
the gravest modes for a basin of Pacific size. The mech-
anisms differ in tending to give eastward or westward
propagation. The thermocline depth term tends to give
eastward propagation. Consider a region of warm SST
anomaly; it generates an eastward wind stress anomaly
over and to the west of the region and a weaker west-
ward stress anomaly to the east. The stress anomalies
are balanced in the ocean by thermocline gradients in
the fast-wave limit; these lead to a deeper thermocline
below and to the east of the warm SST anomaly and
a shallower thermocline to the west. With upwelling
prevailing in the basic state for most of the basin, a
region of deeper thermocline will result in warmer sub-
surface temperatures being upwelled to the surface and
thus produce a warming tendency that occurs paitly
in the region of the original SST anomaly, reinforcing
it, and partly to the east. A cooling tendency occurs in
the shallower thermocline region to the west. For cold
SST anomalies, the same applies with the sign reversed.
Thus, a succession of warm and cold SST anomalies
move eastward, amplifying if the reinforcing tendency
due to coupled processes overcomes the damping
terms.

On the other hand, surface-layer terms tend to give
westward propagation. Enhanced (reduced ) upwelling
cools (warms) SST locally. Over and to the west of a
warm anomaly, the westerly wind stress anomaly tends
to reduce the upwelling anomaly, thus producing a
warming tendency. Similarly, cold anomalies have
easterly anomalies over and to the west of the region,
yielding increased upwelling and cooling. A pattern of
warm and cold SST anomalies is thus reinforced and
moves westward. Zonal advection can have a similar
effect. When both surface-layer terms and thermocline

HAO ET AL.

1529

feedback occur, the growth tendencies add but the di-
rection of propagation depends on which effect is
stronger.

In a finite basin, similar effects occur, but the prob-
lem includes the effects of boundary conditions on the
basin, and the modes will have more complicated spa-
tial structure. Eigenvalues and eigenvectors of the most
unstable mode(s) are examined in the following since
these will determine the weakly nonlinear behavior in
some neighborhood of the bifurcation from the cli-
matological state. The value of the relative coupling
coefficient, u, is chosen such that the growth rate of
the most unstable mode for each &, is close to zero
(small positive), that is, that each case is just above
the first bifurcation.

a. Dependence on the relative surface-layer
coefficient, &

Figure 2 shows eigenvalues and the corresponding
SST eigenvectors for the most unstable mode(s) for
different values of the relative surface-layer coefficient
;. Oscillatory modes have a complex conjugate pair
of eigenvalues and eigenvectors that contain duplicate
information; the real and imaginary parts of one ei-
genvector are given as a function of longitude, where
the eigenvector corresponding to positive (negative)
frequency is displayed for westward (eastward) prop-
agating cases. For pure growth modes (a single real
eigenvalue), the normalized eigenvector is pure real.
In all cases, the eigenvectors are normalized such that
the maximum SST amplitude has unit value. In two
cases (Fig. 2b,c), the second most unstable mode is
plotted as well.

As §; goes from the best estimate 1.0 to zero, the
most unstable mode changes from a westward-propa-
gating oscillatory mode to a stationary, pure-growth
mode and then to an eastward-propagating oscillatory
mode. This transition may be qualitatively anticipated
from the periodic-basin case except that stationarity
occurs only for an infinitesimal range of &;. The peri-
odic case gives no information of the change of struc-
ture since zonal wavenumber is fixed, but it does show
that for smaller zonal wavenumbers, the thermocline
feedback term is more important, so the transition oc-
curs at larger 6;. The periodic case also predicts that
higher coupling will be required to destabilize a given
mode when the surface-layer feedbacks are weaker.

Two obvious differences arise in the basin case. First,
the zonal structure of the modes is internally deter-
mined, with the boundary conditions yielding quan-
tized modes and a combination of zonal variation in
the basic-state parameters and east-west asymmetry
due to B yielding east-basin trapping (see JN for de-
tails). Second, one of the modes is stationary over a
very considerable range of parameters. This mode
changes very slowly from Fig. 2b to Fig. 2e, but in the
latter it has acquired a very small imaginary part as-



1530

JOURNAL OF CLIMATE

1.0
(0.050, +2.555)

i i

VOLUME 6

180 130W

Longitude

(0.008, +2.128)
(0.009, 0.000)

180 130w
Longitude

o

0.80
0.119
(0.012, +0.060)

4. "

10
o O05f
=
: r
=
5 00
£
<
-05 |
-1.0
130E
10
=
3
=
5 00
E.
<
05
-1.0
130E
10
o 05
©
3
=
L
E
<
05
-1.0
130E

