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ABSTRACT An intermediate coupled model of the tropical Pacific ocean-atmosphere system was reduced by pro-
jecting the non-linear model onto a truncated basis set of its own empirical orthogonal functions (EOFs). For
moderate coupling strengths, the simulated El Niño/Southern Oscillation (ENSO) variability consists of a domi-
nant quasi-quadrennial mode with a period of approximately four years and a smaller quasi-biennial mode at a
period of approximately two years. In the absence of a seasonal cycle, the leading two EOFs capture the dynam-
ics of the leading interannual mode, with a further two EOFs being required to capture the secondary oscillation.
The presence of seasonal forcing increases the EOF requirement by two, the leading pair of EOFs being domi-
nated by the annual cycle. Normal mode analysis of the reduced models indicates that the quasi-biennial mode
manifests itself, even though it is linearly stable, by non-linear coupling to the quasi-quadrennial mode. The non-
linearity does not produce the quasi-biennial signal unless the spatial degrees of freedom associated with the lin-
ear quasi-biennial mode are present. Other linearly stable modes also couple non-linearly to the leading
interannual mode and to the seasonal cycle, but the quasi-biennial mode is favoured over other, less-damped lin-
ear modes because of its proximity to a multiple of the quasi-quadrennial frequency.

RÉSUMÉ [traduit par la rédaction] On a réduit un modèle couplé intermédiaire du système atmosphère-océan
pour le Pacifique tropical en projetant le modèle non linéaire sur un ensemble tronqué de bases de ses propres
fonctions orthogonales empiriques (FOE). Pour des forces de couplage modérées, la variabilité de l’oscillation
australe El Niño (ENSO) simulée consiste en un mode quasi quadriennal dominant, ayant une période 
d’approximativement quatre ans, et en un plus petit mode quasi biennal, d’une période d’environ deux ans. En
l’absence d’un cycle saisonnier, les deux FOE dominantes capturent la dynamique du mode interannuel
prépondérant et deux autres FOE sont nécessaires pour capturer l’oscillation secondaire. La présence d’un
forçage saisonnier double le nombre de FOE requises, la paire de FOE prépondérante étant dominée par le cycle
annuel. L’analyse des modes normaux des modèles réduits indique que le mode quasi biennal se manifeste, même
s’il est linéairement stable, par un couplage non linéaire au mode quasi quadriennal. La non-linéarité ne produit
pas le signal quasi biennal à moins que les degrés de liberté spatiale liés aux mode quasi biennal linéaire ne
soient présents. D’autres modes linéairement stables s’accouplent aussi de façon non linéaire au mode 
interannuel prépondérant et au cycle saisonnier, mais le mode quasi biennal est favorisé par rapport aux autres
modes linéaires moins amortis à cause de sa proximité à un multiple de la fréquence du mode quasi quadriennal.
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1 Introduction
The use of intermediate coupled models (ICMs) of the tropi-
cal Pacific ocean-atmosphere system to study El
Niño/Southern Oscillation (ENSO) dynamics is well estab-
lished (Zebiak, 1984; Zebiak and Cane, 1987; Jin and Neelin,
1993). The many applications and theoretical questions that
have been addressed in such ICMs are reviewed in Neelin
et al. (1998) and references therein. Even though such ICMs
are less complex than hybrid coupled models and global cli-
mate models, they still contain many hundreds of model vari-
ables. While these models have relatively high dimensional
state spaces, in many parameter regimes they exhibit period-
ic or quasi-periodic behaviour. This suggests that the dynam-

ics actually exist on a low dimensional manifold. Several
attempts have been made to construct very low dimensional
models of ENSO (Tziperman et al., 1994; Wang and Fang,
1996; Jin, 1997a, 1997b). These efforts usually begin with an
ICM, and then invoke ad hoc assumptions to reduce the num-
ber of independent model variables drastically. There has also
been work with linear reductions of ICMs, especially in the
predictability problem (Blumenthal, 1991; Xue et al., 1994).

This paper describes a method for reducing an ICM which
is better defined and includes non-linear interactions. The
reduced model is obtained by projecting the ICM onto a trun-
cated set of the model’s own empirical orthogonal functions
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(EOFs). This method has been used in the reduction of atmos-
pheric models (Rinne and Karhila, 1975; Selten, 1993, 1995,
1997a), as well as models of fluid turbulence (Holmes et al.,
1996). A related technique has been applied to ENSO models
by Timmermann et al. (2001). Timmermann et al. determined
both the EOF structure of the model, and its dynamics, empir-
ically from model output.

In the present work, the empirically determined EOFs are
used as a basis set in which to represent the known model
equations. This approach is a type of Galerkin projection.
Galerkin projection is a common method for converting an
infinite-dimensional system into a finite set of ordinary dif-
ferential equations (ODEs) which can then be solved, often
numerically. Galerkin projection usually employs standard
functions as the basis set. Examples of commonly used func-
tions are Fourier functions and, for global atmospheric mod-
elling, spherical harmonics. An ICM represented by
spatio-temporal partial differential equations (PDEs) can be
converted into a finite set of ODEs by expanding its fields in
a finite series of spatial functions and then modelling the time
evolution of the coefficients associated with these functions.
For models of the equatorial Pacific the standard choice of
basis functions is Fourier functions zonally and Hermite poly-
nomials in the meridional direction. By using the model’s
own EOFs as a basis set the hope is that the dimensionality of
the model can be reduced, while still reproducing its behav-
iour in a way that is at least qualitiatively correct.

