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ABSTRACT

This sequence of papers examines the role of dynamical feedbacks between the ocean and the atmosphere
in determining features of the tropical climatology. A stripped-down, intermediate, coupled ocean~atmosphere
model is used to provide a prototype problem for the Pacific basin. Here the authors contrast the fully coupled
case with the case where flux correction is used to construct the climatology. In the fully coupled case, the
climatology is determined largely by feedback mechanisms within the ocean basin: winds driven by gradients
of sea surface temperature (SST) within the basin interact with the ocean circulation to maintain SST gradients.
For all realistic cases, these lead to a unique steady solution for the tropical climatology. In the flux-corrected
case, the artificially constructed climatology becomes unstable at sufficiently large coupling, leading to multiple
steady states as found in a number of coupled models. Using continuation methods, we show that there is a
topological change in the bifurcation structure as flux correction is relaxed toward a fully coupled case; this
change is characterized as an imperfection and must occur generically for all flux-corrected cases. The cold
branch of steady solutions is governed by mechanisms similar to the fully coupled case. The warm branch,
however, is spurious and disappears. The dynamics of this and consequences for coupled models are discussed.
Multiple steady states can be ruled out as 2 mechanism for El Nifio in favor of oscillatory mechanisms. The
important role that coupled feedbacks are suggested to play in establishing tropical climatology is referred to as
“the climatological version of the Bjerknes hypothesis.”
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1. Introduction

The El Nifio-Southern Oscillation (ENSO) phe-
nomenon is now widely understood to arise by ocean-
atmosphere interaction in the tropical Pacific, a para-
digm often referred to as the Bjerknes hypothesis. A
modern restatement of Bjerknes’s (1969) postulate is
that ENSO arises as a self-sustained cycle in which
anomalies of sea surface temperature (SST) cause the
trade winds to strengthen and slacken and that this in
turn drives the changes in ocean circulation that pro-
duce anomalous SST, with the “memory” for this cou-
pled cycle residing in the ocean. In qualitative terms,
one can argue for extending a version of Bjerknes hy-
pothesis to the tropical Pacific climatology itself. As
Bjerknes noted, “It seems reasonable to assume that it
is the gradient of sea surface temperature along the
equator which is the cause of . . . the Walker circu-
lation.” The easterly trade winds along the equator in
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turn maintain the east-west thermocline slope and the
equatorial upwelling that together produce the SST
gradient between the western Pacific warm pool and
the equatorial cold tongue of the eastern Pacific.

Indications of likely involvement of coupled pro-
cesses in the annual cycle have further been suggested
from the relation of seasonal SST, wind fields, and
convergence zones (e.g., Philander and Chao 1991;
Mitchell and Wallace 1992). However, a clear state-
ment of a “climatological version of the Bjerknes hy-
pothesis” seems to be lacking in the literature. We
phrase the conjecture as follows:

The climatological warm-pool-cold-tongue configu-
ration in the Pacific basin results substantially from
ocean—-atmosphere feedbacks within the basin. It is
useful to distinguish between the atmospheric circu-
lation (especially wind stress) forced “externally” by
factors outside the basin and wind stress that is asso-
ciated with SST gradients within the basin and, thus,
with internal coupled feedbacks. While externally
forced stress may create longitudinal SST gradients,
internal coupled feedbacks significantly enhance these.
The spatial form of the warm-pool-cold-tongue pattern
depends on the nature of the coupled feedbacks.
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Circumstantial evidence that coupled feedbacks
within the Pacific basin may be important to the cli-
matology may be inferred from the comparison of
tropical simulations of coupled general circulation
models (GCMs). These may exhibit climate drift of
various forms: the term “drift” is used for both the
equilibrium departure of the model climatology from
observations and for the process of adjustment toward
this equilibrium. In particular, the warm-pool-cold-
tongue configuration is not guaranteed to be repro-
duced in coupled models: the cold tongue can cut right
across the basin or migrate to midbasin; the warm pool
can be displaced or warm water can occur in the eastern
as well as the western basin; weak zonal SST gradients
across the equator are common (Neelin et al. 1992;
see also Meehl 1990; Gates et al. 1985; Sperber et al.
1987; Gordon 1989; Endoh et al. 1991). Part of such
drift can occur on relatively fast timescales character-
istic of coupled processes involving dynamical adjust-
ment of the upper ocean. While recent coupled GCMs
have shown improvement in tropical simulation (e.g.,
Philander et al. 1992; Nagai et al. 1992; Gent and Trib-
bia 1993; Mechoso et al. 1993; Latif et al. 1994), the
drift found in earlier attempts or coarser resolution
models is instructive in that coupled feedbacks akin to
those operating in ENSO can apparently play a signif-
icant role in exacerbating errors relative to that of the
uncoupled components.

In this series of papers, we attempt to provide a view
of the climatological coupled feedbacks in the simplest
context that can be considered realistic. The problem
of the maintenance of the zonal gradients of SST along
the equator is addressed for the annual average cli-
matology, neglecting meridional asymmetry between
the hemispheres. The “stripped down,” intermediate,
coupled model of Jin and Neelin (1993a,b) and Neelin

and Jin (1993) is employed in combination with con--

tinuation techniques (Keller 1977; see, e.g., Ghil and
Childress 1987 for atmospheric applications) as in
Dijkstra and Neelin (1995a, DN hereafter). This per-
mits direct and efficient solution for stationary states,
regardless of stability. Happily, it proves possible to
obtain reasonable simulations of the warm-pool-cold-
tongue contrast from this approach. In contrast to
ENSO, where the timescale has been a focus of atten-
tion, the determination of spatial patterns by coupled
processes is central to the coupled climatology problem.
The relative role of different coupled feedbacks, par-
ticularly the upwelling feedback and the thermocline
feedback, and their effects on the position and shape
of the cold tongue are examined in Part II: a detailed
discussion of the factors permitting realistic simulation
of the cold tongue is provided therein. Instabilities of
this coupled climatology (in the case that includes os-
cillatory instabilities ) are studied in Part III of this series
to provide the connection to interannual variability.
Before addressing the details of how coupled feed-
backs maintain the climatological state, it proves nec-
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essary to first establish whether in fact only a single
stationary state is involved. The possibility of multiple
stationary states has long provided a red herring in the
discussion of ENSO (see section 5 for a brief review),
in part because multiple equilibria can indeed occur
in ENSO models. The fact that such structures can be
generated under some conditions does speak for the
potential importance of coupled feedbacks to stationary
solutions; however, it is essential to contrast the be-
havior of the flux-corrected case with that of the fully
coupled problem. Here in Part I, we show how these
alternate equilibria arise artificially due to “flux cor-
rection,” where we adopt this term (Sausen et al. 1988)
to refer to any of several methods used to construct
climatological solutions in coupled models [see, e.g.,
Manabe and Stouffer (1988) and Zebiak and Cane
(1987); the terms “flux adjustment” or “anomaly
modeling” are essentially equivalent].