180 130w
Longitude

10
©
S
=
3 00 a0
] £ - ]
<
- 0S5 I g = -
} Iy - (6.037, +2.186) J
(-0.281, 0.000)
— -1.0 — :
80w 130E 180 130W 8ow
Longitude
10 d)
o 05T
= !
3
h
35 00
E !
< _
-05F #» = 069
§ = 025
A = (0.088, 0.000)
, -1.0 : *
8ow 130E 180 130W sow
Longitude
o
T
3
=
a
£
<
. ~05F »« = o0& .
s = 0.0
! L A = (0.037, £1.460) 1
. -1.0 — =
sow 130E 180 130W gow
Longitude

FI1G. 2. Eigenvectors of SST and eigenvalues for the most unstable mode (or two most unstable modes) for various values of the
surface-layer coefficient 8, as indicated. Solid (dashed) lines: real (imaginary) part of SST eigenvector (nonoscillatory modes have only
real part). Heavy lines correspond to westward-propagating oscillatory mode. Light lines correspond to stationary or eastward-propagating
mode. Eigenvalues, A, are given as (growth rate, frequency) in per year. Periods corresponding to the frequency are (a) 2.45 yr; (b) 2.87
yr; (¢) 2.95 yr; (d) 0o (e) 104.72 yr; (f) 4.30 yr. The atmospheric damping length, ¢!, is 6000 km.



AucusTt 1993

sociated with the transition to eastward propagation.
The mode has both a standing component and an east-
ward-propagating part in both Figs. 2e and 2f, with the
eastward propagation giving the frequency. The tran-
sition occurs at a degeneracy of algebraic multiplicity
2 (abbreviated here as “2-degeneracy’’ ), where two ei-
genvalues become identical at a singularity in the pa-
rameter space. For higher §,, these correspond to the
unstable stationary mode shown and a faster-decaying
stationary mode that combines with it at the 2-degen-
eracy to give a complex pair.

A similar 2-degeneracy can arise at large §,, where
the stationary mode can undergo a transition to west-
ward propagation, as discussed in JN. In addition, a
different effect, not pursued by JN, is found here, in
that two distinct modes vie for dominance: at larger
d5, the westward-propagating mode of Fig. 2a has the
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largest growth rate by a considerable margin; at lower
3, the mode of Figs. 2d-f, either in its stationary or
eastward-propagating version, is faster growing. These
two SST modes are simply different zonal modes—
essentially the gravest and second gravest spatial modes.
Both have comparable wavenumbers in terms of zero
crossings, but the westward-propagating mode has
larger effective complex wavenumber due to the strong
exponential trapping toward the eastern side of the
basin.

For intermediate values of d,, both modes have
comparable growth rates. Figure 2¢ shows a case, near
o, = 0.422, where both modes go unstable simulta-
neously in a codimension 2 bifurcation. In such in-
stances, one anticipates the complexities associated
with Hopf-steady state mode interaction (Golubitsky
et al. 1988). The location of this region where both
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modes coexist with comparable growth rate will shift
somewhat as other parameters, such as ¢,, are varied,
but appears to be a fairly robust feature.

b. Dependence on atmospheric damping

The atmospheric damping parameter, ¢,, an inverse
damping length scale, is used here as a measure of the
sensitivity to changes in the atmospheric structure. It
has two primary effects: 1) as it becomes larger, the
atmospheric response becomes more local, so that fi-
nite-basin effects in the atmosphere become less im-
portant, and 2) it affects the relative phase of the wind
and SST (see N91 for a discussion in the periodic case).

In the case of §; = 1, the unstable westward-propa-
gating mode has no qualitative change as a function
of ¢,. Figures 3a,b,c, showing both longer and shorter
damping lengths, may be compared to Fig. 2a. For
larger ¢,, however, the modes tend to be trapped more
to the eastern coast and have a longer period.

For the case of zero relative surface-layer coefficient,
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that is, where the surface layer is inactive and coupling
is governed by the thermocline feedback, the unstable
mode was eastward-propagating in Fig. 2f but can be
stationary for many choices of the atmospheric damp-
ing length. Figure 3d shows this mode and its associated
eigenvalues near the bifurcation for ¢, = (20 000
km)~'. The interpretation is simply that the same 2-
degeneracy surface encountered for 6, near that of Fig.
2e is crossed by changing ¢, between the cases of Fig.
2f and Fig. 3d. The SST anomaly is nearly all of a
single sign when the damping length, ¢!, is large, more
closely resembling the SST anomalies found in the
Cane and Zebiak (1985) model, but this does not fun-
damentally affect the properties of the mode.