2 ICM model
a Ocean-Atmosphere Coupling
The ICM used in the study was similar to the model used by
Jin and Neelin (1993). The model covers the tropical Pacific.
The ocean component is a 11/2 layer linearized model on a
beta-plane. The atmospheric component is a steady-state, Gill
type atmosphere, which also consists of the linearized shal-
low water equations on a beta-plane (Gill, 1980). The details
of the model can be found in Appendix A. The atmospheric
component of the model is forced by middle tropospheric
heating, Q(x,y), which is taken to be a linear function of SST,

Q = KQT (1)

where KQ has units of m2s–3°C–1.
The windstress, that results from the atmospheric heating,

provides the forcing for the ocean, (τx, τy). The dependence of
the windstress on the wind velocity was assumed to be linear.
The equations are as follows:

τx = ρaCDWU = KSWU (2)

τy = ρaCDWV = KSWV (3) 

where ρa is the atmospheric density, CD the coefficient of sur-
face drag and W is a characteristic windspeed. The parameters
ρa and CD were combined into a single parameter, KS.

The parameter values used are summarized in Table 1.

b Estimating the External Windstress
The windstress can be separated into two components, an
internal windstress, which is the result of SST forcing within
the tropical Pacific, and an external windstress which is
caused by processes outside the tropical Pacific. The coupled
model should be able to generate the internal component but
it must be forced with the external windstress. The observed
windstress is the sum of the internal and external components.
The external component can be estimated by using 
the observed SST and the atmospheric model to estimate 
the internal component, and then subtracting this from 
the observed windstress. If the observed, external and 
internal windstresses are represented by τobs, τext and τint
respectively, then 

τext = τobs – τint (4)

If Tobs is the observed SST, then τint can be estimated using

τint = KSWA(KQTobs) (5)

where A is the atmospheric model.
The windstress forcing used was the Florida State

University (FSU) pseudo-windstress product for the period
1961 to 1991 (Goldenberg and O’Brien, 1981). This dataset
consists of the pseudo-windstress vectors (Sx, Sy). These are
converted into surface windstress using

τx = ρaCDSx τy = ρaCDSy (6)

The observed SST used was the Reynolds reconstructed SST
for the period 1961–91 (Smith et al., 1996). The SST 
reconstructions were used, with the atmospheric model
described above, to estimate τint. Since the atmospheric model
is linear the product of the two parameters in which there is
most uncertainty, KQ and W, can be treated as a single para-
meter. The value of KQW that minimizes the mean square
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TABLE 1. The parameters of the standard model.

β planetary vorticity gradient 2 × 10–11 m–1 s–1

ρ mean density of upper ocean 1000  kg m–3

ρa surface density of atmosphere 1.3 kg m–3

L zonal extent of basin 1.74 × 107 m

g′ reduced gravity 0.0486 m s–2

H mean thermocline depth 150 m
c Kelvin wavespeed (√g′H ) 2.7 m s–1

L0 oceanic Rossby radius (√cβ ) 3.7 × 105 m
r upper ocean Rayleigh friction (2.5  y)–1

CD windstress coefficient 1.5 × 10–3

HM thickness of mixed layer 50 m
q mixed layer Rayleigh friction (2 d)–1

α oceanic Newtonian cooling coefficient (125 d)–1

γ entrainment fraction 0.50
T0 temperature contrast across thermocline/2 10°C 
h0 temperature structure asymmetry parameter 40 m
H* vertical scale of thermocline 50 m

R atmospheric Rayleigh friction (2.3 d)–1

ca atmospheric Kelvin wavespeed 60 m s–1



error between the internal zonal windstress anomaly 
and the observed zonal windstress anomaly was KQW = 
0.013 m3 s–4°C–1. With this value, 58% of the observed wind-
stress variance is explained as the internal windstress corre-
lated with tropical Pacific SST. The annual component of the
the external windstress was calculated by subtracting the esti-
mated internal windstress from the observed windstress. This
annual component is that part of the seasonal cycle that can-
not be explained as the response of the atmospheric model to
the seasonal cycle in SST within the model domain. 

3 Behaviour of the model
a Non-seasonal Case
The coupled model was forced with a constant windstress,
equal to the estimated external windstress for the month of
April. April was chosen because the estimated external wind-
stress is most strongly easterly during this month. As the cou-
pling strength, KQW, is increased the model passes through a
bifurcation. Below the bifurcation the model does not exhibit
self-sustained interannual variability. At a coupling of KQW =

0.0097 m3 s–4 °C–1 the model is just above the bifurcation and
exhibits periodic interannual variability. Figure 1 shows a
plot of equatorial SST as a function of time. The NINO3 SST
oscillates with a period of about 4.5 years and a peak-to-peak
amplitude of about 2°C. The longitude-time plot in Fig. 1b
shows the spatial pattern of oscillation typical of ENSO, with
the SST variance confined to the eastern Pacific, although the
NINO3 region and the region closest to the eastern boundary
are out of phase. This phase difference is not present in obser-
vations. The amplitude spectrum of NINO3 SST shows a
dominant peak corresponding to a period of about 4.5 years,
and a smaller peak corresponding to about 2.1 years. Analysis
of observed equatorial Pacific SST has found a quasi-qua-
drennial (QQ) mode, with a period of 53 months, and a quasi-
biennial (QB) mode, with a period of 28 months (Rasmusson
et al., 1990; Jiang et al., 1995; Aires and Chédin, 2000).
Analysis of the southern oscillation index has also found a
low frequency component, with a period of 4–6 years, and a
high frequency component with a period of 2–3 years
(Keppenne et al., 1992). The similarity of the SST structure of
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Fig. 1 The results from the coupled model run forced by the estimated external windstress for April. The coupling was KQW = 0.0097 m3 s–4 °C–1. The spec-
trum in (c) was calculated from a 200-year run of the model.