Because sensitivity to the balance of various coupled
processes makes satisfactory simulation of the coupled
climatology a challenging problem, modelers interested
primarily in departures from current climatology often
use flux correction to construct the desired climatology.
This is eschewed in the current generation of coupled
GCMs designed for the tropical problem but used in
many global coupled GCMs; it is widespread in simple,
intermediate, and hybrid coupled models where the
model components are often much less accurate for
climate simulation purposes than for simulation of
anomalies. A correction is introduced to keep the
model near climatology, or a climatological solution
is created such that zero anomaly is a solution of the
model equations. To make this more precise, let T,
indicate the steady or time-average SST field for the
uncoupled ocean model forced by observed winds
T obs and let T, indicate the observed time-average SST
field. In a two-way flux correction (for atmospheric
models A4 that simulate total winds), the coupling (with
flux correction ) is established in the following way: the
temperature 7' fed into the atmosphere model is given
by '

T'= Tops + T — Toc, (1a)
where T is the SST of the ocean component of the
coupled system. The stress 7+ fed into the ocean is given
by

T4 = Tops + A(T) ~ A(Tors)- (1b)

In a one-way flux correction (for atmosphere models
that only simulate the evolution of anomalies), the
shear stress fed into the ocean model is

TV = T + A(T) — A(Too). (Ic)

In either case, a zero anomaly solution (with 7' = T,.)
is always a solution of the coupled system; these and
other variants of flux correction are equivalent in terms
of producing such constructed solutions. Interesting
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dynamical behavior is observed through instabilities of
this flux-corrected climatology. These instabilities may
lead to time-dependent behavior, but if purely growing
instabilities occur, they lead (for most physically rel-
evant cases) to a multiplicity of steady states, some of
which may be very different from the constructed state
and thus climatically unrealistic. Dijkstra and Neelin
(1995a) investigated these multiple stationary states in
an intermediate model and found complicated struc-
tures for the stationary solutions and their interaction
with oscillatory solutions. Even in regions of parameter
space where all of the stationary states were unstable
and thus could not have been directly identified from
a time-integrated model, their presence could influence
the time-dependent flow.

The stationary branches of flux-corrected models,
however, share a common feature: they must arise by
transcritical bifurcations (generically) or pitchfork bi-
furcations (in special cases ). Elementary considerations
from imperfection theory (e.g., Iooss and Joseph 1990)
imply that there must be a topological change in the
bifurcation structure as soon as the flux-correction
condition is relaxed. In many dynamical systems, such
imperfections need not imply drastic changes in the
physics of the system, but a combination of physical
intuition and generic considerations of how the sta-
tionary states must behave suggested to us that for the
flux-corrected tropical system, the change would be
dramatic.

It is this difference in the structure of stationary so-
lutions, and the physical explanation for it, that we
address in this paper. Using the same model as in DN,
we study the change in bifurcation structure as the un-
derlying vector field is continuously deformed from
the flux-corrected case to the coupled climatology case.
The change between the flux-corrected case and the
fully coupled case indeed proves fundamental; in the
latter, a unique stationary solution remains, which de-
pends nonlinearly on the parameters. This is presented
in section 3, and the physical explanation of this to-
pological change in attractor structure is discussed. In
section 4, a simple “toy” (point coupling) model is
discussed (detailed analysis in the appendix) that
proves to be a handy tool to understand the dynamics
of the coupled system. The results from the toy model
mimic the response computed with the spatially de-
pendent model and neatly illustrate the physics sup-
porting the coupled climatology in the fully coupled
case and the reasons for the multiple branches in the
flux-corrected case. Section 5 discusses the connection
to ENSO literature and possible implications for flux
correction in general.

2. Model

The coupled equatorial ocean-atmosphere model
used in this study is similar to that presented in DN,
Jin and Neelin (1993a), and Neelin and Jin (1993).
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It is an intermediate model in which an ocean model,
consisting of a modified shallow water layer of mean
depth H with an embedded mixed layer of fixed depth
H, is coupled to a Gill-type atmosphere model. In Parts
I'and II of this paper, we are concerned with stationary
solutions of the model and, thus, can make use of the
fast wave limit version (Hao et al. 1993; DN) in which
the shallow-water component of the model is assumed
to adjust quickly compared with the timescales of cou-
pled dynamics. The steady states are the same as for
the full system and the solutions are easier to obtain.
The linear stability of the steady solutions is only con-
sidered with respect to a restricted class of perturbations
(i.e., those in the fast wave limit), but only stationary
branches are sought. The problem of linear stability to
the most general class of perturbations in the model,
including time dependence of the shallow-water com-
ponent, will be the subject of Part III.

We keep the notation as in DN unless specified; in
nondimensional variables the SST equation (neglecting
zonal advection of SST) is

T = —#(w)w(T — Ty)
+ HZ(—oN)on(T — Ty) — er(T — Tp). (2a)

In this equation, Z( w) is a continuous approximation
to the Heaviside function, w; is the vertical velocity,
and vy is an off-equatorial meridional velocity. The
temperature T is the equilibrium SST in absence of
any dynamics (i.e., surface heat-flux equilibrium), e
represents thermal damping rate by surface fluxes, Ty
is off-equatorial SST, taken equal to T, and T; is the
subsurface temperature. Since only steady states are
considered, the ocean is in Sverdrup balance. In the
limit of negligible oceanic damping, the vertical velocity
contributed by the shallow-water component is zero
and the thermocline is given by (Hao et al. 1993)

mm=£ﬂ@mm—£ﬂna (2b)

where 7(s) is the equatorial zonal wind stress. The ve-
locities w; and vy are created by Ekman dynamics and
given by

Wy = —&7; (20)

where the surface-layer parameter 6, depends inversely
on the mixing rate between the surface layer and the
remainder of the layer above the thermocline. We note
that zonal advection is neglected in SST and surface
currents because it does not qualitatively change the
results. However, zonal mass transport in the ther-
mocline layer is included in the derivation of (2b).

The subsurface temperature T, depends on / ac-
cording to

Ts(h) = Tyo + (To — Tio) tanh(mh + m2), (2d)

with », = H/H,, 7, = ho/H,, and where hy and H,
control the steepness and the offset of the T profile.

—Uy = 5573
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TABLE 1. Standard values of parameters in the intermediate
model. Nondimensionalization as in DN.

To=30 TN= 30 T,o=24
mn = 6.667 7, = 0.833 ér = 4.104
er = 0.694 € =25

The reference value of the subsurface temperature 7
is quantitatively important since ( 7o — T ) sets a scale
for SST anomalies but is qualitatively unimportant be-
cause solutions for different T are related by a simple
rescaling.

In a one-way flux correction, the ocean is forced
with the observed mean wind stress 7 oy, the resulting
steady-state temperature being 7. In coupling the sys-
tem, the surface shear stress = fed into the ocean model
then becomes

T = ;obs+ﬂ(A(T)_A(T))’ (3)

where A is the particular atmosphere model used and
p is the coupling parameter. Hence, there is a con-
structed solution T = T, 1 = 7, (referred to as the
flux-corrected climatology) that does not depend on
coupling. The latter affects only the stability of this
state to perturbations. When a simple linear Gill at-
mosphere model is used, the operator A is given by

1
A(T) = 2 exp(3e,X) f exp(—3e.,s5)T(s)ds

- % exp(—e.x) fx exp(es)T(s)ds, (4)
0

where ¢, is the dimensionless atmospheric damping
length. It is known (DN; Hao et al. 1993) that the state
T undergoes either transcritical or Hopf bifurcations
as u is increased. Standard values of oceanic and at-
mospheric model parameters are given in Table 1. A
value of §; = 1.0 is used throughout this part; for con-
sistency with DN a fixed value of this surface layer
parameter, denoted &, is used in establishing the flux-
corrected ocean climatology.

