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ABSTRACT

Convective interaction with dynamics (CID) dictates the structure and behavior of the eigenmodes of the
tropical atmosphere under moist convective adjustment (MCA ) when the convective adjustment time scale, .,
is much smaller than dynamical time scales, as examined analytically in Part I. Here, the modes are reexamined
numerically to include the effects of finite 7., again for a primitive equation model with the Betts—Miller MCA
parameterization. The numerical results at planetary scales are consistent with the analytical approach, with two
well-separated classes of vertical modes: one subset evolves at the cumulus time scale, while the other subset
evolves at a time scale set by the large-scale dynamics. All modes are stable for homogeneous basic states in
the presence of simple mechanical damping effects. Thus, there is no CISK at any scale under MCA. However,
the finite 7. effect has the property of selectively damping the smallest scales while certain vertical modes at
planetary scales decay only slowly. This planetary scale selection contrasts to many linear CISK studies, which
tend to select the smallest scale. .

‘"The Madden-Julian mode, which resembles the observed tropical intraseasonal oscillation, is found as a
single vertical mode arising through Kelvin wave—CID. When the evaporation—wind feedback is included, this
slowly decaying MJ mode is selectively destabilized at wavenumber one or two, consistent with the observations
in the tropics. Stochastic forcing by nonresolved mesoscale processes can also potentially account for the exis-
tence of large-scale tropical variance. When the stochastic forcing occurs in the thermodynamic equation, the
propagating deep-convective mode at planetary scales is the most strongly excited. Kinematic forcing excites
slowly decaying kinematically dominated modes but cannot account for the characteristics of observed Madden -~

Julian variance.

1. Introduction

In Part I of this paper (Neelin and Yu 1994, NY
hereafter), a linear primitive equation model, linear-
ized about a spatially uniform basic state in radiative—
convective equilibrium, with the Betts—Miller (1986)
moist convective adjustment (MCA) parameterization
has been analyzed to study the modes arising through
the interaction between the collective effects of cu-
mulus convection and large-scale dynamics. At the
limit of small wavenumber, in which the convective
time scale 7, is a small parameter compared to large-
scale evolution times, the analytical approach shows
two well-separated regimes of eigenmodes: one class
evolves at the convective adjustment time scale and the
other class evolves slowly at a time scale set by the
large-scale dynamics. Among the slow modes, a single
vertical mode is singled out by the thermodynamic con-
straints that has all the geophysically interesting prop-
erties. We refer to this as the ‘‘propagating deep-con-
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vective mode’’; with its slow phase speed and deep
structures, it is the most geophysically important of the
vertical modes. Among the meridional structures for this
propagating deep-convective mode, the Kelvin wave case
is striking in its resemblance to the Madden—Julian os-
cillation (MJO), so we refer to this case as the MJ mode.

This near-adjusted propagating deep-convective
mode behaves distinctively compared to the other
modes, with structure and eigenvalue determined by
convective interaction with dynamics (CID). The dis-
persion relation leads to a well-defined gross moist sta-
bility—which dictates the slow phase speed—and to
combined damping effects that lead only to slow decay.
Our linear analysis contrasts with many CISK studies in
that under MCA there is no CISK. The slow phase speed
and deep structures of the propagating deep-convective
mode can be attributed to wave CID; the MJ mode can
be destabilized only by the inclusion of evaporation—
wind feedback.

However, the perturbation expansion in the convec-
tive time scale is valid only for sufficiently small wave-
numbers, and finite 7, corrections may dominate when
considering higher wavenumber dynamics. Further-
more, while we have seen scale selectivity of the MJ
mode due to the radiation boundary condition at cloud
top, the impact of the finite 7. effect on scale selectivity
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may be considerable. This question and the detailed
calculation of the vertical structures for all modes in
the tropical spectrum are most easily addressed by nu-
merical calculation of the eigenvalue problem in finite-
difference form. Moreover, a closely related form of
the matrix problem can be helpful in determining to
what extent the variance spectrum of the tropical tro-
posphere can be accounted for by noise arising from
nonresolved mesoscale processes exciting large-scale
weakly damped modes. In addition to providing a
framework for understanding the behavior of GCMs
using MCA parameterizations and for contrasting the
behavior of cumulus parameterizations in a large-scale
context, we hope this will give insight into the origins
of large-scale tropical perturbations.

In section 2, the basic equations and the formulation
of the eigenvalue problem are stated along with a lin-
earized version of the Betts—Miller parameterization in
finite-difference form. Section 3 discusses the general
behavior of eigenmodes, focusing on scale selectivity
introduced by the finite 7, effect. Section 4 presents the
regimes of eigenmode behavior, including ‘‘kinemati-
cally dominated modes,”” ‘‘moisture modes,”” ‘‘quasi-
dry modes,”” and ‘‘stationary deep-convective mode.”’
The propagating deep-convective mode, due to its strong
physical significance, is discussed separately in section
5, focusing on dynamics of the MJO and the evapora-
tion—wind feedback. In section 6, a slightly variant form
of the eigenvalue problem is used to study the impact of
nonresolved stochastic forcing. Summary and discussion
are then given in section 7. A preliminary assessment of
the impact of the midlatitude perturbations on the moist
tropical waves is presented in the appendix.

2. Formulation of eigenvalue problem
a. Basic equations

In NY, we have assumed a long-wave approximation
to simplify the eigenvalue problem and make the ana-
lytical approach tractable. Here we initially consider the
case without the long-wave assumption and qualitatively
discuss the resulting eigenvalue problems for short
Rossby waves and mixed Rossby—gravity waves. The
w equation, thermodynamic equations, and moisture
equations for the troposphere and boundary layer (PBL)
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where k is the wavenumber and \ is again the eigen-
value with the real part denoting growth rate and the
imaginary part denoting frequency. All the variables
and constants are the same as those in NY. We note for
reference that Q!, Q. , and E' denote, respectively, the
convective heating, moisture source, and evaporation
perturbations; AS, and Ag, denote the jumps of dry
static energy and specific humidity between boundary
layer and the troposphere; 0,5 and 3,4 denote, respec-
tively, the dry static energy stratification and specific
humidity stratification in the troposphere; ¢, is the ra-
diative cooling rate, and ¢,, the momentum damping rate;
subscript b denotes boundary-layer variables, and Ap,
is the pressure depth of the boundary layer. With param-
eterizations of cumulus convection (Q! and Qj) and
evaporation (E’), along with suitable y boundary con-
ditions, (2.1a—e) are a complete set of equations for the
two-dimensional eigenvalue problem in y and p.

For the same separable case as considered in N, if
€r» €m» 0,5, and 8, are all independent of y, (2.1a) can
be consistently separated into

are
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where Y (y) is the horizontal structure function and c?
is the separation constant. The horizontal structure
equation (2.2b), with decaying boundary conditions at
a very large distance from the equator, gives the fol-
lowing dispersion relations (Matsuno 1966):

N+ €, = —ikc, for n= -1 (2.3a)
A+ en)* + N+ )[(2n + 1)Bc + k?*c?]

— ifkc>=0, for n=0, (2.3b)
where (2.3a) is the dispersion relation for Kelvin wave
(n = —1). Equation (2.3b) contains three roots of A
for a given pair of n(+0) and k. They are

ikc
N+ 2.4
“=Gnt D+
and
2n + 1B
N+ €= iikc[l + U-kTﬁ] . (24b)
c

where (2.4a) is a set of low-frequency westward prop-
agating Rossby waves and (2.4b) denotes a set of west-
ward and eastward propagating inertial —gravity waves.
Also, there are two special solutions with n = 0,
that is,

1 1 1/2
AN+ €, = lkc[— 5= + (Z + %) ], (2.4c)

where the low-frequency mode is the westward prop-
agating mixed Rossby—gravity wave and the high-fre-
quency mode is the eastward propagating inertial—
gravity wave.

We note that the behavior of vertical structure for
different meridional modes is sensitive to the choice of
cumulus parameterization scheme and it is not neces-
sary that all the tropical waves have the same vertical
structure equation. Considering the inviscid case,
(2.2a) and (2.1b) can be combined into a s1ngle ver-
tical structure equation,

92w’ — k(3,SIp)w’ = -Q!, (2.5)

where k = R/C,. For those cumulus parameterizations
with Q. = Q.(w), like Kuo-type schemes (Kuo 1965,
1974), (2.5) is uniquely solvable with ¢ as the eigen-
value independent of \. Thus, all the tropical waves
share the same vertical structure equation and all the
meridional modes can be derived once c? is known.
However, for those schemes in which the collective
effect of cumulus convection is parameterized through
thermodynamic variables, like the moist convective ad-
justment (MCA ) scheme (Manabe 1965; Betts 1986),
(2.5) is no longer closed, and we must include ther-
modynamic and moisture equations to get a complete
system for the vertical structures.

