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Abstract

Methodology is developed and applied to evaluate the characteristics of daily
surface temperature probability distribution functions (PDFs) in a six-member
regional climate model (RCM) hindcast experiment conducted as part of the North
American Regional Climate Change Assessment Program (NARCCAP). The
evaluation is based on two state-of-the-art high-resolution reanalysis products that
provide the observational reference(s): the NCEP North American Regional
Reanalysis and the NASA Modern Era-Retrospective Analysis for Research and
Applications. Typically, the NARCCAP temperature biases for the tails and the
medians of the PDFs are of the same sign, indicating a shift in the RCM-simulated
PDFs relative to reanalysis. RCM-simulated temperature variance is often higher
than reanalysis in both winter and summer. Temperature skewness is reasonably
well simulated by most RCMs, especially in the winter, suggesting confidence in the
use of these models to simulate future temperature extremes. To facilitate
identification of model-reanalysis discrepancies and provide a regional basis for
investigating mechanisms associated with such discrepancies, a k-means clustering
approach is applied to sort model and reference data PDFs by PDF morphology.
RCM cluster assignments generally match reanalysis cluster assignments with some
discrepancy at high latitudes due to over-simulation of temperature variance by
most models here. Model biases identified in this work will allow for further
investigation into associated mechanisms and implications for future simulations of

temperature extremes.
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1. Introduction

As a result of anthropogenic warming, mean temperatures are expected to rise
globally; however, changes in temperature extremes are expected to have the most
substantial climate impacts (IPCC, SREX 2012). In particular, extreme warm events
are expected to become more common and severe while extreme cold events are
expected to become less frequent and severe (IPCC 2007, Meehl and Tebaldi 2004,
Tebaldi et al. 2006, Meehl et al. 2007). Such changes will likely expose populations
to extreme heat events that are unprecedented in the current climate (Meehl et al.

2009).

One particularly noteworthy example, the European heatwave of 2003, caused
widespread heat-related illness and claimed tens of thousands of lives (Luber and
McGeehin, 2008). Events of this magnitude, while virtually unprecedented in the
current climate, are projected to become more frequent in the future due to climate
warming (e.g. Beniston 2004, Schar et al. 2004, Stott et al. 2004). More recently, the
2011 Russian heatwave was also associated with drastically elevated mortality and
morbidity due to heat stress and poor air quality associated with wildfires: some
studies have speculated that the extreme nature of this event was related to a
combination of natural variability and anthropogenic climate forcing (Dole et al.
2011, Rahmstorf and Coumou 2012, and Otto et al. 2012). Recent anomalous heat,
including the hottest month on record in the United States (US), coupled with severe
drought has had severe impacts on the United States agriculture sector (Karl et al.

2012).
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Because the relationship between changes in mean temperature and its extremes is
often non-linear, relatively small changes in the mean may be associated with
disproportionately large changes in extremes (Hegerl et al. 2004, Griffiths et al
2005). Therefore, proper simulation of probability distribution function (PDF)
shape is essential for a realistic representation of extremes. Ruff and Neelin (2012)
analyzed surface temperature (7s) PDFs from station data and documented several
examples of non-Gaussian, often asymmetric long-tailed distributions. They further
note the importance of daily Ts PDF shape, especially the distribution tails, and
related implications for future global warming in estimating threshold exceedances
with places exhibiting near Gaussian PDFs being more sensitive to incremental

warming than places with exponential PDFs.

Observational evidence points to a recent increase in temperature variance in the
tropics as well as a tendency towards more positive skewness globally (Donat and
Alexander 2012). On the other hand, Rhines and Huybers (2013) suggest that
observed changes in summertime extremes are primarily attributable to changes in
the mean rather than the variance. Lau and Nath (2012) demonstrate PDF shifts in
daily maximum temperature in two high-resolution general circulation models by
the middle of the 21st century with only small changes in PDF shape exhibited in

some places.
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In order to quantify uncertainty in simulations of future climate, it is important to
bring as much observational scrutiny as possible to historical climate model runs.
Model evaluation is critical for identifying the range of error (magnitude, geographic
distribution, sign) across models for the same region. Comprehensive evaluation of
GCMs archived as part of the Coupled Model Intercomparison Project Phase 3
(CMIP3) was performed by Gleckler et al. (2008); however, the demand for more
geographically specific climate projections has increased the prominence of limited
domain RCMs. While the body of systematic RCM evaluation work is less mature
than that for GCM evaluation, some studies have evaluated important variables in
RCMs. Kjellstrom et al. (2011) analyze a suite of RCM hindcast and future
projections driven by reanalysis and multiple GCMs over Europe. Kim et al. (2013a)
evaluate mean surface temperature, precipitation, and insolation using monthly
mean data over the conterminous US using models from the North American

Regional Climate Change Assessment Program (NARCCAP).

Some work has focused on evaluation of model simulated PDFs. Perkins et al.
(2007) introduced a PDF skill score to evaluate global models and applied this
method over Australia, using climatologically homogenous sub-regions to compute
PDFs of temperature and precipitation. Kjellstrom et al. (2010) used this method to
evaluate temperature and precipitation PDF structure over Europe while also
evaluating daily temperature at multiple percentiles of the distribution. Their

results show that while some models perform better or worse than others, no model
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is systematically better or worse in every region or season suggesting substantial

variability in the way RCM bias is manifested.