For models that attempt to simulate the full tropical
coupled ocean-atmosphere system, the determination
of the climatology is a major end in itself. This cli-
matology depends on coupling strength and the value
of other parameters in the model. For the case of a
model with active ocean only in a single basin (here
the Pacific), there will be a part of the wind stress that
depends on the atmospheric response to the temper-
ature pattern within the basin and a part, 7, that is
determined externally. The part determined within the
basin will depend on temperature departures 7 — T
from surface heat flux equilibrium; thus,

T=;ext+“A(T_ TO)’ (Sa)

where T — T, = 0 is assumed outside the basin (as
appropriate for continental conditions). For the ex-
ternal part 7., we consider a zonally constant com-
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ponent, for example, due to the zonally symmetric cir-
culation. Since the latter obeys strong dynamical con-
straints, it will depend relatively little on the coupled
dynamics within the basin compared with the Walker-
type circulation A(T — T,) driven by zonal gradients.
A more extensive discussion of the form of 7.,, and T
is given in Part II (Dijkstra and Neelin 1995b). The
stationary state is easily computed at u = 0 but depends
on coupled feedbacks otherwise. This provides a close
analog to the problem faced by coupled GCMs in terms
of a number of three-dimensional dynamical feedbacks.
We refer to Eq. (5a) as the “coupled climatology™ case.
In this paper we ask how the bifurcation structure
of the flux-corrected case changes as we relax the re-
striction of flux correction toward the more difficult
coupled climatology case. To this end, we split the ob-
served wind stress into the part 7. [considered to
originate from processes outside the basin, chosen
zonally constant as in (5a)] and the remainder 7 g
— Text. TO be able to follow the deformation of the
bifurcation diagram, we introduce a homotopy pa-
rameter ar. The shear stress 7 is then given by

T=Text T 0p(Tobs — Text) + ﬂ{ arA(T — T)

+ (1= ap)A(T - To)}, (5b)

where T still refers to the (constructed) equilibrium
state with 7 = 7. It is clear that for oy = 1, the flux-
corrected problem is recovered. For ay = 0, there is
no flux correction and we obtain the coupled clima-
tology case. Equilibrium solutions will be determined
by the zonally constant shear stress of magnitude 7.y,
and the full feedback processes within the basin. The
path that is taken between both extreme cases is
sketched in Fig. 1.

OL 3a
5c T %

ext obs

FIG. 1. Path in parameter space between the flux-corrected case
and the fully coupled case. The abscissa af is the parameter that
governs this transition; the ordinate is a measure of the strength of
the (easterly) wind stress over the basin. A second path segment (3a—
5c¢) is used to examine the effect of 7.,, within the fully coupled case
(ar = 0). The labels refer to subsequent figures that contain bifurcation
diagrams at the locations indicated.
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To distinguish coupled from uncoupled contribu-
tions to the solution in the fully coupled case, it is
convenient to define T, and /., to be the response of
the uncoupled ocean to the external wind stress Text
Then the contribution associated with coupling is 7"

= T — Tex, etc. In the flux-corrected case, the corre-
sponding quantity is 7= T — T with T the constructed
climatology. To include the cases in between, we simply
define T=T—-T(p=0)for0 < ar< 1.

3. Results

a. Transition from the flux-corrected climatology to
the coupled climatology

We first consider the case 7., = —0.2 and
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FIG. 2. (a) Bifurcation diagram in the flux-corrected case
ar = 1.0 showing steady states as a function of x. The SST
at the point x = 0.7 in the east-central Pacific Tgc is used as
a measure of the ocean state. The perturbation from flux-
corrected climatology 7gc = Tgc — Tgc is shown. Apparent
crossing of solution branches can occur as the spatial structure
changes; the transcritical bifurcation is marked with a solid
square. Steady solutions at labeled points in panel (a) are given
in panels (b)—(¢). (b) Sea surface temperature perturbation T

= T — T, wind stress perturbation field 4, and thermocline
depth perturbation /1 = h — / on the cold branch at point 1
in panel (a). Here T and % denote the flux-corrected clima-
tology. (c) Total SST (relative to surface-flux equilibrium 7j),
T — Ty, and thermocline depth (relative to rest state) / at
point 1. (d) SST perturbation 7= T — T, wind stress pertur-
bation field 4, and thermocline depth perturbation / = A
— h on the warm branch at point 2 in panel (a). (¢) Total SST,
T — T, and thermocline depth 4 at point 2.

Tovs = 0.6 {0.12 — cos?[(x — xo)7/(2x0)]},
X = 0.57. (6)

This wind field is the same as used in Hao et al. (1993)
and DN and corresponds roughly to observed mean
equatorial winds. The bifurcation picture for ey = 1.0
(Fig. 2a) corresponds to Fig. 8a in DN. The flux-cor-
rected state becomes unstable at a transcritical bifur-
cation near x = 1.0. From this singularity, two new
branches of steady states appear. On each branch, so-
Iutions at labeled points are shown in the Figs. 2b-e.
Solutions on the lower branch have a relatively cold
eastern basin (Figs. 2b—c). On the upper branch, there
is a relatively warm eastern basin (Figs. 2d—¢). In strong
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contrast to Fig. 2a, in the bifurcation diagram for the
coupled climatology case (ay = 0, Fig. 3a), no bifur-
cations occur and there is only one solution over the
range of u considered. The spatial patterns of pertur-
bation and total fields are given in Figs. 3b,c at a labeled
point in Fig. 3a (x = 1.1). These structures closely
resemble those of the flux-corrected case on the “cold”
branch (Figs. 2b-c).

How can the connection occur between the bifur-
cation diagrams in the Figs. 2a and 3a? What happens
to the “warm” branch present in Fig. 2a? The answer
is obtained from Fig. 4a where bifurcation diagrams
for intermediate ay are given, These pictures have no
direct physical significance individually, but show
clearly the transition in parameter space between the
physically relevant cases ar = 0 and ar = 1. When ar
is decreased slightly to ar = 0.99, the transcritical bi-
furcation is broken. However, the spatial structure of
the solutions for ay = 0.99 at 4 = 1.1 remain nearly
identical to those in Figs. 2b-e. With decreasing ar,
the upper branch quickly moves to larger u (see the
branch for ar = 0.95), indicating that the states on
this branch (see Figs. 4b,c at labeled point 1 in Fig.
4a) can only be maintained through large coupling.
The warm anomalies in the eastern Pacific seen in Fig.
2d have been considerably reduced in Fig. 4c despite
an increase in g (1.65 in Fig. 4c vs 1.1 in Fig. 2d),
associated with the relaxation of flux correction. The
“cold” branch, however, hardly changes with decreas-

4 T

B 2 (XF=0.0 ]

(a)

0 0.2

PRPUS T (N YT T S E VNS VU S (S WA S S H ST T

0.4 0.6 0.8 1 1.2
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ing ar (Fig. 4a, ar = 0.95). This indicates that for this
state, the upwelling and thermocline slope that were
maintained by prescribed winds in the flux-corrected
case can still be maintained by coupled processes. With
decreasing a only this branch remains and is deformed
smoothly into the coupled climatology branch of
Fig. 3a. '

To understand this behavior qualitatively, especially
the shift of the warm branch to larger values of cou-
pling, we rewrite equation (5b) as

T= [7_'ext + aF(;obs - ;ext)]
+ {A(T = To) + ard(To — T)}. (56)