In our case, the system is most conveniently solved
by substituting the relation between ¢ and \ from the
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horizontal structure equations, (2.3a) and (2.4a-c),
into the vertical structure equations and solving the lat-
ter for \. In general, this results in a nonlinear eigen-
value problem. A system linear in A in standard form
results for the vertical structure equations of the Kelvin
wave, short inertial—gravity waves, and long Rossby
waves. With the aid of (2.3a), (2.4a), and (2.4b), all
three cases can be expressed handily as

O+ ot - = Ryi_o (26
Y T Gn+ 1)2p C e
where the case n = —1 corresponds to the Kelvin wave

(or, with k reinterpreted, to short inertial—gravity
waves) and n = 1, 2, - - - denotes the nth long Rossby
wave. The identity of the vertical structure for the Kel-
vin wave and long Rossby waves is handy: the disper-
sion diagram and eigenmode vertical structures as a
function of k are identical except that & is modified by
a factor of (2n + 1) 72 for the Rossby modes. For long
inertial —gravity waves, short Rossby waves, and mixed
Rossby—gravity waves, however, the dependence of
the latent heating and moistening upon thermodynamic
variables in MCA leads to a much more complicated
nonlinear eigenvalue problem. For example, with the
aid of (2.4a), the vertical structure equation of the short
Rossby waves is

N+ €,

LU+ 200+ eI B — (N + 6,) %21 B%]
(2n + 1)?

R
X —kT'=0; (2.7a)
14

while for the mixed Rossby—gravity wave, it is

N + €,)0%0'

B2 2ip
+ |:k2(>\ +e,)? + kN +e,) 1]
x Rier o, (2.7b)
p

b. Parameterization of cumulus convection

We have discussed, in NY, the physical background
of the Betts—Miller MCA scheme (Betts 1986; Betts
and Miller 1986) and the selected reference profiles.
Here, we present only elements of the cumulus param-
eterization necessary for the formulation of the eigen-
value problem. Following the Betts parameterization
for deep convection, the closure assumptions on latent
heating, moisture source, and column energy conser-
vation constraint are

Qé = 6f:(’rc" - - AT(")’
Q;=¢elgi—q"),

(2.82)
(2.8b)



1898

'Po
o[ o

PT.

f Qq , (2.8¢c)

where T/ and g/ are the temperature and specific hu-
midity reference profiles toward which the scheme ad-
justs. The levels pr and p, are, respectively, cloud top
and cloud base; AT is a correction to the reference
profile to’ satisfy the energy conservation constraint;
and €. = 7! is the inverse of the relaxation time scale
of cumulus convection.

The reference profile of specific humidity is a given
fraction of subsaturation, a(p), thatis, Lg; = ayC,T’,
with y = d(Lgw)/d(C,T)|7, where g, is the satura-
tion specific humidity. The perturbation temperature
reference profile is given by the moist adiabat rising
from PBL through the depth unstable to deep convec-
tion, that is, by

CT!+ ¢!+ Lgi(T, TL) = CT} + ¢ + Lq;.

(2.9)

This can be expressed either recursively, using a stag-
gered grid in the vertical with ¢ carried at the half-
integer levels and w, T carried at the integer levels (Fig.
1), as

1 K—1
CpT:‘,k = ——1—_ [_ Z aijTé‘j
(1 +'§ak+ yk) J=k+l

+ (1 —ax)C, T} + Lg;], (2.10)

where K denotes the index of cloud-base level and
T .« stands for perturbation temperature reference pro-

file, T';, at kth level with a; = x(Inp;,12 — Inp;_12);
or as
L *!
C,AT; =AC,T; + A Lg, Ap,

where the unitless constants A,, A, are defined as

l K—1 Ap
=— 2 Adp t+ ,
A Apr E,l FTAN 4% Apr (47973
Kl Ap,
= A APy —
2 T ,E'l WP Apy

Here Apy is the total length of the column over which
convective heating applies and & = 1 is the index of
cloud-top level. This constant energy correction is ap-
plied to each level in the heating region from cloud base
to cloud top and will give terms for each T, g;, T}, and
g, in the matrix A of (2.15), in each thermodynamic
equation.

In the analytical results (NY), there was little qual-
itative difference between the rigid-lid condition and
the radiation upper boundary condition for the disper-
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CT ,=A(CT; + Lg;), (2.11)
where A, is a discretized approximation to
. 1 Pi 1
A(p) = mexp[—x J; (—H—y)—dlnp] .
(2.12)

Thus, the temperature reference profile of deep con-
vection can be expressed as a vertically weighted func-
tion of large-scale boundary-layer thermodynamic vari-
ables, T'; and g;. Figure 2 shows the weighting profile,
A(p), calculated from an observed temperature sound-
ing in the tropics. The vertical dependence of the tem-
perature reference profile is completely determined by
v, which depends only on basic-state temperature; if
the subsaturation parameter o does not vary strongly
with height, then y also strongly controls the moisture
reference profile. However, we note that for modes un-
der convective adjustment, the Q! and Q; profiles are
not closely linked to the reference profiles but rather
are determined internally by the interaction of the con-
vective constraints with the large-scale dynamics.

The temperature reference profile is also constructed
to satisfy the enthalpy constraint, (2.8c), which gives
a temperature correction term,

1 'Ph
C,AT! = fC(T;—T’d
F APT[PT ? )p

+ fphL(qé - q’)dp] . (2.13a)

Pr

With the aid of (2.11), (2.13a) yields

K—1 K-1

Apk z ak')’kT I; Apk ) ’

k=1 k=1

2.13b
A o ( )

sion relation of the MJ mode, except that the small
correction due to the radiation condition could further
stabilize smaller scales and retard the phase speed. In
numerical results, we use a rigid-lid boundary condi-
tion for two reasons: (i) it greatly simplifies the solu-
tion method, and (ii) to test the effects of scale selec-
tivity due purely to finite 7, effects. The vertical bound-
ary conditions are just
w'(pr) = w'(pe) =0 (2.14)
We use the vertical structure equations (2.6) and
(2.1b—-e), which apply uniformly for all scales for the
Kelvin meridional mode. The same equations apply to -
short gravity waves and, with suitable rescaling of zo-
nal wavenumber, to the long Rossby waves. Thus, our
discussion, for instance, of the MJ mode provides a
prototype for other meridional versions of propagating
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FiG. 1. The vertically staggered grid used in this model.

deep-convective modes. This system, (2.1b—e) and
(2.6), thus becomes a standard eigenvalue problem for
the growth rate/frequency, A, of the form:

ABX = AX, (2.15)

where X is the eigenvector, which includes w, T, and
g at all levels; and A and B are 3N X 3N square matrices
with N denoting total vertical levels in the model. In
our numerical calculations, N = 12 (fairly typical of
GCM resolution in the troposphere) is used to resolve
the vertical structure of eigenmodes, using the stag-
gered grid shown in Fig. 1 with equal pressure incre-
ments of 75 mb.

The heating term, (7' — T')/7., must be zero above
cloud top, and the level of cloud top should be deter-
mined by where the moist adiabat intersects the ambi-
ent temperature. Neglecting the perturbation due to
cloud top, we simply estimate climatological cloud top
from ?z; = ;1: Taking cloud base to be at 925 mb, from
Fig. 1 of NY, the cloud top is estimated to occur within
the 100—175-mb layer. While the basic state is, by the
horizontal homogeneity assumption, in radiative-con-
vective equilibrium, we do not explicitly solve a radi-
ative-convective model but rather use a representative
tropical sounding as in Part I. This allows us to distin-
guish the implications of the convective scheme and its
parameters for the perturbation evolution from the ef-
fects that these might have upon the basic state. The
implied basic-state radiative term could be diagnosed
if desired. Table 1 lists the magnitudes of parameters
used in the numerical calculation for the standard
case.

3. General behavior of eigenmodes—The finite =,
effect

The evaporation—wind feedback mechanism is ne-
glected at first for the purpose of isolating the physical
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FiG. 2. A(p), the vertical dependence of the temperature
reference profile.

processes associated purely with CID. Figure 3a shows
the growth rates of all vertical modes as a function of
wavenumber for the Kelvin meridional mode. We note
that all modes are stable for all wavenumbers in the
presence of damping effects. At low wavenumbers, the
decay rates are well separated into fast modes, decaying
at or near the cumulus time scale, 7., and slow modes,
decaying at the mechanical damping time scale or
slower as discussed in the analytical approach (NY).
This separation persists qualitatively to wavenumbers
on the order of 20, although deviations begin to occur
even at lower wavenumbers. We refer to this regime of
behavior, in which the smallness of 7. strongly con-
strains the dynamics, as the ‘‘planetary-scale regime.”’