4. Nonlinear cases
A feeling for the variety of flow regimes that can

. occur in this model and the possible relation of these

to other models or to the observed system can be ob-
tained by simple forward time integration. In this
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FIG. 4. Time-longitude diagram of a 18-year run of the nonlinear model with 8, = 1 and x = 0.37. (a) SST anomaly (contour interval
1.0°C) and (b) thermocline depth anomaly (contour interval 5 m). Solid (dashed) lines show positive (negative) contours.
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model, the spatial dependence is well summarized by
SST and thermocline depth anomalies along the equa-
tor, with upwelling anomalies described when appro-
priate. In large parts of parameter space, there is only
a single attractor, and thus, the initial conditions are
irrelevant to the long-term behavior. The spinup from
initial conditions (consisting of SST anomalies of
modest amplitude and the ocean circulation implied
by these) is often shown since this short-term evolution
sometimes provides an indication of other interesting
behavior and gives an idea of the decay rate toward
the attractor. Where multiple attractors (usually sta-
tionary points) exist, these are found by choosing initial
conditions in the respective attractor basins, guided by
physical considerations and information from neigh-
boring parts of parameter space. Extended integrations
and runs at intervening parameter values were used to
ensure that the attractors were mapped with reasonable
confidence for most of the cases presented. There are
a few cases where more powerful techniques (e.g.,
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FIG. 5. As in Fig. 4 but for surface-layer coefficient 8, = 0.0 and p = 0.8: (a) SST anomaly and (b) thermocline depth anomaly.
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Keller 1977) would be useful to give a complete un-
derstanding of the bifurcation diagram. Given that the
continuity of the system in parameter and phase space
dictates the linkage between regimes, however, the most
important connections are usually obvious.

a. Weakly nonlinear cases
1) WESTWARD-PROPAGATING CASES

Figure 4 shows the nonlinear numerical results in
the case of full surface-layer feedbacks, 6, = 1. The
value of the coupling coefficient, y, is chosen such that
the flow is in the regime just above the first bifurcation
point. The oscillation has a period of about 3 years,
which is equivalent to the results of linear analysis. As
expected for a supercritical Hopf bifurcation, this
weakly nonlinear oscillation has the same form as the
linear pair of eigenmodes at the bifurcation. From a
small perturbation, the unstable mode grows until it
equilibrates to the limit cycle shown. Below the bifur-

TIME (YEARS)

LONGITUDE
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cation, of course, the same oscillation decays slowly
toward the climatological stationary point.
The SST anomalies are trapped in the eastern part
of the basin and are westward propagating. Wind
anomalies propagate coherently with the SST anom-
- alies, with westerlies just to the west of warm SST pro-
ducing downwelling and eastward surface current
anomalies (not shown) in this region. Changing pa-
rameters has the same effects noted in the linear anal-
ysis; for instance, for larger atmospheric damping
length, the SST anomalies extend farther westward into
the basin. We suggest that the features of this oscillation
provide a simple analog for westward-propagating os-
cillations found in some coupled GCMs (e.g., Mechl
1990; Lau et al. 1992) and for the westward-propa-
gating features of the low coupling oscillation in the
hybrid model of Neelin (1990a). Deep thermocline
anomalies occur in the west preceding each warm
phase; these are not large for the case shown but are

more developed when the oscillation occupies more of
the basin. The thermocline feedback does contribute
to slowing the period of the oscillation but is not crucial
to its form or existence.

While the effects of seasonal forcing are not exam-
ined here, it is often possible to frequency lock such
nonlinear oscillations to the forcing period. In this case,
a mode of this form would potentially provide an ex-
planation for the westward propagation of zonal wind
and SST found in the observed seasonal cycle (G. Phi-
lander, personal communication; Philander and Chao
1991).

2) EASTWARD-PROPAGATING CASE

Figure 5 shows the weakly nonlinear oscillation cor-
responding to the linear eastward-propagating mode
of Fig. 2f, again through a supercritical Hopf bifurca-
tion. For this case with no surface-layer current anom-
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alies, ;= 0, and ¢, = (6000 km) ™!, the mode has very
slow eastward propagation that produces a 5-yr cycle.
In addition to the propagating component responsible
for the period, the SST anomaly has a very significant
standing oscillation component. SST anomalies are
trapped to the east of the date line as discussed in the
linear case.

The thermocline in the west exhibits fairly large
variations that lead the east in a manner similar to the
observed and to that found in other models. Time delay
in ocean dynamics is by definition, however, unim-
portant in this model. This phase relation is primarily
a consequence of the Sverdrup balance with the
boundary condition (2.11) playing an additional role.
These features have some resemblance to the 1982-83
El Nifio and provide an analog for a number of other
simple coupled models such as Anderson and Mc-
Creary (1985), Yamagata and Masumoto (1989), and
Yang and O’Brien (1993). They also closely resemble
the oscillation found in Wakata and Sarachik (1991)
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despite the fact that wave time scales very likely play
a role in that oscillation (JN).

