
SEPTEMBER 1999 2757W E N G A N D N E E L I N

q 1999 American Meteorological Society

Analytical Prototypes for Ocean–Atmosphere Interaction at Midlatitudes.
Part II: Mechanisms for Coupled Gyre Modes*

WENJIE WENG

Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

J. DAVID NEELIN

Department of Atmospheric Sciences, and Institute of Geophysics and Planetary Physics,
University of California, Los Angeles, Los Angeles, California

(Manuscript received 24 July 1998, in final form 4 November 1998)

ABSTRACT

A simple midlatitude coupled model for idealized ocean basins is used to investigate processes of ocean–
atmosphere interaction and its role in interdecadal climate variability at midlatitudes. The ocean model consists of
a linearized quasigeostrophic upper ocean layer and a sea surface temperature (SST) equation for an embedded
surface mixed layer. The atmospheric response to the ocean is through wind stress and heat flux feedbacks associated
with SST. Eigenvalue analysis of both coupled and uncoupled models presented here complements previous work
on the stochastically forced system. Comparison of the eigenspectrum of coupled and uncoupled cases shows that
coupling creates an oscillatory interdecadal mode whose properties are distinct from any other mode in the system.
This mode exists whether the atmospheric feedbacks are weak or strong, and is stable even in the strong feedback
case. The weak decay rate makes it possible for the mode to be maintained by atmospheric stochastic forcing.
Analytic approximations to the dispersion relation show how the spatial structure of the atmospheric feedback
tends to select a large-scale spatial pattern for this eigenmode. The oscillation involves westward Rossby wave
propagation in the ocean with the atmosphere carrying information back eastward into the interior of the basin in
response to SST anomalies produced by advection. SST modes are also found, which purely decay in most cases
due to both local and nonlocal negative heat flux feedbacks. A case with large positive heat flux feedback can
produce a purely growing SST mode but does not greatly impact the interdecadal mode.

1. Introduction

Large-scale spatial patterns of climate variability
with interdecadal timescales have been noted over the
North Atlantic and North Pacific Oceans (Folland and
Parker 1989; Trenberth 1990; Wallace et al. 1990; De-
ser and Blackmon 1993). The source of such variability
has been a subject of interest [see Latif (1998) for
review]. The ‘‘null hypothesis’’ is that the upper ocean
can integrate atmospheric white noise stochastic heat
flux forcing to produce a red noise SST spectrum
through its larger heat capacity (Hasselmann 1976;
Frankignoul and Hasselmann 1977; Battisti et al.
1995). Other sources include teleconnections from the
Tropics (e.g., Graham 1994; Trenberth and Hurrell
1994), internal ocean variability (e.g., Weaver et al.
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1991, 1994; Chen and Ghil 1995; Spall 1996), and
more complex response to atmospheric variability
(e.g., Delworth et al. 1993; Saravanan and McWilliams
1997 and references therein).

In the study of the role of the atmospheric component
in such variability, atmospheric general circulation mod-
el (GCM) experiments suggest that the midlatitude re-
sponse to SST is modest compared to atmospheric in-
ternal variability, may have complex seasonal and non-
linear dependencies, and varies among models (Palmer
and Sun 1985; Kushnir and Lau 1992; Ferranti et al.
1994; Peng et al. 1995). The question has been raised
whether ocean–atmosphere interaction plays a role in at
least some aspects of this climate variability (Bjerknes
1962; Namias and Cayan 1981; Kushnir 1994). Recent
studies show that coupled GCMs can produce large-
scale interdecadal oscillations (e.g., von Storch 1994;
Latif and Barnett 1994, 1996; Robertson 1996; Zorita
and Frankignoul 1997; Grötzner et al. 1998), in which
atmospheric feedbacks appear to play a role. In the
North Atlantic, an oscillation with an 18-yr period is
reported by Grötzner et al. (1998) in two MPIM coupled
models and Selten et al. (1999) find a 16–18-yr spectral
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peak in their coupled model. Latif and Barnett (1994,
1996) and Robertson (1996) find timescales on the order
of 20 yr in the North Pacific. However, the physical
processes governing these timescales are still not clear.