On the other hand, at high wavenumbers, of order
75 or larger, groups of eigenvalues may be found that
have, respectively, slow decay rates, decay times of
around 27, and decay times of around 7. For these
modes, 7. is no longer small compared to the time
scales typical of the dynamics. We refer to this regime
of behavior as the ‘‘smaller-scale regime.”” We note

TABLE 1. Magnitude of the constants
and parameters used in this paper.

Parameter Symbol Value
Cumulus relaxation time Te 2 hours
Subsaturation constant a 0.8
Mechanical damping rate €m (10 days)™!
Radiative damping rate €, (10 days)™
PBL thermal damping rate € (2 days)™'
PBL moisture damping rate €, (1 day)™'
Sea level pressure Do 1000 mb
Cloud-base pressure Ds 925 mb
Cloud-top pressure pr 100 mb
Vertical grid space Ap 75 mb
PBL pressure depth Ap, 75 mb
Saturation vapor pressure at 25°C € 31.667 mb
Basic-state surface temperature To 298.2K
Basic-state PBL specific humidity v 18 g kg™’
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Fi. 3. Eigenvalues of all vertical modes as a function of zonal
wavenumber: (a) growth rate as a function of wavenumber and (b)
frequency as a function of wavenumber.

that MCA may not necessarily be the best representa-
tion of cumulus effects at wavenumbers approaching
the mesoscale, but it is of interest to understand the
overall behavior of the scheme as a function of scale.

Between these two regimes is a gradual transition in
which almost all the modes that were slowly decaying
in the planetary regime become much more strongly
damped. This scale selectivity is due to the finite 7,
effect [compare with the analytical theory (NY) in
which no scale selectivity occurs in the rigid-lid case].
We will discuss two aspects of this selective damping
of smaller scales: the implication for planetary-scale
selection in the MJO (section 5) and the numerical im-
plications for removing spurious solutions at short
scales (section 4). In the transition between the re-
gimes, pairs of modes from the slow and fast decaying
branches, respectively, merge to a complex conjugate
pair with a decay time of around 27.. These complex
pairs correspond to propagating waves with frequency
as shown in Fig. 3b. For higher wavenumbers, they
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become nearly nondispersive, while the decay rate re-
mains constant.

There are two subclasses of vertical modes that be-
have distinctively compared to the others in Fig. 3a,
with eigenvalues that are not strongly affected by the
finite 7. effect. Both consist of purely decaying modes:
one has slow decay rate even at high wavenumbers; the
others decay at the convective time scale for all wave-
numbers. The classification of most of the above ei-
genmodes is given in section 4 to assist qualitative in-
terpretation of the behavior of GCMs using convective
adjustment schemes. The propagating deep convective
mode, a single mode embedded in the slow modes, is
discussed separately in section 5, due to its great geo-
physical significance.

Figure 3 gives the Kelvin wave case for 7, = 2 hours.
Since the regimes of behavior depend on the relative
time scales of the large-scale dynamics and 7., chang-
ing 7. essentially has the effect of rescaling wavenum-
ber. Aside from effects of .thermodynamic damping
terms, changing 7. by a factor of § rescales & in Fig. 3
by a factor of 672 and \ by a factor of §!, that is,
the transition from the planetary-scale regime occurs at
a smaller wavenumber for a larger value of 7.. The
scale selectivity due to 7, thus increases for larger 7.
Since 7. represents the characteristic time scale with
which convection removes convective available poten-
tial energy from the column at the subgrid scale, it is
reasonable to imagine that organization of cumulus
convection by subgrid mesoscale motions might have
a gross effect similar to increasing 7.. The 7, depen-
dence given here may thus be of use to GCM modelers
interested in sensitivity to this parameter.

4. Classes of eigenmode in planetary and smaller-
scale regimes

Table 2 summarizes the classes of vertical modes
found at wavenumber one. This is the archetypical case
in the planetary-scale regime, in which 7. is small com-
pared to large-scale dynamical time scales. To facilitate
comparison of the physical character of the eigen-
modes, the nondimensional ratios that provide a mea-
sure of T amplitude relative to w amplitude and g am-
plitude relative to w amplitude are given. Specifically,
the root-mean-square of all T or g elements of the ei-
genvector are compared to the root-mean-square of all
w elements. These ratios are nondimensionalized by a
constant, chosen such that the ratios for the propagating
deep-convective mode are order unity. Since T and g
were in energy units, the same constant is applied in
all cases. Among the slow modes, these ratios and the
frequency clearly distinguish between the ‘‘propagat-
ing deep-convective mode,”’ with intraseasonal time
scale, and a second subclass, the ‘‘kinematically dom-
inated modes.”’

Among the fast modes, three subclasses may be dis-
tinguished. The largest subclass has eigenvectors dom-
inated by the moisture component, which we thus refer
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TABLE 2. Eigenvalues and classification of eigenmodes at wavenumber one, where % is a constant chosen such that the ratios measuring
relative amplitude of 7, ¢, and w are nondimensional. For brevity, g denotes the moisture modes, DA denotes the deep-adjustment modes,
PDC denotes the propagating deep-convective modes, and KD denotes the kinematically dominated modes. ‘“‘Number’’ denotes the number
of modes in each subclass arising from the eigenvalue problem with N vertical levels before elimination of modes by meridional boundary

conditions. Em-dashes in the ‘‘period’” column denote nonoscillatory modes.

Decay rate Period CETHZWY) C(Zq¥Hzwd) Subclass Number

Slow modes

(10.8 days)™' 33.8 days 0 (10% O (10% PDC 2

(9.9 days)™! — 01079 0 (1073

(9.8 days)™! — 0 (1073 0 (107% KD N-1
Fast modes

(2.15 hours)™’ 13.5 hours 0 (10%) 0 (10%) Other 2

(1.99 hours)™’ — 0 (10% 0 (10

(1.98 hours)™! — O (10% 0O (10 q 2N — 4

(1.40 hours)™' —_— 0 (10%) O (10 DA 1

to as the ‘‘moisture modes.”” The other two subclasses
consist of only one mode or one complex pair. Both
types were found in NY to obey special balances. The
one with complex eigenvalue (propagating waves ) has
a period of about a half-day. This mode could poten-
tially cause numerical problems with GCMs running
MCA due to its high phase speed, although this occurs
only at planetary scales since the frequency is almost
independent of wavenumber. What would happen to
this mode under various discretization schemes is un-
clear. The mode with stationary decay, faster than the
cumulus adjustment time, has a deep heating profile
and thermodynamic balances between moisture decay
balanced by precipitation and latent heating balanced

by temperature increase. We refer to this as the ‘‘deep-
adjustment mode.”” We note that these vertical modes
in the planetary-scale regime are consistent with the
analytical approach (NY), even though some of the
fast modes were not fully understood.

Table 3 summarizes classes of vertical modes found
at wavenumber 100, as a typical case in the smaller-
scale regime, in which 7. is no longer small compared
to the characteristic time scales of the dynamics. We
find that only half of the moisture modes carry over to
the smaller-scale regime; the other half merge with the
kinematically dominated modes to become complex
conjugate pairs (propagating waves). These modes
have properties similar to the internal modes caused by

TaBLE 3. As in Table 2 except for eigenvalues at wavenumber 100. Subclass QD denotes the quasi-dry modes and SDC denotes the
stationary deep-convective mode. Em-dashes in the ‘‘phase speed’’ column denote nonoscillatory modes; phase speeds rather than periods
are given since oscillatory quasi-dry modes are almost nondispersive at high wavenumbers.

Decay rate Phase speed CETHZWY) C(Zqirw?) Subclass Number

Slow modes

(1.5 days)™! — 0 (1077 0 (107% SDC 1
Fast modes

(4.9 hours)™' 166 m s~ 0 (1073 0 (107

(4.0 hours)™" Bms 0 (107 0 (107 QD N+ 1

(3.9 hours)™! 28ms 0 (107 0(10?)

