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Abstract

An intermediate coupled model of the tropical Pacific ocean-atmosphere system
was reduced by projecting the nonlinear model onto a truncated basis set of its
own empirical orthogonal functions (EOFs). For moderate coupling strengths,
the simulated El Nifio/Southern Oscillation (ENSO) variability consists of a
dominant quasi-quadrennial mode with a period of approximately 4 years and a
smaller quasi-biennial mode at a period of approximately 2 years. In the absence
of a seasonal cycle, the leading two EOFs capture the dynamics of the leading
interannual mode, with a further two EOF's being required to capture the
secondary oscillation. The presence of seasonal forcing increases the EOF
requirement by two, the leading pair of EOFs being dominated by the annual
cycle. Normal mode analysis of the reduced models indicates that the
quasi-biennial mode manifests itself, even though it is linearly stable, by
nonlinear coupling to the quasi-quadrennial mode. The nonlinearity does not
produce the quasi-biennial signal unless the spatial degrees of freedom associated
with the linear quasi-biennial mode are present. Other linearly stable modes also
couple nonlinearly to the leading interannual mode and to the seasonal cycle,
but the quasi-biennial mode is favored over other, less-damped linear modes
because of its proximity to a multiple of the quasi-quadrennial frequency.



Introduction

The use of intermediate coupled models

(ICMs) of the tropical Pacific ocean-atmosphere

system to study ENSO dynamics is well es-
tablished [Zebiak 1984; Zebiak and Cane
1987; Jin and Neelin 1993]. Even though such
ICMs are less complex than hybrid coupled
models and global climate models, they still
contain many hundreds of model variables.
While these models have relatively high di-
mensional state spaces, in many parameter
regimes they exhibit periodic or quasi-periodic
behavior. This suggests that the dynamics ac-
tually exist on a low dimensional manifold.
Several attempts have been made to con-
struct very low dimensional models of ENSO
[Tziperman et al. 1994; Wang and Fang
1996; Jin 1997a; Jin 1997b]. These efforts
usually begin with an ICM, and then in-
voke ad hoc assumptions to drastically reduce
the number of independent model variables.
There has also been work with linear reduc-
tions of ICMs, especially in the predictability
problem [Blumenthal et al. 1991; Xue et al.
1994]

This paper describes a method for reducing
an ICM which is better defined and includes
nonlinear interactions. The reduced model is
obtained by projecting the ICM onto a trun-
cated set of the model’s own empirical orthog-
onal functions (EOFs). This method has been
used in the reduction of atmospheric models
[Rinne and Karhila 1975; Selten 1993; Selten
1995; Selten 1997al, as well as models of fluid
turbulence [Holmes et al. 1996].

ICM Model

Ocean-Atmosphere Coupling

The ICM used in the study was similar to
the model used by Jin and Neelin [1993]. The
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model covers the tropical Pacific. The ocean
component is a 13 layer linearized model on
a beta-plane. The atmospheric component is
a steady-state, Gill type atmosphere, which
also consists of the linearized shallow water
equations on a beta-plane [Gill 1980]. The
details of the model can be found in Ap-
pendix A. The atmospheric component of the
model is forced by middle tropospheric heat-
ing, Q(z,y), which is taken to be a linear
function of SST.

Q= KoT (1)

where K¢ has units of m?s™3°C~!.

The windstress, that results from the at-
mospheric heating, provides the forcing for
the ocean, (7,,7,). The dependence of the
windstress on the wind velocity was assumed
to be linear. The equations are as follows:

7o = paCpWU = KsWU (2)
7, = pCoWV = KsWV (3)

where p, is the atmospheric density, Cp the
coefficient of surface drag and W is a char-
acteristic windspeed. The parameters p, and
Cp were combined into a single parameter,
K.

The parameter values used are summarized
in Table 1.