Comprehensive evaluation of PDF morphology is expected to provide information
regarding model representation of extremes and to enhance mechanistic
understanding of processes responsible for genesis of extremes. To this end, the
present study uses daily mean surface air temperature (7s) from two reanalysis
products to evaluate model-simulated PDF characteristics over North America. The
remainder of this paper is organized as follows. Section 2 describes the data and
methodology used. Section 3 presents daily temperature bias at different
percentiles of the distribution and Section 4 evaluates model variance and
skewness. A clustering technique, used to compare model PDF structure across the
entire domain, is introduced and described in Section 5 followed by concluding

remarks in Section 6.

2. Data and Methodology

2a. Data used

All six models used in this paper are hindcast experiments performed for NARCCAP
(Mearns et al. 2009, 2012, http://www.narccap.ucar.edu). NARCCAP was designed
to serve the high-resolution climate modeling needs of the United States, Canada,
and Mexico and is comprised of RCMs nested within GCMs to form multi-model

ensemble scenarios for the region. In this work, all hindcast model simulations
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were driven by large-scale forcing from the National Center for Environmental

Prediction (NCEP) Reanalysis 2 (Kanamitsu et al. 2002).

While the official NARCCAP time period spans 1979 to 2004, the period 1980-2003
was used to span the longest possible time period for which all models have
available Ts. The simulation domain covers most of North America and some of the
adjacent Pacific and Atlantic Oceans. Each model is provided on a 50 km native
curvilinear grid that was interpolated onto a regular 0.5° latitude by 0.5° longitude
grid using the Python griddata function which linearly interpolates irregularly
spaced data onto a regular rectangular grid. The analyzed data comprise daily

means computed from 3-hourly model output.

Goémez-Navarro et al. (2012) demonstrate that observational uncertainty can be
similar in magnitude to individual model errors emphasizing the need to quantify
observational uncertainty in the evaluation process. To address this, two reanalysis
products are used in this work: the NCEP North American Regional Reanalysis
(NARR; Mesinger et al. 2006) and the NASA Modern Era-Retrospective Analysis for
Research and Applications (MERRA; Rienecker et al, 2011). Produced on a Lambert
Conformal grid with 32 km resolution, the NARR data were interpolated to a 0.5° x
0.5° regular latitude/longitude grid in the same manner as the NARCCAP models.
Developed by NASA’s Global Modeling and Assimilation Office and disseminated by
the Goddard Earth Sciences Data and Information Services Center (GES DISC),

MERRA is originally on a global 0.5° x 0.67° latitude/longitude grid. It is coarser
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than NARR, but still higher in resolution than most other global reanalysis products.
The MERRA dataset was regridded to the same 0.5° x 0.5° degree latitude/longitude
grid as the other datasets. The analysis domain was chosen to cover as much of
North America as possible while ensuring that the domain had full coverage in all

datasets.

2b. Methodology

The Regional Climate Model Evaluation System (RCMES: rcmes.jpl.nasa.gov), jointly
developed by NASA’s Jet Propulsion Laboratory and the University of California Los
Angeles (Hart et al. 2011, Crichton et al. 2012), is a combined database-software
package designed to aid in climate model evaluation by providing easy access to
reference datasets and validation tools. Additionally, RCMES includes a toolkit
designed to compute commonly used metrics e.g., bias, root-mean-square error, and
correlation coefficients. Further details about RCMES and the scientific capabilities
of the system can be found in Kim et al. (2013a,b). RCMES was used here to project
all datasets onto a common temporal and spatial grid. Some of the metrics
evaluated in this work will be incorporated into future versions of the RCMES

toolkit.

Temperature anomalies, obtained by subtracting the daily climatological average
from each daily value, are used in the computation of several metrics in this paper.
Long-term trends were not removed as all datasets cover the same period and any

influence from trend bias is inherently incorporated into other Tsbiases. Bukovsky
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(2012) evaluated temperature trends for all seasons over this period in NARCCAP
models and found reasonable trend agreement between the models and
observations. Evaluation was performed for the seasons of summer (June, July,
August; JJA) and winter (December, January, February; DJF). The multi-model
ensemble mean is calculated by concatenating the daily data from each of the six
models into one time series consisting of six data points (one for each model) at

each grid point at each time step.

3. Percentile-based TsEvaluation

Temperature biases at three percentile thresholds (5t%, 50t, and 95%) were
calculated for each model with respect to NARR. The 5t and 95t percentiles are
chosen to represent the cold and warm tails of the distribution of daily-average total
temperature values respectively. Uncertainty in the reference data is shown in each
analysis using the difference between MERRA and NARR, i.e,, MERRA is treated as a
model. For brevity, the discussion here emphasizes the median bias. Figure 1 shows
the bias in median temperature for DJF. While the errors differ in sign and
magnitude across models, all models exhibit a warm bias over the central and
northern Great Plains and a cold bias over Northern Mexico. In general, MERRA is
colder than NARR over much of the northern portion of the domain. In many cases,
the MERRA bias is comparable in magnitude to the model biases, especially at
higher latitudes. This suggests some uncertainty in quantification of model error at
high latitudes. HRM3 exhibits the largest warm biases with magnitudes exceeding

8°C while CRCM has a cold bias within one or two degrees of 5°C over most of the
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domain. Large biases present over the Great Lakes and other inland bodies of water
are indicative of the way lake surface temperature is defined in this model
experiment. While these features are not directly related to RCM dynamics, such
biases could affect lake-effect precipitation downwind of the Great Lakes. Lake-

associated errors were also noted by by Kjellstrom et al. (2010) over Europe.