(1.99 hours)™! — 0 (1073 © 010

(1.98 hours)™" — N-2

0 (107%)

0 (10°) q
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the lid condition in the dry atmosphere so we refer to
them as the ‘‘quasi-dry modes.”” There is also one sta-
tionary mode that has a slow decay rate even at high
wavenumbers. This stationary mode has a deep con-
vective structure so we refer to this as the ‘‘stationary
deep-convective mode.”’

a. Kinematically dominated modes

At low wavenumbers; the kinematically dominated
modes comprise about one-third of the vertical modes
(Table 2) and decay slowly at the mechanical damping
time. The decay rates of these modes tend to merge
with half of the moisture modes at high wavenumbers
to become complex conjugate ( propagating waves), as
shown in Fig. 3a. For wavenumbers above these merg-
ers, they become quasi-dry modes. The transition be-
tween these is gradual, so the reasons for the merger
can be partially discussed from quasi—dry dynamics
(see section 4c). Figure 4 shows the energy and mois-
ture budgets of a typical kinematically dominated mode
at wavenumber one, where \ ~ —¢,. The energy
(moisture) balance of these modes is exactly between
adiabatic cooling (moisture convergence) and latent
heating (moisture source). Also as described in ana-
lytical theory, the vertical velocity has significant am-

plitude in the upper level when vertical velocity at

cloud base is nonzero. The vertical velocity wiggles
about a mean value since these modes inherit part of
their dynamics from dry internal modes—this creates
the irregular vertical structure seen in Fig. 4. The dis-
creteness of the kinematically dominated modes, as for
the quasi—dry modes, is associated with the lid condi-
tion at the top. Happily, these modes have larger decay
rates at higher wavenumbers, due to the finite 7. effect.
This scale selectivity is a nice property since the short
waves, which are often poorly represented and are po-
tentially a source of spurious instability in the numer-
ical integration, are more rapidly decaying under MCA.
When Rayleigh friction is replaced with vertical dif-
fusion, these modes will decay at rates associated with
the vertical diffusion operator. This will split the near
degeneracy of the eigenvalues at low wavenumbers,
replacing the decay rate ¢,, with a sequence of decay
rates that increase for modes with higher vertical wave-
numbers.

b. Moisture modes

At low wavenumbers, two-thirds of the vertical
modes are dominated by the moisture component. Half
of them have near-constant, fast decay rates at the con-
vective time scale for all wavenumbers. The other half
have wavenumber-dependent decay rates, which tend
to merge with the kinematically dominated modes at
higher wavénumbers to form propagating quasi-dry
modes (as in Fig. 3b). The half that decay at rate ¢, for
all wavenumbers are associated with the g equations in
the troposphere above the boundary layer. This was
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FIG. 4. An example of the energy and moisture budgets of the
kinematically dominated modes (A =~ —¢,) at wavenumber one.
Solid line denotes time rate of change of temperature, circled solid
line denotes latent heating, squared solid line denotes adiabatic cool-
ing, triangled dashed line denotes time rate of change of moisture,
starred dashed line denotes moisture sink, and crossed dashed line
denotes moisture convergence. Note that the signs are arranged such
that when adiabatic cooling exactly cancels latent heating, the two
curves overlap; and similarly for moisture sink and moisture conver-
gence.

confirmed by a distorted physics experiment in which
artificial multipliers were placed in front of the time
derivatives of these g equations. It is to these modes
that the -name “‘moisture modes’’ best applies. How-
ever, on the basis of the eigenstructures and dominant

‘balances, it is nearly impossible to distinguish these

from the other moisture-dominated modes at low wave-
numbers, so we apply the same term to both.

Examining the energy and moisture budgets of the
moisture modes (not shown), it is found that the mois-
ture structures are wiggly in the vertical and that the
thermodynamic components are negligible compared
to the moisture variations. The dominant balance is be-
tween moisture sink and time rate of change of mois-
ture. These properties were predicted by the analytical
approach for modes of A\ = —e¢.. These modes bring
perturbations of g quickly toward a quasi-adjusted state
for all horizontal structures. Since these modes decay
fast and at the same rate, they would not be seen in-
dividually during numerical time integration. Their in-
dividual eigenstructures are thus of little interest except
to note that they are dominated by g components, and
that these have successively higher numbers of zero
crossings in the vertical.

¢. Quasi-dry modes

In Fig. 3a, half of the moisture modes tend to merge
with the kinematically dominated modes to become
propagating waves with near-constant decay time of
about 27, in the smaller-scale regime. These propagat-
ing modes have qualitatively similar dynamics to the
internal modes in the dry atmosphere, with little in-
volvement of moist processes; hence we refer them as
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the ‘‘quasi-dry modes.”” The merging tendency and
their properties can be better understood with a simple
paradigm to interpret the scale-dependent growth rates
of these modes. Combining equations (2.6) and (2.1b),
for the Kelvin meridional case, yields a single vertical
structure equation in the troposphere, that is,

Oiw' + miu'
m2 AN e
= 665’)—S=C,,(TZ- - AT)(qs. Ty, T', q"), (4.1)
where
D 172
m = k(9,5/p) X
AN+ €,)(N+ €+ €)

is a complex variable with the real part denoting the
vertical wavenumber, which is determined by the strat-
ification of troposphere and eigenvalue for a given hor-
izontal wavenumber k. Vertically averaged quantities
are denoted by carets. Since the thermodynamics of the
kinematically dominated modes are degenerate at lead-
ing order, the order 7. thermodynamic variables enter
the zeroth order w in (4.1), keeping infinite degrees of
freedom in the vertical (since T" is free). Since these
modes are not very sensitive to the boundary-layer dy-
namics, their characteristic time scales are controlled
mainly by the lhs of (4.1), that is, the stratification.
When dry stratification comes to dominate over moist
processes, the dispersion relation of the quasi-dry
modes can be expressed as

N+ €)M+ €, +€)+ c2k?=0,

(4.2)

where c, is the effective atmospheric internal gravity

wave phase speed determined by the atmospheric strat-
ification. Equation (4.2) contains two roots of \; that
is,
(€m + € + €)
2

A=

* = [(en — € — €)* — 4c2k*]"2.

(4.3)

N | =

For high wavenumbers (c,k > €.), (4.3) can be ap-
proximated as

(e. + € + €,)

A=~
2

+ ick. (4.4)
Thus, the quasi-dry modes propagate nondispersively
with a near-constant decay rate of about twice of the
convective time (since €. > ¢, €,).

For low wavenumbers, quasi-dry dynamics does not
apply very well but, considering small & in (4.3), gives
insight into the transition. For (c,.k < €.), (4.3) be-
comes

(4.5)
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It is noted that only pure decay roots are permitted for
planetary-scale waves. Since €. > ¢,, one root decays
fast, at the time scale of cumulus convection, and the
other root decays slowly, at the time scale of large-scale
momentum damping. This explains the tendency of the
quasi-dry modes to split into purely decaying modes
with well-separated decay rates at low wavenumbers.
The modes of decay rate ¢, correspond to the kine-
matically dominated modes (in fact, this paradigm also
predicts the dominance of kinematic variables for
these); the modes of decay rate ~ ¢, correspond to the
moisture modes (for which this paradigm provides only
an indication of the transition). With larger c,, it is
easier to satisfy the condition ¢,k > ¢.; thus, the tran-
sition occurs at smaller k. This property can be clearly
seen in Fig. 3b: larger ¢, (larger slope) modes tend to
merge earlier at smaller k than those of smaller c,
(smaller slope). ’

As is well known, the existence of discrete, vertically
trapped modes in the dry case is associated with the
use of a rigid-lid condition; with a radiation condition
this is replaced by a continuum of vertically radiating
modes. Since GCMs cannot avoid having a top some-
where in the tropopause or stratosphere, these spurious
modes will inevitably be generated during numerical
integration. These results presented here suggest that
under MCA, these modes will have minimal effect in
deep convection regions due to their fast decay rates.

d. Stationary deep-convective mode

In Fig. 3a, we also find a stationary mode with slow
decay rate even at high wavenumbers. This stationary
mode has well-defined structures only at relatively
large wavenumbers and merges into the slowly decay-
ing, kinematically dominated modes at low wavenum-
bers. Figure 5 shows the energy and moisture budgets
of this mode at wavenumber 25, which is roughly lo-
cated at the scale of a typical GCM’s grid size. This
mode has a deep-convective structure with balances be-
tween latent heating (moisture source) and adiabatic
cooling (moisture convergence). Since it decays
slowly even at very high wavenumbers, it could poten-
tially be unstable in a nonlinear, spatially inhomoge-
neous system. We thus suspect that this mode could be
a candidate for the ‘‘gridpoint storms,”” which ap-
peared in the GFDL GCM model. Although a detailed
analysis of this mode is not presented here, these results
indicate that all of the geophysically interesting prop-
erties of MCA in the smaller-scale regime will be as-
sociated with this mode.

