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ABSTRACT

The interaction between the collective effects of cumulus convection and large-scale dynamics is examined
using the Betts~Miller moist convective adjustment (MCA ) parameterization in a linearized primitive equation
model on an equatorial 8 plane. In Part I of this paper, an analytical approach to the eigenvalue problem is taken
using perturbation expansions in the cumulus adjustment time, which is short compared to planetary dynamical
time scales. The modes of tropical variability that arise under MCA are dominated by the presence of moist
processes; some modes act to adjust the system rapidly toward a convectively adjusted state, while others evolve
on time scales set by the large-scale dynamics subject to near-adjusted (quasi equilibrium) thermodynamical
constraints. Of the latter, a single vertical mode stands out, which obeys special balances implied by the quasi-
equilibrium constraints and is the only propagating deep convective mode. The propagation speed is determined
by an internally defined gross moist stability. For the Kelvin meridional mode, the phase speed and vertical
structure are highly suggestive of those of the Madden—Julian (MJ) oscillation.

For the simple case considered here, which assumes a homogeneous, separable basic state and sufficiently
large zonal scales, the modes of variability found under MCA are all stable under reasonable conditions, although
a large subclass of modes (including the MJ mode) is only slowly decaying. This contrasts with many studies
using Kuo-like convective parameterizations, which have conjectured that convective instability of the second
kind (CISK) plays a role in maintaining planetary-scale tropical variability. The authors suggest that a termi-
nology is needed by which to refer to convective interaction with dynamics (CID ), without necessarily assuming
that large-scale instability arises from this interaction. Under MCA, there is strong CID but not generally CISK.
Instability of the MJ mode can occur through evaporation—wind feedback. This behavior under MCA provides
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a suggestive prototype for tropical motions evolving under quasi-equilibrium convective constraints.

1. Introduction

In the Tropics, interaction between large-scale cir-
culation and cumulus convection has long been rec-
ognized as crucial to the understanding of large-scale
perturbations, and this characteristic distinguishes the
dynamics of the Tropics from that of midlatitudes.
Studies of the interaction between the large-scale cir-
culation and various types of cumulus parameterization
under simplifying assumptions have been used, for bet-
ter or for worse, to interpret various tropical phenom-
ena from hurricanes to the Madden-Julian Oscillation
(MJO). Such models are often referred to as ‘‘CISK”’
(conditional instability of the second kind) models de-
spite the fact that instability is not always found and
may be unrealistic. Use of the term ‘‘CISK’’ dates back
to Charney and Eliassen (1964 ) and Ooyama (1964),
in an attempt to explain the formation of hurricanes by
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feedback between large-scale low-level convergence
induced by Ekman pumping and organized cumulus
convection. Subsequently, ‘‘wave—CISK’’ was intro-
duced by Yamasaki (1969), Hayashi (1970), and
Lindzen (1974a), in which the collective effects of
convection interact directly with large-scale circula-
tion, typically through feedbacks between latent heat-
ing and the low-level convergence induced by the re-
sulting tropical wave motions.

Obviously, the manner in which the collective ef-
fects of cumulus convection are parameterized is key
in such studies. Cutrently, three main types of schemes
are in widespread use in large-scale general circula-
tion models (GCMs): moist-convective adjustment
schemes (Manabe et al. 1965; Betts 1986), Kuo-type
schemes (Kuo 1965, 1974), and Arakawa—Schubert
schemes ( Arakawa and Schubert 1974 ). Both Kuo-like
and Arakawa—Schubert-like schemes have been used
in CISK models, especially the former.

Kuo-type schemes are based on closures that directly
link the coupling of the latent heating and moisture sink
with the supply of moisture and dry static energy by
the large-scale fields, typically partitioning moisture
convergence between latent heating and moistening
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with a disposable parameter. For definiteness, we
note that the heating is typically. of the form [(1
—b)M(T.(p) — T(p))/(I. — T)] (following Kuo
1974), where M, is the total column moisture supply
by large-scale convergence and other sources, b a par-
tition parameter, () denotes vertical averaging, and the
cloud reference profile, 7, may be from a simple cloud
model. With a few exceptions (e.g., Sui and Lau 1989),
CISK studies with Kuo-like schemes simplify this by
fixing the vertical profile of the heating, that is, replac-
ing (T.(p) — T(p))/(T. — T) by a specified function
of pressure, so that latent heating is simply a function
of large-scale low-level convergence (Hayashi 1970,
1971a,b,c; Lindzen 1974a,b; Chang and Piwowar
1974; Chang 1976, 1977; Stevens and Lindzen 1978;
Davies 1978; Nehrkorn 1986; Chang and Lim 1988).
Because there is always a degree of arbitrariness in the
specification of the heating profile and magnitude rel-
ative to the low-level convergence, CISK studies with
Kuo-like schemes produce instability relatively easily.
In linear Kuo-like CISK, it is difficult to avoid the ‘‘ul-
traviolet catastrophe’” in which the shortest waves are
the most unstable, which fails to explain the dominance
of planetary scales in tropical power spectra.

The Arakawa—Schubert (1974) scheme employs a
closure assumption based on the quasi equilibrium of
the cloud work function, a measure of work done by
buoyancy in the cloud. Arakawa and Chen (1987)
pointed out the relation between this quasi-equilibrium
point of view and a generalization of convective ad-
justment. Stark (1976) used a linearized Arakawa—
Schubert scheme in a CISK study and found that
weakly unstable waves may be generated but only
when the precipitation is unusually efficient. Crum and
Stevens (1983) compared two different cumulus pa-
rameterization schemes in generating CISK and found
that the growth rates obtained with the Arakawa—Schu-
bert-like scheme are smaller than those obtained with
a Kuo-like scheme in Stevens and Lindzen (1978).

The moist convective .adjustment (MCA) scheme
was first employed by Manabe et al. (1965). The basic
assumption of MCA is that in convective situations the
vertical temperature and moisture structures in large-
scale models are strongly controlled by convection and
are adjusted accordingly to reach a quasi-equilibrium
state. Manabe et al. suggested ‘‘instantaneous’’ adjust-
ment (in practice, at the model time step) toward a
quasi-equilibrium state, which is usually chosen to be
moist adiabatic, between the cloud-field and the large-
scale forcing whenever the atmosphere is conditionally
unstable. A number of observational studies suggest
that quasi-equilibrium assumptions hold for large space
and time scales ( Arakawa and Schubert 1974; Lord and
Arakawa 1980; Lord 1982; Arakawa and Chen 1987)
and also indicate that the more restrictive quasi equi-
librium of the type employed in MCA holds well over
tropical ocean regions (Arakawa and Chen 1987).
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Recently, Betts (1986) and Betts and Miller (1986)
proposed a gentler form of convective adjustment that
relaxes the atmosphere toward a selected quasi-equilib-
rium reference profile. The adjustment reference pro-
file, not necessarily exactly moist adiabatic, is carefully
chosen to represent thermodynamic structures typically
observed in convective situations in the Tropics. The
introduction of a relaxation time in the Betts—Miller
scheme seems appropriate for the representation of
convective adjustment processes by cumulus clouds
that have finite lifetimes and makes the numerical im-
plementation of the scheme less dependent on the
model time step. Betts and Miller (1986) also indicated
significant improvement of the ECMWF model fore-
casts under this scheme. More important for our pur-
poses, the Betts—Miller version permits an analytical
approach to examine the effects of MCA on the large-
scale dynamics. As we shall see, the instantaneous ad-
justment case is a singular limit of this. It has been
pointed out to us (A. Arakawa 1993, personal com-
munication) that the analytical version used here is
more general than the case described in Betts and Mil-
ler (1986); some numerical implementations of Betts—
Miller may also differ from the smoothly posed case
we treat. We will use the term ‘‘smooth MCA’” where
generality is required, ‘‘Betts—Miller’’ everywhere
else.

In spite of the fact that convective adjustment
schemes are used in some widely cited GCMs (e.g.,
GFDL and ECMWF), no CISK study has yet examined
the modes that arise under convective adjustment. A
version of the Betts—Miller scheme is used in a linear
model on the equatorial 3 plane for this purpose. While
nonlinearity enters the tropical circulation at many
scales, such an analysis may be rigorously justified as
a means of understanding the behavior of GCMs using
a given convective parameterization, provided the lin-
earization is carried out about a suitable basic state,
taking the GCM as a nonlinear dynamical system to be
understood by successive linearizations. However, be-
yond providing an analysis of the modes of variability,
which arise in a primitive equation model under MCA,
the results have some obvious applications to 1) the
MIQ, versions of which are simulated in GCMs, and
2) the question of instability through CISK.

The MJO, discovered by Madden and Julian (1971,
1972}, is the strongest intraseasonal signal in the tro-
posphere. Comprehensive descriptions of the MJO be-
gan to emerge in the early 1980s based on the obser-
vations of wind, pressure, convective activities, and
outgoing longwave radiation (e.g., Lau and Chan
1983a,b; Krishnamurti et al. 1985; Lau and Chan
1985). The MJO is characterized by global-scale east-
ward propagation of zonal wind and convection anom-
alies dominated by low zonal wavenmnbers. Various
hypotheses concerning the mechanism maintaining the
MJO include Kelvin wave—CISK, thermal forcing, lat-
eral forcing by midlatitude disturbances, and evapora-
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tion-wind feedback. Kelvin wave—~CISK was first sug-
gested by Lindzen (1974a) as a likely mechanism for
the MJO and numerous papers have followed on this
hypothesis (Chang 1977; Lau and Peng 1987; Chang
and Lim 1988; Sui and Lau 1989). However, almost
all the CISK studies have difficulty in explaining the
planetary scale of the observed MJO. Recently, oscil-
lations that resemble observations in several respects
have been diagnosed in GCM simulations (Hayashi
and Sumi 1986; Lau et al. 1988). These GCM studies
have successfully simulated the eastward propagation
of the MJO, although almost all produce propagation
speeds significantly larger than those observed. The
evaporation—wind feedback mechanism—in which
anomalies in evaporation, created by changes in wind
speed, feed back on the circulation through convec-
tion—has been shown to be important in some GCMs
(Neelin et al. 1987; Numaguti and Hayashi 1991a,b),
while its significance remains untested in others.