Figure 2 is the same as Figure 1, except for the northern hemisphere summer. Cold
biases are more common than in DJF across models. All models have an area of
positive median temperature bias over a portion of the Great Plains with HRM3
being the warmest (~6-8°). In general, the difference between reference datasets is
small with the western Gulf of Mexico coast and inland water bodies showing the
greatest disagreement. It is worth noting that the median temperature over the
Great Lakes is higher than surrounding land in MERRA (not shown) during summer
leading to the warm bias over the Lakes. In reality, the Lakes remain cool relative to
surrounding land due to the greater heat capacity of water. Overall, the biases
shown in both DJF and JJA are in qualitative agreement with other studies that
calculated bias in the mean (Kim et al. 2013a) and daily maximum and minimum
temperature (Rangwala et al. 2012) suggesting these biases are robust features of

the overall temperature distribution and throughout the diurnal cycle.

For additional perspective, the domain is further decomposed into four sub-regions,
chosen to be broadly representative of climate regimes and are defined as follows:

West, including the Pacific Ocean and Coast, Great Basin, and the US Rocky
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Mountains; North, which includes southern Canada and Hudson Bay; Central, which
is comprised of the US Great Plains, Midwest, and Gulf of Mexico; East, which
includes the eastern US and the Atlantic Ocean and Coast. The portrait diagrams in
Figure 3 show the spatial root mean squared of the bias, e.g. RMS error (RMSE), and

the mean bias for the four sub-regions.

In general, RMSE is largest in the Northern sub-region and is comparable in the
Western, Central, and Eastern sub-regions (with the exception of HRM3 in Central).
The RMSE in JJA is smaller in most cases, due in part to lower temperature
variability in the summer. The HRM3 model shows consistently high error relative
to the other models in all percentiles, especially in the Central and Northern regions
in DJF and JJA. In both seasons, ECP2 shows relatively small error in all regions.
The ensemble mean generally has smaller error in median temperature compared
to any individual ensemble member and in most cases MERRA exhibits smaller
error than any individual model at all percentiles. There is some indication of DJF
5th percentile RMSE being greater than the other percentiles suggesting asymmetry

in model-simulated PDF bias.

The mean bias, plotted in the portrait diagrams in Figure 3, is useful for
understanding where model PDFs are systematically shifted relative to NARR,
regardless of shape, as opposed to where the PDF bias is not described by a simple
shift. Models with a systematic shift in the PDF relative to NARR have the same sign

in the biases at all three percentiles and are identified in Figure 3 as having the same
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color (all red or all blue) in a given column of the portrait diagram. One notable
example is HRM3 in DJF, showing a positive bias at all three percentile thresholds
indicating a shift towards warmer values. MM5I shows different behavior in the
Northern region in DJF where the mean bias at the cold tail is negative, the median
is near zero, and the warm tail is positive leading to a wider PDF than NARR. It is
interesting to note that no model has a PDF that is narrower than NARR at both tails.
All cases with 5t and 95t percentile biases of opposite sign show cold bias at the 5t

percentile and warm bias at the 95t percentile.

Figure 4 (top) shows the percentage of models that have the same sign of bias at all
three percentiles, i.e., systematically cold- or warm biased. In general, the southern
as well as much of the central and western portions of the domain have high
percentages of models with a PDF shift in DJF while the same tendency occurs for
the northern and western regions in JJA. In DJF, the Pacific Northwest and most of
southern Canada have lower percentage values than other regions. This is
consistent with the portrait diagram in Figure 3 for the Northern sub-region where
several models have biases of opposing sign at the tails. The central portion of the

domain shows mostly low percentage values in JJA, also consistent with Figure 3.

Figure 4 (bottom) show scatter plots of the mean bias for each model and each sub-
region at the 5™ percentile versus the 95t percentile. The diagonal black line
indicates where the models would lie if they had the same bias at both percentiles,

indicating a completely symmetrical shift of the PDF tails as estimated from these
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thresholds. Models to the left of the diagonal line have a wider PDF than NARR
while models to the right have a narrower PDF. In both DJF and JJA, most models
have a net widening with fewer models showing a near systematic shift or a net
narrowing. In DJF, the Northern sub-region mean biases (diamonds) are the
farthest from the diagonal line, consistent with the low percentage values. The same

is true for the Central region (squares) for JJA.

4. Evaluation of Variance and Skewness

Whereas the analysis in Section 3 only used three percentiles to estimate differences
in model-simulated PDFs, this section considers higher-moment statistics and the
shape of the distributions. Because of the important relationship between
temperature variability, the length of the distribution tails, and extremes, the
standard deviation (SD) and skewness of model simulated Tsare compared against
NARR. In what follows, all analyses use temperature anomalies to allow for easy
comparison of PDF shape between datasets (all have mean of 0) and to remove any

influence from intraseasonal variability on higher moments (especially skewness).

4a. Standard Deviation

The ratios between the SD for each model and NARR in DJF are displayed in Figure
5. Values greater (less) than one indicate where the model has a higher (lower) SD
than NARR. The SD values are statistically significant at the 5% confidence level
where shaded, as determined by a two-sided F test. Models generally show higher

SD than NARR in the northern portion of the domain and lower SD than NARR over
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the southern Great Plains and southeastern US. Both WRFG and RCM3 have
elevated variance over the Great Lakes compared with NARR. These models also
have strong cold biases in median temperature over the lakes, (Figure 1) suggesting
that the air over the lakes has similar characteristics to land. In general the
differences between MERRA and NARR are smaller and less statistically significant
than any individual model; however, MERRA still shows higher variance over much

of the northern half of the domain compared to NARR.