the QB mode with the QQ mode led Jiang et al. (1995) to sug-
gest that the QB arises due to an interaction between the QQ
mode and the annual cycle. Since the model used in this study
exhibits both a QQ and a QB mode in the absence of any sea-
sonal forcing, interactions with the seasonal cycle are clearly
not required to explain their existence in this case.

b Seasonal Case
When the model is driven by the seasonally varying external
windstress the coupling strength at which the bifurcation
occurs increases. Figure 2 shows the behaviour of the model
with a coupling strength of KQW = 0.0136 m3 s–4 °C–1, which
puts it just above the bifurcation. The behaviour is more com-
plicated than the case with no seasonal cycle, but there is still
a sharp interannual peak. The period of the interannual oscil-
lation is now 5.3 years. The peak-to-peak amplitude of the
interannual oscillation is approximately 2°C. The interannual
peak is far narrower than that observed for the real SST
anomaly, but this may be explained by the lack of intrinsic
atmospheric variability in the coupled model. The impact of

stochastic forcing on the model used in this study was previ-
ously explored by Roulston and Neelin (2000). 

Figure 2b shows that the general spatial pattern of ENSO
remains although there is more SST variability in the 
west than in the non-seasonal case. Also visible in the 
amplitude spectrum is the annual cycle, as well as several
smaller peaks. The seasonal cycle in NINO3 SST in the
model has its maximum in January rather than April, as in the
observations. In the NINO4 region the annual cycle of SST is
6 months out of phase. This disparity can be explained by rec-
ognizing that in the NINO3 region upwelling is important in
determining the SST, whereas in NINO4 surface heat flux is
more important (Seager et al., 1988). The model includes
upwelling and thus does reasonably well in NINO3 but does
not include seasonal changes in surface heat flux leading to
poor agreement further west. Since the SST variability in the
western Pacific is relatively small, failure to reproduce the
annual cycle in these regions does not represent a more 
significant deficiency in the model than that introduced by
using a linear model of the atmospheric response.
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Fig. 2 The results from a coupled model run forced with the estimated external seasonal windstress. The coupling was KQW = 0.0136 m3 s–4 °C–1. The spec-
trum in (c) was calculated from a 200-year run of the model.



Synchronization with the seasonal cycle is found in the
model, with warm events tending to peak between June and
November. This does not agree with the observed preference
for September to January but the existence of seasonal syn-
chronization demonstrates interaction between the annual
cycle and the interannual variability. 

4 Reduction of the model
a EOF Method
Reducing models by projecting them onto truncated empirical
basis sets has been applied to horizontal barotropic models of
the atmosphere (Rinne and Karhila, 1975; Selten, 1993,
1995). In addition, the method has been used to model con-
vection in the atmospheric boundary layer (Zhuang, 1996).
More recently, the method has been applied to a horizontal
baroclinic model of the atmosphere (Selten, 1997a). The
approach has also been used to reduce models of turbulence
(see Holmes et al. (1996)).

There are several variants of the approach. Each constructs
the basis set in a different way. The basis set used here is
EOFs. The method of EOF analysis was first used in meteo-
rology by Lorenz in 1956 (Lorenz, 1956).

In order to apply EOF analysis to the output of the coupled
model, state vectors must be constructed. The EOF analysis
can be applied to each of the fields u, v, h and T separately but
for this work combined state vectors were constructed. To
combine the fields into single state vectors, the variables were
non-dimensionalized. The state vectors used were given by 

(7)

where u, v, H, T are the vectors of coefficients for the fields
in the original basis set, H is the mean thermocline depth and
c and 

~
T are the characteristic scales for speed and SST given

by

(8)

where ||Ax|| is the norm of the atmospheric model matrix. The
windstress forcing was also non-dimensionalized using the
characteristic windstress given by 

(9)

The characteristic scales adopted are not unique but they are
found to give satisfactory results. 

b Results of the EOF Analysis
EOF analysis was performed on the output of the two runs of
the coupled model discussed in Section 3 (Figs 1 and 2). The
four leading EOFs are shown in Figs 3 and 4 for the non-sea-
sonal and seasonally forced cases respectively.

The leading two EOFs in Fig. 3 have variability associated
with the 4.5 year oscillation. Between them these EOFs 

contain 95% of the total variance. The h-field components of
these EOFs are meridionally symmetric. The T-field compo-
nents have variability confined largely to the eastern part of
the basin, as would be expected for the dominant ENSO
mode. The third and fourth EOFs contain a further 4% of the
total variance. An inspection of their time series shows that
they are dominated by the 2.1-year oscillation, but notice that
there is contamination by the 4.5-year mode. This highlights
the fact that, because EOFs are constrained to be orthogonal,
there is no guarantee that EOF analysis will separate oscilla-
tory modes of different frequencies, although in this case the
QQ and QB modes are quite well separated by projection onto
EOFs. The h-field components of EOFs 3 and 4 in Fig. 3 are
meridionally asymmetric about the equator, in sharp contrast
to the h-field components of EOFs 1 and 2. If broken into
symmetric and anti-symmetric components, EOFs 3 and 4
have a substantial contribution from each. The distinction
between the SST fields of EOFs 1 and 2 and EOFs 3 and 4 is
less clear; EOF 3 has a substantial signature in the equatorial
cold tongue region. Analysis of observed SSTs has found
that, spatially, the SST variability associated with the QQ
mode is similar to that of the QB mode (Jiang et al., 1995). A
lack of data precluded a similar analysis of thermocline depth.
The results from this model suggest the hypothesis that QB
variability in thermocline depth may be more meridionally
asymmetric than that of the QQ mode.