Observations of the tropical atmosphere suggest that
regions experiencing deep convection are nearly neu-
tral (Betts 1982; Xu and Emanuel 1989). Recently,
Randall and Wang (1992) found that the tropical at-
mosphere, indeed, does ‘not contain much moist avail-
able energy (MAE). Their results question the exis-
tence of CISK in the sense of creating instability
through net release of convective available potential
energy at large scales. This suggests that schemes that
do not take local column stability criterion adequately
into account may not properly represent the bulk effects
of tropical convection, and implies that CISK studies,
which use unstable thermodynamic basic states, are in-
troducing an unrealistic energy source for large-scale
disturbances. On the other hand, there are numerous
tropical phenomena, such as the MJO, in which the
interaction of the bulk effects of convection with the
large-scale dynamics is an obvious feature. The term
“‘CISK”’ is often used loosely to refer to this interac-
tion, even though no instability may be present. A
change in terminology is needed to separate these two
effects; it happens that MCA, due in part to its sim-
plicity and strong dependence on thermodynamics, pro-
vides a useful example to motivate this more general
discussion.

In Part I of this paper, we formulate the model and
focus on analytical results. In section 2, the vertical
structure equation and horizontal structure equation are
derived; the MCA convective scheme necessitates a
slight variant in the setup of the eigenvalue problem
relative to previous studies. The cumulus parameter-
ization scheme employed in this study and the evapo-
ration—wind feedback are discussed in section 3. In
section 4, we briefly summarize the vertical structure
equations-used in the analytical work. Analytical so-
lutions are presented at length in section 5 for the sev-
eral classes of eigenmode that arise. Discussion of the
implications for understanding GCMs using MCA, the
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dynamics of the MJO, and CISK versus CID (convec-
tive interaction with dynamics) is found in section 6.

2. Model dynamics

Since we are interested in motions that have large
scales in the zonal direction, the long-wave approxi-
mation on the equatorial S plane will be employed.
This approximation is not essential to the results, but
the resulting simplifications give us a neatly tractable
eigenvalue problem.

a. Basic equations

The momentum, continuity, hydrostatic, thermody-
namic, and moisture equations in the long-wave ap-
proximation, expressed in terms of perturbations about

‘a stratified resting basic state on the equatorial 3 plane

(f = By), are
Ou' — Byv' + 0" = —eu’ + N, (2.1a)
Byu' + 0yd" = N, (2.1b)
O’ + o' + d,w =0, (2.1¢)
9,¢' = —(RIp)T", (2.1d)
AT + C,Y(9,S)uw'
=QUT',q', T}, q5, T) = &T" + N7, (2.le)
0q' + (0,q)w' =Q(T',q'. T) + N, (2.1f)
T}, + C,'(AS,/ Apy)w),
=QUT',q', T}, q5, T) = &T}+ N, (21g)
844 + (AG/ Apy)wh = Q(T}4, g5, T)
+ E'(Apy/g)™" + N,,. (2.1h)

The notation used here is conventional with u#’, v’, ¢’,
T', w', and g’ denoting zonal velocity, meridional ve-
locity, geopotential height, temperature, pressure ve-
locity, and specific humidity, respectively. Subscript b
denotes boundary-layer variables. A simple Rayleigh
friction, with decay rate ¢,, appears in the u-momen-
tum equation; it may be viewed as crudely standing in
for.other forms of mechanical damping, or possibly as
roughly representing a camulus friction effect. A New-
tonian cooling term, with decay rate ¢,, applies in the
thermodynamic equation representing the radiative
cooling effect; while ¢, is used in the boundary layer
to denote PBL temperature damping rate. Here R is the
gas constant and S is the dry-static energy defined as
(C,T + ¢), where C, is the specific heat at constant
pressure; E’ denotes surface evaporation (in units of
kg m~2s™"), which only applies in the boundary-layer
moisture equation; AS, and Ag, denote, respectively,
the jumps of dry static energy and specific humidity
between boundary layer and the troposphere; and Ap,
is the pressure depth of the boundary layer. In the above
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equations, all dependent variables are perturbations
with respect to a basic state, denoted ( ). The con-
vective heating, O/, and moisture source, Q,, are
functions of perturbation and the basic-state ther-
modynamic quantities, 7', ¢, T, q;, T, as will be
specified in the cumulus parameterization discussed
in section 3. The nonlinear terms, &', &,, /', /,,
N'r,, N, are of second order and higher in the per-
turbation variables and are negligible for sufficiently
small perturbations. We write them for reference in
discussing the relation of linear to nonlinear behavior
of the system. The nonlinear terms will all have a
contribution from advection, that is, from terms
v -V(u', v', T', ...). Under suitable spatial dis-
cretization, these advective nonlinearities will all be
smooth functions of the perturbation quantities.
There will also be a contribution to the nonlinear
terms N, N, N7, &, from the cumulus parame-
terization, as discussed below.

In deriving (2.1e) and (2.1f), we have assumed a
spatially uniform basic state such as might occur in a
very idealized version of a GCM with uniform sea sur-
face temperature lower boundary conditions or, more
realistically, with zonally symmetric boundary condi-
tions whose y variations were slow, say order 6,, com-
pared with the equatorial radius of deformation and ne-
glecting terms of O(4,). Under MCA, this will lead to
a self-consistent steady state in radiative—convective
equilibrium (RCE), with latent heating balancing ra-
diative cooling and moisture source balancing evapo-
ration as well as total latent heating balancing total
moisture sink at each point and negligible baroclinic
circulation in the basic state. The basic-state balances
are just

Q.+ 0r =0, (2.2a)
0, + E(Ap,/g)™' =0, (2.2b)
G, fp Qc— = —Lf Qq =LE. (22¢)

For the cumulus parameterization considered here,
there is a finite neighborhood about the RCE station-
ary point for which the contributions of the heatlng
and moisture sink to the nonlinear terms A7, A,
N,, N, are also smooth functions of the prognostic
variables. We thus have a case in which the system
satisfies the conditions of the center manifold theo-
rem (e.g., Guckenheimer and Holmes 1983), imply-
ing that certain qualitative aspects of the nonlinear
behavior in some neighborhood of the radiative equi-
librium state can be deduced from the linear eigen-
value problem about that state. In drawing conclu-
sions from the analytical analysis of the linear prob-
lem, we will have a set of specific conditions where
statements can be made rigorously, although of
course there will also be areas where the linear anal-
ysis can only be suggestive.
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b. Separation of variables

Linearizing (2.1) and decomposing all perturbation
variables, including Q/, Q/, and E’, as

C ) (xy,p, 1) =), peVe™,  (2.3)

where k is zonal wavenumber and \ is a complex ei-
genvalue, the momentum equations, continuity equa-
tion, and hydrostatic equation, (2.1a) —(2.1d), give

gﬁzfaf,tl} + (N + €,)y02T

—2(\ + €,)0,T + ikByT = 0, (2.4)

which with the thermodynamic and moisture equations
and the cumulus parameterization yields a two-dimen-
sional (y, p) eigenvalue problem.

For the separable case considered here, if ¢,, €,,
8,5, and 8, are all independent of y, we can consis-
tently assume that all thermodynamic variables and w
are separable with the same y structure:

O.p) = NP, (2.5)

where Y (y) is the y-structure function. Equation (2.4)
thus can be separated into vertical and horizontal struc-
ture equations, provided ¢, is independent of p, which
gives

Opw — RXroo, (2.6)
p
and
(N + €,)y0;Y — 2(\ + €,)8,Y
+rB%y’Y(y) + ikByY =0, (2.7)

where r is a constant of separation. Comparing (2.7)
to the corresponding horizontal. structure equation for
the shallow-water equations, it is convenient to define
c¢?= —(\ + ¢,)/r where c? is now the separation con-
stant, proportional to equivalent depth. This leads to
the familiar nondimensionalization with inverse length
scale, u = (B/c)"? and time scale (uc) ~'. Defining y*
= py, k* = k/p and N* = (uc) "'\, the nondimensional
form of (2.7) is
ik*

)\* + € *

Since this is the same horizontal structure equation
as for the shallow-water equations on a § plane with
the long-wave approximation, the solutions must sat-
isfy the condition:

y*OLY — 28,.Y — y*?Y + y*Y=0. (2.8)

tk*
)\;k + €m = (2n + 1) ’ (2.9)
and
, INF+ ) dy,(y*)
Y(y*) == (— iy ) + YR (%),

(2.10)
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that is, for given n,

1

1
Y(y*)= 2 [1 - m]lﬁm()’*)

n
+ |+ -1 %), 2.1
[(2n+ D n]l// 1(y*),  (2.11)
where the Hermite function, ¢,(y*), is defined as
¥.(y*) = exp(—y**/2)H,(y*)and H,(y*)is the nth-
order Hermite polynomial. The dimensional form of
(29)is

ik -

N+ e, = ———c.
T 2n+ €

(2.12)
The case n = 0 corresponds to the anti-Kelvin wave,
which is eliminated by y boundary conditions. The case
n = —1 is the Kelvin wave, n = 1 is the gravest Rossby
wave with phase speed one-third of the Kelvin wave
phase speed, and the higher meridional Rossby modes
(n=2,3, ---) are correspondingly slower. Modes that
have pure real eigenvalues (A, + ¢,) effectively have
negative equivalent depth in the horizontal structure
equation but are thermodynamically direct in the ver-
tical structure equation. Having used the horizontal
structure equation to get the relationship (2.12) be-
tween the time eigenvalue and the separation constant,
employing the definition of ¢ and (2.6) gives the com-
bined contribution of momentum, continuity, and hy-
drostatic equations to the vertical structure equations:

R k?
(A, + €,) 05w —

;m T=0. (2.13)

In this form, (2.13) will always produce a spurious set
of roots with phase speed of the wrong sign, but these
are easily eliminated by reference to the y boundary
conditions, giving the eastward Kelvin wave and west-
ward long Rossby waves in the propagating case. The
vertical structure equation of the Kelvin mode (n
= —1) is identical to nonrotating gravity wave equa-
tions, as far as eigenvalue is concerned, and will hold
for all wavenumbers. For Rossby modes (n = 1, 2, 3,
- - +), the long-wave approximation only holds for

,Bk 1/2
2n+ 1D\, +e,)| 7

k<|p| = (2.14)

that is, for

B
< .
k (2n + 1[N, + €.