In many examples (MM5I, CRCM, HRM3, and WRFG) the most striking areas of
positive bias are present to the north of the region of maximum SD in NARR. The
band of high variance in NARR (stretching from the northwest corner of the domain
southeast along the eastern edge of the Canadian Rockies and into the northern
Great Plains) is in an area highly influenced by large intraseasonal temperature
fluctuations due to synoptic-scale weather events associated with warm advection
from lower latitudes and cold advection from higher latitudes (Loikith et al. 2013).
Areas further north of this region show smaller variance where the availability of
extremely cold air relative to the local climate is lower due to the proximity of this
region to the coldest air in the hemisphere. For this reason, most variability in daily
temperature occurs only on the warm side of the PDF here. This is in contrast to the
band of higher SD to the south, which is characterized by a PDF that is more
symmetrical about the mean. The tendency for the models to have positive SD bias
north of this region of climatologically large variance indicates that models tend to

expand this high variance region substantially northward compared with NARR.
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One possible mechanism for this feature is a northward expansion or shift of the
main winter storm track. The northern region of positive SD bias is consistent with
the band of low percentage values in Figure 4 where most models have a widening

of the PDF.

Figure 6 shows the SD ratios for JJA. While the daily temperature variability is lower
in the summer compared with winter, resulting in overall lower SD values, the ratio
is generally higher for JJA than DJF. Overall, SD is higher in all six models over most
of the domain with the coastal waters of the Pacific Ocean and the southern US
showing the systematically largest ratios. MERRA SD is generally very similar to
NARR with slightly smaller values throughout much of the domain (ratio of 0.75-
1.0) with exceptions in the southwestern region and along the near-coastal waters

of Hudson Bay.

It is interesting to note that all datasets have higher SD along and offshore of the
Pacific Coast. Climate variability here is influenced largely by occasional offshore
wind events producing anomalously warm Ts values (e.g., Santa Ana events in
southern California (Hughes and Hall 2010)). It is possible that the positive SD bias
is indicative of a tendency for more frequent and/or intense offshore wind events.
MERRA and MM5I have notable positive SD biases over Hudson Bay, indicative of
possible prolonged sea ice cover causing the surface of the bay to have physical
characteristics similar to land instead of open water. In the case of MM5I, this

feature encompasses the entire Bay and the Labrador Sea.
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Results of the evaluation of SD are summarized for the four sub-regions in Figure 7
using portrait diagrams. The shaded values represent the spatial mean of the ratios
as calculated and plotted in Figures 5 and 6. Only statistically significant grid points
contribute to the computation of the mean. Except for CRCM and HRM3, no
individual model has a mean ratio less than one in any sub-region in DJF. Overall,
MERRA has ratio values consistently near one indicating strong similarity between
the two reference datasets. In JJA, all RCMs have a mean ratio greater than one
except for CRCM and RCM3 in the Northern sub-region. Only MERRA has a mean
ratio substantially less than one in more than a single sub-region. Overall, most
model SD ratios are within the range 0.6-1.4 indicating that the variance over- or

under-estimates are not too severe for most regions.

4b. Ts Skewness

Tsskewness for all datasets is shown in Figure 8 for DJF. As opposed to variance,
which primarily describes the width of the PDF, skewness is more directly related to
extreme values as it describes the shape of the tails and the degree of symmetry of
the PDF. All distributions are subjected to a skewness significance test (D’Agostino,
1970) and blank areas in Figure 8 indicate where skewness does not deviate from a
normal distribution at the 10% significance level. For NARR, skewness is primarily
positive in the northeastern portion of the domain while the rest of the domain has
negative or near zero skewness. This generally occurs along the transition zone

from the primarily positive skewness in the north to the negative skewness to the
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south. Statistical significance is low in the region of weak skewness in the

southeastern part of the domain.

In general, the models capture the large-scale skewness pattern, with positive
skewness in the northeast, a large coherent region of relatively strong negative
skewness extending from the northwestern US across to parts of the Great Lakes
region, and modest skewness over the southeastern US. ECP2 and the multi-model
ensemble have the most realistic representation of skewness including sign,
magnitude, and areas of statistical significance. While MERRA captures much of the
same regional patterns, skewness is more negative over the Rocky Mountains and
more positive over the southeastern US compared to NARR. HRM3 has negative
skewness present much further north than in NARR which may have a physical
relation to the fact that it is the warmest model at all percentiles in DJF (e.g. Figure
1d). It is interesting to note that the transition zone from primarily negative (south)
to positive (north) skewness corresponds to the band where few models have bias
of the same sign at all percentiles (Figure 4). Models may have difficulties
accurately capturing this spatial shift in Ts regime, leading to errors in the simulated

PDF shape.