5. Propagating deep-convective mode (Madden—
Julian mode)
a. Stability, structures, and scale selectivity

A single vertical mode with complex eigenvalue is
found among the slow modes in the planetary-scale re-
gime. At wavenumber one, the eigenvalue gives a de-
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FiG. 5. As in Fig. 4 except for the stationary deep-convective
mode at wavenumber 25.

cay time of about 10.8 days and a period of about 33.8
days for 7. = 2 hours. When momentum damping is
removed, keeping thermal damping, the decay time de-
creases to 18 days. When both momentum and thermal
dampings are removed, the decay time dramatically de-
creases to 180 days, close to neutral, as in the small 7,
case of NY. The phase speed, ¢, = 14 ms™', would
yield an equivalent depth ¢?/g of about 20 m, although
this is of limited value in interpreting this CID mode.
Figure 6 shows the energy and moisture budgets of
this low-frequency mode. The balances are mainly be-
tween latent heating (moisture source) and adiabatic
cooling (moisture convergence ), while the time rate of
change of temperature (moisture) is just a small resid-
ual of these two large terms. The maximum heating is
at 500 mb, which is higher than the maximum moisture
sink, suggesting strong vertical redistribution of moist
static energy by the convective adjustment. The vertical
structures of this propagating deep-convective mode
along with its intraseasonal period at wavenumber one
resemble the MJO observed in many GCMs or obser-
vations. It should be underlined that these profiles are
determined internally by the convective interaction
with dynamics—nothing in the convective scheme di-
rectly specifies the vertical heating distribution. We
also note that this deep-convective structure remains
unchanged and distinguishable to wavenumber 20.
Figure 7 shows the slow-mode eigenvalues as a func-
tion of wavenumber. The propagating deep-convective
mode, which is embedded in the slow mode branch, is
the only propagating mode; the rest of the modes are
purely decaying kinematically dominated modes. The
frequency curve shows that the propagating deep-con-
vective mode is nearly nondispersive until wavenum-
ber 10; this property is also found in a GCM study
(Neelin et al. 1987). The propagating deep-convective
mode is the least rapidly decaying at wavenumber one,
but shows strong scale selectivity. While it is damped
weakly by dissipation terms at wavenumber one, it is
increasingly damped at higher wavenumbers due to the
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FiG. 6. As in Fig. 4 except for the Madden—Julian mode (i.e., the
propagating deep-convective mode for Kelvin meridional structure ).

effect of finite 7.. Those of the kinematically domi-
nated modes that exhibit less strong scale selectivity
than the propagating deep-convective mode have more
complex vertical structures and would be damped by ver-
tical diffusion if it were included. The scale selectivity by
finite 7. may be roughly understood in terms of the tran-
sition toward quasi-dry dynamics at high wavenumber.
When £ is small enough that 7, is truly fast compared to
time scales of dry dynamics, the thermodynamics closely
obey convective adjustment constraints. However, as dry-
dynamical balances begin to become important as k in-
creases, the temperature structure no longer perfectly
obeys these constraints and the convective adjustment
acts as a damping effect on the imperfectly adjusted ther-
modynamics. At the low wavenumbers shown in Fig. 7,

(1/DAY)

A

0 S 10 15 20
WAVENUMBER

Fic. 7. Eigenvalues of slow modes as a function of wavenumber.
Solid lines denote growth rates, with the curve for the propagating
deep-convective (PDC) mode labeled. Dashed lines denote the fre-
quency, but only the PDC mode has nonzero frequency. The wave-
number axis is labeled for the case of Kelvin meridional structure.
The long Rossby wave case is obtained by rescaling wavenumber by
(2n + 1).
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FiG. 8. Zonal cross section of the wavenumber one propagating deep-convective mode with Kelvin wave
meridional structure (MJ mode) in (a) pressure velocity, (b) temperature, (c) specific humidity, and (d) zonal
wind. Zonal phase is given in radians, since extremely similar structures occur for other low wavenumbers.

the convective adjustment constraints are obeyed quite
closely so that damping rates are only a small fraction of
7.'. However, since 7, is small, this still provides sig-
nificant scale selectivity.

To indicate the phase relation among physical quanti-
ties, Fig. 8 shows the eigenstructures of pressure velocity,
temperature, specific humidity, and zonal wind on the
zonal plane. It is found that the temperature and the mois-
ture are in phase but trail pressure velocity by /2. The
pressure velocity has maximum at about 400 mb, consis-
tent with observations in deep-convection regions ('Y anai
et al. 1973). The temperature has a maximum at about
300 mb along with a local maximum at the top of the
PBL. However, the back tilt of the temperature in the
upper troposphere and stratosphere found in the GFDL
GCM simulations (Lau et al. 1988) is not present in our
model due to the lack of a stratosphere. We also note that
even though we do not include boundary-layer friction
effects, the zonal wind in the upper troposphere is rela-
tively stronger than in the lower troposphere, qualitatively
similar to Lau et al. (1988).

b. Sensitivity tests

The sensitivity of the MJ mode to model parameters
and basic-state quantities is tested here, noting that
changes in the convective parameters are applied only
to the perturbation dynamics, with the basic state kept
constant. Figure 9a shows the eigenvalue of the wave-
number one propagating deep-convective mode (MJ
mode) as a function of 7.. The MJ mode decays mono-
tonically with increasing 7., but the frequency of the

MJ mode appears not to be very sensitive to the value
of 7.. Because the finite 7, effects tend to stabilize the
MJ mode, we expect this mode to be more stable with
larger 7.. In the fast-adjustment limit (7. = 0), the
analytical approach derived in NY becomes the exact
solution. For 7, = 30 minutes, the numerical result (not
shown) is very close to the analytical approach.
Figure 9b shows the eigenvalue of the MJ mode as
a function of basic-state boundary-layer moisture, g,.
We note that varying g, in isolation is a simplification
of processes that might affect the basic state. The tro-
pospheric temperature of the basic state in general
changes with g,, but as long as S changes by a constant
value in p, the stratification is unaffected. The variation
of g, thus provides a good case to illustrate a numerical
effect due to the discretization of cloud top. For the
vertical resolution used here (Ap = 75 mb), the layer
within which cloud top occurs does not change for g,
in the range shown (17 to 21 g kg '). The growth rate
is not sensitive to g, change, but the frequency of the
MJ mode decreases significantly with increasing g,,: the
period increases to 48 days at g, = 21 g kg ~' compared
to a period of 33.5 days at g, = 18 g kg ~'. Aside from
feedback mechanisms, both features are consistent with
the analytical theory in that only the damping effects
can affect the growth rate, while the period of the MJ
mode is dictated by the ‘‘gross moist stability,”” AM.
When the atmosphere contains more moisture in the
boundary layer, for fixed cloud top, the atmosphere
tends to be less stable (hence smaller AM) and the
period of MJ mode becomes longer. The sensitivity of
the period has potential implications for GCMs that
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FiG. 9. (a) Eigenvalue of MJ mode as a function of the cumulus adjustment time, 7., with solid line denoting
growth rate and dashed line denoting frequency. (b) As in (a) except as a function of the basic-state PBL specific
humidity, g,. (c) As in (a) except as a function of the subsaturation parameter, a. (d) As in (a) except as a

function of the Rayleigh damping time, €,,'.

have similar vertical resolution and hence similar dis-
cretization of cloud top. Under standard differencing,
such as is used here, this gives a systematic error be-
- cause the effective numerical cloud top is at the top of
the layer within which true cloud top would occur.
Thus, this will yield a numerical phase speed that is
always greater than it should be.

Figure 9c shows the eigenvalue of the MJ mode as a
function of the subsaturation parameter, a. Neither
growth rate nor frequency is sensitive to the change of «,
even allowing a large range of variation, from substantial
subsaturation to supersaturation. Figure 9d shows the ei-
genvalue of the MJ mode as a function of the inverse
Rayleigh friction rate, ¢,,'. We find that when e, is in the
reasonable range, the MJ mode is oscillatory with almost
constant period independent of ¢,,. The Rayleigh damping
time scale has to be unrealistically strong, less than 2 days
through the whole troposphere, for the frictional effect to
break the oscillation tendency.

¢. Evaporation—wind feedback

The evaporation—wind feedback, formulated in NY,
is included in this subsection for the Kelvin wave case.