Estimating the External Windstress

The windstress can be separated into two
components, an internal windstress, which is
the result of SST forcing within the tropical
Pacific, and an ezternal windstress which is
caused by processes outside the tropical Pa-
cific. The coupled model should be able to
generate the internal component but it must
be forced with the external windstress. The
observed windstress is the sum of the inter-
nal and external components. The external



component can be estimated by using the ob-
served SST and the atmospheric model to es-
timate the internal component, and then sub-
tracting this from the observed windstress.
If the observed, external and internal wind-
stresses are represented by Tops, Tez: and Tipn
respectively, then

Text = Tobs — Tint (4)

If T, is the observed SST, then 7;,; can be
estimated using

Tint = KSWA(KQTobs) (5)

where A is the atmospheric model.
The windstress forcing used was the Florida

State University (FSU) pseudo-windstress prod-

uct covering the period from 1961 to 1991
[Goldenberg and O’Brien 1981]. This dataset

consists of the pseudo-windstress vectors (S, Sy).

These are converted into surface windstress
using

Ty = paCDS:z: Ty = paCDSy (6)

The observed SST used was the Reynolds
reconstructed SST for the period 1961-1991
[Smith et al. 1996]. The SST reconstructions
were used, with the atmospheric model de-
scribed above, to estimate 7;,;. Since the at-
mospheric model is linear the product of the
two parameters in which there is most un-
certainty, Ko and W, can be treated as a
single parameter. The value of KoW that
minimizes the mean square error between
the internal zonal windstress anomaly and
the observed zonal windstress anomaly was
Kqg = 0.013m3s*°C~!. With this value,
58% of the observed windstress variance is ex-
plained as the internal windstress correlated
with tropical Pacific SST. The annual compo-
nent of the the external windstress was cal-
culated by subtracting the estimated internal
windstress from the observed windstress.

Behavior of the Model

Nonseasonal Case

The coupled model was forced with a con-
stant windstress, equal to the estimated ex-
ternal windstress for the month of April. April
was chosen because the estimated external
windstress is most strongly easterly during
this month. As the coupling strength, K, is
increased the model passes through a bifur-
cation. Below the bifurcation the model does
not exhibit self-sustained interannual vari-

ability. At a coupling of KoW = 0.0097 m?® s~*°C~!

the model is just above the bifurcation and ex-
hibits periodic interannual variability. Figure
1 shows a plot of equatorial SST as a func-
tion of time. The NINO3 SST oscillates with
a period of about 4.5 years and a peak-to-
peak amplitude of about 2°C. The longitude-
time plot in Fig. 1b shows the spatial pat-
tern of oscillation typical of ENSO, with the
SST variance confined to the Eastern Pacific,
although the NINO 3 region and the region
closest to the eastern boundary are out of
phase. This phase difference is not present
in observations. The amplitude spectrum of
NINO3 SST shows a dominant peak corre-
sponding to a period of about 4.5 years, and
a smaller peak corresponding to about 2.1
years. Analysis of observed equatorial Pa-
cific SST has found a quasi-quadrennial (QQ)
mode, with a period of 53 months, and a
quasi-biennial (QB) mode, with a period of
28 months [Rasmusson et al. 1990; Jiang et
al. 1995; Aires and Chédin 2000]. Analysis of
the southern oscillation index has also found
a low frequency component, with a period of
4-6 years, and a high frequency component
with a period of 2-3 years [Keppenne et al.
1992]. The similarity of the SST structure of
the QB mode with the QQ mode led Jiang
et al. [1995] to suggest that the QB arises



due to an interaction between the QQ mode
and the annual cycle. Since the model used
in this study exhibits both a QQ and a QB
mode in the absence of seasonal forcing, in-
teractions with the seasonal cycle are clearly
not required to explain their existence in this
case.

Seasonal Case

When the model is driven by the season-
ally varying external windstress the coupling
strength at which the bifurcation occurs in-
creases. Figure 2 shows the behavior of the
model with a coupling strength of KoW =
0.0136 m® s~4°C~!, which puts it just above
the bifurcation. The behavior is more com-
plicated than the case with no seasonal cycle,
but there is still a sharp interannual peak.
The period of the interannual oscillation is
now 5.3 years. The peak-to-peak amplitude
of the interannual oscillation is approximately
1°C. Figure 2b shows that the general spatial
pattern of ENSO remains although there is
more SST variability in the west than in the
non-seasonal case. Also visible in the ampli-
tude spectrum, is the annual cycle, as well as
several smaller peaks. The seasonal cycle in
NINO3 SST in the model has its maximum in
January rather than April, as in the observa-
tions. In the NINO4 region the annual cycle
of SST is 6 months out of phase. This dis-
parity can be explained by recognizing that
in the NINO3 region upwelling is important
in determining the SST, whereas in NINO4
surface heat flux is more important [Seager
et al. 1988]. The model includes upwelling
and thus does reasonably well in NINO3 but
does not include seasonal changes in surface
heat flux leading to poor agreement further
west. Since the SST variability in the western
Pacific is relatively small, failure to reproduce
the annual cycle in these regions does not rep-
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resent a major deficiency in the model. Syn-
chronization with the seasonal cycle is found
in observations, with warm events tending
to peak between June and November. This
does not agree with the observed preference
for September to January but the existence
of seasonal synchronization demonstrates in-
teraction between the annual cycle and the
interannual variability.