To check the importance of the boundary condition
(2.11), which contains the steady effects of wave ad-
justment processes on the slow solution, these runs were
repeated using the simple mass-balance boundary con-
dition. The results gave the same types of bifurcation
(although not exactly for the same parameters) and
similar features of the unstable mode, for example,
trapping in the eastern part of basin and patterns of
eastward propagation. This suggests that the oceanic
boundary condition is not crucial factor for the qual-
itative behavior in this regime. Since this is a case dom-
inated by the thermocline feedback, one would expect
this to be the regime for which it would have greatest
importance. Similar results were obtained for other re-
gimes as well. Note, however, that JN found the wave-
related boundary condition to be important to eastward
trapping when there is no zonal variation in the basic
state. When wave time scales are important, as in Cane
et al. (1990), the eastern boundary condition plays a
more significant role.

3) STATIONARY CASE

From the linear analysis, it is known that the unstable
mode is stationary for some §; values between the cases
of westward propagation and those of eastward prop-
agation, or for larger values of the atmospheric damping
length ¢,'. Figures 6a~b show the two stable stationary
solutions corresponding to the linear unstable mode
shown (for slightly different 4,) in Fig. 2d. The decaying
oscillation about the cold state that may be noted in
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FI1G. 7. Bifurcation diagram for the “toy” model with &, = 0.35.
Stable (unstable) stationary states are indicated by solid (dashed)
lines, respectively. The extreme warm stationary state is marked EWS,
the weak warm stationary state WWS, and the cold state CS, while
the limit points are indicated by the numbers 1, 2, and 3.
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Fig. 6a will be discussed further on. Since there is no
symmetry between positive and negative anomalies for

the nonlinearity present in this model, the generic sta-
tionary bifurcation is a transcritical bifurcation. This
is confirmed by verifying that the cold state exists for

values of 1 smaller than the bifurcation, while the warm

stationary state appears above the bifurcation.

The picture is complicated, however, by the presence
of nearby bifurcations for each of the stationary solu-
tions. The cold state shown here owes its presence above
the transcritical bifurcation to a saddle-node bifurcation
that redirects this branch toward higher coupling. The
weakly nonlinear warm branch disappears for slightly
larger u, apparently in another saddle-node bifurcation.
This is in turn associated with the presence of an ad-
ditional, highly nonlinear stable stationary state. Figure
6¢ shows this extreme warm stationary state for the
same value of u as Figs. 6a, b. Physically, it is due to
an almost complete “shutoff” of the upwelling. Ad-
ditional runs indicate that this extreme warm stationary
state exists and is stable even for values of u smaller
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than those where the cold state exists; that is, its range
extends to a lower, though still finite, value of coupling.
For the stationary unstable mode that leads to the cold
and weak warm stationary states, the thermocline
feedback is an important source of instability, so the
nonlinearity in the T, parameterization is important.
Because of the basic-state thermocline slope, this is en-
countered at fairly small amplitude for cold anomalies
in the eastern basin, limiting the magnitude of the cold
stationary state.

This pattern, in which two or three stable stationary
states coexist over different ranges, can be seen in a
very simple context by considering a local-feedback
model with the same nonlinearities in the SST equa-
tion. By assuming that oceanic vertical velocity, ther-
mocline depth, and atmospheric wind stress anomalies
are all proportional to the local SST anomaly, and
keeping the same SST equation (2.4) and the same
subsurface temperature parameterization (2.5), one
obtains a “toy” coupled model that provides a close
analog to this aspect of the bifurcation tree. Figure 7
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FIG. 8. As in Fig. 4 (strong surface-layer feedback ) but for higher coupling, 4 = 0.6:
(a) SST anomaly and (b) thermocline depth anomaly.
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shows the stationary solutions of the toy system as a
function of u for 8, = 0.35. The value of 4, in (2.5)
has been reset to 10 m for the toy model to characterize
the mean of the climatological depth across the basin
plus the standard value of 4,. The large magnitude of
the cold state (marked CS) is due to the fact that typical
basinwide values are considered in the toy model,
whereas the slope in the thermocline basic state in the
full model results in strong nonlinearity being encoun-
tered quickly in the eastern basin. The mean thermo-
cline depth departure from the no-motion level, A,
combined with the offset, 4, in (2.5) is primarily re-
sponsible for the tilt of the transcritical bifurcation since
it breaks warm-cold symmetry in the nonlinearity of
the subsurface temperature, which is dominant for
small anomalies and for the cold state. Upwelling non-
linearity tends to give an opposite slope.

The extreme warm state (EWS) is due to the up-
welling-downwelling nonlinearity. For large warm
anomalies, westerly wind anomalies reduce the up-
welling; if coupling is strong enough, these can over-
come the mean easterlies to shut off the upwelling al-
together and create a downwelling state, thus main-
taining the warm anomalies. The unstable branch
connected to the EWS (at the saddle node bifurcation
marked 1 on the diagram) has reduced upwelling but
does not entirely overcome the mean upwelling. As the
amplitude of this branch decreases, the increased up-
welling produces greater importance for the thermo-
cline feedback and the branch turns around at the limit
point marked 2 to yield the stable, weak-amplitude
warm stationary state (marked WWS). On the cold
side of the transcritical bifurcation, this branch is un-
stable until it is redirected toward higher coupling by
the saddle node bifurcation marked 3.