The evaporation—wind feedback for the Rossby wave
case is slightly more complex to analyze and tends to
merely have a damping effect. The effective evapora-
tive damping effect is kept, with a value of (2 days) '
for ¢,. Figure 10 shows the growth rate as a function
of the evaporation—wind feedback parameter, F, for
the MJ mode at wavenumber one. We note that the
magnitude of the evaporation—wind feedback constant,
F = —sgn(it,) pCpl §.:(T;) — G»], is proportional to
the basic-state water vapor mixing ratio difference be-
tween sea surface level, g, (7,), and the boundary
layer, g, as well as the drag coefficient, Cp,. It is found
that the eastward propagating MJ mode is destabilized
when the evaporation—wind feedback is included (the
anti-Kelvin wave is included only as an example of the
effects on westward propagating waves). With F
> 0.13 mm day ' (m s ') ™!, the eastward moving MJ
mode becomes unstable. We note that this is the only
vertical mode destabilized by the evaporation—wind
feedback. The frequency of the MJ mode increases only
slightly with F. Figure 11 shows the growth rate of the
propagating deep-convective mode as a function of
wavenumber for different values of the evaporation—
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FiG. 10. Eigenvalue of MJ mode as a function of the evaporation—
wind feedback parameter, F [in units of mm day ' (m s ') ~']. Solid
line denotes growth rate and dashed line denotes frequency.

wind feedback parameter, F. At F = (0.2 mm day ™'
(m s~!)~!, wavenumber one is the most unstable wave
with an e-folding time of about 20 days; while at F
=04 mm day~' (ms™')"!, wavenumber two be-
comes the most unstable wave with an e-folding time
of about 6 days.

From the above results, we are led to conclude that
traditional ideas about wave—CISK in interpreting the
large-scale perturbations resulting from interaction be-
tween large-scale dynamics and the cumulus convec-
tion should be modified regarding stability aspects.
CISK, in the sense of instability, does not exist for the
very reasonable convective scheme investigated here,
and it is unlikely to be responsible for exciting the
large-scale equatorial perturbations. However, convec-
tive interaction with dynamics (CID) does single out
one vertical mode, which for the Kelvin wave case cor-
responds well in vertical structure and phase speed to
the MJO. The MJ mode can be destabilized by the
evaporation—wind feedback, and the scale selectivity
favoring the MJO at planetary scales can arise from the
effects of finite cumulus adjustment time, which tends
to damp the short-scale waves.

6. Stochastic forcing

To understand the bulk effect of stochastic forcing on
the power spectrum of the tropical troposphere, the forced
version of (2.15) is employed. The stochastic forcing can
be justified as random forcing resulting from nonresolved,
‘‘mesoscale’’ processes occurring at scales smaller than
the Reynolds average of the convective parameterization,
in comparison to observations; or from poorly resolved
grid-scale processes, in comparison to GCMs. We con-
sider a forcing that is random in x and ¢ but has a specified
vertical structure (which can be different in the momen-
tum equations and in the thermodynamic equations) and
Kelvin wave meridional structure. Similar results will
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hold for other meridional modes. Fourier decomposing in
basis functions exp[i(kx — ot)], where o and k are the
frequency and wavenumber of the tropical variance, with
ok > 0 appropriate to the Kelvin wave, the forced prob-
lem has the form:

(A — ioB)X = F(a, k)f, (6.1)

where X denotes the Fourier-transformed response vec-
tor of w, T, and g at each level for a given frequency
and wavenumber, F (o, k) represents the Fourier-trans-
formed x—t structure of the forcing, and f denotes the
vertical structure including both thermodynamical and
kinematical sources. For fixed vertical structure and
fixed partition between kinematic and thermodynamic

. forcing, we can write

X = H(o, k)F (o, k), (6.2)

where
H =(A- ioB)“fj (6.3)

is the transfer function for a given variable and level
(the index j running through levels for w, T, q). As for
any stable, linear, time-invariant filter, the power spec-
tral density of the response, Sy, to random forcing of
input spectral density, Sy is just

Sx, = |Hj|*Sw, (6.4)

where we note that the atmospheric ‘‘filter’’ is stable
in absence of evaporation—wind feedback. Here, a
white-noise distribution of the forcing in both fre-
quency and wavenumber domains is employed for two
reasons: (i) it provides an estimate of the extent to
which the large-scale moist dynamics can select a spe-
cific scale and frequency of the perturbations resulting
from sub-Reynolds-scale stochastic forcing; (ii) the
stochastic forcing is considered to arise from processes
that are small scale in terms of spatial and temporal
correlation, so it is very reasonable to model their ex-
pression at low wavenumbers and frequencies as white.
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FiG. 11. Growth rate of MJ mode as a function of wavenumber
for different value of F.
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The power spectral densities of the response are cal-
culated at each level for representative forcing struc-
tures. For ease of display, Figs. 12 and 13 show the
average over all levels of the power spectral density of
T, u, w and precipitation, P, in wavenumber—fre-
quency domain for the Kelvin wave. Figure 12 shows
the case of a purely thermodynamic forcing in the
boundary-layer temperature equation, while Fig. 13
shows the case of a purely kinematic forcing in the
boundary-layer w equation. Amplitudes of the power
spectral density of the forcing are not well known for
the subgrid-scale processes. For thermodynamic forc-
ing we have no direct estimates so we use 4 (K day ~')?
day, which is chosen so that the flatter parts of the P
spectrum roughly match an estimate of the ‘‘white’’
background in P from GFDL GCM grid-scale pro-
cesses from Lau et al. (1988). For kinematic forcing,
we attempt a rough estimate of grid-scale noise forcing
as follows: from Hayashi (1974 ), the GFDL GCM has
a ‘“‘white”’ background power spectral density of
around 300 (mb day ~')* day at 825 mb. We assume
PBL forcing to create similar velocities near the top of
the PBL with zero velocity at the surface, leading to
forcing in the omega equation of around 1 X 1075 [(mb
day')/(mb? day)]® day. Different estimates would
simply rescale the figures.
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In Fig. 12, the maximum power spectral densities at
planetary scales occur at a nearly constant phase speed
of about 14 m s~', corresponding to a period of about
35 days at wavenumber one. Along with the vertical
structures (not shown), both indicate dominance of the
propagating deep-convective mode discussed in section
5. The temperature component (Fig. 12a) shows signif-
icant spectral densities in the planetary-scale, low-fre-
quency domain with a maximum amplitude near 0.6 K?
day; the zonal wind component (Fig. 12b) also indicates
dominance of spectral densities in the planetary scale
with a local maximum just over 4 (m s~')? day at wave-
number one, both suggesting strong planetary-scale se-
lection in exciting the low-frequency MJ mode by the
thermal stochastic forcing. We also note that pressure—
velocity spectral densities are larger at higher frequency
and shorter wavelength (Fig. 12c), compared to zonal
wind spectral densities, which in turn emphasize higher
frequency and wavenumber than 7, as one would expect
from wave dynamics. However, the scale selectivity is
not strong enough to keep the spectral density maximum
of w at the lowest wavenumbers. The precipitation (Fig.
12d) exhibits a spectral density distribution similar to
that of the pressure velocity with a maximum power
spectral density just over 40 (mm day ~')? day, near
wavenumber four or five. This is consistent with the
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Fi6. 12. Average over all vertical levels of the power spectral density in the frequency—wavenumber domain
of the Kelvin wave case in the tropical troposphere resulting from spatially and temporally white, thermal sto-
chastic forcing. A forcing rate of 4 (K day —')? day is used in the boundary-layer thermodynamic equation. (a)
Power spectral density of the temperature, with contour interval of 0.05 K? day, (b) power spectral density of the
zonal wind, with contour interval of 0.5 (m s™')? day, (c) power spectral density of the pressure velocity, with
contour interval of 150 (mb day ~')? day, and (d) power spectral density of the precipitation, with contour interval

of 5 (mm day ~')? day.
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GCM peaks of Lau et al. (1988) except that the GCM
maximum occurs at wavenumber two or three. Moisture
spectra (not shown) resemble T spectra in all respects.
In the kinematically forced case (Fig. 13), we find
that strong planetary-scale selectivity is also observed.
However, the power spectral density distribution is dom-
inated by stationary waves at planetary scales due to the
excitation of kinematically dominated modes, with only
a weak response of the propagating waves. Because the
propagating deep-convective mode is less strongly ex-
cited by the kinematical forcing, the maximum pres-
sure—velocity response appears at very low-frequency
and planetary scales. The vertical structures of these sta-
tionary modes (not shown) also strongly indicate dom-
inance of the slowly decaying, kinematically dominated
modes. The amplitudes of pressure—velocity and precip-
itation are considerably -weaker than the GCM spectra
(Hayashi 1974; Lau et al. 1988), but this could simply
be due to our estimate of the forcing spectral density.