Reduction of the Model
EOF method

Reducing models by projecting them onto
truncated empirical basis sets has been ap-
plied to horizontal barotropic models of the
atmosphere [Rinne and Karhila 1975; Selten
1993; Selten 1995]. In addition, the method
has been used to model convection in the
atmospheric boundary layer [Zhuang 1996].
More recently, the method has been applied
to a horizontal baroclinic model of the atmo-
sphere [Selten 1997a]. The approach has also
been used to reduce models of turbulence (see
Holmes et al. [1996]).

There are several variants of the approach.
Each constructs the basis sets in a different
way. The basis set used here are Empirical
Orthogonal Functions (EOFs). The method
of EOF analysis was first used in meteorol-
ogy by Lorenz in 1956 [Lorenz 1956]. The
method for calculating the EOF's is outlined
in Appendix B.

To apply EOF analysis to the output of
the coupled model, state vectors must be con-
structed. The EOF analysis can be applied
to each of the fields u, v, h and T separately
but for this work combined state vectors were
constructed. To combine the fields into single
state vectors, the variables were nondimen-
sionalized. The state vectors used were given



by
uv h T
= |- - — ., = 7
=21z )
where u, v, H, T are the vectors of coeffi-
cients for the fields in the original basis set,
H is the mean thermocline depth and ¢ and

T are the characteristic scales for speed and
SST given by

_ Jom - covbe 8
c= V9 A @

where ||A|| is the norm of the atmospheric
model matrix. The windstress forcing was
also nondimensionalized using the character-
istic windstress given by

7= pHc@ 9)

The characteristic scales adopted are not unique

but they are found to give satisfactory results.

Results of the EOF analysis

EOF analysis was performed on the output
of the two runs of the coupled model discussed
in section 3 above (Figs. 1 and 2). The four
leading EOFs are shown in Figs. 3 and 4 for
the nonseasonal and seasonally forced cases
respectively.

The leading 2 EOFs in Fig. 3 have vari-
ability associated with the 4.5 year oscilla-
tion. Between them these EOFs contain 95%
of the total variance. The h-field components
of these EOFs are meridionally symmetric.
The T-field components have variability con-
fined largely to the eastern part of the basin,
as would be expected for the dominant ENSO
mode. The third and fourth EOFs contain a
further 4% of the total variance. An inspec-
tion of their time series shows that they are
dominated by the 2.1 year oscillation, but no-
tice that there is contamination by the 4.5
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year mode. This highlights the fact that, be-
cause EOFs are constrained to be orthogonal,
there is no guarantee that EOF analysis will
separate out oscillatory modes of different fre-
quencies, although in this case the QQ and
QB modes are quite well separated by pro-
jection onto EOFs. The h-field components
of EOFs 3 and 4 in Fig. 3 are meridion-
ally asymmetric about the equator, in sharp
contrast to the h-field components of EOF's
1 and 2. If broken into symmetric and anti-
symmetric components, EOFs 3 and 4 have a
substantial contribution from each. The dis-
tinction between the SST fields of EOFs 1 and
2 and EOFs 3 and 4 is less clear; EOF 3 has
a substantial signature in the equatorial cold
tongue region. Analysis of observed SST has
found that, spatially, the SST variability as-
sociated with the QQ mode is similar to that
of the QB mode [Jiang et al. 1995]. A lack of
data precluded a similar analysis of thermo-
cline depth. The results from this model sug-
gest the hypothesis that that QB variability
in thermocline depth may be more meridion-
ally asymmetric than that of the QQ mode.