The term between the square brackets represents a
large-scale easterly wind of which the magnitude does
not vary much if oz is close to 1 and remains easterly,
though smaller, as ar = 0. Of the terms that multiply
u, the second term A(7T, — T) corresponds to large-
scale westerlies. These westerlies, which are intro-
duced by flux correction, are essential in maintaining
the warm branch, which has a relatively warm eastern
basin. Their structure is fixed by the flux-corrected
climatology and hence only the magnitude can be
changed by coupling. On the contrary, the first term
multiplying u represents coupled easterly winds,
which can change according to a temperature vari-
ation. If o is decreased, the solution on the warm
branch can only be maintained if x4 increases to

FIG. 3. (a) Bifurcation diagram in the fully coupled case ar
= 0.0, with 7., = —0.2, showing steady states as a function
of u as in Fig. 2. Here the perturbation with respect to the
uncoupled case Tgc = Tgc — Texec is shown. Steady solutions
at labeled point in panel (a) are given in panels (b) and (c).
(b) SST perturbation 7 = T — T, wind stress perturbation
field 4, and thermocline depth perturbation 4 — 4., at point
1 in panel (a). (c) Total SST, T — T, and thermocline depth
h at point 1.
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maintain the contribution of the westerlies essential
to the balances on this branch. Eventually, the warm
branch will disappear by moving to infinite x in the
limit ar = 0. On the cold branch, in contrast, the
coupled system is able to produce easterlies by in-
ternal feedbacks as the flux correction is relaxed. This
is possible because the temperature difference (T
— Tp)inthe ud(T — Ty) term can be self-consistently
maintained at finite negative values by a combination
of upwelling and thermocline feedbacks. The tem-
perature can thus adjust at fixed u to a change in ay

to maintain the balances on the branch while the

artificial westerly wind contribution vanishes (as
ap —> 0)

b. Influence of external wind

When 7, is small (—0.01), the bifurcation struc-
tures change with ar as shown in Fig. 5a. For ar near
unity, the same transition structure is found, since this
hardly depends on 7., as long as this quantity is sig-
nificantly smaller than the maximum amplitude of
Tobse At ap = 0.5 and p = 1.1 (point 1 in Fig. 5b),
smaller-scale internal structure is found within the cold
tongue (Figs. 6a,b) (i.e., two SST minima occur within
the cold tongue). When ay is further decreased, first
the branch winds around and for a value slightly larger
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FI1G. 4. (a) Bifurcation diagram showing steady states as a
function of u (as in Fig. 2) for three values of the flux-correction
parameter ar. Here the perturbation with respect to the un-
coupled case Tgc = Tgc — Tec (u = 0) is shown. Steady so-
lutions at labeled point in panel (a) are given in panels (b)
and (c). (b) SST perturbation 7 = T — T (u = 0), wind stress
perturbation field 4, and thermocline depth perturbation 2
= h — h (g = 0) at point 1 in panel (a). (c) Total SST, T
— Ty, and thermocline depth £ at point 1.

than af = 0.2, the loop is pinched off, forming an isola
and a simple stable (for the range of u shown) branch.
The isola shrinks to one point at ay =~ 0.11 and the
simple branch remains. At this branch (point 2 in Fig.
5b), the smaller-scale structure within the cold tongue
has disappeared and a smooth temperature profile
(Figs. 6c,d) with a cold tongue in the center of the
basin remains.

The final bifurcation picture at the coupled clima-
tology case ar = 0.0 is shown in Fig. Sc. The amplitudes
of the temperature perturbations remain small even at
large coupling. This indicates that the externally forced
wind stress 7, is important in setting the amplitude
of a reasonable coupled tropical climatology. The
steady state at ¢ = 1.1 (Figs. 7a,b at point 1 in Fig. 5¢)
is an unrealistic coupled climatology with a cold tongue
in the west and a warm pool in the east. Although this
climatology is almost completely (up to the part due
t0 Tox:) determined by coupled processes in the basin,
the parameters are such that upwelling is not strong
enough in the eastern part of the basin. An increase of
coupling strength makes the situation even worse
(point 2, u = 2.6, Figs. 7c,d). Of course, it might be
possible to change the other parameters in such a way
as to obtain a good climatology; this is indeed the case,
as shown in Part II of this paper. The main point of
the results above is that the structure of the steady states
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differs substantially for the flux-corrected case, where
there are multiple equilibria, compared with the cou-
pled climatology case where the climate state might or
might not be realistic, but is generally unique.

One might ask what structure remains (and if any
multiplicity of solutions occurs) at large coupling when
Text 18 decreased to zero; this bifurcation diagram is
also shown in Fig. Sc. The trivial state (which corre-
sponds to a constant overall temperature) is in this
limit a solution of the coupled climatology case: at large
values of u, however, another (nontrivial) solution ex-
ists, arising by a bifurcation at u ~ 2.2 in Fig. 5c. Sym-
metry breaking from the trivial state and mulitiplicity
of solutions may therefore occur at large coupling due
to coupled processes within the basin even without any
external forcing. We emphasize that this is a special
case, which is useful for its conceptual value, rather
than a case that could occur in a coupled GCM. The
trivial state at large u disappears if any of several per-
turbations to the model vector field are introduced, for
instance, a tiny value of 7,, or adding a small entrain-
ment velocity to the ocean model. The model then
reverts to a single stationary state with the form of the
branch as shown in Fig. Sc. We address this symmetry
breaking in more detail and show how it arises in a
simple “toy” model below. The spatial pattern on the
nontrivial cold branch that arises from the symmetry

breaking (point 3, u =~ 2.6, Figs. 7e, {) is quite “wiggly”
with a sharp cold tongue between warm regions in the
central and eastern part of the basin.

4. A “toy” model
a. Formulation of the model

The breakup of the transcritical bifurcation through
an imperfection as well as the symmetry breaking ob-
served in Fig. 5¢c may be understood more clearly by
considering a “toy” model in which the atmospheric
wind response to SST is purely local:

A(T’) = pAoT", (7a)

where A is a scalar and 7’ is the perturbation from
the appropriate reference temperature. In the flux-cor-
rected case 7' = T = T — T (where T is consistent
with our previous usage); in the fully coupled case T*
= T — T, (which differs from T = T — T,,). Choosing
Ay > 0 for westerlies over warm SST, we can absorb
Apinto x (or simply put 4 = 1). Similarly, thermocline
depth is parameterized to deepen locally under a west-
erly wind stress 7 and the surface layer velocities are
given by

h=7, w=—871; —vy=08r (7b)
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FIG. 6. Steady solutions at labeled points in Fig. 5b. (a) SST perturbation 7= T — T (u = 0), wind stress perturbation field 4, and
thermocline depth perturbation h = h— h(x=0)atpoint 1. (b) Total SST, T — Ty, and thermocline depth # at point 1. (c) SST perturbatlon
T = T — T (r = 0), wind stress perturbation field 4, and thermocline depth perturbation # = & — & (x = 0) at point 2. (d) Total SST, T’

— T, and thermocline depth # at point 2.

with the scale of 4 suitably chosen. The SST equation
has the same form as (2a) but for 7" now being a scalar
variable. As in the spatially dependent model, we in-
troduce a homotopy parameter o and write the total
wind stress 7 as

T = Text + 0p(Tobs — Text)

+plar(T— T)+ (1 — ap)(T— To)], (8)

where T is the flux-corrected solution for ax = 1 (the
response to “observed” wind stress 7 o). Furthermore,
T, is the surface heat flux equilibrium temperature and
Text COrresponds to the external wind stress. For con-
tinuity, we use 7 s t0 denote the analog to the observed
stress in the full model, although this is just a scalar
value with a magnitude typical of observed eastern Pa-
cific easterlies.