Recently, several simple models have been presented
to investigate the physical mechanisms governing the
time and spatial scales of midlatitude interdecadal var-
iability [Liu 1993; Jin 1997; Münnich et al. 1998; Neelin
and Weng 1999 (NW99, hereafter); Weng and Neelin
1998 (WN98, hereafter)]. Jin (1997) suggests that this
variability arises from the dynamic coupling and the
memory of the system, residing in the slow gyre cir-
culation adjustment. The important role of Rossby wave
dynamics in the interdecadal mode is proposed by Mün-
nich et al. (1998), NW99, and WN98. NW99 and WN98
further point out that the length scale of zonal wind
stress also plays a crucial role in selecting the time and
spatial scales of the mode.

In part I of this paper (NW99), an atmospheric mod-
el composed of atmospheric stochastic and SST-de-
pendent noise processes is coupled to a shallow water
ocean and a mixed layer SST equation. The results
indicate that large-scale atmospheric stochastic forc-
ing can produce a coherent spatial pattern and some-
times even a weak peak in the power spectrum at
interdecadal timescale periods in the oceanic response
(see also Frankignoul et al. 1997). Atmospheric feed-
back, although weak compared with atmospheric in-
ternal variability, can produce a significant impact on
spatial patterns of SST anomalies and enhance the
power spectral peak. This holds also in the limit that
atmospheric SST-dependent noise approaches a de-
terministic feedback. The large-scale interdecadal
mode has some features resembling oceanic Rossby
wave dynamics, such as westward propagation. NW99
suggested that despite difficulties in distinguishing
coupled variability from uncoupled, an atmospheric
feedback combined with oceanic Rossby wave dy-
namics can play a significant role in the large-scale
interdecadal climate variability at midlatitudes.

In Part II of this paper, we examine the eigenvalue
problem to complement the time-marched modeling
approach of Part I. We also seek a near-analytic so-
lution of the coupled system to gain some insight into
the role of coupling in generating the interdecadal
oscillations. In particular, we examine how the inter-
action sets the time- and spatial scales of the motion
and the role of heat flux and wind stress feedbacks.
Section 2 gives a brief summary of the simple coupled
model. Section 3 solves the eigenvalue problem for
the coupled model. The results of the coupled and
uncoupled modes for the North Atlantic and North
Pacific Oceans are presented in sections 4 and 5. The
physical mechanism of the interdecadal variability in
both oceans is discussed in section 6 by seeking a
near-analytic expression for frequency. A summary is
given in section 7.

2. Model summary

We consider a linearized perturbation system with
quasigeostrophic shallow water upper-ocean dynamics
and an SST equation for a surface mixed layer. Both
the vorticity and SST equations are written on a b-plane
from 208N to 608N and are linearized about a basic state
of rest. They are

2 22] (¹ 2 l )c 1 b] ct g x g

] ty x2 45 2e ¹ c 1 n¹ c 2 (2.1)c g g rH

tx] T 5 2e T 1 (] T] 2 ] T] )c 1 ] Tt T x y y x g yfrH1

Q
1 , (2.2)

c rHw 1

where ¹ 2 5 1 , b is the latitudinal derivative of2 2] ]x y

the Coriolis parameter (fixed at the 408N value), and
cg is the perturbation geostrophic streamfunction.
Here l (5c 0 / f 5 g*H/ f ) is the Rossby deformationÏ
radius. The mean depth of the upper layer, H, is as-
sumed to be 100 m; g* is the reduced gravity and is
chosen to give a wave speed c 0 about 3 m s21 ; and f
is the Coriolis parameter at 408N. These give a Rossby
deformation radius of about 32 km. For damping
terms in the vorticity equation, we include a Rayleigh
damping applied to ocean current of rate e c , for which
we test values between 0 and 1 yr21 , and a horizontal
turbulent viscosity coefficient, n, with values in the
range 10 m 2 s21 to 10 4 m 2 s21 (Pedlosky 1987). The
effect of uncertainty associated with the values of e c

and n will be examined. Here t x is the zonal com-
ponent of wind stress at the sea surface. The merid-
ional component of wind stress is neglected. Here, T
is the perturbation SST; T the climatological SST; r
the seawater density; H1 the depth of surface mixed
layer, here 50 m; cw the specific heat of seawater ; eT

the decay rate of SST anomaly due to local surface
heat flux effects, here 2.73 yr21 , estimated from Ham-
burg ECHAM-2 T21 GCM surface heat fluxes; and
Q is the nonlocal heat flux at sea surface. Basic state
currents are neglected in order to focus on processes
arising from interaction with the atmosphere, rather
than gyre instabilities.