Three stable stationary states coexist in a very small
range of u (between the u values at 2 and 3), associated
with this trade-off between upwelling versus subsurface
temperature nonlinearities. Naturally, two unstable
stationary states exist between the three stable ones.
Multiple stationary states exist for all coupling values
greater than a certain threshold, but over most of the
range there are two stable states and one unstable one,
although which is unstable depends on being above or
below the bifurcation from the climate state. Although
the region in parameter space with three stable states
is small, it is significant because it separates regions
dominated by different dominant physical mechanisms
for instability and hence different nonlinear terms. For
very small §,, the extreme warm stationary state would
not be encountered until much larger u, while for small
thermocline feedbacks, the transcritical bifurcation
would slope the other direction.

b. Relaxation oscillations in strongly nonlinear cases

Relaxation oscillations are found over wide ranges
of the coupled parameter space. To illustrate, two ex-
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treme cases were chosen: 6, = 1 and §; = 0, which have
westward and eastward propagation, respectively, at
low coupling. Very close to the bifurcation, the oscil-
lation at any given longitude would be purely sinusoi-
dal. As coupling increases, asymmetry between the
warm and cold phases arises as one of the two begins
to lengthen, distorting the limit cycle into a relaxation
oscillation.

1) WESTWARD-PROPAGATING CASE

Figure 8 shows a well-developed relaxation oscilla-
tion for ¢ = 0.60, which may be compared to the u
= (.37 case in Fig. 4. The flow evolves very slowly
during the warm phase, then passes relatively quickly
through the cold phase whose length has not changed
much relative to low coupling. The overall period thus
increases dramatically with coupling: about 8 years for
the case shown and approaching infinity for somewhat
larger values. The westward propagation is by definition
essential to the oscillation but is not as easily visible,
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especially during the warm phase. There are even slight
hints of eastward propagation in some areas just after
the sudden establishment of the warm phase. The tran-
sition from cold phase to warm phase is very fast, and
if finite wave time scales were included in the model,
they would certainly have some effect during this phase
while being unimportant to the very long period os-
cillation as a whole.

The picture shown here bears considerable quali-
tative resemblance to the oscillation found in the hybrid
GCM of Neelin (1989a, 1990a). As in that case, the
physical mechanism for the lengthening of the warm
phase is associated with shutting off upwelling. During
the warm phase, the strong downwelling anomaly pro-
duced by westerly winds overcomes the climatological
upwelling and replaces it with near-zero or downwelling
vertical velocity over large parts of the basin. The ver-
tical-meridional advection loop is thus in a state where
subsurface temperature has little effect on the equatorial
SST, being replaced by off-equatorial temperatures that
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are little different than those at the equator during the
warm phase. In.this model, the upstream differencing
scheme makes this explicit. Zonal advection likewise

" would have little effect since the zonal gradient has

been wiped out over much of the basin. The flow in
phase space thus becomes very slow. The instability
that gave rise to this oscillation depends strongly on
vertical velocity anomalies. It is thus natural that at
strong coupling, it should encounter its limiting non-
linearity in this term. Since this strong upwelling—-
downwelling nonlinearity can be encountered only
during a warm phase, it is the warm phase that partic-
ipates in producing the relaxation oscillation.
Further increasing u leads from this relaxation os-
cillation to a stable stationary solution, apparently in
a global bifurcation. The first 18 years of a run with u
= (.65 are shown in Fig. 9. The stationary state, which
has a very similar structure to the warm phase of the
relaxation oscillation but with upwelling wiped out over
almost the entire basin, remains constant for at least
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FIG. 10. As in Fig. 5 (no surface-layer .feedback) but for high coupling, 4 = 1.05: (a) SST anomaly and (b) thermocline depth anomaly.
Plotting conventions as in Fig. 4 except contour interval of 20 m in (b).



AUGUST 1993

50 years. The simplest explanation is that the limit
cycle encountered an unstable stationary point that lay
between it and the stable stationary point and disap-
peared. For at least some parameter values, it can be
confirmed that the stable stationary point can coexist
with the relaxation oscillation, as was found in Neelin
(1990b). The system for a smaller or larger ¢, shows
similar relaxation oscillations.

2) EASTWARD-PROPAGATING CASE

The relaxation oscillation is also robustly present in
the case that has an eastward-propagating oscillation
at low coupling. Figure 10 shows an example for §;
= 0. In this case, the cold phase lengthens rather than
the warm phase. The difference from the westward-
propagating case is that the thermocline feedback is
more important to the low-coupling instability mech-
anism than the surface-layer upwelling mechanism.
The system thus first encounters strong nonlinearity
in the T, term. This occurs during the cold phase
since the basic state £ is already shallow in the east. In
a strong cold phase, further raising the thermocline in
the east yields little additional reduction in the sub-
surface temperature being brought to the surface by
upwelling. The vertical gradient between surface and
subsurface temperature, which was the main source of

SST change, has been greatly reduced over much of .

the basin, so the flow changes only slowly. Once warm-
ing begins in part of the basin, however, both vertical
and horizontal gradients at the boundary are large, so
the transition occurs very quickly.