7. Conclusions

Strong interaction between cumulus-scale convec-
tion and the large-scale circulation is crucial to the dy-
namics of tropical climate variability. In these two pa-
pers, we examine this interaction in the context of a
moist convective adjustment (MCA ) cumulus param-
eterization scheme. In particular, the Betts—Miller
scheme (Betts 1986; Betts and Miller 1986) is used,
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which is smoother than classical MCA (Manabe 1965)
due to the introduction of a relaxation time in adjusting
toward the reference state. With the MCA parameter-
ization, the net effect of the ensemble of convective
motions at scales below the Reynolds average in space
and time (sub-Reynolds scales or subgrid scales) is
parameterized such that the large scale and sub-Reyn-
olds scales are strongly linked through thermodynamic
constraints (type I closure; Arakawa and Chen 1987).
The vertical form of the thermodynamic reference pro-
files are determined by y = d(Lg.u)/d(C,T). How-
ever, the modes of the large-scale circulation under
MCA have dynamical structures, including heating and
moistening profiles, that are determined by convective
interaction with dynamics (CID) rather than simply by
. We introduced the term CID in NY to distinguish
convective interaction with dynamics in general from
the more specific term CISK (conditional instability of
the second kind), which presumes that the large-scale
flow can actually become unstable through its interac-
tion with the net effects of sub-Reynolds-scale convec-
tion. CISK thus implies an assumption that the large-
scale circulation can access column instability—as
measured, for example, by the conventional parcel-
based quantity CAPE (convective available potential
energy ) or the column-based MAE (moist available en-
ergy; Randall and Wang 1992).

As in Part I, we break our conclusions down into a
summary of specific results regarding how a smooth
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FiG. 13. As in Fig. 12 except for white, kinematical stochastic forcing applied
in the w-equation with a forcing rate of 300 (mb day ') day.
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MCA scheme behaves and how geophysical phenom-
ena, especially the MJO, arise under MCA—and a
more general discussion of implications for a possible
view of the tropical atmosphere.

a. Summary

In NY, we examined the CID modes of the time-
dependent problem analytically, in the limit where cu-
mulus adjustment time, 7., is small compared to the
time scales of large-scale dynamics, an assumption
which holds best at low wavenumbers. We reexamine
the model numerically in Part II, concentrating on the
Kelvin meridional mode case for which the simplest
form of the vertical structure equations is valid uni-
formly for all zonal wavenumbers. We emphasize that
the same results apply to long Rossby waves and short
gravity waves, as discussed in section 2. The numerical
results at planetary scales are consistent with the ana-
lytical approach. The eigenmodes at large scales are
well separated into two stable regimes. The fast modes
adjust quickly toward the reference atmosphere at the
convective time scale, while the slow modes evolve at
the time scale set by the large-scale dynamics. All
modes are stable for all wavenumbers. The finite 7,
effect tends to further stabilize all the slow modes rela-
tive to the analytical calculations. Thus, ‘‘CISK,”’ in the
sense of instability, does not occur for this convective
scheme, at least not for the separable case in a homo-
geneous basic state. Kelvin wave CID singles out one
vertical mode with slow phase speed and deep-convec-
tive structure resembling the MJO at planetary scale. In
addition to confirming analytical results, the numerical
approach provides the following additional insights:

1) The MCA scheme exhibits a property that almost
all the high wavenumber waves are internally decaying
much more quickly than the low wavenumber waves,
giving strong scale selectivity. This is in striking con-
trast to CISK studies using Kuo-like schemes for which
linear instability tends to be large at smaller scales. The
scale selectivity is sensitive to the magnitude of the
convective adjustment time scale, 7.. With larger 7.
(such as would occur in a case where the atmosphere
is not deep convective everywhere or taking into account
a longer effective adjustment time in presence of sub-
Reynolds-scale mesoscale organization), even stronger
scale selectivity in favor of planetary scales occurs.

2) The analytical approach in Part I accounts only
for modes at planetary scale where the characteristic
time scale of the dynamics is much longer than 7.. The
structures and behavior of eigenmodes are most easily
understood from the numerical calculations. The eigen-
modes can be subdivided into classes according to dy-

namical behavior and the dominant variables in the ei- .

genvectors. For instance, ‘ ‘moisture modes’’ have struc-
tures dominated by the moisture components. Half of
the moisture modes tend to merge with the kinematically
dominated modes at higher wavenumbers to become
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propagating ‘‘quasi-dry modes;’’ the other half have fast
decay rates around e, for all wavenumbers. The latter
tend to bring moisture perturbations quickly back to an
adjusted state for all horizontal wavenumbers and almost
all vertical structures (except that of the propagating
deep-convective mode). However, they would not be
seen individually in time integrations since they decay
rapidly and all at the same rate. The remainder of the
eigenmodes are most easily classified within two sepa-
rate spatial scale regimes, based on the finite 7. effect in
the wavenumber domain: the ‘‘planetary regime,”’ in
which 7. is indeed small relative to dynamical time
scales; and the ‘‘smaller-scale regime,’” in which 7. can-
not be regarded as small. In the planetary regime, the
classification is similar to that described in NY: in the
class of ‘‘slow modes,’’ there is a single geophysically
important ‘‘propagating deep-convective mode’’ and a
less important set of stationary modes dominated by kin-
ematic variables with small thermodynamic components.
3) In the smaller-scale regime, the kinematically
dominated modes, along with half of the moisture
modes, individually become propagating and asymp-
tote to a constant decay time of about 27, at large wave-
numbers. This behavior roughly follows a simple
damped gravity wave paradigm, with cumulus heating
acting almost entirely like a strong damping, since the
dynamics of these modes tends to be nearly decoupled
from the boundary-layer thermodynamics. Like all ver-
tically trapped internal modes in tropical models, these
quasi-dry modes are spurious modes in the sense that
they depend on the use of a rigid-lid condition. If a
radiation upper boundary condition were used, these
would radiate upward. The fact that MCA causes these
to decay rapidly at small scales in convective regions
is thus numerically desirable. We also find a ‘‘station-
ary deep-convective mode’’ at a broad range of wave-
numbers for which 7, is not small. Its behavior is dis-
tinctive, with slow decay rate even at high wavenum-
bers, and it exhibits deep-convective structure even to
very small scales. This mode is a possible candidate for
the ““‘gridpoint storms’’ that appear in the GFDL GCM,
which uses a classical MCA parameterization. Since
the stationary deep-convective mode is close to neutral
at high wavenumbers in our analysis, it could plausibly
be destabilized by spatial inhomogeneities or by dis-
continuous convection criteria in a numerical model.
4) The propagating deep-convective mode has scale
selectivity in favor of planetary-scale waves due to the
finite 7. effect under the CID mechanism alone, even
with a rigid-lid condition. For the wavenumber one
Kelvin wave meridional structure, it has a period of
about 33 days, which, along with its vertical structure,
is highly suggestive of the observed tropical Madden—
Julian Oscillation. In Part I we noted that use of a ra-
diation vertical boundary condition could significantly
slow its phase speed; here we note that vertical dis-
cretization results in phase speeds that are systemati-
cally too fast. Both may have implications for the fast
phase speeds found in many GCMs. When the evapo-
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ration—wind feedback mechanism is included, wave-
number one or two is selectively destabilized with
growth rate on the order of about (10 days)~' for a
reasonable range of the evaporation—wind feedback
parameters. The frequency dependence on wavenum-
ber is almost nondispersive.