Model fidelity in simulating skewness in winter is likely indicative of differences in
simulation of large-scale climate mechanisms, including mechanisms associated
with extremes. Details of these mechanisms and their relationship to extremes

were extensively examined in an observational study by Loikith and Broccoli
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(2012). For example, in winter the PDFs in the northern region have long warm
tails resulting from advection of relatively warm air from lower latitudes. Advection
of cold anomalies of comparable magnitude from the north rarely occurs because
the air in this region is climatologically among the coldest in the hemisphere.
Models that show more restricted regions of positive skewness (e.g. HRM3, ECP2)
would generate extreme warm events less frequently than in NARR; models that
show a larger area of strong positive skewness in this region (e.g. RCM3, WRFG)
may simulate the occurrence of warm advection events too frequently in the region.
In addition to having skewness that is more positive than NARR, WRFG also has a
colder background climate in this region (Figures 1, 3) with a warm bias to the
south. Under conditions of northward advection into the cold-biased region,
extreme warm anomalies may occur that contribute to the positive skewness bias.
RCM3 has similar skewness error as WRFG, but with warm biases over this region

and cold biases to the south, making it more difficult to propose a mechanism here.

Another illustrative example in DJF is the region of negative skewness in the
northwestern part of the domain encompassing Oregon, Washington, and British
Columbia. Climate in this region is generally dominated by cool maritime air that
suppresses the occurrence of extreme warm events, especially close to the coast.
Extreme cold events occur when air originating from high continental latitudes is
advected into the region. However, such events are rare because inland mountain
ranges prevent cold, dense, and often shallow Arctic airmasses from advecting

westward. Many models, as well as MERRA, extend this area of negative skewness
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further south than NARR. This suggests that these datasets may generate more
frequent or severe extreme cold air outbreaks than NARR. HRM3 is an outlier with
weak negative skewness over much of the western United States, similar to NARR.
Here, HRM3 is the only model that generates predominantly warm biases at the 5t
percentile (Figure 3). All other models are colder than NARR in this region at the 5t
percentile further supporting the hypothesis that the more negative skewness
simulated by most models results from more frequent cold outbreaks. In all cases
the biases at the 95t percentile are less negative than at the 5t percentile, further
contributing to an asymmetry in model error that disproportionately affects days in
the cold tail. Figure 4 also shows a low percentage of models with bias values of the

same sign at all percentiles consistent with disagreement in PDF shape.

Figure 9 shows skewness for the JJA period. With the exception of MM5I, the
general pattern of skewness for all models and MERRA differs substantially from
NARR, especially at the lower latitudes. All models show positive skewness along
the Pacific Coast, although most models have skewness that is more positive than
NARR in this region. This same area also shows positive SD bias in Figure 6. This
feature, resulting from occasional extreme warm offshore wind events advecting

continental air over the relatively cool ocean, is most closely captured by ECP2.

NARR has a broad area of negative skewness over the southern half of the domain
becoming more negative over the Gulf of Mexico and tropical Atlantic Ocean. This

feature is not present in most models or MERRA. Here during summer, daily
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temperature variability is low and the occurrence of synoptic-scale weather events
that are often associated with advection of anomalous Ts are rare. As a result, the
tails of the distribution are likely influenced largely by variations in insolation,
precipitation, and land surface conditions. For example, soil moisture has been
associated with the occurrence and implicated as a source of amplification and
persistence for heat waves (Hong and Kalnay, 2000; D’Odorico and Porporato, 2004,
Fischer et al. 2007, Loikith and Broccoli 2013). On the other hand, decreased
insolation due to clouds and evaporative cooling from rain can result in
anomalously cool temperatures and climatologically humid air originating from the
Gulf of Mexico may enhance latent heat flux sufficiently to limit extreme heat events
here. It is therefore plausible that this region exhibits negative skewness as there is
more opportunity for unusually cool days than for extreme warm days. Ruff and
Neelin (2012) show a wide cold tail using Houston, TX JJA station data. Loikith and
Broccoli (2012) also show negative skewness in this region in July using coarser
resolution, gridded temperature observations from the HadGHCND dataset (Caesar
et al. 2006). Peron and Sura (2013) show negative skewness over most of the
southern United States using NCEP/NCAR Reanalysis 1. In this case, the majority of
models and MERRA may have truncated cold tails due to improper simulation of
cloudiness or precipitation. Drought that is too frequent or severe over the region
could also act to widen the warm tail. It is also possible that higher statistical
moments are sensitive to slight differences in PDF shape when there is

climatologically low Ts variability (i.e. narrow PDF). These factors make intuitive
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model evaluation of skewness difficult in this case because of the large spread in JJA

skewness values across datasets.

Figure 10 summarizes the results in Figures 8 and 9 in the form of a scatter plot.
The percentage of grid points in the domain that have positive and negative
skewness are plotted on the x and y-axes respectively for each sub-region. DJF (JJA)
is plotted with diamonds (circles) color coded according to dataset and the size is
proportional to the mean skewness in that sub-region. Open (filled) markers are
where mean skewness is negative (positive). Only grid points with statistically
significant skewness at the 10% significance level are included making it possible

for the sum of the percentages to be less than 100%.

As indicated in Figures 8 and 9, the models cluster around NARR (black markers)
more closely in DJF than in JJA where skewness differs more. The spread in JJA is
largest in the Central and Eastern and smaller in the Western and Northern sub-
regions while the spread is smallest in the Western sub-region in DJF. NARR is more
negative and has a larger negative skewness percentage in the Central and Eastern
sub-regions compared with the other datasets as seen in Figure 9 in JJA. In general,
most datasets agree on the proportion of negative skewness grid points over the
Western sub-region in DJF with some disagreement in magnitude. Here all datasets
are clustered close to each other; WRFG and ECP2 show more negative skewness

than NARR and HRM3 shows less negative skewness than NARR.
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4c. Individual cases

The PDFs for four individual grid points are plotted in Figure 11. Each case
corresponds to an example used in Ruff and Neelin (2012, from now on RN2012)
using station data (1950-2009). Here, skewness and variance are examined for each
example using RN2012 as observational support for PDF asymmetry. All locations
are chosen as the closest grid point to the actual observation station located at the
major airport for each city. All PDFs are defined as frequencies of occurrence
computed from temperature anomalies binned every 0.5 degrees. For reference,
Gaussian PDFs are plotted with the same SD as the NARR and MERRA data. All PDFs

are plotted on a log scale.