Again, propagations of SST anomalies are essential
to the oscillation but are not very obvious during large
parts of the cycle. If noise were added to the system, it
would be very difficult to deduce the source of oscil-
lation simply by inspection of the anomalies. As in the
westward-propagating case, as u is further increased,
the relaxation oscillation gives way to a permanent cold
stationary-state solution (Fig. 11) that is very close to
the cold phase of the relaxation oscillation.

¢. Higher bifurcations for the case of intermediate 6

The behavior of the coupled system is quite com-
plicated for intermediate §; values where no single pro-
cess dominates. For illustration, the case of 6, = 0.35
is chosen. This is in the region where the first bifur-
cation is associated with the stationary mode of Fig.
2d but is not too far away from the region (near 6,
= 0.422) where both westward and stationary oscilla-
tions bifurcate simultaneously (Fig. 2c). Several points
from a section in the u direction in parameter space
are shown, although some knowledge of the behavior
in the neighboring §, range is necessary.

Section 4a.3 discussed the three stationary solutions
for coupling values slightly above the first bifurcation
point. Figure 12 shows the behavior for u just slightly
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F1G. 11. SST anomaly as in Fig. 10a but for 4 = 1.15.

larger than the case of Fig. 6. The cold stationary state
(Fig. 12b)is still stable, but a mode of oscillation about
this state is only weakly decaying. The warm stationary
state of Fig. 6a is either unstable or, more likely, no
longer exists, and the system instead enters an extreme
warm stationary state that is related to that of Fig. 6¢,
although the spatial form is somewhat different. This
is consistent with the bifurcation diagram from the toy
model; Fig. 12 would correspond to the region just
after the limit point of the smaller amplitude warm
stationary state, with the unstable branch joining the
very warm stationary state at lower coupling through
a second saddle-node bifurcation. It may be noticed
that the phase-space flow is nonetheless slow in the
region where the low-amplitude stationary point existed
at lower coupling, and the system lingers there before
reaching the high-amplitude state. The high-amplitude
warm state shares some features with that found for
larger 4, in that the original climatological upwelling
has been shut off, but there is perturbation upwelling
in the west of the basin.
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FIG. 12. SST anomaly as in Fig. 6 (intermediate surface-layer feedback) but for 4 = 0.675. In this case, only two stationary points exist:
(a) cold state and (b) extreme warm stationary state.

Figure 13 shows the situation for a very slightly larger
coupling, ¢ = 0.705. The warm state branch has
changed little, although the system tends to reach it
much faster when starting from the same initial state
close to the climatology, consistent with the above in-
terpretation. The cold-state branch has gone unstable
in a Hopf bifurcation, however, yielding a limit cycle
with a 3-year period. The oscillation is westward prop-
agating and confined to the east of the date line. It is
very closely related in form and mechanism to the
westward-propagating mode, which is the second most
unstable. mode for the system linearized about clima-
tology. For these intermediate parameter values, there
is a substantial standing component to the oscillation.

Again increasing coupling, a small range of complex
behavior is encountered (Fig. 14a). A tertiary bifur-
cation has introduced an additional period into the
oscillation about the cold state and possibly there has
been a transition to aperiodic behavior—there are no
exact repeats within the 30 years shown, although the

flow is very close to a that of a torus with two peri-
odicities. This regime is not very extensive, however,
and so it is not felt that great emphasis can be placed
on it. A tiny increase in u (Fig. 14b) leads to a situation
where the oscillation is unstable and leads to the ex-
treme warm stationary state. Indeed, for a large number
of runs with u > 0.72 near this intermediate value or
larger values of §;, this extreme warm state is the only
attractor that has been found.

S. Summary and discussion

The linear and nonlinear behavior of SST modes in
the fast-wave limit are investigated in a simple ocean
model coupled with a simple Gill model atmosphere.
In the fast-wave limit in a finite basin, equatorial wave
dynamics enters the boundary conditions, but the time
scales of wave dynamics are assumed fast compared to
the evolution of SST due to coupled processes. At any
given time in the model, ocean dynamics is always in