Figure 4 shows the leading EOFs when the
model is forced with the seasonally varying
external windstress. Now the leading 2 EOF's
are dominated by the seasonal cycle, although
the time series does show some interannual
variability. They account for 91% of the vari-
ance (including that of the seasonal cycle).
EOFs 3 and 4 contain a further 4% of the
variance and are dominated by the interan-
nual variablity, with a period of 5.3 years, al-
though there is contamination by the seasonal
cycle. Inspection of the T-field patterns for
EOFs 1 and 2 and EOFs 3 and 4 shows that
the pattern of SST variability associated with
the seasonal cycle is very similar to that as-
sociated with the interannual variability. The
similar SST patterns found in multiple EOF's



is allowed by the combined field EOF analy-
sis which only dictates that the EOF's of the
combined state vectors must be orthogonal.
Physically, the similarity of the SST pattern is
due to the climatology of upwelling and ther-
mocline depth favoring SST variations in the
equatorial cold tongue.

Projection and Closure

Reduced versions of the full model were
constructed by Galerkin projection of the model
onto truncated sets of the EOF's, which span a
lower dimensional subspace of the statespace
of the full model.

Let P be the matrix of vectors defining the
EOFs. That is [P, P, ...P;ny] is the ith EOF,
where N is the dimension of the model state
space. The nondimensionalized model can be
written as

dx
= = Mx + N(x) + F(t) (10)
where M represents the linear part of the
model, N represents the nonlinear part and
F is the time dependent forcing. If y is the
reprojected state vector, y = Px, then the
reprojected model is given by

dy T T

i PMP 'y + PN(P'y) + PF(¢t) (11)
The model given by Eq. 11 is exactly equiv-
alent to the model given by Eq. 10 since the
basis set has not been truncated. Let the row
vectors of P be ordered in decreasing order
of their corresponding eigenvalues. Let IV, be
the number of EOFs that are to be retained
and let N;j = N — N, be the number to be
discarded. The projection matrix can now be
decomposed as follows.

P:l;‘;] (12)
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where P, is a N, X N matrix containing the
retained basis vectors and Py is a Ng X N
matrix containing the discarded basis vectors.
The reprojected state vector, y, can also be
decomposed.

Yy = [yr yd (13)

where y, is the vector of the retained com-
ponents and y4 is the vector of the discarded
components. The truncated, reprojected model
is thus given by

dy,

i P.MP’y, + P,N(P’y,) + P,F(t)

(14)
The model given by Eq. 14 can be improved
by attemping to model the effects of the dis-
carded EOFs on the dynamics of the retained
EOFs. The model used is known as the clo-
sure scheme. Most attempts at construct-
ing closure schemes for truncated models have
been statistical-empirical. In most standard
atmospheric and oceanic models, the effect of
unresolved modes is parameterized by intro-
ducing an eddy diffusivity. Essentially the
same approach has been used in low order
EOF models in which extra linear dissipa-
tion is added to prevent model drift [Sel-
ten 1997a]. The effects of discarded modes
isn’t always dissipative however. Selten at-
tempted to model the effects of discarded
modes by finding linear and quadratic combi-
nations of the retained coefficients that min-
imized the error in the tendency equations
(time derivatives) of the reduced model. This
approach was found to improve short range
forecasts but led to the model being unsta-
ble over longer integration periods [Selten
1997b]. Later attempts at this kind of clo-
sure attempted to solve the problem of insta-
bility by imposing constraints on the closure
scheme to bound the total energy of the model
[Achatz and Schmitz 1997].




In this work a simple closure scheme was
adopted. The coefficients of each of the dis-
carded EOF's were specified as constants equal
to their mean value in the full model. Let ¥y,
be the vector of the mean coefficients of the
discarded EOFs. The projected model thus
becomes

dy,
dt

(15)
where the terms involving y, are the closure
terms.

Behavior of the Reduced Models

Nonseasonal Case

The coupled nonseasonal model was pro-
jected onto its leading EOFs, seen in (Fig.
3). We compare behavior for cases where
only the two leading EOFs are retained (Fig.
5), and where the four leading EOFs are re-
tained (Fig. 6). In both cases, the pattern
of SST wvariability of the reduced model is
very similar to that in the full model. In
the four-EOF case, the reduced model cap-
tures the QQ mode and the QB mode, as
may be seen from the power spectrum (Fig.
6c). The time series shows the QB mode is
locked to the dominant QQ mode (Fig. 6a).
In the two-EOF case, only the QQ mode is
captured (Fig. 5c). This result is consistent
with the time series of the EOF coefficients in
Fig. 3 but could not entirely be anticipated
in advance—in principle, nonlinearity in the
two-EOF case could generate QB variability.
Apparently, it is much more difficult to do
so without the additional spatial structures.
The peaks at frequencies higher than the QB
seen in Fig. 1c are not reproduced by the
reduced model.