Figure 4 shows the leading EOFs when the model is forced
with the seasonally varying external windstress. Now the
leading two EOFs are dominated by the seasonal cycle,
although the time series does show some interannual variabil-
ity. They account for 91% of the variance (including that of
the seasonal cycle). EOFs 3 and 4 contain a further 4% of the
variance and are dominated by the interannual variablity, with
a period of 5.3 years, although there is contamination by the
seasonal cycle. Inspection of the T-field patterns for EOFs 1
and 2 and EOFs 3 and 4 shows that the pattern of SST vari-
ability associated with the seasonal cycle is very similar to
that associated with the interannual variability. The similar
SST patterns found in multiple EOFs are allowed by the com-
bined field EOF analysis which only dictates that the EOFs of
the combined state vectors must be orthogonal. Physically,
the similarity of the SST pattern is due to the climatology of
upwelling and thermocline depth favouring SST variations in
the equatorial cold tongue.

c Projection and Closure
Reduced versions of the full model were constructed by
Galerkin projection of the model onto truncated sets of the
EOFs, which span a lower dimensional subspace of the state-
space of the full model.

Let P be the matrix of vectors defining the EOFs. That is
[Pi1,Pi2,…PiN] is the ith EOF, where N is the dimension of the
model state space. The non-dimensionalized model can be
written as 

(10)
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x
u v h T= 



c c H T

, , ,
˜

c g H T
c c

x
= ′ =˜ β

µ A

˜ .τ ρ β= Hc c

d

dt
t

x
Mx N x F= + ( ) + ( )



where M represents the linear part of the model, N represents
the non-linear part, and F is the time dependent forcing. If y
is the reprojected state vector, y = Px, then the reprojected
model is given by

(11)

The model given by Eq. (11) is exactly equivalent to the
model given by Eq. (10) since the basis set has not been trun-
cated. Let the row vectors of P be ordered in decreasing order
of the variance they describe. Let Nr be the number of EOFs
that are to be retained and let Nd = N – Nr be the number to be
discarded. The projection matrix can now be decomposed as
follows:

(12)

where Pr is an Nr × N matrix containing the retained basis
vectors and Pd is an Nd × N matrix containing the discarded
basis vectors. The reprojected state vector, y, can also be
decomposed:

y = [yr, yd] (13)

where yr is the vector of the retained components and yd is the
vector of the discarded components. The truncated, reproject-
ed model is thus given by
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Fig. 3 The leading EOF patterns associated with the eigenvalues in Fig. 1. The left panels are the h-field components of the leading four EOFs, the centre pan-
els are the T-field components and the right panels are the time series of the coefficients of the EOF.

d

dt
tT Ty

PMP y PN P y PF= + ( ) + ( ) .

P
P

P
=











r

d



(14)

The first term on the RHS of Eq. (14) represents the linear
component of the reprojected model. The second term is the
reprojected non-linear component, the specific form of which
is unwieldy, even for heavily truncated models. The model
given by Eq. (14) can be improved by attemping to model the
effects of the discarded EOFs on the dynamics of the retained
EOFs. The model used is known as the closure scheme. Most
attempts at constructing closure schemes for truncated mod-
els have been statistical-empirical. In most standard atmos-
pheric and oceanic models, the effect of unresolved modes is
parametrized by introducing an eddy diffusivity. Essentially
the same approach has been used in low-order EOF models in

which extra linear dissipation is added to prevent model drift
(Selten, 1997a). The effects of discarded modes are not
always dissipative however. Selten attempted to model the
effects of discarded modes by finding linear and quadratic
combinations of the retained coefficients that minimized the
error in the tendency equations (time derivatives) of the
reduced model. This approach was found to improve short
range forecasts but led to the model being unstable over
longer integration periods (Selten, 1997b). Later attempts at
this kind of closure attempted to solve the problem of insta-
bility by imposing constraints on the closure scheme to bound
the total energy of the model (Achatz and Schmitz, 1997).

In this work a simple closure scheme was adopted. The
coefficients of each of the discarded EOFs were specified as
constants equal to their mean value in the full model. Letyd
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Fig. 4 As Fig. 3 but for the run shown in Fig. 2

d

dt
tr

r r
T

r r r
T

r r
y

P MP y P N P y P F= + ( ) + ( ) .



be the vector of the mean coefficients of the discarded EOFs.
The projected model thus becomes 

(15)

where the terms involvingyd are the closure terms. The rea-
son why the mean coefficientsyd are included in the closure
scheme is that EOF analysis identifies the patterns that contain
the most variance. Due to the non-linearities in the model the
background mean state represented byyd must be included.