The ocean model is coupled to the atmosphere
through atmospheric wind stress and heat flux feedbacks
associated with an SST basis function, u1. The spatial
patterns of wind stress feedback, heat flux feedback,
and the SST basis function are estimated based on at-
mospheric GCM results (see NW99 for detailed de-
scription). Wind stress patterns are simplified to aid an-
alytical solution, while heat flux can be handled for any
spatial pattern. We use the form

t 5 mt cos(kx 1 a) cos(ly 1 g)^u T &, (2.3)x A 1
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FIG. 1. (a) The estimate of the first SST basis function (contour interval 0.05 K), and (b)
the estimate of heat flux feedback (contour interval 0.5 W m22 ) over the North Atlantic
rectangular basin.

Q 5 mQ (x, y)^u T &, (2.4)fb 1

where u1 is normalized by ^ &. Here t A is the am-2u1

plitude, k the zonal wavenumber, l the meridional
wavenumber, a and g the phases, and m a coupling
coefficient for sensitivity studies. The western bound-
ary is set at x 5 0. The projection of SST on u1 over
the basin is written ^u1 T & and Qfb is a nonlocal heat
flux feedback that is a function of space. In the North
Atlantic, t A 5 0.05 dyn cm22 , k 5 3/[R cos(408)], l
5 6/R, a 5 0.5p, g 5 20.8p, where R is the radius
of earth. The first SST basis function has an approx-
imate north–south dipole pattern with a negative and
a positive SST anomaly, centered near 308N and 508N,
respectively. Both centers have maximum anomalies
in the western Atlantic and extend toward the eastern
Atlantic coastline. The nonlocal heat flux feedback
shows large positive anomalies over most of the west-
ern North Atlantic, decreasing toward the east. These
parameters and the fields u1 and Qfb are estimated
based on results from the Max-Planck Institut für Me-
teorologie’s (MPIM) ECHAM-2 T21 atmospheric
GCM, in an analysis similar to Graham et al. (1994),
Zorita et al. (1992), and Kharin (1995) (see NW99
for detailed description). Figure 1 gives the estimated
SST basis function, u1 , and the nonlocal heat flux
feedback for the idealized North Atlantic Ocean basin
(as in WN98). These two fields are obtained by align-
ing the western boundary at the same longitude, and
stretching the fields from the realistic basin accord-
ingly. In the North Pacific, a crude estimation gives
t A 5 0.2 dyn cm22 , a 5 0.075p, g 5 20.325p, 2p /
k about 13 600 km, and 2p /l about 8900 km for the
Lau and Nath (1990) case. For the Latif and Barnett
(1994) case, t A 5 2 dyn cm22 , a 5 0.375p, g 5
20.67p, 2p /k is about 13 600 km, and 2p /l about
6700 km. The spatial patterns of the SST basis func-
tion and the nonlocal heat flux feedback are the same
as those given in NW99 (Figs. 4 and 5 in NW99).
Note here that we use Qfb to represent the nonlocal
heat flux feedback instead of Qs1 as used in NW99.

Seasonal dependence may be important, but is ne-
glected here for simplicity.

We note an implicit assumption that the atmospheric
spatial pattern is set in the atmosphere, rather than as a
coupled process. This is reasonable, given the preferred
length scales that occur in atmospheric stationary wave
dynamics. While we do not address the complex pro-
cesses by which the pattern is set, we can follow through
the consequences of any given atmospheric response
pattern for the coupled system.

Equations (2.1)–(2.4) form ocean–atmosphere cou-
pled model, which is the limit of the coupled model
given in Part I of this paper (NW99) in which all stan-
dard deviations of atmospheric stochastic forcing go to
zero. Here we carry out eigenvalue analysis of the de-
terministic coupled model both numerically and ana-
lytically. From this study, we shall provide physical
mechanisms responsible for selecting both time- and
spatial scales of the interdecadal mode.

3. Eigenvalue problem for the coupled model

To look for eigenmodes of the coupled system given
in section 2, we assume that the time dependence of the
geostrophic streamfunction, cg, and the temperature
anomaly, T, is separable from other variables, and has
the form est. With the wind stress form given in (2.3),
the dependence of cg on y can be separated from other
variables associated with feedbacks and is simply sin(ly
1 g). That is, we look for solutions having the following
form:

stc (x, y, t) 5 e c̃(x) sin(ly 1 g) (3.1)g

st ˜T(x, y, t) 5 e T(x, y), (3.2)

where s is the frequency and T̃(x, y) the spatial pattern
of the SST anomaly.