To analyse the reduced model it was lin-
earized about its mean state and its normal
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modes were calculated. The eigenvalues of
the normal modes are plotted on the com-
plex plane in Fig. 7. They were calcu-
lated for increasing values of coupling. The
smallest symbol size represents the uncoupled
model projected onto the EOFs of the cou-
pled model, while the largest symbol size rep-
resents the full coupling strength used in the

= P,MP'y, +P,MP}y,+P,N(P’y,+P!y,)+®uBlgd model. From Fig. 7 it can be seen

that for the standard coupling strength one
pair of eigenvalues obtains positive real parts.
The point when this pair crosses the imag-
inary axis represents the Hopf bifurcation,
above which the model exhibits sustained in-
terannual oscillations. Notice that for zero
coupling the real part of the eigenvalues is
close to the coefficient of Rayleigh friction, 7.
This figure thus shows how coupled processes
turn a somewhat obscure ocean mode into an
unstable and dominant coupled mode. The
oscillation period associated with this pair is
about 4.5 years; this is the dominant peak in
the spectrum of the model shown in Fig. 6c.
Figure 7 also shows a second pair of eigenval-
ues which, for the standard coupling, corre-
spond to a period of about 2.1 years but which
have a negative real part indicating that, in
the linearized model, this mode of oscillation
will be decaying. Fig. 6¢ does show a peak at
this period which represents a sustained oscil-
latory component. There must be a transfer
of energy from the unstable QQ mode to the
stable QB model due to non-normal or non-
linear coupling.

Figure 8 shows a case where eight EOFs
have been retained in the model. Asin Fig. 7,
the model has been linearized and the eigen-
values calculated for increasing values of the
coupling parameter, starting from the uncou-
pled case. The time series and spectra for
the nonlinear integration of the 8-EOF model
(not shown, see Roulston [2000]) exhibit QQ



and QB oscillations, very much like that of
the 4-EOF model in Fig. 6. Two of the eigen-
modes of the 8-EOF case (Fig. 8) are very
similar to the QQ and QB eigenmodes of the
4-EOF case (Fig. 7), although the QB mode
is somewhat more strongly decaying. The in-
teresting point in Fig. 8 is that there are two
oscillatory modes that are less strongly de-
caying than the QB mode. However, neither
of these modes shows up in the time series
of the nonlinear model. The QB mode, de-
spite being more stable, does manifest itself in
the spectrum. This must be due to its prox-
imity to a multiple of the frequency of the
QQ mode, so that it couples more effectively
to the system’s only self-sustaining oscillatory
mode.

Seasonal Case

A similar analysis was performed on the
seasonal model. From Fig. 4 it can be seen
that the annual cycle and the interannual os-
cillation are contained in the leading 4 EOFs
of the seasonally forced model. The model
was projected onto the leading 4 EOFs and
forced with the seasonal cycle. The resulting
behavior is shown in Fig. 9. It was found that
changing the reduced gravity in the reduced
model, from 0.0486 m s~2 to 0.0600 m s~2, re-
sulted in the reduced model having an in-
terannual frequency closer to the full model.
With the standard value the period of the
interannual oscillation was about 6.3 years.
Figure 9 should be compared with the cor-
responding full model run shown in Fig. 2.
The dominant interannual oscillation and the
seasonal cycle are reproduced, but the other
peaks in the spectrum shown in Fig. 2c are
not present in Fig. 9. This is not suprising
since these other oscillations are contained in
the higher EOFs. The effect of increasing the
number of EOFs included in the model was
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investigated. The model was projected onto
16 EOFs. The resulting behavior is shown
in Fig. 10. The 16 EOF model shows sub-
sidiary peaks similar to the full model, al-
though their amplitudes are not exactly the
same. The dominant interannual oscillation
is at the same frequency, but its amplitude is
more than twice that of the full model. The
QB mode is also present, although its ampli-
tude is also too large. The secondary peaks on
either side of the seasonal cycle, correspond-
ing to periods of about 1.2 years and 0.8 years,
are reproduced, but there is an extra peak at
1.5 years which has negligible amplitude in
the full model. Although the 16 EOF reduced
model does not reproduce the behavior of the
full model ezactly, it does capture its general
dynamics, including relatively minor spectral
peaks.