(2.14")

For modes with small |\, + ¢,]|, the approximation for
Rossby waves can hold to large wavenumbers. The dis-
persion diagram and eigenmode vertical structures as a
function of k are identical for the Kelvin wave and long
Rossby waves except that k? is modified by a factor of
(2n + 1) 72 for the Rossby mode case. This is conven-
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ient since we need only to display solutions for the
Kelvin case, and the Rossby case follows immediately.
However, the primary reason for making use of the
long-wave approximation is the simplicity of the so-
lutions to the horizontal structure equation, which
yields (2.13) and thus a simple eigenvalue problem of
standard form. Without the long-wave approximation,
the dependence of the latent heating and moistening
upon thermodynamic variables in MCA leads to a more
difficult eigenvalue problem. We note that the form
considered here is equally valid for nonrotating gravity
waves, and so may be used to examine the limit of
small scales, as well as for long zonal scales. For the
Kelvin wave, it holds uniformly for all scales.

3. Model physics
a. Parameterization of cumulus convection

According to the Betts (1986) parameterization for
cumulus convection, the latent heating and moisture
source are represented as

1
Q= - (T: =T" = AT)), (3.12)

;=" (ai-a, (3.1b)
TC

where T'; and g/ are, respectively, the temperature and
specific humidity reference profiles toward which con-
vective adjustment occurs, which are themselves func-
tions of the basic state and large-scale thermodynamic
variables. Here AT/ is the energy correction, which
satisfies the enthalpy constraint. All quantities in (3.1)
are written in terms of perturbations from the RCE
state; the form remains smooth and linearizable pro-
vided the convective adjustment is operating, that is,
for a finite range of perturbation amplitude (which de-
pends on the basic state).

The relaxation time scale of cumulus convection, 7,
is introduced to simulate the characteristic time over
which convective motions tend to bring the changing
large-scale field toward a quasi-equilibrium reference
state. With small 7. the model atmosphere adjusts rap-
idly toward the specified thermodynamic profile, while
with large 7. the thermodynamics is less tightly con-
strained. Betts (1986) suggested that an appropriate
value of 7. is about two hours, with 7. being chosen to
approximate Ap/wy,,, where Ap is the pressure depth
required to lift the air parcel before it is saturated and
Wmax 18 the maximum pressure velocity in convection.

The scheme also employs an energy constraint,
which requires that the total heating must balance the
total moisture sink:

PO , dp 'Po , dp
Cp f Qc —=-L f Qq T
Pr 4 Pr g

where p; and p, denote the pressure level at cloud top

(3.2)
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FiG. 1. Profiles of basic-state dry static energy S and basic-state
moist static energy k [ following Jordan (1958), except that the low-
est 75 mb is approximated by a well-mixed boundary layer].
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and sea surface level, respectively. This closure as-
sumption (3.2) links the moisture equation with the
temperature equation and will give a correction term to
the latent heating reference profile as outlined below.

1) REFERENCE PROFILE OF SPECIFIC HUMIDITY

For the reference profile of the specific humidity, we
let g. be a given fraction of saturation; that is,

q! = aql(T), (3.3)

where a(p) is a measure of relative humidity and
Lg o (T) = yC,T'. Here v is a unitless variable defined
as ¥y = d(Lqw)/d(C,T)|7and g (T) is the saturation
specific humidity. When a = 1, the reference atmo-
sphere is saturated; from many observational studies,
ranges from 0.8 to 0.9 for most tropical precipitation
systems. Betts (1986) specifies « as a function of p
and 7', with a minimum at the freezing level (note that
there is a simple one-to-one correspondence between a
and the #* parameter used by Betts). In analytical
work, we either leave « as a general function of p or
treat it as a constant.

2) REFERENCE PROFILE OF TEMPERATURE

The Betts (1986) specification for the deep convec-
tive reference temperature profile is chosen to represent
observed structure and is not necessarily moist adi-
abatic. However, it is relatively close to the moist adi-
abat arising from the boundary layer, and we use this
as our standard reference profile for numerical work,
consistent with classic Manabe convective adjustment.
In analytical work, we either leave the reference profile
in general form or make further simplifications. We are
concerned here only with perturbations to the reference
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profile. The perturbation reference temperature, T,
obeys

- hL(T, T2 = hi(T}, q4)s (34)
where h!, and hj, are defined as:

= CGTL+ ¢!+ Lgl(T, T, (3.52)

hy, = C,T} + Lq;. (3.5b)

Here A, is defined at a reference level, py, at the bottom
of the PBL (i.e., h; is both the moist enthalpy of the
PBL and the moist static energy at the reference level)
and h/, is the saturation moist static energy above the
boundary layer.

Solving (3.4) yields

C,T:(p)=A(p)h; (3.6)

for all levels between cloud base (at the top of the
boundary layer) and cloud top, where hy, = h,. The
profile A(p) is just the vertical dependence of the per-
turbations to the temperature reference profile 7'/ for a
given hj. A derivation for this in finite-difference form
is given in Part II. Figure 1 shows typical basic-state
thermodynamic profiles from Jordan (1958) used to
represent the observed mean tropical troposphere. For
this observed basic-state temperature profile, A(p)/p is
given in Fig. 2. Also shown in Fig. 2 are two linear
approximations to A (p)/p used in sensitivity tests.

Betts (1986) suggested that for deep convection, the
reference profile should be constructed to satisfy the
total energy constraint (3.2), which because of the
form of the heating, can be expressed as a total enthalpy
constraint:

100

200+
300+
400+
S00
600+
700ﬂ

PRESSURE (MB)

800

900+

1000

T T T T
0 1 2 3 4 S

(10° MB)-!

FiG. 2. A(p)/p, the vertical structure of the perturbation to the
moist adiabat for a given perturbation of boundary-layer temperature,
scaled by a compressibility-related factor, as calculated from ob-
served basic-state thermodynamic profiles (solid line). Dashed lines
show two linear approximations to A (p)/p with different slopes cho-
sen to give an estimate of sensitivity.
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'Pb
f (H; — H')dp =0, (3.7)
pr
where enthalpy quantities are defined as
H =CT'+Lq’, (3.8a)
H.=C,(T.~ AT!) + Lg!,  (3.8b)

with H, denoting the corrected reference profile of en-
thalpy and (T; — AT/) denoting the corrected refer-
ence profile of temperature. When (3.8a) and (3.8b)

are substituted in (3.7), this is equivalent to (3.2)..

Thus, the total enthalpy constraint simply implies that
the source of latent heating release in the camulus con-
vection is from the moisture sink in the troposphere.

We note that T/ is the uncorrected reference profile
defined by (3.6) and AT/ is a constant correction to
this profile that introduces the degree of freedom nec-
essary to satisfy the conservation constraint (3.7).
Betts and Miller (1986) solved this numerically, con-
structing T'; as a first-guess reference profile, then it-
erating with the correction term to satisfy (3.7). Here
we employ an explicit solution for the correction:

'Ph
C,AT! = Ap;‘[f C,(T. ~T")dp
pr

[ iigr - q')dp]

T
A ‘ ~ A\ ~
=Ahy, — C,(T' —ayT') — Lg', (3.9)

where Apy is defined as the total length of column over
which convective heating applies. Here we have used
Oy = Aap7' [ :7’( )dp for vertically averaged quantities.

b. Evaporation—wind feedback

Neelin et al. (1987) and Emanuel (1987) jointly sug-
gested the importance of evaporation—wind feedback in
maintaining and intensifying the Madden—Julian Oscil-
lation. A region of anomaly latent heating on the equator
will force anomalous easterlies to the east of the heating
region and westerlies to the west at lower levels. Since
the evaporation depends on wind speed, the anomaly
winds, in turn, strengthen the evaporation anomaly to the
east of the heating and weaken the evaporation anomaly
to the west. The resulting anomalous evaporation will
then feed back, through convection, to the heating anom-
aly. Under proper circumstances, the evaporation—wind
feedback favors eastward propagating waves. More re-
cently, Numaguti and Hayashi (1991a,b) used an ‘‘aqua
planet’” GCM to study planetary-scale structures and cu-
mulus activity. They found the existence of the MJO un-
der two different cumulus parameterization schemes
{Kuo-type and Manabe’s MCA ) and also concluded that
the MJO is maintained by the evaporation—wind feed-
back mechanism. Goswami and Goswami (1991)
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showed strong effects of the evaporation—wind feedback
on the mixed Rossby—gravity mode.
To study the impact of evaporation—wind feedback,
we parameterize the evaporation term as
E = pCpW [(qsa(Ty) + q5(T)) — (g5 + g3)],
(3.10)
where p is the density of the air, Cp, is the drag coefficient,