From Eqs. (2.1)–(2.4) and (3.1)–(3.2), we obtain the
Fourier transformed quasigeostrophic potential vorticity
and SST anomaly equations
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mltA2 2 22 2 2 2 2 2 ˜[s(] 2 l 2 l ) 1 b] 1 e (] 2 l ) 2 n(] 2 l ) ]c̃(x) 5 cos(kx 1 a)^u T & (3.3)x x c x x 1rH

˜(s 1 e )T(x, y) 5 [l cos(ly 1 g)] T 2 sin(ly 1 g)] T] ]c̃(x)T x y x

mt mQA fb ˜1 cos(kx 1 a) cos(ly 1 g)] T 1 ^u T&. (3.4)y 1[ ]frH c rH1 w 1

Since the inner product of u1 and T̃ is constant over
the basin, the vorticity Eq. (3.3) becomes one-dimen-
sional. When m ± 0, (3.3) and (3.4) form the eigen-
system of the coupled model. When m 5 0, it becomes
an uncoupled ocean-only model. We carry forward the
analytic solution for ocean variables, given the fre-
quency and the atmospheric feedback patterns in sec-
tions 3a and 3b, and derive the corresponding frequency
equation in section 3c. The spatial patterns of sections
3a and 3b also provide the eigenvectors once the fre-
quency is known.

a. Solution of the potential vorticity equation

For a given frequency, Eq. (3.3) has a particular solu-
tion:

˜mlt ^u T &A 1c (x) 5 2P 2 2 2rH(A 1 b k )

3 [A cos(kx 1 a) 2 bk sin(kx 1 a)], (3.5)

where
22 2 4A 5 sL 1 e K 1 nK (3.6)c

2 2 2K 5 k 1 l (3.7)

22 2 2 22L 5 k 1 l 1 l . (3.8)

To obtain this particular solution, we have assumed
that frequency is such that A 2 1 b 2k 2 ± 0. We show
in section 3c that for the coupled system (i.e., m ± 0),
this assumption is generally satisfied (although the de-
partures from zero may be small). This particular so-
lution has the same sinusoid form as the wind stress
feedback in zonal direction, but there is a phase shift
between these two, and this shift depends on frequency.

Since both zonal and meridional wavelengths of the
wind stress feedback are much larger than the defor-
mation radius at midlatitude, L in (3.8) is determined

by the Rossby deformation radius and is about 32 km
in both the North Atlantic and North Pacific Oceans.

Let

(x) 5 cH(x) 1 cP(x).c̃ (3.9)

The homogeneous solution cH(x) satisfies Eq. (3.3)
separately,

2 2 22 2 2 2 2 2[s(] 2 l 2 l ) 1 b] 1 e (] 2 l ) 2 n(] 2 l ) ]c (x)x x c x x H

5 0 (3.10)

and can be written as

˜mlt ^u T &A 1c (x) 5 c (x, s), (3.11)H h2 2 2rH(A 1 b k )

where ch(x, s) is given by Eq. (A.4) in appendix A. In
solving the homogeneous solution, we have used no
normal flow and no-slip boundary conditions.

From (3.5), (3.9), and (3.11), the solution for (x) isc̃

˜mlt ^u T &A 1c̃(x) 5
2 2 2rH(A 1 b k )

3 [bk sin(kx 1 a) 2 A cos(kx 1 a) 1 c (x, s)],h

(3.12)

where A is given by (3.6) and ch(x, s) is given by (A.4)
with appropriate values of ri and ci (i 5 1, 2, 3, 4) for
n 5 0 or n ± 0. The above expression shows that the
zonal component of the wind stress feedback pattern
plays a role in geostrophic streamfunction, but the shape
of (x) across the basin is not yet clear due to thec̃
unknown frequency and the complicated expression for
the homogeneous solution.

b. Solution of the SST equation

Substituting the solution of (x) for a given frequencyc̃
from (3.12) into the SST Eq. (3.4), we obtain

ltA˜(s 1 e )T(x, y) 5 m L [bk sin(kx 1 a) 2 A cos(kx 1 a) 1 c (x)]T h2 2 25rH(A 1 b k )

t QA fb ˜1 cos(kx 1 a) cos(ly 1 g)] T 1 ^u T &, (3.13)y 16frH c rH1 w 1
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where the operator L is defined by