To understand the changes in the spectra
of the seasonal model as the number of re-
tained EOF's increases, the normal modes of
the linearized models were calculated. These
are shown in Figs. 11 and 12. Notice that
in both cases there is only one unstable mode
and it has a period between 4 and 5 years.
In the 4 EOF model the other mode has a
period very close to 1 year. This mode is ex-
cited by the seasonal forcing. In the 16 EOF
model one of the extra modes has a period of
about 1.25 years; it is still stable but mani-
fests itself because it couples to another mode.
Since this mode does not manifest itself in the
nonseasonal model, it probably couples to the
seasonally driven, 1 year mode, rather than
the interannual QQ mode. There are several
modes with periods of more than a year. One
can be identified with the QB mode of the
nonseasonal model. All the peaks in the spec-
trum in Fig. 2c can be identified with a nor-
mal mode in Fig. 12 but all the normal modes
remain stable except for the QQ mode.



Discussion and Conclusions

It is shown that the annual and periodic
interannual variability of the ICM can be re-
produced with low dimensional models, con-
structed using truncated basis sets of the
model’s EOFs. Analysis of these reduced
models indicates that the interannual modes
of oscillation are modified oscillatory modes of
the ocean, which are destabilized by the posi-

tive feedbacks associated with ocean-atmosphere

coupling. This picture is consistent with pre-
vious results [Neelin and Jin 1993; Jin et al.
1996] which identified the ENSO modes with
highly modified ocean scattering modes iden-
tified by Moore [Moore 1968]. The ocean pos-
sesses a spectrum of scattering modes with
frequencies in the interannual range. Cou-
pling to the atmosphere modifies these modes,
destabilizing some of them. For strong enough
coupling a mode becomes unstable and capa-
ble of self-sustained oscillations the amplitude
of which is bounded by the nonlinearity of the
subsurface temperature structure.

The results obtained by normal mode anal-
ysis of the reduced models indicates that the
QQ mode and the QB mode have their ori-
gins in distinct scattering modes of the ocean
basin. Furthermore it is not necessarily the
case that the QQ and the QB mode are both
linearly unstable. For the parameter values
used in the model, the first mode to become
unstable is the QQ mode, which has a period
close to the observed primary ENSO period.
A secondary, linearly stable, QB mode is sus-
tained by nonlinear coupling to the primary
QQ mode. The QB mode is not the least
stable of the linearly stable modes. It mani-
fests itself, while the other modes do not, be-
cause the proximity of the QB frequency to
the first harmonic of the QQ mode frequency
favors the nonlinear coupling. The nonlinear-
ity is not sufficient to create a QB spectral
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peak if the model is truncated to eliminate
the EOF's associated with the QB in the full
model. Although, in principle, a nonlinear
model with two variables can produce har-
monics of a primary oscillation, in this ENSO
system the additional spatial degrees of free-
dom, that permit the existence of a linear QQ
mode, are required before the nonlinear cou-
pling can excite this frequency significantly.

The addition of a seasonal cycle enables
other linearly stable modes to manifest them-
selves by coupling to the annual cycle. The
low dimensional EOF models are capable of
capturing the dynamics of these modes of os-
cillation. One of the limitations of the EOF
models is that they are constructed using the
EOFs of the model in a particular point in
parameter space. Projecting the ICM onto a
particular subset of EOF's is to make an as-
sumption as to what the dominant modes of
the model are, an assumption that may not be
true for a different set of model parameters.

It has been shown that the modes that
manifest themselves in the deterministic case
can be reproduced by a relatively small num-
ber of EOFs. This supports the use of low-
dimensional models for the deterministic case
and for the leading ENSO modes, although it
suggests that more heuristically derived mod-
els such as Jin (1997a) may have trouble in
reproducing the nonlinear coupling of the QB
mode to the QQ mode. But what of the
other interannual modes that are linearly sta-
ble and are not sustained by nonlinear cou-
pling to other modes? In a second paper it
will be shown that stochastic forcing can ex-
cite these stable modes which in turn can cou-
ple to the dominant ENSO mode, complicat-
ing the study of the impact of stochastic forc-
ing on ENSO.