T, is the sea surface temperature, and W is the wind speed,
which depends on u,. Linearizing (3.10), we get

E' = (dWldu,) pCp(qsa(Ts) — Gp)us
— pCpWyy, + pCpWy.(C,/L)T!. (3.11)
Thus the evaporation term in (2.1h) can be expressed as

E'(Apy/g)~' = —F(Ap,/g)~'u;

~€4qs + €Y (C/LYT;, (3.12)

where we have defined
F = —(dW/du,) pCp(Gea(T,) — @), (3.13a)
€, = pCoW (Ap,/g)~". (3.13b)

Here F is the evaporation—-wind feedback parameter; F
has been chosen such that it is positive when the mean
zonal wind is easterly (i, < 0), noting that for the sim-
plest parameterization, W = |ig, + u, |, one has (dW/
du,) = sgn(is,). The first and second terms on the right-
hand side of (3.12) are the evaporation—wind feedback
and the effective evaporative damping, respectively. The
last term is due to sea surface temperature anomalies that
are neglected in this study for the purpose of simplicity
(i.e., T; = 0). Estimates from a GCM study (Neelin et
al. 1987) suggest that F is in the range of 0.2 to 0.6 mm
day ™' (ms~')~'. Estimates of the boundary-layer pa-
rameters suggest €, = (2 days) ~'. For the Kelvin case,
u has the same y structure as w, T and ¢, so (3.12) is
consistent with (2.5) for n = —1. For Rossby modes, an
expansion of u in ¢, should be employed when adding
the evaporation—wind feedback.

4. Eigensystem

The cumulus convection and evaporation parameter-
izations formulated in section 3 close the eigenvalue prob-
lem. For convenience, the complete system determining
eigenvalues and vertical structures is summarized here.
For definiteness, we give the Kelvin wave meridional
structure (n = —1) case, since the long Rossby wave or
short gravity wave cases can be obtained by suitably re-
defining k. The combined momentum—continuity —hy-

drostatic equation can be expressed as
(N + €,)0%w — k*(x/p)T = 0, (4.1)

with thermodynamic and moisture equations for the
troposphere and boundary layer:
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A+ e)T+ (8,8w=7(T.— T - AT.), (4.2a)
(N + )T, + (AS,/Apy)w, = —T-'AT,, (4.2b)
A + (Bpg)w =7 (ayT — q), (4.2¢)

(A + €)qs + (AGo/ Apy) wy,
= 7. (T, — @) — LF(Ap,/g)~'u,, (4.2d)

where the reference temperature is 7, = A(p)h, and
the energy constraint requires

" n PN
AT, = Ah, — (T — ayT) — ¢, (4.3)

although sometimes it is easier to work directly with
the original version:

0.+ 0,=0. (4.3")

In (4.1), we have defined «k = R/C,. For brevity, we
have dropped primes and absorbed C, and L into tem-
perature and specific humidity so they both have energy
units (J kg™!).

5. Eigenmodes of the tropical atmosphere
under MCA

In order to isolate the convective interaction with
dynamics, the evaporation—wind feedback is tempo-
rarily neglected, but we retain the effective evaporative
damping and boundary-layer temperature damping
processes. The impact of the evaporation—wind feed-
back will be discussed separately in section 5d, with
respect to the Madden—Julian mode.

By taking the convective time scale, 7., as a small
parameter, we can decompose the system into a series
of relatively simpler ones, with the first few order bal-
ances representing most of the important features. We
express all variables in the form of perturbation series:

(W, T, g, wy, Tpy ) = ( )
+ Tc( )(l) + ’7’%( )(2) + .-
and eigenvalue, A, as
A=7 N NO 7 ND 4 2P

where \ is treated differently since we expect the ex-
istence of eigenvalues of order 7.'. These modes are
termed ‘‘fast modes’’ since their dynamics change rap-
idly with the time scale of 7., while the others are
termed ‘‘slow modes.”” We examine all modes for
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completeness, but readers interested only in the single
most important mode may skip directly to section Sc.
a. Fast modes

Supposing that A ™ # 0, we seek fast mode solu-
tions. At order 7., the balances are

ANCDTO = 7O _ 7O _ ATgo), (5.1a)
ANCOTO = _ATO), (5.1b)
A(DGO = gyT® — g©, (5.1¢)
NGO = a,y, T - ¢, (5.1d)

T = AT, +4p),  (Sle)

and the energy constraint is

"Pb (43
ACD (I T(O)dp + f q(O)dp
pr

Pr

+ Ap, T + Apbqé"’) =0. (5.1f)

Here we have used the lhs of (5.1a)—(5.1d) to replace
the latent heating and moisture sink in (4.3'). At
O(7;") balance, the momentum equation does not ap-
pear and only thermodynamic variables are constrained.
Note that we work in terms of T3, and g, for these modes,
rather than h,, because the latter does not yield simpli-
fications without convective quasi equilibrium.

From the energy constraint (5.1f), there is a possible
root of A ™Y = 0 with convectively adjusted balances in
(5.1a-d), which gives the slow mode solutions discussed
in section 5b. The fast mode energy constraint gives

PN A\ Apb ©) Apb 0)
TO 4 g© 4 TEb p© =5k =0, (52
q Apr b Apr q» (5:2)

where (A) denotes the vertical pressure average as in
section 3. From (5.1a), (5.1b), (5.1c), and (5.1e), we
obtain

A . A P l
[(1 +K‘?ﬁ)x<-”z+ <A+aAy +222 1>>\<"“+ (A + ayA +%)]T§m

Pt Apr

D AT +37) +AOTY
% = N1 1) , (5.3a)
AN
<5 _ A + ") + A VayTy”
q'? = D1 1)? . (5.3b)
The energy constraint (5.2) thus becomes
Pt
Apy ()2 (,. APb) - (A o Apb)] 0
F N+ [A+ 22N+ [A+ayA+ =) [g5) =0, (54a
[ Apr AT Ap, ) |90 (5.4a)

Apr
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which, along with the order 7' boundary-layer mois-
ture equation,

T — (1 + N ) g =0, (5.4b)

provide a complete set of equations for fast mode ei-
genvalues to O(7;").

First, motivated by special balances of the free tro-
pospheric temperature equation (5.la), free tropo-
spheric moisture equation (5.1c), and boundary-layer
moisture equation (5.1d), we focus on the case of A (™"
= —1. This implies:

T;,O) = qzo’ =0, (5.5a)

TO = ATO = g = 0, (5.5b)
PN

T = g@© =, (5.5¢)

Ap, 3 Ap, ~ —~
1+— A"+ ——+A+2+ +3
( APT) <ab?’b Apr . ay

Dy

A A
+ (ab')’bA + 20y, A

T

Solving this cubic equation numerically, for the stan-
dard basic-state parameters with Ap, = 75 mb and Ap;
= 825 mb, yields one pure real root with A ¢ = —1.58
and a complex conjugate pair with A" = —0.95
+ 0.589i. For 7. = 2 h, the first root gives decay rate
of about (1.26 h) !; the complex pair gives decay rate
of about (2.11 h) ™! and period of about 21 h. This pair
appears numerically undesirable, although it is not
known whether it creates difficulties in practice.

The energy balance of fast modes is between time
rate change of temperature and diabatic heating, con-
sistent with the rapid decay at rates too fast to allow
the dynamics to adjust. The Oth-order thermodynamic
variables are not in adjustment with the reference pro-
files; rather, these are the modes that would effectuate
the adjustment toward quasi equilibrium from nonad-
justed initial conditions (or stochastically perturbed
conditions). Since these eigenmodes are degenerate at
leading order, they do not individually have any phys-
ical significance in the dynamical system. Their collec-
tive effect is to maintain adjustment and the rapid decay
time indicates that the degree of nonadjustment will be
small.

b. Slow modes

Choosing A " = 0, we now seek slow mode solu-
tions. At order 7! balance, the eigen-system gives the
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Thus, these modes, with decay rate 77!, have zero
temperature and relative humidity reference profiles
and zero temperature in the troposphere. The ther-
modynamic variables are not perturbed in the bound-
ary layer, and they must have wiggly specific humidity
structures in the heating region to satisfy (5.5c).
These eigenstructures and the order-zero eigenvalues,
which provide a countable infinity of fast modes, must
be solved from the next-order balances in a manner
qualitatively similar to that carried out for kinemati-
cally dominated slow modes in appendix A. We omit
this analysis and discuss these modes in the numerical
results of Part II.

Next, we focus on the case of A ™!’ # —1. This re-
quires the determinant of (5.4a) and (5.4b) to vanish,
which yields

é&))\(—nz
Apr

. S o~ A
+2A+ 14+ ayA + ay +3Apb)x(“’

Dt
Lo~ A

+ (1 +am)<A+ ayA + ””) =0. (5.6)
. : APT

structures of the zeroth-order thermodynamic vari-
ables:

TO = 7O ATO® =, (5.7a)
q©@ = q® = ayT®, (5.7b)
g = ¢ = a,y,T, (5.7¢)
T = A(p)h;”. (5.7d)

For slow modes, the zeroth-order temperature and
moisture profiles are exactly the same as the reference
profiles and the temperature correction term is zero.
Thus, there are neither latent heating nor moisture sink
for order 7' thermodynamic balances, and the energy
constraint is automatically satisfied. Only the zeroth-
order thermodynamic variables are constrained at
O(7"), leaving A and w'? free. Physically, because
the dynamical time scales of slow modes are long com-
pared to the cumulus time scale 7., near adjustment to
the reference profile is expected.