L 5 l cos(ly 1 g)]xT 2 sin(ly 1 g)]yT]x. (3.14)

Let

Q (x, y)fbQ (x, y) 5 (3.15)FB c rHw 1

tAV (x, y) 5 cos(kx 1 a) cos(ly 1 g)] T (3.16)E yfrH1

ltA i(kx1a)V (x, y) 5 2 L [e ] (3.17)P rH

ltAV (x, y, s) 5 L [c (x, s)], (3.18)H hibkrH

where QFB(x, y) is the heat flux feedback normalized
by heat capacity, and VE is the advection of climato-
logical SST by Ekman current. The quantities VP and
VH are related to the advection of climatological SST
by the geostrophic current produced by shallow water
wave motion with certain boundary conditions. With
these definitions (3.15)–(3.18), the solution for T̃(x, y,
s) is

˜ibkV (x, y, s) 1 A(s)Re(V (x, y)) 2 bkIm(V (x, y)) m^u T &H P P 1T̃(x, y, s) 5 1 Q (x, y) 1 V (x, y) , (3.19)FB E2 2 25 6A (s) 1 b k s 1 eT

where Re(VP) and Im(VP) are the real and imaginary
parts of VP, respectively, and A(s) is given by (3.6).

From (3.19), the spatial pattern of the SST anomaly
is determined by the nonlocal heat flux feedback and
the advection of climatological SST by geostrophic and
Ekman currents. Frequency plays an important role in
choosing the term dominating the spatial pattern.

c. Frequency equation

In sections 3a and 3b, we find solutions of geostrophic
streamfunction and SST anomalies for a given frequen-
cy. The remaining task is to find the frequency for this
eigensystem. Taking the inner product of u1 with Eq.
(3.19) over the basin, canceling ^u1 T̃& from both sides,
and rearranging it, we obtain

(s 1 eT 2 m^u1QFB& 2 m^u1VE&)[A2(s) 1 b2k2]

5 m[ibk^u1VH(s)& 1 A(s)^u1Re(VP)& 2 bk^u1Im(VP)&].

(3.20)

Since the spatial forms of the SST basis function and
the atmospheric feedbacks are known, the inner products
over the basin of u1 with QFB, VP, and VE, respectively,
are known constants. The term A(s) is simply a first-
order polynomial, and ^u1VH(s)& is a function of fre-
quency only since VH depends on x, y, and s. Thus
(3.20) has only one unknown, the frequency. Note that
in this frequency equation, nonlocal effects, such as the
heat flux feedback QFB(x, y) enter via the projection of
the nonlocal heat flux feedback onto the SST basis func-
tion, ^u1QFB&. Therefore, the spatial patterns of both the
feedbacks and the SST basis function play a role and
provide an overall effect on frequency. The effect of the
advection of climatological SST by ocean currents on
frequency is treated similarly.

The right-hand side of Eq. (3.20) comes from the

advection of climatological SST by geostrophic current.
Usually it will not be zero when there is geostrophic
current. Then A2(s) 1 b2k2 in (3.20) cannot be zero
when m is not zero. The assumption of A2 1 b2k2 ± 0
for the coupled system is thus satisfied.

If we replace A in (3.20) by (3.6) and rearrange it,
we obtain another form of frequency equation

s 3 1 b1s 2 1 b2s 1 b3 2 bH(s) 5 0, (3.21)

where

b 5 e 2 m(^u Q & 1 ^u V &)1 T 1 FB 1 E

2 2 41 2L (e K 1 nK ), (3.22)c

2 2 4 2 2 4 2 4b 5 b k L 2 m^u Re(V )&L 1 (e K 1 nK ) L2 1 P c

1 2[e 2 m(^u Q & 1 ^u V &)]T 1 FB 1 E

2 4 23 (e K 1 nK )L ,c (3.23)
2 2 4b 5 b k [e 2 m(^u Q & 1 ^u V &)]L3 T 1 FB 1 E

41 mbk^u Im(V )&L1 P

2 4 42 m(e K 1 nK )^u Re(V )&Lc 1 P

1 [e 2 m(^u Q & 1 ^u V &)]T 1 FB 1 E

2 4 2 43 (e K 1 nK ) L , (3.24)c

4b (s) 5 ibkm^u V (s)&L . (3.25)H 1 H

In b1, b2, b3, and bH, all the variables and parameters
except frequency are given. Then b1, b2, and b3 in Eq.
(3.21) are known values and bH is a function of fre-
quency since ^u1VH& depends on frequency. Because bH