AUGUST 1993

30 LN B S R A 15 10
R
-l .:f’ :r' ‘:¢’ I“
T N
27 + NN
r" ll
- Rt TN
L NN S
\\\ \\\‘~~~'/
24 b s
F | Y Y
- S \
\\‘\ ““‘~\vl -
21 Dy
- r'/ et ,"”\\
SN
- S
—~ s
n 18 D
e, -
< NN N
= r Vo T
& 15 g
| - /",‘-\
<3 N
= 12 F
- ,I‘ l” ’z‘—\‘
L \
L . \“ .t
9 ~ L
f" e -
- . A
| RN
N AN
| %2
I , .
.\ .:\ (\ ‘;
3 NN
3+ bl
A
”’ - -
- ‘ H g
NN
0 R SO TS TR SORPY LS W whted ol MY SN
130°E 180 130°W 80° W
LONGITUDE

FIG. 13. SST anomaly as in Fig. 12a but for x = 0.705.
In this case the cold state has bifurcated to a limit cycle.

adjustment with the wind stress and any time depen-
dence enters due to the coupled interactions in the SST
equation. This model thus offers a converse approxi-
mation to what may be termed the fast-SST limit used
by Cane et al. (1990), Miinnich et al. (1991), and
Schopf and Suarez (1990) in which SST is assumed to
be in instantaneous adjustment, and time dependence
is due entirely to the time scales of ocean wave dynam-
ics. Jin and Neelin (1993a,b) discuss the relation be-
tween these models, fast-wave limit models, and the
oscillations found in intermediate coupled models
(Zebiak and Cane 1987; Battisti 1988), and to the sim-
ple delay oscillator equation discussed by Shopf and
Suarez (1988) and Battisti and Hirst (1989), showing
how they may all be understood as approximations to
the same continuous surface of eigenvalues in param-
eter space. Our emphasis here is on the use of an SST
equation that is close to that used in intermediate
models and on the implications of this for nonlinear
_interactions.
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Two main feedback processes have been considered
here: one associated with thermocline perturbations
and the other with upwelling perturbations due to sur-
face-layer currents. Both of them contribute to the
growth of the SST mode but tend to give different di-
rections of propagation: eastward when the thermocline
feedback dominates and westward when the surface-
layer feedback dominates. For a fair range of coupling
above the respective Hopf bifurcations in these prop-
agating cases, the resulting interannual oscillations bear
considerable resemblance to ENSO-like oscillations
both in some coupled models and in a number of ob-
served aspects. Without claiming that the fast-wave
limit provides a perfect match for such oscillations in
other models, it does serve as a simple analog for some
of the processes involved. Perhaps as importantly, the
complexity of the spatial and temporal evolution of
these oscillations, in which wave time scales are ex-
plicitly excluded, serves as a caution against overin-
terpretation of coupled models based on visual in-
spection alone. Much of the parameter dependence of
these oscillations may be qualitatively explained from
the periodic-basin case, while the finite basin and spa-
tially varying basic state introduce east-basin trapping.

An important feature of the finite-basin case, not
found in the periodic basin, is the existence of a sta-
tionary, purely growing mode over significant regions
of parameter space. It can arise either from a balance
of westward and eastward propagation tendencies or
from the effects of finite-basin boundary conditions on
the thermocline feedback and atmospheric response.
The atmospheric damping length, for instance, influ-
ences the transition between the stationary growth re-
gime and an eastward-propagating regime, since when
it is small the response tends to be more localized and
less influenced by basin boundary conditions. Jin and
Neelin (1993a,b) discuss how this stationary mode can
be mixed with wave time-scale effects to produce an
oscillatory mode when sufficiently far from the fast-
wave limit and for coupling that is not too strong. The
bifurcations associated with the fast-wave limit sta-
tionary mode discussed here may thus be expected to
apply both close to the fast-wave limit and for relatively
strong coupling versus damping balances in a system
that includes wave dynamics.

The stationary mode gives rise to warm and cold
stationary states through a transcritical bifurcation and
a number of limit points. An even simpler analog
model demonstrates qualitatively how the stationary
branches yield one, two, or three stable stationary
points in different parameter ranges. In addition to sta-
tionary points directly related to small-amplitude
equilibrated versions of the unstable stationary mode
near the climatological stationary point, an extreme
warm stationary state can exist. This state is associated
with the upwelling-downwelling nonlinearity and cor-
responds to a near-total shutdown of the climatological
upwelling by reversal of the trade winds. This state
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FiG. 14. SST anomaly as in Fig. 12a but (a) for ¢ = 0.7125 and (b) for u = 0.713.

exists and is stable over a very large range of parameters
at sufficiently high coupling. It is worth questioning
how realistic this state is, given that the climatological
stationary state has been constructed. At the very least,
it gives an indication of what can happen in other
models that specify climatology or use flux correction.
In fact, it likely provides a good understanding of how
a similar state arises in the hybrid coupled GCM of
Neelin (1990b) and may give insight into the behavior
of the Cane and Zebiak model in some regimes. It
should be noted, however, that the total wind stress
amplitude need not be very high in this state since the
anomalies simply tend to cancel the climatological
easterlies. The implication is that a weak westerly state
can be a consistent solution over a wide range of cou-
pling. This suggests that perhaps it is the constructed
climatological state that is more open to question at
both high and low coupling when strong nonlinearity
is considered. It seems likely that the bifurcation dia-
gram for the total coupled system, beginning from an
uncoupled, radiative equilibrium state rather than a

constructed climatology, could have features related to
those found here.