The zeroth-order balances yield a more complete
system:

(AN + ,)02w — k*(x/p)T = 0, (5.8a)
@+ )T + (5, w®
= (T = TV — ATD),  (5.8b)
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()\(0) + Eb)T(O) + (ASb/Apb)(JJ(O) = ATE‘”? (580)
AN OGO + (8,7)w® = (ayT™ — gV, (5.8d)

(N® +¢,)g." + (AG/ Apy)w)y

(abeTlgn - q;”)

TV = A(p)hy”,

(5.8e)
(5.8f)

with energy constraint,

/43
f [N + )A(PYh + (8,5)w@1dp
PT

+ [ O v + D0 1dp

+ [Apy(N @ + )Ty + ASywi ]

+ [AP,(N® + €)ayy, Ts) + Aguws 1 =0, (5.8g)

where we have used the lhs of the zeroth-order balances
(5.8b—e) as well as (5.8f) to replace latent heating and
moisture sink in the energy constraint. We note that
small (O(7.)) departures of T and g from adjustment
to the reference profile yield order unity heating and
moisture sink terms. This corresponds to balances hy-
pothesized in a less formal framework by Arakawa and
Chen (1987) with heating and moisture sink terms
given diagnostically from the T and g equations. Since
(5.8b—e) are needed only for the derivation of (5.8g),
closure for the zeroth-order eigenvalue and variables is
obtained at this- order.

1) PROPAGATING DEEP CONVECTIVE MODE

For the case of A® # — ¢,, (5.8a) holds with
nonzero T and w® and determines w'® with only
two vertical degrees of freedom (from the two con-
stants of integration of 92w'® with T given). This
balance singles out a special vertical mode which
turns out to be propagating (complex conjugate pair
of eigenvalues, one of which is eliminated by y
boundary conditions). Because of the great physical
significance of this mode, we discuss it at length in
section 5c.

2) KINEMATICALLY DOMINATED MODES

The propagating deep convective mode accounts for
only two out of an infinite number of vertical degrees
of freedom. To obtain the rest of the slow modes as-
sociated with these degrees of freedom while satisfying
the constraint of the momentum equation, we are led
to the case of A () = —¢,,. This implies that the zeroth-
order temperature and moisture components are zero
and these modes are dominated by the kinematic vari-
ables, w® and u‘®; hence, the term ‘‘kinematically
dominated modes’’ is given to them. The first-order
temperature and moisture variables enter the zeroth-
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order thermodynamic equations; the equations from
the leading two orders of expansion are, in the tropo-
sphere:

TO =T7® =T, = 0, (5.92)
g =q®=gq;" =0, (5.9b)
(0,9)w® = (T — TV — ATV),  (5.9¢)
(8,0 = (ayT" = ¢V, (5.9d)
T = A(p)hy"; (5.9¢)
while in the PBL they are
(AS,/ Ap)ws = — ATD, (5.91)
(AG/ Apy)wy” = (e — q5").  (5.92)

The zeroth-order thermodynamic variables are all
unperturbed and the zeroth-order reference profiles of
temperature and moisture are all zero. The kinemati-
cally dominated modes do not conform to conventional
intuition about convectively adjusted dynamics in that
the leading-order thermodynamic variables are not in
adjustment with the reference profiles. These modes do
obey ‘‘near-adjustment’’ constraints, but in the rather
trivial sense that these leading-order, nonadjusted ther-
modynamic variables appear at O(7.) and are thus
small. At zeroth order, the diabatic heating is balanced
by the adiabatic cooling and the moisture sink is bal-
anced by the moisture convergence. The energy con-
straint (5.8g) becomes

f (8,5 + 8,§)w@dp + (AS, + AF,)w} =
(5.9h)

In the first term, 0,5 (negative) dominates 8, (posi-
tive) in the upper troposphere and 9,4 dominates in the
lower troposphere. In the second term, (AS, + Ag,) is
positive. Thus, modes that have oscillatory structure in
w®(p) that causes cancellation in the integral term will
tend to have relatively small wbo), while modes that
have less vertical structure must have sufficient ampli-
tude of w® of the same 81gn as wy in the upper tro-
posphere. We note that it is possible to enter higher-
order dynamics to get A ", if desired; the case of A(p)
= const is outlined for illustration in appendix A.
Again, we have a (countably infinite) set of modes,
which are degenerate at leading order. This degeneracy
will be broken if momentum diffusion is included
but only in a manner similar to the diffusion equation.
We therefore do not expect these modes individually
to correspond to physical phenomena, although they
will participate in the adjustment process from arbitrary
initial conditions (or stochastically perturbed condi-
tions).
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c. Propagating deep convective mode ( Madden—
Julian mode )

Among the slow modes, a single mode stands out as
having distinct properties and eigenvalue and is likely
to have great physical significance. This mode is the
only one for which the leading-order thermodynamics
is in adjustment with reference profiles and is the only
slow mode with zeroth-order thermodynamic quanti-
ties. The order 7' and order 72 balances are given by
(5.7) and (5.8), respectively. Since all variables are
zeroth order, we drop the superscripts hereafter for
brevity. Thus, for the case of A® = ¢, the energy
constraint (5.8g) can be rewritten as

'Ph _
(ANA* + €*)h, = —Ap7! (8,h)wdp
24
— (Ahy/ Apr)w,, (5.10)
where
R N
A* = A + ayA + Ap,/Apr, (5.11a)

e* = Ae, + (Apy/ Apr)es. (5.11b)

In (5.11b) we have set €, = ¢, (same drag coefficient
for evaporation and sensible heat). The quantity A *
provides a nondimensional measure of the thermal
inertial of the motions associated with a given per-
turbation of A, under the moist-adjusted constraints.
Similarly, these constraints have implied that all
forms of thermodynamic damping combine into the
weighted vertical average, ¢*, which includes evap-
orative and sensible heat fluxes in the boundary layer
in addition to radiative effects throughout the col-
umn. Equation (5.10) along with the zeroth-order

momentum—continuity —hydrostatic equation,
(N + €,)02w = k(A(p)/p)k*h,,  (5.12)

gives a complete system to be solved for slow mode
solutions. We can integrate (5.12) to give

s [
A " ”
T (p")d Inp"dp’
+ PPy (513)
Ap,

where the first and second constants of integration have
been chosen to satisfy the matching conditions at cloud
base:

Wlp = wp, Opwly, = —wp/Ap,.  (5.14)
Substituting (5.13) into (5.10) yields
[(NA* + €¥)(\ + €,,) — Mpk®1h,
— (N + &)(Ap7r' + Ap; " YMuw, = 0, (5.15)
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P Ph e P
Mp=—— (6,,h)f f A(p")d Inp"dp'dp,
Aprdp, p Vp
(5.16a)
e = [ i
= (Apr+Apb) (p» — P)(O,h)dp
Ap,
_ — i 5.16b
t (Bpr + Bpgy e - (5:160)

Both M, and M are weighted vertical means of basic-
state moist static stability. They provide measures of
the net effects of stability on their respective parts of
the moist, precipitating motions obeying the moist-ad-
justed constraints. The physical interpretation of M,
and My individually is less striking than that of the
combination that arises when an upper boundary con-
dition closes the problem as discussed below. We note
that Mp comes from the particular solution to (5.13),
which is directly driven by geopotential gradients im-
plied by adjustment to the reference profile of temper-
ature, while M}, comes from the homogeneous solutions
in the heating region, which are implied by matching
to the boundary layer. The second term, (h, — hy), of
M, should be nearly zero since the cloud top is chosen
such that A | . = h;, so that the basic-state moist static
energy at cloud top is approximately equal to that of
the PBL. It is noted that if the mean state were both
moist adiabatic and saturated, ,h would be zero. In a
realistic basic state, the positive 3pq overcomes nega-
tive 0, S at low levels but the magnitude of 8,5 is greater
at upper levels. Signs are chosen such that both Mpand
My are positive for realistic cases. An explicit form of
(5.16a) is given for a special case in appendix C.

1) RIGID-LID CASE

Considering first the simple rigid-lid case, evaluating
(5.13) at p = pr, and applying the zero velocity con-
dition yield

Ay + (A + ) (Ap7' + Apiw, = 0, (5.17)
where A* is the vertical average of
'Pb
A*(p) = Kf A(p)dlnp'..  (5.18)
14

We note that A * gives the vertical structure of the geo-
potential gradients associated with quasi-equilibrium
temperature perturbations, relative to a reference level
at cloud bottom. In (5.17), the A™ term is thus asso-
ciated with the contribution of these toward the vertical
velocity at pr. For nontrivial solutions, (5.15) and
(5.17) require
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O\ + 6)[(AA* + €¥)(\ + €,) + AMK2] = 0.
(5.19)

This indicates the possible root of A ® = —¢,,, which
has been discussed earlier. The other two possible prop-
agating roots are

= — 2 (en + €¥/A%)

+ %i[(4AM/A*)k2 ~ (€m — €*/A*)?]V2. (5.20)

In (5.19) and (5.20), we have defined

AM = A*My; — My, (5.21)

which represents the net static stability, including moist
effects, in the troposphere felt by this mode. This was
termed the gross moist ‘stability by Neelin and Held
(1987) where it was defined in a two-level model for
the steady tropical circulation. A time-dependent ver-
sion of the same two-level model was used by Neelin
et al. (1987); it is remarkable that the dispersion rela-
tion for this mode is identical in form to the two-level
case, but with a precise meaning given to the gross
moist stability and to the net thermodynamic damping.

The mode is oscillatory as long as the damping is
not too large compared to the propagation tendency
from the gross moist stability term; that is,

(BAMIA®YK? > (e, — e¥A®)2.  (5.22)

Care is needed in estimating AM since §,5 and 0,q
oppose each other. An estimate of AM from the basic
state in Fig. 1 using (5.16a) and (5.16b) suggests a
value of about 180 J kg~'. Using the linear approxi-
mation to A(p)/p of (C.3) in M, yields values in the
range from 150 to 100 J kg *.