The top two panels in Figure 11 are DJF examples for (a) Seattle and (b) Chicago. All
datasets exhibit a Gaussian-like warm tail and a long cold tail for both locations as
supported by the negative skewness values. In both of these locations, RN2012
show long cold tails, with the asymmetry more pronounced in Seattle. NARR,
MERRA, and the ensemble mean all have negative skewness with Seattle exhibiting
skewness that is more negative than Chicago. In general, model variance is higher in
Seattle than reanalysis, but similar in Chicago. Fig. 8 indicates that in all datasets,
Seattle is positioned near the strongest (coastal) part of a long, large-scale feature of
negative skewness that stretches from the West Coast to near Chicago. This suggests
a substantial role of large scales in the air mass advection creating these long cold

tails. While this may make it less surprising that the models do qualitatively well at

22



509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

capturing the long tail in this region, it also helpa to boost confidence in using these

models to predict changes in this feature.

The bottom-left panel in Figure 11 is for Houston, Texas where RN2012 show a
wide cold tail. Station data and NARR both show negative skewness here while
MERRA shows positive skewness and the ensemble mean zero skewness. The cold
tail difference between NARR and MERRA is slightly greater than the difference in
the warm tail, consistent with the hypothesis that MERRA and the RCMs are not
properly simulating conditions associated with unusually cold days (see section 4b).
Variance is similar between the two reanalysis prodcuts and slightly larger for the
model mean. It is apparent from this example that the disagreement here is largely
in the most extreme temperature days while the cores of the PDFs are generally

similar.

RN2012 show wide warm tails in Los Angeles and Long Beach, California station
data for JJA. In this region, the prevailing surface wind trajectory is from the
relatively cool Pacific Ocean, preventing large temperature excursions on the cold
side of the PDF while infrequent offshore wind events can cause large excursions on
the warm side (e.g. Santa Ana Winds). The bottom right panel of Figure 11 shows
positive skewness for NARR, MERRA, and the ensemble mean similar to the station
observations. The warm side deviation from Gaussian is greater for MERRA and the
models than NARR and there is a substantial difference in variance with NARR

having lower variance than all other datasets. Because this is a coastal location
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where there is a sharp variance gradient (small over the ocean, large over land),
some of the variance difference could be an artifact of regridding where marine and
continental grid points are interpolated. The maps in Fig. 9 indicate that all models
and both reanalysis data sets have a region of positive skewness along most of the
West Coast, and that NARR differs mainly in the geographic width and strength of
this feature, especially near Los Angeles. The fact that the models do better than
NARR with respect to the station data at capturing this feature should thus be
regarded as a quantitative rather than qualitative difference. It is encouraging that

the models can reproduce this feature of the station data to a reasonable extent.

5. Cluster Analysis

Sections 3 and 4 have focused on evaluating PDFs moments individually while PDF
shape is described by multiple moments. A methodology that is capable of
evaluating more than one statistical moment of the PDF could provide a useful tool
in holistically evaluating model-simulated PDFs. As an early step towards this goal,
k-means clustering (Wunsch and Xu, 2008) is introduced as a tool for comparing
model PDFs to reference data over a large geographic area. Loikith et al. (2013)
introduced and demonstrated the efficacy of k-means clustering as a tool for
characterizing Ts regimes based on PDF characteristic by clustering over PDFs using
NARR and MERRA data. Here, k-means clustering is applied in a similar manner but

to multiple data sets for the purpose of comparison in DJF.
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Loikith et al. (2013) showed that k=5 clusters provide stable, easily interpretable
PDF groups. Here, k=4 clusters are chosen because the domain size in this work is
smaller so it follows that the number of climate regimes is smaller. In the application
demonstrated here, the choice of the number of clusters is arbitrary. Ongoing work
that further explores the applicability of the clustering technique as a tool for model

evaluation will more thoroughly address the issue of optimal cluster number.

Model cluster assignments in this case use the NARR cluster basis PDFs to allow for
intuitive comparison between datasets. First, k-means clustering is performed on
the NARR dataset. The basis PDF, defined as the mean PDF for each of the four
clusters, is then calculated for NARR (Figure 12). For each RCM, the RMS differences
between the PDF at each grid point and each of the four basis PDFs from NARR are
calculated. Finally, the cluster corresponding to the minimum RMS difference is
assigned to the RCM grid point. In other words, each grid point in an RCM is
assigned to a cluster based on which basis PDF most closely resembles the RCM

PDF.