While these simplifications are without formal jus-
tification, they can mimic the response of a spatially
dependent model in cases where the spatial structure
tends to give in-phase relations among stress, 7, and
h; for instance, in Hao et al. (1993) this model was
used with some success to discuss the qualitative be-
havior of the stationary bifurcations for the flux-cor-
rected problem. The form of the nonlinearity in the
SST equation closely follows that of the intermediate
model and differs in important aspects from the simple
forms assigned in other toy models (Suarez and Schopf

1988; Battisti and Hirst 1989; Miinnich et al. 1991);
as far as stationary states are concerned, it can be re-
garded as an extension of these models. We use a
piecewise continuous version of the 7, parameteriza-
tion
T(h)=T,, h=hy;
Ty(h) =Tz, h<hy;
T(h)y=T,+v(h—h), m=h=hy; (9)

where v = (T, — Ty)/(hy — h) =0and T, < T,
< Ty; hy < hy. The steady temperature equation, due
to the local approximations, reduces to the single scalar
equation for 7

F(WIWT — Ts(h)] — Z(—on)om(T — Ty)
+er(T— To) =0, (10)

where # is the Heaviside function and 4, w, and vy
are given by

w=wy— udfar(T — T)+ (1 — ar)(T — Ty)],
vy=w (lla)
with
Wo = —8[Text + ar(Tobs — Text)] (11b)
and
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h= 7_'ext + aF(;obs - ;ext)

+ulep(T = T) + (1 — ap)(T — To)]. (llc)

b. Analysis of the breaking of the transcritical
bifurcation

Consider first the flux-corrected case ay = 1 with §;
# 0, Tops < 0, Ty = Ty (as we did in the spatially
dependent model), and hence wy = — 8,7 g = 0. As
an alternative, we can view wy to be independent of
T obs Siving it the interpretation of an entrainment ve-

locity. The flux-corrected solution (7°) is then given
by

T = (er + wo) "'[woTaw(h) + e2To]  (12a)

=T ops. (12b)
By construction, (12) is a solution (the primary branch)
for all values of u. To determine bifurcation points on
the primary branch, we search for nearby nontrivial
solutions (note that w > 0 in a neighborhood of this
primary branch). This gives'[ from (10)]
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(wo — wd, )T + T — Ty(h + uT)]
+e(T+T—Ty)=0, (12c)

where T = T — T. Linearization around 7 = 0 gives

T{wo(1 — un) = ud{ T — To(R)] + er} = 0, (13a)

where n = dT,/dh, evaluated at 4 = h. From (9) we
see that either = 0 or n = v depending on the chosen
value of /. Formally, n does not exist at 4; and /,, but
this is not essential; we could smooth 7 appropriately.
Bifurcation occurs at u = u, with

pe = {mwo + &[T — T(R)1} '(wo + er).  (13b)

Because T — Ty(h) = er[ To — Ts(h)]/(er + wp) = 0,
indeed u, = 0. To demonstrate that a transcritical bi-
furcation occurs, note that (12c) can be written as

(1 — )z (wo+ er) T+ pdg(1 — um) T2 = 0. (13c)

Apart from the trivial solution, there is another solution
given by

T=—(n—p)(Wo+ er)lpucds(1 —pm)]™".  (13d)

This nontrivial solution crosses the zero solution at an
angle, indicating a transcritical bifurcation. If §; is not
too small, then for small (u — u.)/u., the nontrivial
solution has the opposite sign as that of 4 — u.; for
very small d; the slope of this nontrivial branch can
reverse. The stability of the solution is also determined
by the sign of u — p,: if & is not too small, then for u
> u., the solution is stable; for 4 < u, the solution is
unstable. .

For a specific example (values of parameters as in
Table 2), this solution structure is shown in Fig. 8a
for ar = 1.0. The supercritical branch remains stable.
Along the subcritical branch the total vertical velocity
becomes smaller, and at the value of u, where ud (T
— T) = wy, the upwelling-downwelling nonlinearity
is hit. Solutions are then determined [ from (10)] by

(er + ubT — wo (T + T—To)=0. (14)

This has only two solutions, T = (wo — €r)/ud; and T
= T, — T. The first coincides with the trivial solution
in the specific example shown in Fig. 8a; the other
branch is stable and corresponds to the warm (con-
stant) branch in Fig. 8a.

For ar € [0, 1) and w > 0 we can write (10) as

a,T?* + a,T + a3 = 0, (15)

where the coefficients a,, a,, and a; can be easily cal-
culated. Notably, a; is proportional to 1 — ar, so when

TABLE 2. Standard values of parameters for the toy model.

hl =0.5 To =30 TN =30
hy=-0.5 T, =30 T,=14
& =125 er= 1.0 Tobs = —0.8
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FiG. 8. (a) Bifurcation picture for the “toy” model, both for the
flux-corrected case (ar = 1.0) and the fully coupled case (ar = 0.0).
The values of the other parameters used are given in Table 2. Flux-
corrected case: solid curve where stable, dashed where unstable;
transcritical bifurcation marked with a square. Fully coupled case:
dash-dot curve. (b) Transition between both curves in Fig. 8a shown

by plotting bifurcation structures for several values of ar. Short dashed
lines ar = 0.9; long dashed lines ay = 0.5; solid lines o = 0.1.

ay < 1, the trivial solution 7 = T is not a solution of
(15). It is easy to show that for af slightly smaller than
1, there exists two solutions at both sides of u., one of
which is positive and the other which is negative.
Therefore, the transcritical bifurcation breaks up, as
illustrated for the specific case in Fig. 8b, where 7. is
chosen as 7 4,/ 4. With decreasing af, the upper warm
branch moves to larger values of u. This is the same
qualitative behavior as in the spatially dependent model
(Fig. 5a). The cold branch is continuously deformed
from the flux-corrected case to the coupled climatology
case (ar = 0.0, Fig. 8a). The warm branch has com-
pletely disappeared in this case, leaving a unique so-
lution in the fully coupled case. This can easily be seen
from the value of the coupling at which the upwell-
ing-downwelling switch occurs; namely, u = —[7ex
+ ap(Fops — Text) [ @#(To — T)]1~". This moves to in-
finity as ar — 0, while the solution with upwelling
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{w > 0) on the upper branch approaches the constant
temperature state (7 = 7).