Using €, = ¢, = (10 days) ™', a = 0.8, Ap; = 825
mb, and Ap, = 75 mb suggests that condition (5.22) can
be satisfied to very small wavenumber (=0.1). Defining

C= %{ [(AAM/A*)K* — (€, — €¥A*)*]Y2 (5.23)

gives the zonal phase speed for this mode (including
damping effects ). The eastward propagating case [ neg-
ative root in (5.20)] is appropriate to the Kelvin wave;
the westward case is appropriate for the long Rossby
waves, with & rescaled by (2n + 1).

Since the MJO is characterized by Kelvin wave—like
structures and is dominated by planetary wavenumbers,
we focus on the wavenumber one Kelvin wave case. Fig-
ure 3 shows the normalized vertical profiles of vertical
velocity, latent heating, and moisture sink from the ei-
genvector reconstructed from the solution (5.13) for w,
using the moist adiabat reference profile for A(p). The
profiles exhibit deep convective structures with latent
heating balanced by moisture sink. It is noted that these
profiles are determined internally by the dynamics and do
not resemble the vertical dependence of the reference pro-
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PRESSURE (MB)

1.0

FiG. 3. Vertical profiles of normalized pressure velocity, latent
heating, and moisture sink for the propagating deep-convective mode
(Madden—Julian mode) from the analytical solutions (5.13) using
the moist-adiabat reference profile.

file. The position of maximum vertical velocity and latent
heating is around 500 mb and the position of maximum
moisture sink is lower than the latent heating peak, re-
flecting the vertical redistribution of heating by convection.

Estimates of (5.20) using previously mentioned pa-
rameter values give a decay rate of about (13 days) ™’
and a period of about 31 days for wavenumber one (see
appendix C for a discussion of sensitivity). Since this
wavenumber one propagating deep convective mode
has vertical structures and period very similar to the
eastward propagating MJO appearing in many GCM
studies, the term ‘‘Madden—Julian (MJ) mode’’ will
sometimes be used. The decay rate of the MJ mode, at
this order in 7., is determined by a weighted combi-
nation of physical damping effects, ¢,, €,, and ¢,, and
for typical parameters this is smaller than the mechan-
ical damping rate. If these damping rates are all small,
this mode is near neutral at this order, but next-order
corrections introduce an additional damping due to ..
The period of the MJ mode is mainly determined by
the gross moist stability, AM, as suggested in (5.20).

2) RADIATION UPPER BOUNDARY CONDITION CASE

Here we discuss the impact of a more realistic upper
boundary condition on the MJ mode. The formulation
of the radiation condition is given in appendix B, where
its effect upon other modes is qualitatively discussed.
Hayashi (1971b) stated that there is no significant dif-
ference between rigid-lid and radiation upper boundary
conditions for the tropical-trapped waves in a CISK
model using Kuo-like scheme when the heating is suf-
ficient large. Recently, Yano and Emanuel (1991) in-
dicated that a scale selectivity can result from the use
of a radiation upper condition.

Evaluating (5.13) at p = p; yields
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AF 1
—— k", + —
N ten) "7 Ap
L] N o=
(N + €.) (Ap, + Apr) '

where A7 = A" (pr) and

A*

mkzh,, + (Ap7' + ApyDHw, — Aprlwr =0,

(5.24)

where wr is the vertical velocity at cloud top. The ra-
diation condition, (B.3), gives

0, (5.25)

_ | sen[Re(X + €.)1(Ap, + Apr)[k(— 8,8)/pr1'%k, for stationary waves
(Apy + Apr)[«(—38,5)/pr]'*k, for propagating waves.

The quantity N is proportional to the large Brunt—Viisild frequency of the stratosphere with a form similar to
that of a gravity wave with large vertical wavelength; it is of order 10™* s, which is large compared to the
tropical low-frequency oscillation. The system (5.24), (5.25), and (5.15) yields

A+ (N + eX/A* + 26,)N* + [(€n + €¥/A*)(N + €,) + €ne*/A* + kK*(AM + AM®)/A*]N\

+ {(ene*/A* + KPAM/A*)N + €,[€ne*/A* + K*(AM + AM®)/A*]} =0, (5.26)

where we have defined a positive quantity similar to
the gross moist stability but due to the additional effects
of the radiation condition:

AME = [A* + (1 + Apy/Apr)AFIMy.  (5.27)

Equation (5.26) appears to contain three roots of A,
but in fact one of them is excluded by the dependence
of N on sign()\) in the radiation boundary condition.
To obtain the qualitative behavior of (5.26), an éx-
pression of A in orders of the small parameter N~' is
used. Considering a leading term \ ", the leading-
order [O(N?)] balance gives either A"V = 0 or A<D
.= —1. The latter violates the radiation boundary con-
dition for the stationary waves and is not a true solution.
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FIG. 4. The eigenvalue of Madden—Julian mode with a radiation
upper boundary condition as a function of zonal wavenumber. Solid
line denotes growth rate and dashed line denotes frequency.

For the case of A (™! = 0, the leading-order [O(N)]
balance gives exactly the same dispersion relation as
that in the rigid-lid case, that is, (5.20), for the MJ
mode, which evolves slowly at O(1). Thus, the behav-
ior of MJ mode is not qualitatively modified by the
radiation boundary condition. However, as pointed out
by Yano and Emanuel (1991), a scale selectivity can
result from this effect. The next-order dispersion rela-
tion, derived from the O(1) balance, gives

1 (en— €¥A%) ] AM®
m = _| =
> [2+ 4C ’] A*

k2, (5.28)
where we have chosen the sign for Kelvin wave prop-
agation. An estimate of (5.28) shows that Re(A ‘") < 0
and Im(\ ‘") > 0 for eastward propagation. Thus, the
effect of the radiation condition tends to stabilize the
wave and slow down its phase speed. From (5.28), it
may be seen that the stabilization due to the radiation
condition is independent of thermal or mechanical
damping, whereas the phase speed modification de-
pends on the interaction of these with the radiation con-
dition. Figure 4 shows the impact of the radiation con-
dition on the propagating deep convective mode from
a numerical solution of (5.26). The additional stabili-
zation of the wave by the radiation condition is modest
at wavenumber 1, with decay time of about 8 days com-
pared to 13 days in the rigid-lid case. However, the
radiation condition introduces significant scale selec-
tivity in favor of planetary scales by strongly damping
higher wavenumbers. The slowing of the phase speed
by the radiation condition yields a period of 43 days at
wavenumber 1 compared to 31 days in the rigid-lid
case.

d. Inclusion of evaporation—wind feedback

In the above analysis, we temporarily neglect the
evaporation—wind feedback. When the evaporation—
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wind feedback term in (3.12) is added, for the Kelvin
wave case, the dispersion relation (5.20) becomes

A= — %(e,,, + eHA*®) — i(CH2 — iF*k)'2, (5.29)

where F* = F{gL(A*/A*)(Apr + Ap,)~']is the re-
defined evaporation—wind feedback parameter in units
of J kg ! m™" and we have chosen the sign appropriate
to Kelvin wave propagation. Alternatively, (5.29) can
be expressed as

= =2 (e + €A%

1
V2
1
V2

From (5.30), it is clearly seen that the eastward mov-
ing Kelvin wave is destabilized (real part of the eigen-
value increased ) by the inclusion of evaporation—wind
feedback while the period decreases with increasing
F*, 1If a westward propagating anti—Kelvin wave so-
lution were permitted, it would be stabilized by the
evaporation—wind feedback. As noted in Neelin et al.
(1987), the growth rate asymptotes to a constant value
at large k, that is,

+— Ck[(1 + F*¥>C~*%2)2 — 1]'2

—i—=Ck[(1 + F*?C*%~H)"> + 112, (5.30)

)\—>% [(AM/A*)'?F* — (¢, + e¥/A*)], (5.31)

so there is no strong scale selectivity in this dispersion
relation, although at least it avoids selecting the small-
est scales, as is common in CISK models. Scale selec-
tivity can be produced either by including the radiation
upper boundary condition, or by the effects of finite 7,
(as will be addressed in Part II). When the evapora-
tion~wind feedback is large enough, the Kelvin mode
becomes unstable. This is the only case where the non-
linear terms in (2.1) are required to obtain an equili-
brated solution. This fulfills the conditions for a simple
Hopf bifurcation since the nonlinear terms are smooth
functions of the large-scale variables in the vicinity of
the RCE; Re(\) increases with F*; and, when scale
selectivity is included, a single wavelength goes unsta-
ble at a critical value of F*. The weakly nonlinear so-
lutions for slightly supercritical F* will be pursued in
further work. We anticipate that the nonlinearity from
N, alone will be sufficient to equilibrate the insta-
bility.