Appendix A: The model
equations

The model covers the tropical Pacific ocean.

The upper layer of the ocean is the mixed
layer, of thickness, Hjs, in which the tem-
perature is constant with depth and is writ-
ten T'(z,y,t). Below the mixed layer is the
thermocline layer, with a mean thickness Hrp.
The lower boundary of the thermocline layer
is the thermocline with a mean depth H =
Hy + Hyr. The temperature in the thermo-
cline layer is a function of distance from the
thermocline interface. Perturbations in the
thickness of the thermocline layer will be writ-
ten as h(x,y,t). The depth averaged zonal
and meridional currents in the ocean above
the thermocline will be written as u(z,y,t)
and v(z,y,t) respectively. The zonal and
meridional currents in the mixed layer will
be written as (upr,var) and similarly the cur-
rents in the thermocline layer will be written
as (ur,vr). From the above definitions it fol-
lows that

Hu = HMUM+HTUT (16)
Hv = HMUM-l-HT’UT (17)

If the shear velocity is defined as (ug,vs) =
(upr, var) — (ur, vr) then Egs. 16 and 17 give

H

uy = u-+ fTuS (18)
H

vy = ’U-l-FTvS (19)

The dynamical part of the model consists of
the linearized shallow-water equations on an
equatorial beta-plane.

ou oh T,

-7 N T 2
5t Byv — g x—i— ru  (20)
o O
ot
Oh ou Ov
9 _m
=
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In Egs. 20-22 § is the gradient of the Cori-
olis parameter, ¢ is the reduced gravity, p
is the mean density of the upper ocean, r is
the coefficient of damping by Rayleigh friction
and (7, 7) is the windstress vector at the sur-
face. It is assumed that the shear currents are
in equilibrium with the windstress and there-
fore the following steady state equations for
the shear current may be written down

Tz

— Byvs = 23
qus — Byvs oHu (23)
qus + Byus = Ty (24)

pH

where ¢ is the coefficient of friction between
the mixed and thermocline layers. Equations
23 and 24 can be readily solved to give

pHu (B + ¢*)us = q7 + Byr,  (25)

pHM(B%Y? + ¢*)vs = q7y — ByTa (26)
The upwelling velocity, w, in the mixed layer
is given by

w = wr + wg (27)

where wy and wg are given by

ou Ov
. HT Bug 6’05
wg = HMH (81’ + ay) (29)

The equation for the mixed layer temperature
is
orT oT oT

i —uMa—x—vMa—y-l-’y?{(w)w

(Tg(h) = T)
Hy

(30)
where H is the heaviside step function, Tz
is the temperature at the base of the mixed
layer and 7 is the fraction of upwelling water
entrained in the mixed layer. Equation 30
contains all the nonlinear terms of the model,
the ocean dynamics are linear.



11

The temperature at the base of the mixed vectors be orthonormal. Let e; (1 = 1,...,m)
layer, T'g, is parameterized as a function of A. be unit vectors defining the new basis. The
aim is to maximize ((elx/)(efx/)T) where (.)

Tp = Ty tanh (h —_ h0> — T (31) denotes averaging over the time index. The

Hr constraint is that e} e; = 1. Thus the function

. . to be maximized is
Note that for convenience the zero in temper-

ature has been moved. The temperature at T T N\T T
J = ‘xt)(e; xn)T) — N(eie; — 1 35
the center of the thermocline is about 20°C. (e x/) (e 1)) (e;e ) (39)

The ocean component is coupled to a steady- where ); is the undetermined multiplier. Dif-
state model of the tropical atmosphere [Gill ferentiation of Eq. 35 with respect to e; leads
1980; G111 1982] The atmospheric model is lin- to
ear but it models the response of the trop- (x/x/T)ei = )e; (36)

ical atmosphere to SST forcing reasonably
well and nonlinear models do not produce
substantial improvements [Allen and Davey
1993]. The model consists of the linearized ((eTx1)(eFx)T) = \; (37)
shallow-water equations on a beta-plane. ’ ’ '

Thus the new basis vectors are the eigenvec-
tors of the matrix (x/x/7). Furthermore,

8¢ So the data has the largest average projec-

—ByV + oz +RU = 0 (32) tion onto the eigenvector associated with the
96 largest eigenvalue of (x/x/*). Note that (x/x/T)

ByU + 0 +RV =0 (33) is a real symmetric matrix and thus it has or-

Y thogonal eigenvectors which can be normal-

o (8_U + 8_V> +Rp = —Q (34) ized to form a complete orthonormal basis.