5) Although the evaporation—wind feedback pro-
vides a plausible mechanism for the MJO involving
instability, it is also necessary to consider that the MJO
may be a slowly decaying mode excited by external

forcing. We consider two possible sources of forcing: -

lateral forcing from midlatitudes and tropical stochastic
forcing by nonresolved mesoscale processes. The pos-
sibility of lateral forcing of tropical large-scale waves
has been raised by many authors (Yanai and Lu 1983;
Itoh and Gill 1988; Hsu et al. 1990; Zhang and Webster
1992; Zhang 1992). This is potentially a complex pro-
cess—we provide a preliminary examination of the
simplest case (see appendix ), in which a lateral mobile
forcing is applied in a background state with barotropic
mean zonal wind. The results suggest that such effects
are very modest in the simple situation examined here.
If they are to be important, it must be through more
complicated processes (such as zonal inhomogeneity
in the basic state or nonlinear interactions). On the
other hand, stochastic forcing from nonresolved tropi-
cal processes does produce substantial variance at plan-
etary scales for the ‘‘moist Kelvin wave’’ or the MJO.
When the troposphere is forced thermodynamically by
sub-Reynolds-scale white noise forcing (which we ap-
ply in the PBL), the propagating deep-convective
mode is selectively excited, especially at planetary
scales—although the scale selectivity in the case ex-
amined here is not as strong as observations or the
GFDL GCM. However, when the troposphere is forced
kinematically, the stationary, slowly decaying kine-
matically dominated modes account for the dominant
variance of the tropical response. Similar results would
apply for other meridional structures.

b. Discussion

Both the analytical results of Part I and the numerical
results presented here indicate that there is no instabil-
ity through CISK at large scales under MCA. This is
in marked contrast to many CISK studies using sim-
plified ‘‘Kuo-like’’ parameterizations. This difference
between MCA and Kuo-like schemes may help shed
light on the debate raised by Xu and Emanuel (1989)
and Randall and Wang (1992 ) in observational studies,
suggesting that there appears to be very little CAPE or
MAE, respectively, available in the tropical atmosphere
to support large-scale instabilities. The results implied
by the closure assumptions of MCA are consistent with
this: the column instability (as measured by MAE or
CAPE) tends to be dissipated at the sub—Reynolds
scales so the average amount remaining tends to be
small. The debate about large-scale instability has so
far focused on the question of just how small the MAE
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or CAPE is. Our results bring out a new aspect,
namely, that under smoothly posed MCA, even if this
amount is not very small, it is still not generally ac-
cessible as an energy source for the resolved, supra-
Reynolds-scale motions. These motions evolve in a
stable manner under quasi-equilibrium thermody-
namic constraints imposed by the sub-Reynolds-scale
convection as represented by MCA. Thus, under the
assumptions of MCA, there can be nonzero CAPE and
still no CISK.

If one leaves aside the selective instability of the
MJO due to the evaporation—wind feedback, this sta-
bility of CID modes under MCA raises the question of
how the power density spectrum of the tropical atmo-
sphere is maintained. A self-consistent answer to this
is provided by considering the effects on the large
scales of stochastic forcing from the small scales. Cu-
mulus parameterizations traditionally consider only the
first-moment ensemble average of heating and moisture
sink due to the sub—Reynolds scales. There are, of
course, higher-moment effects (for instance, see Xu et
al. 1992; Arakawa 1994), notably variance of the cu-
mulus heating (and other forcing terms) about the en-
semble mean that is parameterized in terms of the large-
scale flow. This creates a random forcing on the large
scales. The stochastic term can be reasonably treated
as white in space and time at the large scales since the
random process will have low spatial and temporal cor-
relation between one Reynolds average domain and ad-
jacent ones. Because of this, and because our model is
stable (if the evaporation—wind feedback is not too
large) and linearizable, it is straightforward to make
quantitative statements regarding the form of the large-
scale power spectral density, as a function of wave-
number and frequency, that can be driven by such sub—
Reynolds noise. It has been pointed out to us by A.
Arakawa that this may be one of the first attempts to
examine explicitly the effects on large scales of the
variance of cumulus heating about its parameterized
value. Unfortunately, wavenumber—frequency power
spectral density estimates of the appropriate dynamical
quantities are not available for the observed tropical
atmosphere, so we have compared instead to published
results from the GFDL GCM. This requires interpreting
the random process as arising from poorly resolved
grid-scale processes, which is less clean than the ar-
gument for the case of the continuous atmosphere.
Nonetheless, the results suggest that stochastic forcing
(by processes that are small scale in the sense of spatial
and temporal correlation ) can indeed account for a sub-
stantial fraction of the large-scale variance, and that the
selective wavenumber—frequency response of a stable
CID model can provide a plausible, self-consistent ex-
planation for the form of the power spectral density.

The implications for the Madden-Julian Oscillation
are that Kelvin wave CID is responsible only for de-
termining the overall structure of the MJO but that it is
maintained by other mechanisms. In particular, insta-
bility due to the evaporation—wind feedback and ex-
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citation by tropical stochastic forcing due to sub-Reyn-
olds-scale thermal noise are both shown to be likely
mechanisms. Scale selectivity favoring the MJO at
planetary scales arises both from the effects of finite
cumulus adjustment time, as shown here, and from
upward radiation of shorter-scale waves, as shown
in NY.
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APPENDIX
Extratropical Mobile Forcing with Mean Zonal Flow

To provide a preliminary examination of the effects of
midlatitude mobile forcing on the large-scale tropical
waves, a linear, three-dimensional version of the model
is examined in this appendix, with latitude-dependent
barotropic zonal wind, i, in the basic state. For pertur-
bation solutions of the form exp[i(kx — ot)], the com-
plete set of equations are (2.1a—e) except that A in all
equations is replaced by A = (—io + ikir) and the Fourier
transformed operator £, in (2.1f) is redefined as

4 = -
T O+ ) + B2y — Py

kB + k*(Ar + €,)

_ 2ikB7y? —

B {(Ar + €n)® + By — Bydyit

where ¢ and k are, respectively, the perturbation fre-
quency and wavenumber determined by the forcing,
and we have neglected the lower boundary pressure
tendency due to the existence of mean zonal wind.
For this extratropically forced case, a semispectral

version of the model is used: finite differenced in the

vertical and meridional, and spectral in the zonal di-
rections. For results shown here, 12 vertical levels and
a 2-degree grid in latitude are used. Rather than forced
from a lateral boundary (Itoh and Ghil 1988), we apply
forcing within the domain but at off-equatorial lati-
tudes. Walls (v = 0) at £40° latitude are used, but do
not influence the tropical response. The matrix form of
the problem gives

EX = F(k, o)f, (A.2)

where E is a complex band matrix with most of the
nonzero elements aligned along the diagonal and X is
the Fourier-transformed solution vector containing &,
T, and §. Here F(o, k) is the forcing vector due to
either temperature tendency or pressure velocity anom-
alies of the travelling midlatitude system and f is again
the vertical structure of the forcing.

The forcing and mean zonal wind structures are
shown in Fig. Al. The maximum forcing represents 1
K day ' heating rate in the thermodynamic equation.
The forcing distribution roughly represents the shallow
structure typical of midlatitude systems. Since we are
interested in whether the MJO can be forced by plan-
etary-scale midlatitude perturbations, consider an ex-
ample of midlatitudinal wavenumber-one eastward

[\ + €n)* + B2y* — By, )2 ’
ByO,ia[2k*(N\r + €,,) + ikB] — ikB*y*0%u (A1)
[(\r + €n)? + B2y — Byd,i])? ’ '
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FiG. A2. The meridional cross section of the model response on the intraseasonal time scale of 60-day
period. (a) Pressure velocity with contour interval of 4 mb/day. (b) Temperature with contour interval of
0.2 K. (¢) Specific humidity with contour interval of 0.05 g kg™'. (d) Latent heat response with contour
interval of 0.2 K/day.

propagating temperature forcing with a period of 60
days, which would be expected to be favorable for forc-
ing the MJO. Figure A2 shows the meridional cross
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FiG. A3. The low-level wind (962.5 mb) response on the intraseasonal time scale
of 60-day period. The maximum wind reaches 7.6 m s~' near 20°N.

section of the response. Strong local response is con-
fined near the forcing region with deep structures re-
sembling the propagating deep convective mode in the
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tropics. Only relatively weak response is found in the
tropics or in the Southern Hemisphere. Figure A3
shows the low-level wind response at 962.5 mb. We
note that the local response is not symmetric about the
forcing center but has larger amplitude in the south than
that in the north due to 8 effect [similar results can be
found in Webster (1981) and Zhang (1992)]. For this
damped, driven system, the critical line at around 18°N
does not crucially affect the local response. However,
the disturbance is unable to ‘‘tunnel through’’ the ev-
anescent zone (equatorward the critical line) with suf-
ficient amplitude to produce significant response in the
equatorial waveguide. This result is not strongly sen-
sitive to the phase speed of the forcing, nor to the zonal
wavenumber, nor to kinematic rather than thermody-
namic forcing.

The effects of midlatitude forcing, however, could
be very different in a zonally inhomogeneous basic
state (Webster and Holton 1982) or with precipitating/
nonprecipitating regions in the basic state. Since treat-
ment of these is beyond the scope of this paper, we by
no means exclude possible excitation from midlati-
tudes. Rather, we simply point out that it must occur
by processes more complex than the simplest case con-
sidered here.
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