6. Conclusions

Conclusions from these results may be drawn at two
levels: first, a series of results on how a model atmo-
sphere behaves under moist convective adjustment
(MCA), which are novel but rather specific. Second,
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we elaborate the discussion to more general implica-
tions both for modeling studies and for the tropical at-
mosphere. The former can be exactly defended for par-
ticular cases, while the latter takes MCA as a prototype
of convectively imposed thermodynamic constraints
and considers the view of tropical dynamics implied by
this.

a. Summary

We examine the modes of the tropical atmosphere
that arise from convection—as represented by a
smoothly posed MCA scheme that follows Betts—Mil-
ler (1986) —interacting with large-scale dynamics. In
this version of MCA, the effects of deep cumulus con-
vection are parameterized as adjusting the large-scale
temperature and moisture fields toward reference pro-
files, which are functions of the large-scale thermody-
namic variables. The reference temperature profile is
related to the moist adiabat rising from the boundary
layer and thus depends on variations of the boundary-
layer moist enthalpy, while the moisture reference pro-
file is related to a given degree of subsaturation. The
results prove rather insensitive to the details of these
profiles, and some simplifications to the Betts—Miller
scheme are made. What makes Betts—Miller MCA ap-
pealing, and permits this type of analysis to be carried
out for the first time with a MCA scheme, is that the
thermodynamic fields are relaxed toward their adjusted
state smoothly on a time scale 7., typical of cumulus
ensemble life cycles. While many of the results ob-
tained here may be expected to carry over to classical
Manabe MCA, some aspects may differ. In practice, a
GCM running classical MCA adjusts a few levels at a
time, and it may take a considerable number of time
steps to adjust an entire column (Manabe 1991, per-
sonal communication; Hess et al. 1992); often, satu-
ration criteria must be met in addition to column sta-
bility criteria.

In Part I of this paper, we exploit the fact that the
cumulus time scale is much shorter than planetary-scale
dynamical time scales to obtain analytical results by
asymptotic methods. The main findings of this ap-
proach are:

1) Two main classes of mode are found under MCA:
‘‘fast modes,”” which decay on the order of the adjust-
ment time scale, 7., and ‘‘slow modes,”” which have
time scales set by the large-scale dynamics. This has
several implications that are consistent with intuition
about how MCA works. If one considers the initial
value problem of adjustment from initial conditions, the
fast modes will rapidly adjust the atmosphere toward a
state that obeys the convective adjustment constraints
up to first order in 7., leaving the part of the initial
conditions, which projects on the slow modes, to
evolve on longer time scales. These fast modes are in
some sense MCA'’s representation of the net effect on
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large scales of the full life cycle of convective ensem-
bles growing through convective instability (of the
“first kind,”’ i.e., conditional instability within col-
umns ) and equilibrating through removal of the column
instability. That these modes are all rapidly decaying
implies that, although the MCA representation might
be crude in some respects, at least it mitigates the dan-
ger that subgrid-scale convective instability of the first
kind will be expressed at large scales. For a nonlinear
or stochastically forced problem, the solution may be
expected to be dominated by slow modes, with a con-
tribution due to fast modes only of order 7. The slow
modes obey near-adjusted thermodynamical con-
straints to order 7., so any long-term solution must be
in convective adjustment to this order. As long as the
reference profiles are not too different from moist adi-
abatic, the degree of MAE (moist available energy) in
precipitating regions will be small in a model running
MCA, consistent with Randall and Wang (1992).

2) Fast mode characteristics: the balances are, as
one would expect for such fast-decaying modes, be-
tween time rate change of temperature (moisture ) and
latent heating (moisture sink), with little role for adi-
abatic cooling (moisture convergence ). While the fast
modes are not of direct geophysical interest, it is worth
noting some properties for the sake of possible insight
into numerical behavior. A large subclass of the fast
modes are degenerate to a first approximation, all-de-
caying at rate 7. '. These modes will thus never be seen
individually and convective adjustment of anomalies
that are associated with these will tend to occur locally,
a numerically desirable feature.

3) Among the slow modes, two classes of mode are

found: a single vertical mode that obeys special bal- -

ances and is the most physically interesting—the
‘‘propagating deep convective mode,”’ discussed be-
low. The rest of the vertical modes decay at a rate dic-
tated by purely mechanical damping. These modes are
dominated by the kinematic variables, and the energy
balances of these ‘‘kinematically dominated modes”’
are exactly between latent heating and adiabatic cool-
ing at leading order. Since the zeroth-order thermody-
namic variables are all unperturbed, these modes obey
near adjustment to the reference profiles in a rather triv-
ial manner. They are of little geophysical interest but
of some numerical concern since they decay slowly.
The structure of these modes and the fast modes will
be touched on in Part II.

4) The propagating deep convective mode is the
only vertical mode consistent with intuition about
large-scale flow evolving subject to convective adjust-
ment—indeed, the leading-order balances correspond
to balances postulated on physical grounds by Arakawa
and Chen (1987) for classical convective adjustment—
although it would be difficult to guess a priori that only
a single vertical mode could satisfy these constraints or
that classical adjustment represents a singular limit. Be-
cause the temperature profile is constrained to the ref-
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erence profile at leading order, the combined hydro-
static, continuity, and momentum equations lead to a
solution for vertical velocity throughout the tropo-
sphere that has only two vertical degrees of freedom.
Upon application of matching conditions and energy
constraint, this leads to a single complex conjugate pair
of eigenvalues, one of which is eliminated by y bound-
ary conditions. The mode has deep convective struc-
ture, which depends relatively little on the vertical
structure of the reference profile. The thermodynamic
balances involve strong cancellation of adiabatic cool-
ing (moisture convergence) and diabatic heating
(moisture sink), but do also have temperature and
moisture tendencies at leading order.

Remarkably, the analysis leads to a well-defined
gross moist stability for the mode, which dictates its
slow phase speed. The idea of a gross moist stability
representing an effective static stability for the tropo-
sphere for deep convective motions was employed by
Neelin and Held (1987) and is easily defined in a two-
level model, such as that used for the MJO by Neelin
et al. (1987), but had previously not been well defined
in a vertically continuous model. Hére the gross moist
stability is given in terms of vertical integrals over ther-
modynamic basic-state quantities. A net thermody-
namic damping time due to mechanisms from both
temperature and moisture equations may be similarly
defined in terms of vertical integrals. For typical pa-
rameters, the damping rate of this mode is smaller than
the mechanical damping time scale. The dispersion re-
lation for the mode, carried to order unity in 7, turns
out to be mathematically identical to that of the two-
level model.

5) For a given vertical mode, there is a set of me-
ridional modes with structures given in terms of Her-
mite functions. Since the propagating deep convective
mode is unique, we can refer to the corresponding
modes as Rossby and Kelvin modes without confusion
(where necessary, ‘‘moist Rossby’’ and ‘‘moist Kel-
vin’’ mode will be used); obviously the meridional
scales are determined by the radius of deformation de-
fined using the moist phase speed, and are hence
smaller than would be the case for dry wave motions.
The moist Kelvin mode has obvious parallels to the
Madden—Julian Oscillation, as pointed out by a number
of earlier studies. For wavenumber one, the Kelvin
propagating deep convective mode has period of about
43 days for reasonable parameters (31 days for the
rigid-lid case), consistent with MJO time scales. The
vertical structure of the Madden—Julian mode in this
model exhibits significant parallels to the vertical struc-
ture of the observed MJO and that found in GFDL
GCM (Lau et al. 1988). While we do not have a clear-
cut answer to the question of why the phase speed in
the GFDL GCM is too fast, the slowing that occurs
when a radiation upper boundary condition is used, rel-
ative to the rigid-lid case, is suggestive.
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6) We find that for any reasonable vertical structure
of the homogeneous basic state, all large-scale modes
are stable under MCA interacting with dynamics. How-
ever, the MJ mode (Kelvin deep convective mode ) can
be destabilized by the inclusion of the evaporation—
wind feedback. Scale selectivity can occur through
preferential upward radiation of shorter-scale waves
when a radiation upper boundary condition is used. The
use of the small 7, expansion in the analytic results
considered here restricts their application to wave-
numbers larger than those where dynamical time scales
approach 7, (for a phase speed of 14 m s, this as-
sumption will begin to fail for wavenumber on the or-
der of 10, for 7. = 2 h). Scale selectivity due to further
damping of high wavenumbers by the effects of ﬁnlte
7. will be discussed in Part II.

b. Discussion

In discussing the above results, we encounter a prob-
lem of terminology that has been plaguing the field for
some time. While the collective effects of convection
interacting with large-scale dynamics are clearly fun-
damental to many tropical phenomena, there is no ge-
neric term by which to refer to this. Given this lack,
“CISK”’ is often used to refer to such phenomena, ei-
ther observed or in GCMs, even though conditional
instability of the second kind may play no role in main-
taining them (in the sense of MAE providing a net
energy source to the large scales). Since CISK in this
strict sense is coming increasingly into question (Betts
1982; Xu and Emanuel 1989; Randall and Wang
1992), we suggest that it is useful to introduce a more
accurate terminology. Following discussions with a
number of other investigators, we propose that ‘‘con-
vective interaction with dynamics’’ (CID)! would be
a suitable generic term for all such interactions, re-
gardless of the stability properties, linearity or nonlin-
earity, etc. It can be applied to all horizontal scales large
enough that convection can sensibly be thought of as
having a collective effect on the dynamics.

The simple linear CID problem considered here pro-
vides an example where the distinction is both useful
and obvious. For Betts—Miller MCA interacting with
large-scale dynamics, CID dominates the linear modes
to such an extent that they have no close relation to
modes of the dry atmosphere—but, nonetheless, no
CISK is present. Our results concur with a number of
previous CID studies (Lindzen 1974; Lau and Peng

! CID appears to be the winner over a number of suggested acro-
nyms, including DICE (dynamics interacting with convective ensem-
bles), CILD (convective interaction with large-scale dynamics),
CILC (convection interacting with the large-scale circulation), and
CECIL (collective effects of convection interacting with large
scales). Goswami and Goswami ( 1991) have used *‘interaction be-
tween convection and dynamics.’’
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1987; Chang and Lim 1988; Lau et al. 1988; Sui and
Lau 1989) that Kelvin wave CID determines both the
structure and phase speed of the Madden—Julian Os-
cillation. They disagree with some of these studies that
CISK is the best candidate as a mechanism for desta-
bilizing it. However, we note that our current results
are for a horizontally homogeneous basic state and that
we cannot exclude the possibility that CISK may arise
if the basic state has sufficiently strong horizontal gra-
dients. The evaporation—wind feedback has been
shown to destabilize the Kelvin—CID mode and so pro-
vides a maintenance mechanism for the MJO, which is
known to be relevant in some GCMs. Alternate mech-
anisms involving stochastic forcing of the weakly
damped Kelvin—CID mode either by other tropical var-
iance or from midlatitudes (Hsu et al. 1990) are dis-
cussed in Part II.