Maps showing the cluster assignments for each grid point are shown in Figure 13
The clusters are assigned numbers based on monotonically decreasing mean cluster
variance with cluster 1 (C1) having the highest variance and cluster 4 (C4) having
the lowest. A scatter plot showing the mean skewness and SD for each cluster for

each dataset is presented in Figure 14.
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As shown in Loikith et al. (2013), temperature variance is the most prominent
feature reflected in the cluster assignments when performed in this manner;
however skewness also appears to have some influence on cluster assignment,
especially the first two clusters (Figure 14). C1, which has the highest variance,
comprises a band in the northern portion of the domain in NARR and MERRA,
surrounded to the north and to the south by C2. In the models, C1 generally extends
further north and east than in NARR with the exception of the ensemble mean and
MERRA. This expansion is consistent with the positive SD bias seen in Figure 5. In
the reference data, the position of the region assigned to C1 is optimal for allowing
horizontal temperature advection (cold from the north and warm from the south) to
cause large excursions from the mean (see section 4a). The width of the PDF here is
largely influenced by large-scale atmospheric circulation patterns within the main
storm track as well as possible orographic effects in the mountainous areas. In
models that extend C1 further north, it is possible that the storm track is wider than
in reanalysis. Figure 14 shows that skewness is negative in all datasets and all
models have mean skewness values that are more positive than NARR in C1. This
bias is likely due to the northward expansion of C1, relative to NARR, where

skewness is predominantly positive.

C2 surrounds C1 on the north and south and covers most of the eastern US and
Canada in NARR. The region of C2 that is to the south of C1, is dominated by
synoptic-scale weather patterns associated with strong horizontal temperature

advection. This results in temperature PDFs with relatively high variance, but still
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lower than in C1. Whereas C1 is optimally positioned between the warmest and
coldest air in the hemisphere, C2 is marginally closer to these regions (cold on the
north side and warm on the south side) resulting in a reduced potential for
extremely large deviations in temperature. All datasets have positive or near 0
mean skewness for C2 with a generally even spread about NARR on both the
positive and negative side (Figure 14). In general the southern portion of C2 is
geographically similar in all models and reanalysis products suggesting a consistent
representation of synoptic-scale weather patterns here while the northern portion

is extended further north.

C3 encompasses the southern and western portions of land as well as coastal waters
of the Gulf of Mexico and Atlantic Ocean. This region has the lowest variance of the
four clusters over land while the portions over the ocean have the highest variance
relative to other ocean grid points. Over land, this area is on the southern edge of
the main winter storm track, which results in fewer and weaker strong advection
events compared with C1 and C2. In the west, terrain features also likely play a role
in the generally lower variance as horizontal temperature advection is impeded by
mountains and the horizontal resolution of the datasets is too low to capture local,
orographically-induced variability. The near-coastal waters are located downwind
of the continent and within the storm track causing temperature variance to be
elevated relative to surrounding ocean areas. The position of the Gulf Stream,
parallel to the coast, increases the horizontal temperature gradient in near-surface

temperature also likely contributing to locally large temperature variance. All
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models capture this region with similar mean SD. All datasets show negative mean
skewness and there is no systematic skewness bias in Figure 14, with NARR in the
middle of the spread. C4 is comprised almost entirely of ocean grid points where
variance is smallest. All datasets capture these characteristics with a small spread

in mean SD and skewness.

This application of k-means cluster analysis provides an overall comparison
between model and reference data PDFs; however variations on this tool could
provide additional information. For example, Loikith et al. (2013) cluster over PDFs
of normalized temperature anomalies which assigns clusters based on higher-

moment statistics such as skewness and kurtosis.

6. Summary and Conclusions

Multiple methodologies are employed to evaluate daily surface temperature
distributions from a suite of six NARCCAP RCM hindcast experiments against NARR.
Model biases are identified and quantified with many models showing systematic,
and in some cases large, shifts in the temperature distribution at all percentiles. In
many cases, additional PDF structure biases are found. While temperature biases,
especially biases that are systematic across the entire probability distribution, can
be accounted for and corrected in model output, error in model-simulated PDF
shape is more problematic. In particular, error related to the tails of model-

simulated PDFs will impact the accuracy with which models simulate extremes.
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Two reanalysis datasets, NARR and MERRA, were used in an attempt to gauge
uncertainties in reference data. In general, the differences between NARR and
MERRA were smaller in magnitude than any individual model; however, both
datasets show large differences in summertime skewness in the southern portion of
the domain and wintertime temperature in the northern regions. An
intercomparison of other reanalysis and observational data sets could provide
better constraint on observational uncertainty, however the relatively high
resolution of the two reanalysis products used here provides detail on regional

variations that other products cannot.

Variance is generally higher than NARR across all models in the northern portion of
the domain in winter and throughout the domain in summer while in winter
variance is smaller than NARR in the south (Figures 5 and 6). In some cases, models
that exhibit positive variance biases also show positive temperature biases at all
percentiles in the same regions indicating a shifted and wider PDF relative to NARR
(Figure 3). Other models show a widening of the PDF without such a systematic

shift.

The major patterns in skewness i.e. positive skewness in the northeastern part of
the domain, negative to the south, are realistic in most models in the winter (Figure
7). Summertime skewness exhibits regions of substantial difference, especially
along the Gulf of Mexico, across all datasets (Figure 8). Several factors may be

related to these discrepancies including differing cloud and precipitation
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representation while skewness may also be highly sensitive to slight changes in PDF

structure in these regions with low temperature variance.