5 Behavior of the reduced models
a Non-seasonal Case
The coupled non-seasonal model was projected onto its lead-
ing EOFs, seen in Fig. 3. We compare behaviour for cases
where only the two leading EOFs are retained (Fig. 5), and
where the four leading EOFs are retained (Fig. 6). In both

cases, the pattern of SST variability of the reduced model is
very similar to that in the full model. In the four-EOF case,
the reduced model captures the QQ mode and the QB mode,
as may be seen from the power spectrum (Fig. 6c). The time
series shows the QB mode is locked to the dominant QQ
mode (Fig. 6a). In the two-EOF case, only the QQ mode is
captured (Fig. 5c). This result is consistent with the time
series of the EOF coefficients in Fig. 3 but could not entirely
be anticipated—-in principle, non-linearity in the two-EOF
case could generate QB variability. Apparently, it is much
more difficult to do so without the additional spatial struc-
tures. The peaks at frequencies higher than the QB seen in
Fig. 1c are not reproduced by the reduced model. 

To analyse the reduced model it was linearized about its
mean state and its normal modes were calculated. The eigen-
values of the normal modes are plotted on the complex plane
in Fig. 7. They were calculated for increasing values of cou-
pling. The smallest symbol size represents the uncoupled
model projected onto the EOFs of the coupled model, while
the largest symbol size represents the full coupling strength
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Fig. 5 The behaviour of the 2-EOF model using the leading two EOFs in Fig. 3 and a coupling of KQW = 0.0097 m3 s–4 °C–1. The results may be compared
to Fig. 1.

d
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used in the coupled model. From Fig. 7 it can be seen that for
the standard coupling strength one pair of eigenvalues obtains
positive real parts. The point when this pair crosses the imag-
inary axis represents the Hopf bifurcation (Nayfeh and
Balachandran, 1995). Above this bifurcation the model
exhibits sustained interannual oscillations. Notice that for
zero coupling the real part of the eigenvalues is close to the
coefficient of Rayleigh friction, r. This figure thus shows how
coupled processes turn a somewhat obscure ocean mode into
an unstable and dominant coupled mode. The oscillation peri-
od associated with this pair is about 4.5 years; this is the dom-
inant peak in the spectrum of the model shown in Fig. 6c.
Figure 7 also shows a second pair of eigenvalues which, for
the standard coupling, corresponds to a period of about 2.1
years but which has a negative real part indicating that, in the
linearized model, this mode of oscillation will be decaying.
Figure 6c does show a peak at this period which represents a
sustained oscillatory component. There must be a transfer of
energy from the unstable QQ mode to the stable QB model
due to non-normal or non-linear coupling. 

Figure 8 shows a case where eight EOFs have been
retained in the model. As in Fig. 7, the model has been 
linearized and the eigenvalues calculated for increasing 
values of the coupling parameter, starting from the 
uncoupled case. The time series and spectra for the non-
linear integration of the eight-EOF model (not shown, 
see Roulston (2000)) exhibit QQ and QB oscillations, 
very much like that of the four-EOF model in Fig. 6. Two 
of the eigenmodes of the eight-EOF case (Fig. 8) are 
very similar to the QQ and QB eigenmodes of the four-
EOF case (Fig. 7), although the QB mode is decaying 
somewhat more strongly. The interesting point in Fig. 8 
is that there are two oscillatory modes that are less 
strongly decaying than the QB mode. However, neither 
of these modes shows up in the time series of the non-linear
model. The QB mode, despite being more stable, does 
manifest itself in the spectrum. This must be due to its prox-
imity to a multiple of the frequency of the QQ mode, so that
it couples more effectively to the system’s only self-sustain-
ing oscillatory mode.
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Fig. 6 The behaviour of the 4-EOF model using the leading four EOFs in Fig. 3 and a coupling of KQW = 0.0097 m3 s–4 °C–1. The results may be compared
to Fig. 1.



b Seasonal Case
A similar analysis was performed on the seasonal model.
From Fig. 4 it can be seen that the annual cycle and the inter-
annual oscillation are contained in the leading four EOFs of
the seasonally forced model. The model was projected onto
the leading four EOFs and forced with the seasonal cycle. The
resulting behaviour is shown in Fig. 9. It was found that
changing the reduced gravity in the reduced model, from
0.0486 m s–2 to 0.0600 m s–2, resulted in the reduced model
having an interannual frequency closer to the full model.
When reducing non-linear models with complex bifurcation
structures it is not uncommon that behavioural regimes 
are reproduced but their positions are slightly shifted in 
the model’s parameter space. The ability to reproduce the

original model’s period with a relatively small change in a
single parameter is evidence that the bifurcation structure has
been reproduced, at least locally. 

With the standard value the period of the interannual oscil-
lation was about 6.3 years. Figure 9 should be compared with
the corresponding full model run shown in Fig. 2. The domi-
nant interannual oscillation and the seasonal cycle are repro-
duced, but the other peaks in the spectrum shown in Fig. 2c
are not present in Fig. 9. This is not suprising since these other
oscillations are contained in the higher EOFs. The effect of
increasing the number of EOFs included in the model was
investigated. The model was projected onto 16 EOFs. The
resulting behaviour is shown in Fig. 10. The 16-EOF model
shows subsidiary peaks similar to the full model, although
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Fig. 7 The eigenvalues of the normal modes of the 4-EOF reduced model linearized about its mean state. The size of the symbol represents the strength of the
coupling ranging from zero to the actual value used in the model.