Another robust feature of the system is the presence
of relaxation oscillations for moderately high coupling.
As coupling is increased for oscillatory cases, whether
eastward or westward propagating, the period of the
oscillation increases as one of the phases encounters
strong limiting nonlinearity. When the oscillation is
dominated by the upwelling feedback (i.e., westward
propagating ), the warm phase tends to have significant
decreases in upwelling, thus reducing the rate of change
during the warm phase. As the amplitude of the cycle
becomes larger, this slow warm phase lengthens and
comes to resemble the extreme warm stationary state.
Presumably this extended phase of the relaxation os-
cillation is passing very close to the unstable warm sta-
tionary state that must lie in between. At still higher
coupling, the oscillation disappears entirely, and the
flow enters the extreme warm stationary state.

In flow regimes where the oscillation is dominated
by the thermocline feedback, the limiting nonlinearity
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tends to be encountered first in the cold phase in the
eastern Pacific, where the climatological thermocline
is already shallow. During the cold phase, further shal-
lowing produces a decrease in the sensitivity of sub-
surface temperature to thermocline changes and thus
a decreased rate of change. At high coupling, this results
in a relaxation oscillation with a lengthened cold phase.
It again appears that the relaxation oscillation is as-
sociated with interaction of the oscillation with a sta-
tionary state, since the transition to a cold stationary
state with increased coupling occurs in a similar man-
ner to the warm case, although at higher coupling. It
is noteworthy that these relaxation oscillations occur
over a very wide range of parameters (e.g., for surface-
layer feedbacks from very strong to zero) when oscil-
latory regimes reach high amplitudes.

The relation between propagating and stationary
modes in neighboring regions of parameter space can
be complex. Two types of transition can mark the
boundary between oscillatory (in this case propagating)
and stationary regimes: 1) a complex conjugate pair
of eigenvalues can merge to a double zero and become
two pure real eigenvalues, one growing and one de-
caying; 2) a complex conjugate pair can become stable
just as a stationary mode becomes unstable (pure
imaginary pair and a simple zero eigenvalue). These
are codimension-2 bifurcations [ following the con-
vention of Guckenheimer and Holmes (1983)] and
the parameter values for which they can occur form
surfaces of dimension n ~ 2 for a parameter space of
dimension 7. Jin and Neelin (1993a,b) emphasize the
importance to the coupled system of the first type, in
which an oscillatory mode is transformed continuously
into a stationary mode. The growing stationary and
oscillatory modes on either side of the bifurcation nec-
essarily bear some resemblance to one another and it
can be useful to think of them as being in some sense
the same mode in that they are continuously connected.
An example of this is the stationary mode to eastward-
propagating mode transition. Here we further encoun-
ter an example of the second type, in which a stationary
mode “overtakes” an oscillatory mode as one of the
parameters (e.g., strength of surface-layer feedback) is
changed and becomes the mode that first goes unstable
as the other parameter (e.g., coupling strength) is
changed to keep the system near the bifurcation.

The two modes have only slightly different growth
rates over an appreciable range of parameters (for in-
termediate strengths of surface-layer feedback). The
mode interaction between these can produce quite a
complicated bifurcation diagram in this range, which
we have explored only partially, on the side where the
stationary mode produces the first bifurcation. In ad-
dition to the subtleties of the limit point for the weak
warm stationary branch mentioned above, the cold
branch becomes unstable to a mode essentially identical
to the propagating secondmost unstable mode near the
climatology. This limit cycle bifurcates to a complicated
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flow that appears to involve period doubling and may
be mildly chaotic, but this regime is so restricted that
it is unlikely to be of great physical consequence. At
very high coupling, extreme warm and/or cold sta-
tionary states appear to be the only attractors.

The complexity of the flow regimes that can develop
even in this simplified model is an indication of the
richness of the coupled system. While not all the re-
gimes examined here are close to the observed system,
some bear suggestive similarities both to observations
and to more complex coupled models, and experience
suggests that mapping out a substantial range of pos-
sible behaviors can yield valuable insight into the re-
lationships between these. It was argued in JN that the
fast-wave limit is a useful point of departure for un-
derstanding the linear modes of the fully coupled sys-
tem since the modes in the most realistic regime are
closely related and the fast-wave limit can provide an-
alytical insight into spatial structures and mechanisms
of instability. The results presented here suggest that
the fast-wave limit can also provide a useful prototype
for some of the nonlinear interactions that may occur
in intermediate models and GCMs and, by extension,
in the observed system.
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