Comparison of temperature PDFs for selected locations to those previously analyzed
from station data (Figure 11) can be particularly useful when interpreted in light of
these skewness maps. Long cold tails in the distribution of wintertime daily
temperature anomalies seen for locations such as Seattle and Chicago are
reasonably well simulated in the models. These are part of a coherent region of
negative skewness that stretches from the US Northwest to the Great Lakes region
that is likewise reproduced in the models with reasonable fidelity. Long warm tails
in the summer temperature distribution for the Los Angeles region are qualitatively
reproduced in the models and form part of a coherent positive skewness region that
stretches along most of the North American West Coast. For such features that
validate reasonably well, the models may be used in future work to further analyze
the dynamics yielding the long tails. Predictions of changes in extreme temperature
occurrences, for instance under global warming, may also be more reliable for these
regions where the tail characteristics for present climate are comparable to
observations. On the other hand, identifying regions such as along the Gulf of Mexico
in the summer where the skewness and tail characteristics do not validate well can
help pinpoint regions where confidence would currently be lower in statements
about extreme temperature occurrences, and where model development efforts

might productively be focused.
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The application of k-means clustering for comparing model-simulated PDFs to
reference data is introduced using winter temperatures (Figures 12-14). In general,
clusters assignments reflect temperature variance; however skewness is also
reflected. The cluster assignments in the models tend to resemble NARR with some
differences primarily over the higher latitudes where the cluster with the highest
variance is expanded northward compared with NARR. This disagreement reflects
the positive variance biases found in this region. This application of k-means
clustering has potential to be a versatile evaluation tool and is the focus of ongoing

research and development.

An important future direction in understanding RCM PDF uncertainty, and the
inherent relationship this uncertainty has to temperature extremes, is to use this
information to investigate mechanisms that are linked to model error. While
evidence exists connecting extreme temperature events to larger-scale, low-
frequency modes of climate variability such as the El Nifio-Southern Oscillation and
the Arctic Oscillation (Kenyon and Hegerl 2007), which largely occur outside of the
domain of these RCMs, Loikith and Broccoli (2013) show that in many places
extreme temperatures are associated with local, amplified, transient weather events
which could be examined on an RCM domain. Evaluation of such mechanisms will
further identify discrepancies in dynamical processes. Additional analysis of model-
simulated soil moisture, cloud cover, and precipitation will also be useful for

understanding error in summertime extremes.
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Figures

NARR DJF Median Temperature

Figure 1. Median DJF temperature for NARR (a) and median DJF temperature bias
for all models and the multi-model ensemble (ENS). The panel (i) is the bias in

median DJF temperature for MERRA with respect to NARR.
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Figure 2. Same as Figure 1 except for JJA.
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Figure 3. Portrait diagrams of (a-h) RMS bias and (i-p) mean bias over the four

different domains outlined in the map for (left) DJF and (right) JJA. The models are

CRCM (CR), ECP2 (E2), MM5I (MM), WRFG (WG), multi-model ensemble (ENS), and

MERRA reanalysis (ME). The map at the top right outlines the domains of the sub-

regions.
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Figure 4. (top) Percentage of the six models that have temperature bias of the same
sign for the 5th, 50th, and 95t percentiles during (left) DJF and (right) JJA. Places
where there is a high percentage are indicative of a majority of models having a
systematic shift in the PDF, independent of any change in shape. (bottom) Scatter
plots showing the mean bias for the 5t and 95t percentiles for each sub-region as
defined in Figure 3. Each symbol represents a different sub-region and each color
represents a different dataset. Using these percentiles as benchmarks for PDF
width, if the dataset falls on the solid black line, the bias at the 5t percentile is the
same in magnitude and sign as the 95t percentile and the PDF width is the same as
in NARR. A model that falls to the right of the line has a net reduction in PDF width

and a model to the left has a net increase in PDF width.
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Areas that are not shaded are where the difference between model and NARR

standard deviation is not significant at the 5% confidence level as determined by a

two-sided F-test. Panel (a) shows the actual standard deviation for NARR.
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Figure 6. Same as Figure 5, except for JJA.
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standard deviation than NARR. Only grid points where the difference between
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level as determined by a two-tailed F-test are included in the averaging.
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from a normal distribution at the 10% confidence threshold is not shaded.
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Figure 11. Actual PDFs, plotted on a log scale, of temperature anomalies for four

locations corresponding to station data examples used by Ruff and Neelin (2012).

Temperature anomalies are binned every one half degree. The black Xs are for

NARR and the gray Xs are for MERRA. The dotted black curve is a Guassian fit with

the same standard deviation as NARR and the dotted gray curve is the same for

MERRA. The skewness and standard deviation for NARR is printed in back, MERRA

is gray, and the skewness and standard deviation of the multi-model mean PDF is in

black. Note the different x-axis scales between DJF and JJA.
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Figure 12. Basis PDFs from NARR computed as the mean PDFs for each cluster.

Each curve is the average of the PDFs from all gridpoints that were assigned to the
indicated cluster for NARR. The shaded region surrounding each curve gives * 1
standard deviation within each temperature bin computed from the set of PDFs over
all the spatial points in the cluster. The black curve is a Guassian fit to the core of
the mean PDF for cluster 3, for reference. The y-axis is the log of the bin counts

(plotted on a linear scale).
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Figure 13. Maps of cluster assignments based on the NARR basis PDFs determined

. WRFG

by the cluster assignments for (a) NARR. Cluster assignments are determined at
each grid point by finding the minimum RMS difference between the model PDF and
each of the four basis PDFs (Figure 12). The cluster associated with the basis PDF
with the smallest RMS difference is assigned to the model PDF. The assignment is
color coded to match the colors in Figure 12 (i.e. all green areas are assigned to

cluster 2) and the associated cluster number is indicated on the map.
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