Fig. 8 The eigenvalues of the normal modes of the 8-EOF reduced model linearized about its mean state. The size of the symbol represents the strength of the
coupling ranging from zero to the actual value used in the model.



their amplitudes are not exactly the same. The dominant inter-
annual oscillation is at the same frequency, but its amplitude
is more than twice that of the full model. The QB mode is also
present, although its amplitude is also too large. The sec-
ondary peaks on either side of the seasonal cycle, corre-
sponding to periods of about 1.2 years and 0.8 years, are
reproduced, but there is an extra peak at 1.5 years which has
negligible amplitude in the full model. Although the 16-EOF
reduced model does not reproduce the behaviour of the full
model exactly, it does capture its general dynamics, including
relatively minor spectral peaks. 

In order to understand the changes in the spectra of the sea-
sonal model as the number of retained EOFs increases, the
normal modes of the linearized models were calculated.
These are shown in Figs 11 and 12. Notice that in both cases
there is only one unstable mode and it has a period between 4
and 5 years. In the four-EOF model the other mode has a peri-
od very close to one year. This mode is excited by the sea-
sonal forcing. In the 16-EOF model one of the extra modes
has a period of about 1.25 years; it is still stable but manifests
itself because it couples to another mode. Since this mode

does not manifest itself in the non-seasonal model, it probably
couples to the seasonally driven, 1-year mode, rather than the
interannual QQ mode. There are several modes with periods
of more than a year. One can be identified with the QB mode
of the non-seasonal model. All the peaks in the spectrum in
Fig. 2c can be identified with a normal mode in Fig. 12 but all
the normal modes remain stable except for the QQ mode. 

6 Discussion and conclusions
It is shown that the annual and periodic interannual variabili-
ty of the ICM can be reproduced with low dimensional mod-
els, constructed using truncated basis sets of the model’s
EOFs. Analysis of these reduced models indicates that the
interannual modes of oscillation are modified oscillatory
modes of the ocean, which are destabilized by the positive
feedbacks associated with ocean-atmosphere coupling. This
picture is consistent with previous results (Neelin and Jin,
1993; Jin et al., 1996) which identified the ENSO modes with
highly modified ocean scattering modes identified by Moore
(Moore, 1968). The ocean possesses a spectrum of scattering
modes with frequencies in the interannual range. Coupling to
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Fig. 9 The behaviour of the 4-EOF model constructed using the  leading four EOFs in Fig. 4 and a coupling strength of KQW = 0.0136 m3 s–4 °C–1 with sea-
sonal forcing. The results may be compared to Fig. 2.



the atmosphere modifies these modes, destabilizing some of
them. For strong enough coupling a mode becomes unstable
and capable of self-sustained oscillations the amplitude of
which is bounded by the non-linearity of the subsurface tem-
perature structure.

The results obtained by normal mode analysis of the
reduced models indicate that the QQ mode and the QB mode
have their origins in distinct scattering modes of the ocean
basin. Furthermore it is not necessarily the case that the QQ
and the QB mode are both linearly unstable. For the parame-
ter values used in the model, the first mode to become unsta-
ble is the QQ mode, which has a period close to the observed
primary ENSO period. A secondary, linearly stable, QB mode
is sustained by non-linear coupling to the primary QQ mode.
The QB mode is not the least stable of the linearly stable
modes. It manifests itself, while the other modes do not,
because the proximity of the QB frequency to the first har-
monic of the QQ mode frequency favours the non-linear cou-
pling. The non-linearity is not sufficient to create a QB
spectral peak if the model is truncated to eliminate the EOFs
associated with the QB in the full model. Although, in princi-
ple, a non-linear model with two variables can produce har-

monics of a primary oscillation, in this ENSO system the
additional spatial degrees of freedom, that permit the exis-
tence of a linear QQ mode, are required before the non-linear
coupling can excite this frequency significantly.

The addition of a seasonal cycle enables other linearly 
stable modes to manifest themselves by coupling to the 
annual cycle. The low-dimensional EOF models are 
capable of capturing the dynamics of these modes of 
oscillation. One of the limitations of the EOF models is 
that they are constructed using the EOFs of the model in 
a particular point in parameter space. Projecting the ICM 
onto a particular subset of EOFs is making an assumption 
as to what the dominant modes of the model are, an assump-
tion that may not be true for a different set of model parame-
ters. A further limitation of the EOF approach is its linear
nature based on the variance described by each basis function.
Further model simplification might be possible if the 
basis functions were chosen using a technique which captures
non-linear spatial relationships (Aires and Chédin, 2000;
Hsieh, 2001).

It has been shown that the modes that manifest themselves
in the deterministic case can be reproduced by a relatively
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Fig. 10 As Fig. 9 but with 16 EOFs.



small number of EOFs. This supports the use of low-dimen-
sional models for the deterministic case and for the leading
ENSO modes, although it suggests that more heuristically
derived models such as Jin (1997a) may have trouble 
reproducing the non-linear coupling of the QB mode to the
QQ mode.
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Appendix A: The model equations
This appendix is for the reader’s convenience. The model fol-
lows that of Zebiak and Cane (1987) and Jin and Neelin
(1993). The model covers the tropical Pacific ocean. The
upper layer of the ocean is the mixed layer, of thickness, HM,
in which the temperature is constant with depth and is written
T(x,y,t). Below the mixed layer is the thermocline layer, with
a mean thickness HT. The lower boundary of the thermocline
layer is the thermocline with a mean depth H = HM + HT. The
temperature in the thermocline layer is a function of distance
from the thermocline interface. Perturbations in the thickness
of the thermocline layer will be written as h(x,y,t). The 
depth averaged zonal and meridional currents in the ocean
above the thermocline will be written as u(x,y,t) and v(x,y,t)
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Fig. 11 The eigenvalues of the normal modes of the 4-EOF reduced seasonally forced model, linearized about its mean state with a coupling strength of KQW
= 0.0136 m3 s–4 °C–1. The size of the symbols indicates the strength of the coupling, from zero to the standard value.