has a complicated dependence on frequency, it is not
straightforward to find an analytic solution to Eq. (3.21).
It can be solved numerically by an iteration method, or
further approximations can be made. Once the frequency
is obtained, the eigenvectors of the streamfunction and
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FIG. 2. The eigenvalues on the complex plane for the uncoupled
case in the North Atlantic. There is a large set of ocean basin modes
(shown for n 5 1, 3, 5, . . . , 499 for the case of ec 5 1 yr21 and n
5 0) that appear as an ‘‘almost continuous’’ spectrum. The separated
eigenvalue is the SST mode. Frequency is in yr21.

SST anomalies are obtained analytically from (3.12) and
(3.19), respectively.

4. Coupled eigenmodes versus uncoupled ocean
spectrum

Solving the frequency equation (3.21) numerically,
we compare the standard coupling case (that is, m 5
1), with the eigenmodes for an uncoupled ocean-only
model [m 5 0 in Eqs. (3.3) and (3.4)]. Figure 2 shows
the eigenvalues of the uncoupled modes on the complex

plane for the North Atlantic case (see appendix B for
details). One mode purely decays with a decay rate of
about 2.73 yr21. We call this the SST mode since it is
related to the time derivative of the SST equation. The
decay rate of the SST mode is due to the local negative
heat flux feedback. Strictly speaking this eigenvalue rep-
resents a degenerate set of modes, but this is not of
interest here. Besides the SST mode, there is another
set of modes—the ocean basin modes—with decay rates
ranging from 0.5 to 1 yr21, and with periods of about
0.7 yr or longer. The frequencies of these modes are
determined by the vorticity equation and the decay rates
depend on the damping coefficients in the equation. In
the figure shown here, we consider a simple case with
n 5 0. For ec 5 1 yr21, the gravest mode [n 5 61 in
Eq. (B.3)] has the highest frequency of about 9 yr21 and
has a decay rate of 0.5 yr21. As analyzed in appendix
B, the ocean basin modes have zonal length scales sim-
ilar to the Rossby deformation radius (here about 32
km) or less. It is not expected that ocean basin modes
are individually observable, since their eigenvalues are
very close and they have complicated spatial structures.
They are presented simply as background for consid-
ering the effects of coupling. We also note that inclusion
of mean advection, V · = terms, in the model can sig-
nificantly affect the modes of the system (e.g., Speich
et al. 1995).

The SST mode and the ocean basin modes also exist
in the coupled system (m 5 1). The coupled ocean basin
modes have decay rates and frequencies similar to that
of the corresponding uncoupled modes (Fig. 3). For
instance, the gravest coupled ocean basin mode [n 5
61 in (C.1)] has a decay rate of 0.5 yr21 and a frequency
of about 9 yr21, which is basically the same as that of
the corresponding uncoupled mode. The eigenvectors
of the coupled ocean basin modes are also similar to
the corresponding uncoupled modes given in (B.6) and
(B.7). Coupling has no significant influence on most of
the ocean basin mode spectrum. The ocean basin modes
are not our major concern since we are interested in
large-scale wave motions. Like the uncoupled SST
mode, the coupled SST mode decays purely but with a
decay rate of 3.6 yr21 (Fig. 3), which is larger than that
of the uncoupled case. The increase of the decay rate
is mainly due to the addition of the nonlocal negative
heat flux feedback effect on the local heat flux feedback.

Besides the SST mode and the ocean basin modes,
there is another type of coupled mode that is not found
in the uncoupled model. This coupled mode has a period
of 18 yr and a decay rate on the order of 1022 yr21 or
less. We call it the interdecadal mode because of its
interdecadal timescale. This is the most interesting mode
due to its small decay rate, longer oscillation period,
and large spatial scale. Analysis of the associated ei-
genvectors is given in the next section. The main point
here is that this eigenvalue stands out distinctly from
anything found in the uncoupled ocean spectrum. This
eigenvalue is also very robust numerically, whereas oth-
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FIG. 3. The eigenvalues on the complex plane for the coupled case
in the North Atlantic (for ec 5 1 yr21). Only 44 ocean basin mode
eigenvalues are shown due to difficulties in numerical convergence.
The SST mode eigenvalue is separated at strongly negative Re(s).
The weakly decaying (1023 yr21), distinct eigenvalues of the inter-
decadal mode are produced by the effects of coupling. Frequency is
in yr21.

er parts of the ocean spectrum can have numerical con-
vergence problems associated with the near-degeneracy
of the modes.