In general, we suggest that msofar as linear theory
can be applied, MCA CID will tend to differ from Kuo-
like CID in three main respects. (i) The propagating
deep-convective mode is unique in MCA CID, whereas
Kuo-like CID tends to have a sequence of vertical
modes with less qualitative difference in their proper-
ties. (ii) Kuo-like CID can easily exhibit CISK espe-
cially if the heating profile is specified independently
from the basic state; MCA CID will tend not to exhibit
CISK except possibly under specialized conditions.
(iii) Wavenumber dependences and scale selectivity
will differ markedly, especially with respect to CISK
aspects. This will be elaborated on in Part II. MCA CID
and Arakawa—Schubert CID are more similar with re-
spect to the lack of CISK. Overall, the CID properties
of the deepest mode will tend to be rather similar
among all three schemes in terms of structure, balances,
and propagation characteristics. In other words, some
of the most geophysically important aspects of simple
linear CID modes tend to be robust to the choice of
convective scheme, while CISK appears to be very sen-
sitive to this choice.

A major difference of MCA CID compared to Kuo-
like CID is the form of the nonlinear behavior that may
be expected. The current scheme has smooth nonlinear
terms in a neighborhood of the RCE (radiative—con-
vective equilibrium) and is inherently stable unless the
evaporation—wind feedback is large. This satisfies con-
ditions for a weakly nonlinear treatment of large-scale
variability, in particular the MJO, directly in terms of
the large-scale variables, in contrast to examples of
Kuo-like CID (e.g., Lau and Peng 1987) where non-
linearly equilibrated small scales must typically be in-
cluded in the resolved dynamics.

Discussion of these differences requires explicit
consideration of the role of the Reynolds average in
convective parameterization (the assumed time and
space average over small-scale motions to define the
ensemble whose effects on the larger scales is param-
eterized; e.g., Yanai et al. 1973). In formulating a
parameterization, it is not clear in. advance which
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phenomena will be completely subsumed into the
sub-Reynolds scales (i.e., have their effects repre-
sented entirely by the parameterization as a function
of the large-scale flow), and which phenomena will
be expressed in the explicitly modeled large-scale
flow. In a gridpoint model, these will correspond to
subgrid scale and resolved scales, respectively; we
use sub- and supra-Reynolds scales for generality
and because the terms small and large scale can be
ambiguous. When interaction of the supra-Reynolds
scales with a cumulus parameterization is examined,
some schemes tend to produce features at the small-
est resolved scale, which are cloudlike in the sense
that they grow from the MAE of the large scales—
in other words, column conditional instability is to
some degree being directly expressed in the resolved
motions. In the case of smoothly formulated MCA,
on the other hand, we have a clear-cut example where
column conditional instability is entirely expressed
at sub-Reynolds scales. The flow in our case evolves
about an RCE that is everywhere continually being
destabilized (in terms of production of MAE or col-
umn conditional instability) by evaporation and ra-
diative cooling, but this does not destabilize the su-
pra-Reynolds scales because the MAE is continu-
ously being ‘‘eaten up’’ at the sub-Reynolds scales.
Convection and rain occur everywhere due to the net
effects of motions at the sub-Reynolds scales, but the
small amount of MAE left over does not lead to any
growth at supra-Reynolds scales (i.e., no CISK).
This might imply, on the one hand, that this scheme
is not entirely suitable for studying some of the smaller-
scale features of tropical meteorology, like squall lines,
but from the point of view of the theory of tropical
large-scale dynamics, it is a fortunate property. The
thermodynamic quasi-equilibrium constraints imposed
on the supra-Reynolds scales by the net effects of con-
vection strongly affect the large-scale phenomena. The
way that this occurs under smooth MCA provides a
very useful theoretical tool: the stability properties of
the analysis presented here lay the groundwork for ap-
proximations that retain only motions that satisfy quasi-
equilibrium constraints. Furthermore, they suggest that
this approach can provide a self-consistent gystem for
directly studying the large scales, as they evolve subject
to these convective quasi-equilibrium constraints, with-
out necessarily having to resolve any cascade of unsta-
“ble motions at scales between the Reynolds scale and
the scales of interest. In short, smoothly posed MCA
provides a way of looking at the convection, in its in-
teraction with supra-Reynolds-scale dynamics, as a for-
est rather than as a large number of highly nonlinear
trees. We conjecture that this view can be extended to
other convective schemes based on quasi-equilibrium
thermodynamic closures.
In Part II of this paper, we take the next step in es-
tablishing this approach for the case of MCA by con-

sidering what happens at small (but supra-Reynolds)
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scales and the spectrum of large-scale variance that
would be maintained by stochastic forcing associated
with sub-Reynolds-scale motions.
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APPENDIX A

Order 7, Eigenvalue, AV, for Kinematically
Dominated Modes

The momentum equation of slow kinematically
dominated modes at order 7. balance is

ANDFRWO = (k/p)k*TH. (A1)
With the aid of (5.9¢), (5.9f), (5.9g), and (5.9¢), Eq.
(A.1) can be expressed as

%7\(”6;2)“(0) + k(8,5 W@ = A(p)h"

+ (8,5 = AP i (A2)
Homogeneous solutions have a vertical wavenumber
approximately given by m* = k(8,5/p)k*/\ " where
A has dimension of s72. For the case where A(p),

8,5/p, and 8,7 are constants, and neglecting compress-
ibility effects, (A.2) gives

W® = I:_Aa_(g) B + (9,5 — %ig)ap‘“lbwzm]
l4

X [1 — cosm(p — pr)] + Csinm(p — pr),

(A.3)

where we have used the rigid-lid condition, w = 0, at
cloud top since the radiation condition reduces to the
rigid-lid condition to order 7./? for these modes. Ap-
plying cloud-base matching conditions in (A.3) as well
as using (A.3) in the energy constraint (5.8g) yields a
set of equations for m. These quantization conditions
give a series of discrete, finite m?, and hence A V. The
structures of these modes are then determined at this
order. The eigenvalues are degenerate at leading order
N @ = —¢, but even as 7, — 0, the vertical structures
remain unchanged and distinct. The value of A " tends
to be negative, that is, these modes damp slightly faster
than the mechanical damping time, as we shall see nu-
merically in Part II.

APPENDIX B
The Radiation Upper Boundary Condition

Above the heating, the perturbation in the strato-
sphere obeys
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N+ &)\ + €,)0%w + K(8p§/p)k2w =0. (B.1)

Neglecting compressibility, for solutions of the form w
= wrexp[u(p — pr)] where wr is the pressure velocity
at the top of the heating and p is defined as

2 _ K(—apglpT)
EZ 0N+ a)h + 6

Choosing the vertically decaying or upward energy
propagation root for 4 yields the radiation condition:

k2. (B.2)

1

wr = " 0wl p=p;» Re(u) >0, (B.3)
where the rhs is evaluated from the solution below the
top of the heating. Equation (B.3) approaches the sim-
plifying rigid-lid condition when g is sufficiently large.
For those modes having \ — ¢, the value of y tends
to be large. Thus, surprisingly, the kinematically dom-
inated modes are little affected by the presence or ab-
sence of a lid. The fast-decaying modes will have sub-
stantial penetration into the stratosphere, but their lead-
ing-order behavior is dictated by the convective
processes. Thus, the only mode significantly affected
by the lid is the propagating deep convective mode, as
discussed in section 5.

APPENDIX C
Case of a Linear A (p)/p Profile

A special case that permits explicit evaluation of the
double integrals in M,, w, etc., occurs if we let the
coefficient of k%h, in (5.12) linearly increase with
height; that is,

A — A
B ) _ P 2p)As+_b’
p Apr Apr
where A; is a unitless constant for the slope and A,
= k(1 + 7y,) "' Apr/p, is the cloud-base value given by
A(p,) = (1 + v,)”". Then (5.13) becomes

A 3 A, )
= —_ + _— .
w [631)%(171, p) 2:pr(pb p) ]

k? (py — p)
X h, + +
N+en * 7 Ap, T

(C.1)

(C2)

and (5.16a) and A*+ become

As
6Ap7

Db _
Mp=— f (ps — p)*(O,h)dp
pr

A, [™
B 28p%dp,

(P» — P)*(8,h)dp, (C3)

A* = A6 + A2, (C4)
Note that the weighting by (p — p,)", n = 2, 3 in the
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FiG. C1. Same as Fig. 3 except that these profiles are calculated
from (C.2) using the linear approximation to the A(p)/p structure
with A, = 2.5.

various terms of M, emphasizes the upper levels more
than the linear weighting in My, given by (5.16b). For
A, = 2.5, the first term of (C.3) accounts for 80% of
Mp; while for A, = 1.5, the first term of (C.3) accounts
for 70% of M. Despite the crude approximation to the
profile, the vertical structures implied by (C.2) (Fig.
C1) are remarkably similar to the exact calculations
(Fig. 3), an indication that this structure is very robust.
For A; = 2.5, 1.5 (see Fig. 2), the period at wavenum-
ber 1 is 34 days and 44 days, respectively, compared
to 31 days for the moist adiabat. Since these represent
large changes to the reference temperature profile, we
conclude that the eigenvalue is not highly sensitive to
this profile, but that it may have some quantitative im-
pact.
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