Fig. 12 The eigenvalues of the normal modes of the 16-EOF reduced seasonally forced model, linearized about its mean state with a coupling strength of KQW
= 0.0136 m3 s–4 °C–1. The size of the symbols indicates the strength of the coupling, from zero to the standard value.



respectively. The zonal and meridional currents in the mixed
layer will be written as (uM,vM) and similarly the currents in
the thermocline layer will be written as (uT,vT). From the
above definitions it follows that

Hu = HMuM + HTuT (A1)

Hv = HMvM + HTvT . (A2)

If the shear velocity is defined as (uS,vS) = (uM,vM) – (uT,vT)
then Eqs (A1) and (A2) give

(A3)

(A4)

The dynamical part of the model consists of the linearized
shallow-water equations on an equatorial beta-plane,

(A5)

(A6)

(A7)

In Eqs (A5–A7) β is the gradient of the Coriolis parameter, g′
is the reduced gravity, ρ is the mean density of the upper
ocean, r is the coefficient of damping by Rayleigh friction and
(τx,τy) is the windstress vector at the surface. It is assumed
that the shear currents are in equilibrium with the windstress
and therefore the following steady state equations for the
shear current may be written

(A8)

(A9)

where q is the coefficient of friction between the mixed and
thermocline layers. Equations (A8) and (A9) can be readily
solved to give

ρHM(β2y2 + q2)uS = qτx + βyτy (A10)

ρHM(β2y2 + q2)vS = qτy + βyτx. (A11)

The upwelling velocity, w, in the mixed layer is given by

w = wT + wS (A12)

where wT and wS are given by

(A13)

(A14)

The equation for the mixed layer temperature is 

(A15)

where H is the Heaviside step function, TB is the temperature
at the base of the mixed layer and γ is the fraction of
upwelling water entrained in the mixed layer. Equation (A15)
contains all the non-linear terms of the model, the ocean
dynamics are linear.

The temperature at the base of the mixed layer, TB, is
parametrized as a function of h.

(A16)

Note that for convenience the zero in temperature has been
moved. The temperature at the centre of the thermocline is
about 20°C. 

The ocean component is coupled to a steady-state model of
the tropical atmosphere (Gill, 1980, 1982) The atmospheric
model is linear but it models the response of the tropical
atmosphere to SST forcing reasonably well and non-linear
models do not produce substantial improvements (Allen and
Davey, 1993). The model consists of the linearized shallow-
water equations on a beta-plane,

(A17)

(A18)

(A19)

In Eqs. (A17–A19) R is the atmospheric damping coefficient,
ca is the atmospheric Kelvin wave speed, U and V are the zonal
and meridional components of lower tropospheric wind respec-
tively and φ is the lower tropospheric geopotential height.

230 / Mark S. Roulston and J. David Neelin

u u
H

H
uM

T
S= +

v v vM
T

S
H

H
= + .

∂
∂

= − ′ ∂
∂

+ −u

t
y g

h

x H
ruxβ τ

ρ
v

∂
∂

= − − ′ ∂
∂

+ −v
v

t
yu g

h

y H
rxβ τ

ρ

∂
∂

= − ∂
∂

+ ∂
∂







−h

t
H

u

x y
rh

v
.

qu y
HS S

x

M
− =β τ

ρ
v

q yu
HS S

y

M
v − =β

τ
ρ

w H
u

x yT M= ∂
∂

+ ∂
∂







v

w H
H

H

u

x yS M
T S S= ∂

∂
+ ∂

∂






v
.

∂
∂

= − ∂
∂

− ∂
∂

+ ( ) ( ) −( )
−T

t
u

T

x

T

y
w w

T h T

H
TM M

B

M
v γ αH

T T
h h

H
TB = −



 −0

0
0tanh

*
.

− + ∂
∂

+ =β φ
yV

x
RU 0

β φ
yU y

RV+ ∂
∂

+ = 0

c
U

x

V

y
R Qa

2 ∂
∂

+ ∂
∂







+ = −φ .



References
ACHATZ, U. and G. SCHMITZ. 1997. On the closure problem in the reduction of

complex atmospheric models by PIPs and EOFs: A comparison for the
case of a two-layer model with zonally symmetric forcing. J. Atmos. Sci.
54: 2542–2474.

AIRES, F. and A. CHÉDIN. 2000. Independent Component Analysis of multi-
variate time series: Application to the tropical SST variability. J. Geophys.
Res. 105: 17437–17455.

ALLEN, M.R. and M.K. DAVEY. 1993. Empirical parameterization of tropical
ocean-atmosphere coupling: The “inverse Gill problem”. J. Clim. 6: 509–530.

BLUMENTHAL, M.B. 1991. Predictability of a coupled ocean-atmosphere
model. J. Clim. 4: 766–784.

GILL, A.E. 1980. Some simple solutions for heat-induced tropical circulations.
Q.J.R. Meteorol. Soc. 106: 447–462.

———. 1982. Atmosphere-ocean dynamics. Academic Press, San Diego,
662 pp.

GOLDENBERG, S.B. and J.J. O’BRIEN. 1981. Time and space variability of tropi-
cal Pacific wind stress. Mon. Weather Rev. 109: 1190–1207.