Oz~ Oy Since the mean state vector has been sub-

In Egs. 32-34 R is the atmospheric damp- tracted from the data, ); is the variance as-
ing coefficient, ¢, is the atmospheric Kelvin sociated with the ith basis vector. The essen-
wave speed, U and V are the zonal and merid- tial point about this basis set is that for any
ional components of lower tropospheric wind value of D more variance is contained in the
respectively and ¢ is the lower tropospheric subspace spanned by the leading D basis vec-
geopotential height. tors than any other D-dimensional subspace.
These basis vectors are the empirical orthog-

Appendix B: Calculating EOFs onal functions of the data set.

Let x; = [714, Tas, .., Trme| be a state vector Acknowledgments. The authors would like
with m components which describe the state to thank Y. Yung for helpful discussions and
of the system at a time t. Let (x) be the encouragement. This work was supported by

NASA Earth System Science Fellowship NGT5-
30068, NSF grant ATM-0082529, and NOAA
grant NA86GP0314.

mean state vector and let x; be the deviation
of the state vector from the mean at time t.
The EOF basis is constructed so as to maxi-
mize the average projection of the data onto
any given number of leading EOF basis vec-
tors under the constraint that the EOF basis
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Table 1. The parameters of the standard model.

B | planetary vorticity gradient 2x 10 Hmist
P mean density of upper ocean 1000 kgm =3
pa | surface density of atmosphere 1.3kgm=3

L | zonal extent of basin 1.74 x 10" m
g | reduced gravity 0.0486 ms—2
H | mean thermocline depth 150m

c Kelvin wavespeed (v/¢'H) 2.7ms 1

Ly | oceanic Rossby radius (\/%) 3.7x10°m
r upper ocean Rayleigh friction (2.5years)™!
Cp | windstress coeflicient 1.5 x 1073
H,; | thickness of mixed layer 50m

q mixed layer Rayleigh friction (2days)™!

a oceanic Newtonian cooling coefficient (125 days)™!
¥ entrainment fraction 0.50

To | temperature contrast across thermocline/2 10°C

ho temperature structure asymmetry parameter | 40 m

H* | vertical scale of thermocline 50m

R | atmospheric Rayleigh friction (2.3days)™!
ce | atmospheric Kelvin wavespeed 60ms—!

14
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Figure 1. The results from the coupled model run forced by the estimated external windstress
for April. The coupling was KoW = 0.0097 m3 s *°C~!. The spectrum in (c) was calculated from
a 200 year run of the model.



16

(a) NINO3 SSTA

NINO3 SSTA / °C
o

W \HHHH‘\HHHH‘HHHH‘HHHH\

o

YEAR

(c) NINO 3 SST
020 T T T

YEAR
AMPLITUDE
(@]

o

R = ()O5A/ :
0 — ool 0.00 [ 2 lnnr $fﬂuﬂkum¢JLJ
120°E 150°E 180°E 150°W 120°W 90°W 05 1.0 15 20
LONGITUDE FREQUENCY / PER YEAR

Figure 2. The results from a coupled model run forced with the estimated external seasonal
windstress. The coupling was KoW = 0.0136 m3s *°C~!. The spectrum in (c) was calculated
from a 200 year run of the model.
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Figure 3. The leading EOF patterns associated with the eigenvalues in Fig. 1. The left panels
are the h-field components of the leading 4 EOFs, the center panels are the T-field components
and the right panels are the time series of the coefficients of the EOF.
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of KgW = 0.0097m3s *°C~!. The results may be compared to Fig. 1.
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Figure 7. The eigenvalues of the normal modes of the 4 EOF reduced model linearized about its
mean state. The size of the symbol represents the strength of the coupling ranging from zero to
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Figure 8. As Fig. 7 but for the 8 EOF reduced model.
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