¢. Summary of typical behavior in the fully coupled
case

A detailed analysis of the solutions of the toy model
in the fully coupled case (ar = 0) is presented in the
appendix. The essential results are that for realistic sit-
uations, with easterly 7., a single solution branch ex-
ists yielding only one stationary state at each value of
the coupling. At u = 0, the temperature is slightly colder
than the surface-flux equilibrium temperature 7, due
to slight upwelling wy > O created by the externally
forced easterlies 7., < 0 (and by additional entrain-
ment into the mixed layer independent of mean wind,
if included). As coupling is increased, a combination
of upwelling and thermocline feedbacks causes the
temperature to drop and easterlies to increase (a
strengthening of the “cold tongue™). The solution
structure is the same as in Fig. Ala in the appendix.
For the example case (values listed in Table 2), this
type of solution is shown in Fig. 9 for 7,, = —0.2 and
—0.1. Changing ocean model parameters gives varying
quantitative results, but the qualitative behavior re-
mains the same (topologically equivalent).

d. Analysis of symmetry breaking in the fully
coupled case

To explain the spontaneous symmetry breaking as
observed in Fig. 5c, we look at what happens if the
magnitude of 7., (and thereby wy, that is, assuming
no additional entrainment) is reduced to zero. The line
labeled “0.0” in Fig. 9 shows this case, which differs
from the normal situation in two aspects. The more
important feature is that the trivial solution (i.e., sur-
face-flux equilibrium unaffected by ocean dynamics),
which exists for all g in this special case, goes unstable
(point labeled B). A cold branch arises by spontaneous
symmetry breaking, as in Fig. 5c, and at a somewhat
higher coupling, comes to resemble the cold branch of
the realistic case. Thus, in this limit there is indeed a
multiplicity of solutions, but only the cold branch is
stable over most of the domain. This case is concep-
tually important because it suggests that the cold-
tongue-warm-pool contrast could generate itself even
in the absence of external symmetry breaking. Quan-
titative discussion of this is addressed in Part II.

The second feature of the 7., = 0 solution in Fig. 9
is that a limit point occurs near g = 0.1, so the cold
branch produces two, rather than one, stationary points
in addition to the trivial branch over a very small range
of u. This behavior depends on the relative importance
of upwelling and thermocline feedbacks and is re-
stricted enough that it is unlikely to be important.

The structure for wy = 0 can be easily understood
from the general analysis given in the appendix. In this
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limit, 2 = 7T’ and the equation determining the so-
lutions is Eq. (A3) for u larger than u,, the value of u
at point A (where /& = h,) in Fig. 9, and Eq. (A5) along
the branch from A to B. The solutions of (A5) for wy
=Qare 7'=0and

T = %—(7h2+ To— T2) (1 — yw)™'.  (16)

This second root is exactly allowed from A to B (in
Fig. 9); the solution (16) is not allowed for 7' > 0
because then (through the upwelling-downwelling
nonlinearity) there is total downwelling. The bifurca-
tion from the trivial solution at B occurs for ug
= er[8,(vh2 + To — T>)] ! and slopes toward smaller
u as in Fig. 9 when 8, < ver(vh, + To — T>)™'. For
larger §;, the branch between A and B could have T
decreasing with increasing u, and these would be only
a single stationary point in addition to the trivial
one. In either case, the trivial solution is unstable
beyond pg.

5. Discussion

Coupled ocean—atmosphere models of various levels
of complexity, from coupled GCMs to toy models, use
flux-correction techniques to artificially construct a
known climatological state (the term flux correction is
applied to all such techniques, even though in simple
models the procedure may not explicitly involve mod-
ification of climatological fluxes). We have addressed
two main points: 1) Flux correction can have a drastic
impact on the bifurcation structure of coupled models
of the tropical Pacific, as compared with the case where
the climatology is itself simulated as a coupled phe-
nomenon. However, the aspects of the problem for
which the flux-corrected situation is problematic can
be distinguished from those where it is useful. 2) The
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tropical example serves to point out that simple con-
siderations from the imperfection theory (e.g., looss
and Joseph 1990) can be used to place some caveats
on the use of flux-correction techniques more generally.

Early discussion of the ENSO phenomenon was of-
ten phrased in terms of multiple stationary states,
thought of as a warm “El Nifio” state and a cold coun-
terpart sometimes referred to as “La Nifia” (Philander
1985), and some of the early ENSO models had such
multiple states artificially built in (McCreary and An-
derson 1984). Subsequent modeling (e.g., Zebiak and
Cane 1987; Battisti and Hirst 1989) and observational
work (e.g., Rasmusson et al. 1990) has lead to a con-
sensus view of ENSO as an essentially-cyclic phenom-
enon. It has, however, been difficult to lay the notion
of multiple stationary states entirely to rest because
these are in fact found in some tropical coupled models
in some flow regimes. Even when the first bifurcation
from the climatology is a Hopf bifurcation with an
interannual period and ENSO-like characteristics, it is
common for ENSO models to exhibit stationary bi-
furcations from the constructed climate state at higher
coupling. For instance, the point-coupling model of
Suarez and Schopf (1988), which was intended to ex-
plain cyclic behavior, was originally used in a regime
that has unstable stationary states in addition to the
limit cycle. Battisti and Hirst (1989) pointed out that
a better estimate of the parameters suggested that the
regime below the stationary bifurcation was more ap-
propriate; the presence of these states in this model
nonetheless continues to attract attention (McCreary
and Anderson 1991; Wu et al. 1993; Wakata and Sar-
achik 1994) and has sometimes lead to terminological
confusion, such as the use of the term “switching,”
even in models that do not possess multiple equilibria
(Wakata and Sarachik 1991). Multiple stationary states
are noted in intermediate coupled models in Hao et
al. (1993) and Zebiak and Cane (1987). They are ex-
plored carefully in DN since even when they are un-
stable, and thus difficult to infer from time integration,
they can exert considerable influence on the evolution
of the flow. Recently, Wu et al. (1993), examining the
influence of external forcing on an ENSO model, care-
fully devoted half the paper to a regime with multiple
stationary states, and Wakata and Sarachik (1994 ) fo-
cus on multiple equilibria in their model. An example
of multiple stationary states influencing the ENSO-like
cycle of a hybrid coupled model (HCM) was used to
indicate in DN that such effects are not restricted to
the simple and intermediate models, but can occur with
the full nonlinearity of an ocean GCM, and that the
intermediate models can explain the HCM results
rather well.

We are now in a position to state that the existence
of multiple equilibria in these models is an artifact of
the flux correction and does not correspond to any
structure that is likely to occur in the fully coupled
tropical system. We show how this occurs both in a
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stripped-down intermediate model, where effects of
changing spatial structure in the coupled climatology
are included and whose behavior closely resembles the
Zebiak and Cane (1987 ) model, and in a point coupling
model, whose stationary solutions encompass those
that would be found in the Suarez and Schopf (1988),
Battisti and Hirst (1989), and Miinnich et al. (1991)
models, but which includes more general physics in
order to mimic the results of intermediate and hybrid
coupled models. The artificial production of stationary
solutions occurs as follows: the flux correction places
arestriction on the system such that the trivial solution,
in terms of anomalous variables, exists independent of
the model parameters. For instance, suppose a pair of
models are coupled with flux correction for several dif-
ferent values of specified parameters (which might in-
clude mixing coefficients, etc.). Even if the parameters
are such that there is no possibility of maintaining a
reasonable cold tongue in the fully coupled case, a ref-
erence state resembling observations is still obtained
when flux correction is used. Modifications to this sta-
tionary state can thus occur only via codimension-1
bifurcations (transcritical/Hopf). The additional sta-
tionary branches that arise in these models do so ge-
nerically as transcritical bifurcations. [Suarez and
Schopf (1988) and Battisti and Hirst (1989) obtained
pitchfork bifurcations because they excluded quadratic
terms from the nonlinearity, but since the full system
has no internal symmetry, this is deformed into a
transcritical bifurcation.] Transcritical bifurcations are
not robust to perturbations of the vector field (see, e.g.,
Iooss and Joseph 1990), so these must break up when
the conditions imposed by flux correction are relaxed
and the trivial solution ceases to exist. If the change to
the system could be regarded as a small perturbation,
multiple stationary points could continue to exist by
having two unconnected solution branches, at least one
of which has a saddle node bifurcation (this configu-
ration can, of course, be seen when an artificial param-
eter is used to move gradually from the flux-corrected
case to a non-flux-corrected case). However, for the
particular physical situation relevant to the tropical
coupled climatology, one of the branches (the warm
branch) moves away to infinity when the flux correc-
tion is removed completely. This leaves a single sta-
tionary branch that evolves nonlinearly as a function
of model parameters.