HOLMES, P.; J.L. LUMLEY and G. BERKOOZ. 1986. Turbulence, coherent struc-
tures, dynamical systems and symmetry. Cambridge Univ. Press, 420 pp.

HSIEH, W.W. 2001. Nonlinear principal component analysis by neural net-
works. Tellus A, 53: 599–615.

JIANG, N.; J.D. NEELIN and M. GHIL. 1995. Quasi-quadrennial and quasi-bienni-
al variability in the equatorial Pacific. Clim. Dyn. 12: 101–112.

JIN, F.-F. 1997a. An equatorial recharge paradigm for ENSO I: Conceptual
model. J. Atmos. Sci. 54: 811–829.

———. 1997b. An equatorial recharge paradigm for ENSO II: a stripped
down coupled model. J. Atmos. Sci. 54: 830–845.

——— and J.D. NEELIN. 1993. Modes of interannual tropical ocean-atmos-
phere interaction - a unified view. Part I: Numerical results. J. Atmos. Sci.
50: 3477–3503.

———; ——— and M. GHIL. 1996. El Niño/Southern Oscillation and the
annual cycle subharmonic frequency-locking and aperiodicity. Physica D,
98: 442–465.

KEPPENNE, C.L.; M.D. DETTINGER and M. GHIL. 1992. Adaptive filtering and pre-
diction of the southern oscillation index. J. Geophys. Res. 97:
20,449–20,454.

LORENZ, E.N. 1956. Empirical orthogonal functions and statistical weather
prediction. In: Statistical Forecasting Project, MIT Press, Cambridge,
MA., 49 pp.

MOORE, D.W. 1968. Planetary-gravity waves in an equatorial ocean. Ph.D
Thesis, Harvard, 207 pp.

NAYFEH, A.H. and B. BALACHANDRAN. 1995. Applied Nonlinear Dynamics.
John Wiley & sons, New York, 685 pp. 

NEELIN, J.D. and F.-F. JIN. 1993. Modes of interannual tropical ocean-atmos-
phere interaction - a unified view. Part II: Analytical results in the weak-
coupling limit. J. Atmos. Sci. 50: 3504–3522.

———; D.S. BATTISTI, A.C. HIRST, F.-F. JIN, Y. WAKATA, T. YAMAGATA and S.E.
ZEBIAK. 1998. ENSO theory. J. Geophys. Res. 103: 14261–14290.

RASMUSSON, E.; X. WANG and C. ROPELEWSKI. 1990. The biennial component
of ENSO variability. J. Mar. Syst. 1: 71–96.

RINNE, J. and V. KARHILA. 1975. A spectral barotropic model in horizontal
empirical orthogonal functions. Q.J.R. Meteorol. Soc. 101: 365–382.

ROULSTON, M.S. 2000. Construction of low dimension models of El Niño-
Southern Oscillation using empirical orthogonal functions, Ph.D Thesis,
California Institute of Technology, 158 pp.

——— and J.D. NEELIN. 2000. The response of an ENSO model to climate
noise, weather noise and intraseasonal forcing. Geophys. Res. Lett. 27:
3723–3726.

SEAGER, R., S.E. ZEBIAK and M.A. CANE. 1988. A model of the tropical Pacific
sea surface temperature climatology. J. Geophys. Res. 93: 1265–1280.

SELTEN, F.M. 1993. Toward an optimal description of atmospheric flow. J.
Atmos. Sci. 50: 861–877.

———. 1995. An efficient description of the dynamics of barotropic flow. J.
Atmos. Sci. 52: 915–936.

———. 1997a. Baroclinic empirical orthogonal functions as basis functions
in an atmospheric model. J. Atmos. Sci. 54: 2099–2114.

———. 1997b. A statisitcal closure of a low-order barotropic model. J.
Atmos. Sci. 54: 1085–1093.

SMITH, T.M.; R.W. REYNOLDS, R.E. LIVEZEY and D.C. STOKES. 1996.
Reconstruction of historical sea surface temperature using empirical
orthogonal functions. J. Clim. 9: 1403–1420.

TIMMERMANN, A.; H.U. VOSS and R. PASMANTER. 2001. Empirical dynamical
system modeling of ENSO using nonlinear inverse techniques. J. Phys.
Oceanogr. 31: 1579–1598.

TZIPERMAN, E.; L. STONE, M.A. CANE and H. JAROSH. 1994. El Niño chaos: over-
lapping resonances between the seasonal cycle and the Pacific Ocean-
atmosphere oscillator. Science, 264: 72–74.

XUE, Y.; M.A. CANE, S.E. ZEBIAK and B. BLUMENTHAL. 1994. On the prediction
of ENSO: A study with a low-order Markov model. Tellus, 46: 512–528.

WANG, B. and Z. FANG. 1996. Chaotic oscillations of tropical climate: A
dynamic system theory for ENSO. J. Atmos. Sci. 53: 2786–2802.

ZEBIAK, S.E. 1984. Tropical atmosphere-ocean interaction and the El
Niño/Southern Oscillation phenomenon. Ph.D Thesis, M.I.T., 261 pp.

——— and M.A. CANE. 1987. A model of El Niño-Southern oscillation. Mon.
Weather Rev. 115: 2262–2278.

ZHUANG, Y. 1996. A low-order model of coherent structures in the convective
atmospheric surface layer. Q.J.R. Meterol. Soc. 122: 1075–1094.

Non-linear Coupling between Modes in a Low-Dimensional Model of ENSO / 231