From a physical point of view, this occurs because
the coupled processes involve dynamical redistribution
of warm and cold water, with the winds depending on
the resulting pattern of SST. In the non-flux-corrected
case, the resulting circulation can make the equatorial
SST colder by upwelling colder water from below, and
feedbacks between the SST and wind can rearrange the
pattern of SST, but processes due to the large-scale
dynamics do not tend to make SST significantly
warmer than would occur in a state without dynamical
effects. The coupled feedbacks in the model climatology
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thus tend to produce an equatorial cold tongue, which
might be too weak or too strong, or might be of a dif-
ferent shape than observed (and which might or might
not be unstable to ENSO-like time-dependent vari-
ability), but which js almost always a unique stationary
solution (see appendix for exotic exceptions). In the
flux-corrected case, there is an artificial solution with
a certain strength of the equatorial cold tongue. If
model parameters, such as coupling strength, are such
that coupled feedbacks would normally create, for in-
stance, a stronger cold tongue, the flux correction pre-
vents this from occurring. Instead of gradually increas-
ing the strength of the cold tongue as coupling is in-
creased, no change can occur until the feedbacks are
strong enough to create a stationary instability and,
thus, bifurcating stationary branches. The latter are
constrained to ogcur on both sides of the flux-corrected
solution, so in addition to a cold branch that resembles
the solution for the fully coupled case, a spurious warm
branch must appear.

The processes for linear instability of the flux-cor-
rected solutions are those familiar from the discussion
of ENSO feedbacks and are equivalent for the warm
and cold sides, although asymmetry in the nonlinearity
results in differences between the warm and cold
branches: a cold (warm) anomaly results in easterly
(westerly) wind anomalies, giving increased (de-
creased) upwelling and a shallower (deeper) thermo-
cline. These feedbacks are physically reasonable and
are precisely the ones that are correctly producing the
deepened cold tongue in the fully coupled case (or ap-
proximations to this in the flux-corrected case) on the
cold branch. The erroneous configuration arises,
roughly speaking, because the presence of the artificial
flux-corrected state, with anomalies defined with re-
spect to it, forces the feedbacks to create a third branch
instead of modifying a single branch. '

Although only stationary solutions have been ex-
plicitly discussed, we can invoke standard results for
bifurcations of a solution with periodic coefficients to
consider what must happen in the case where the flux-
corrected solution contains a seasonal cycle. Bifurca-
tions with the fundamental period (i.e., unstable so-
lutions with one-yr period ) behave in the same manner
as the transcritical bifurcations discussed here (1ooss
and Joseph 1990, chapter IX.19). The same qualitative
behavior found here will thus apply in the presence of
the seasonal cycle: multiple solutions with an annual
period that could occur in the presence of flux correc-
tion will disappear when the flux correction is removed.

A similar qualitative argument can be made to pro-
vide good news regarding the ENSO cycles of models
with flux correction, based on the fact that Hopf bi-
furcations are robust to perturbations of this sort. Since
most model ENSO cycles arise by supercritical Hopf
bifurcation, the use of flux correction will not adversely
affect these as long as no spurious stationary branches
interfere with the cycle. There are large parts of param-
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eter space where this condition can be met (DN), es-
pecially for coupling values that are not too far above
the Hopf bifurcation. However, any cases that appear
as if the time-dependent behavior might involve inter-
action with an unstable stationary point [e.g., some of
the parameter regimes of the Zebiak and Cane (1987)
model and related models, high-coupling behavior in
Miinnich et al. (1991), the relaxation oscillations found
in Hao et al. (1993) and DN] should be interpreted
with caution. The sensitivity of the period of the Hopf
bifurcation to increases in coupling can also be expected
to be less in the non-flux-corrected case than with flux
correction. The most unstable modes of the flux-cor-
rected state tend to become stationary at high coupling
where local feedbacks dominate over wave dynamical
processes (Jin and Neelin 1993a,b). In the region near
these singularities, the frequency on the oscillatory side
goes quite rapidly from a finite value to zero; in the
non-flux-corrected case, these codimension-two bifur-
cations will not occur. Examination of the linear, sta-
tionary growing modes can still be worthwhile for pur-
poses of understanding. They often provide simpler
prototypes to examine how the spatial structure of
coupled modes is determined and how coupled feed-
backs work, as long as one bears in mind that not all
the branches of stationary states associated with these
are realistic. In particular, these modes can likely be
used to understand how the cold tongue intensifies
since we have noted cases where the spatial structure
of the cold branch in the flux-corrected case corre-
sponds well to the fully coupled case (provided the
warm branch is ignored).

‘"The above discussion focuses on the qualitative im-
pacts of flux-correction on the topological structure of
the attractors of the tropical coupled system. There are
also some effects of flux correction that can negatively
impact interannual variability that are quite separate
from those discussed here; for instance, if winds ob-
tained with an AGCM are weak, the strength of the
flux-corrected cold tongue tends to inhibit interannual
variability (Neelin et al. 1992; Latif et al. 1988). How-
ever, there are also many quantitative effects of errors
in a fully coupled model climatology that can adversely
affect the quality of simulation of interannual vari-
ability and make flux correction an attractive option,
especially for models of intermediate complexity or for
situations where the climatology is even harder to sim-
ulate correctly than in the tropical case, such as for the
global climate problem. The principal caveat that can
be extended from the tropical example is that when
flux correction is used, any result involving multiple
stationary states (e.g., Bryan 1986; Manabe and Stouf-
fer 1988; Weaver et al. 1991) should be viewed with
caution. This holds in general because the breakup of
stationary bifurcations from the flux-corrected state
depends only on generic properties. Multiple stationary
states can potentially persist (with topology different
from the flux-corrected case) but should be distrusted
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until the physics have been examined in a non-flux-
corrected context. The methods employed here can
potentially be used to generalize and provide a struc-
tural context for quantitative examination of the flux-
correction problem for the oceanic thermocline cir-
culation, such as Zhang et al. (1993), Tziperman et
al. (1994), and Marotzke and Stone (1994).

For the tropical case, none of the means of obtaining
multiple stationary states examined here is realistic for
the coupled climatology of the tropical Pacific (al-
though individual branches may have some conceptual
value in particular cases). While we cannot exclude
the possibility of some more exotic mechanism pro-
ducing multiple tropical equilibria, the results show
definitively that those produced by existing models are
spurious, and very strongly reinforce the conclusion
that multiple equilibria play no role in ENSO.
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APPENDIX

Detailed Analysis of the “Toy” Model in the Fully
Coupled Case

In the fully coupled case (ar = 0), the equation for
the temperature departure from the surface heat flux
equilibrium value T’ = T — T, becomes

Z(Wo — pdsT" Y (wo — udsT")[T' + Ty — Ts(h)]
+ Z(—wo + pdsT") (0T — wo (T + To — Tw)
+eT' =0 (Ala)
h = Feu + nT". (Alb)

For simplicity, we first consider w, to be independent
of 7. In general, wy will have a part driven by the
external winds and possibly an additional positive con-
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tribution corresponding to an entrainment velocity into
the mixed layer. The connection between wy and 7.y
is made after presenting all cases of model solutions.
For climatological upwelling (wy > 0), the solution
structure is divided into three different regions:

case (a) Tex < hj.
The solution for u = 0 is

_ Wo(T> = To) <0
W0+€T ’

T (A2)
For u # 0, there are two possibilities (in the case of
total upwelling):

case(al) wy> ué;T'and h < hy;case (a2) wy> ud, T’
and & > h,.

In case (al) the solutions are determined by
(wo = wd;THT' — (T2 = To)l + erT' = 0. (A3)

For &, = 0, the solution (A2) is the only solution for
all u. For §; # 0, Eq. (A3) has two roots, T’ = ¢
+ x!/2, with X > 0. The root ¢ — X '/? is the contin-
uation of the u = 0 solution. The other (positive ) root
(which becomes unbounded for u — 0) does not satisfy
the inequality w, > ud, T’ and hence it has to be rejected.
The solutions for case (a2) form part of the solutions
of cases (b) and (c) below:

case (b) hy < Teu < .
Let 8) = v(hy — Tew) + To — T and consequently 3,
= Ty — T, = 0; then the solution at u = 0 is given by

T = —Biwo

<0i = Ty).
W0+eT ( OlfT| 0)

(A4)

"For wy > pué;T’, and if h < h,, the solution is given by

case (al). Hence, there are two extra possibilities:
case (bl) Ay < h < hy; case (b2) h> h,.

In case (bl), the solution is determined by

(wo — pd,THT'(1 —yw) + Bi]l + 7" =0. (AS)
For &; = 0, the solution is given by
7= — B (A6)

C wo(1 — yp) + e’

which has a vertical asymptote at u, = (e + wp)/(vYWwp).
For p > u,, the solution 7 is positive and for p < g,
it is negative. Note that both branches of the solution
only have validity within the conditions defined by
(bl). For é; # 0, the quadratic equation (AS5) has two
real roots if u < vy ~!; one of these roots is positive and
the other is negative. At u = v 7!, the solution is given
by

T' = Biwo

= — A7
OBy — er ( )
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FIG. Al. Bifurcation diagrams for several values of 7., and §, for the “toy” model. (a) §; = 0.0, h; < 7 < 0;
(b) 8; = 1.0, Texe = —0.4, —~0.2; (¢) 8, = 0.0, Texy = hy3 (d) & = 1.0, T, = 0.4, 0.6.

and for x4 > v~!, the solutions become complex con-
jugate and thus have to be rejected. Case (b2) is part
of the solution of the following case, (c):

case (C) Text > Ay
Now for u = 0, the solution is given by

_ wo(Ty — To)

Wo + €r (A8)

T’ (sO0for T, — Ty <0).
For p # 0, if & becomes smaller than 4,, the solution
structure of case (b1) applies. The only remaining case

we have to consider is
case (cl) h> h,.
The solution structure is then determined by
(wo — udT)[T'— (T — To)] + &' = 0. (A9)

For T, = T, the only solution is 7' = 0 for all values
of u, because for the other solution (if §; # 0) ud 7"’
= wp + er > wy. This completes the possible solution
structures of the “toy”” model for constant wy > 0.

For climatological downwelling ( wy < 0), the struc-
ture of solutions is very simple if Ty = T,. There are
two possible cases:

case (d1) wy — udsT’' > 0; case (d2) wy — ud,T' <O0.

Case (d1) corresponds to a solution of previous cases
(a)-(c). In case (d2), the equation determining the
steady states is

(uosT' — wo)T' + erT' = 0. (Al10)

The trivial solution is always a solution while the other
root must be rejected (since ud;T' = wy — er < Wy).
In short, there is net downwelling, so the upwelling—
downwelling nonlinearity only generates the zero
anomaly solution.

Having presented all possible cases, we now discuss
them in physical terms. Climatologically relevant cases
are obtained only for 7., < 0, since in reality the global
Hadley circulation contributes a significant external
easterly stress. Realistic solutions for the Pacific basin
must come from among cases (a) and (b). We consider
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first 8, = 0, in which case the solution structure is quite
simple (see Fig. Ala). Suppose h; < Ty < 0; then for
values of g up to ug, i > h, (class b). For larger values
of u, the branch I [case (al)] is the only solution. Fi-
nally, if 7., decreases down to 4,, point B in Fig. Ala
shifts to x = 0 because 3; = T, — T. For §; # 0, the
structure is similar and shown for a particular case
(parameters in Table 2) for several values of 7¢ in
Fig. Alb.

To see whether we can push the system so far as to
get a multiplicity of steady states in some regimes, we
now consider some cases that are not climatologically
realistic; for instance, with 7. = A1, strong westerlies.
Again, §; = 0 is considered first. For 7, > A, there
are three solution branches as in Fig. Alc. The trivial
solution (III) is a solution for all u as described in case
(c1). However, there exist also solutions for which A
< h,—for example, case (bl) (the curve II); note that
if Texe > hy, then B, < 0. There is another branch 11
that is rejected because # > h,; the branch II shown
satisfies the conditions of (bl) for x4 > p4. Another
solution exists from case (al). This solution must be
rejected for u < p, because then z > h,. In summary,
for u < u, there is only one solution, while for u > uy
there are three solutions.

For &, # 0, similar features appear, although the de-
tailed analysis is more involved (but elementary). In
Fig. Ald we show examples of the structures of the
steady states for 8, = 1.0 and several values of T.y.
Again it is seen that as 7., becomes larger than A,
there is only one solution for small g (i.e., the trivial
one) and three for larger u.

Although not climatologically realizable for the Pa-
cific, these examples do, in fact, give insight into the
processes that prevent or permit multiple states in the
tropical climatology. Because the horizontal and ver-
tical advection by ocean dynamical processes cannot
produce SSTs warmer than the upper-temperature
range given by the surface heat flux equilibrium tem-
perature, the amount of warming of SST that can be
produced by westerly winds is bounded. In surface heat-
flux equilibrium, the ocean regions are not much dif-
ferent than neighboring land areas, so essentially no
temperature gradients required to produce Walker cir-
culation winds can be produced by land-sea contrast
either. Once upwelling is shut off and the temperature
gradients are flat, no additional warming can occur
and thus no feedback can occur that could maintain
westerly winds. Thus, when the external wind stress is
easterly, coupled feedbacks tend to increase the east-
erlies and cannot generate any additional warm state
with westerlies. On the other hand, if the climatology
were driven by external westerlies, leaving temperatures
warm along the equator due to lack of upwelling, one
could obtain additional self-consistent cold states be-
cause anomalous easterlies may induce upwelling of
cold water. The contrast between cold water in ocean
regions and relatively warm land can maintain east-
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erlies, which in turn can maintain the cold water. The
temperature is in this case bounded through the bound
on the subsurface temperature. It is thus not physically
inconceivable to create a tropical ocean basin that could
genuinely have multiple equilibria. The physics and
the topology of the stationary branches would, however,
be significantly different from the spurious equilibria
in flux-corrected models, on the one hand, and from
the climatologically realistic case, on the other. It is
also possible to find very localized regions of parameter
space that have multiple equilibria associated with
saddle node (hysteresis) bifurcations (e.g., dashed curve
in Fig. 9) in non-flux-corrected cases. These have a
different, more robust topology than the spurious mul-
tiple equilibria generated by flux correction but occur
only in very limited circumstances.
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