The uncoupled modes in the North Pacific are basi-
cally similar to the North Atlantic case, as can be seen
from (B.1) and (B.3). For the coupled case, we examine
the Lau and Nath (1990) case and the Latif and Barnett-
like case. The Latif and Barnett-like case is defined as
that with the magnitudes of heat flux and wind stress
feedbacks reduced to the same magnitudes as estimated
in the Lau and Nath (1990) case, but keeping the Latif
and Barnett spatial feedback patterns and their positive
heat flux feedback. The reason for this adjustment is
given in NW99. Our investigation for these two cases
shows that for both the effect of coupling is qualitatively
similar to the North Atlantic case. The quantitative dif-

ference is that the period of the interdecadal mode is
24 yr, which is longer than that of the North Atlantic
case. For the Lau and Nath case, the decay rate of the
SST mode is about 4.29 yr21, which is larger than that
of the uncoupled case. The Latif and Barnett-like case
has a smaller decay rate of about 1.23 yr21. This is
because of the negative heat flux feedback in the Lau
and Nath (1990) case versus the positive heat flux feed-
back in the Latif and Barnett-like case.

5. Model solutions for North Atlantic and
North Pacific cases

This section focuses on the eigenvectors of the coupled
SST mode and the interdecadal mode since both of them
have large-scale features. Figure 4 shows the spatial pattern
of the SST anomaly and the zonal variation of the stream-
function in the North Atlantic for the SST mode. The
similarity between Figs. 4a and 1b indicates the dominant
role of the nonlocal heat flux feedback in generating the
SST anomalies. The streamfunction is dominated by the
wind stress feedback pattern. The SST mode decays pure-
ly, that is, the heat flux feedback does not produce an
oscillatory mode in this model.

The eigenvector of the interdecadal mode for the
North Atlantic case is given in Fig. 5. The spatial SST
anomalies (Figs. 5a,c) have a north–south dipole pattern
with maximum anomalies in the western Atlantic. The
zonal structures of the geostrophic streamfunction (Figs.
5b,d) have smooth large-scale patterns that decay to-
ward the east. These features are similar to those found
by the time integration method in the stochastically
forced case (NW99). The time–longitude dependence of
the geostrophic streamfunction for this mode (Fig. 6a)
shows westward propagation during the interdecadal os-
cillation. There is counterflow on the east side of the
boundary current, due to balances involving the hori-
zontal diffusion term in the vorticity equation. Note that
the evolution of the SST anomalies (Fig. 6b) shows
much less tendency to westward propagation than that
of the streamfunction. The heat flux feedback contrib-
utes slightly to this difference, but the main effect is
that the magnitude of =T varies within the basin. The
term ug]xT plays a significant role in the case shown.

Tests with ec ranging from 0 to 1 yr21 and n ranging
from 0 to 104 m2 s21, show that the decay rate of the
SST mode, the period of the interdecadal mode, and the
spatial patterns of both SST and interdecadal modes are
not very sensitive to these coefficients. Essentially, the
form of the damping influences only the western bound-
ary layer, with the thickness of the layer increasing with
the viscosity coefficient (Fig. 7). Both the friction and
diffusion terms produce the decay rate in the interde-
cadal mode. For the above range of these two coeffi-
cients, the decay rate is on the order of 1022 yr21 or
less. We note that without the friction term (i.e., ec 5
0), this mode still exists.

As in the North Atlantic case, the spatial SST anom-
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FIG. 4. The eigenvector of the SST mode in the North Atlantic.
(a) The spatial distribution of the SST anomaly, and (b) the zonal
dependence of the streamfunction. Imaginary parts are zero.

alies and the zonal component of the streamfunction of
the purely decaying SST mode in the North Pacific are
dominated by the nonlocal heat flux feedback and the
wind stress feedback patterns, respectively (see Figs. 8
and 9). For comparison, the nonlocal heat flux feedback
patterns for the Lau and Nath and Latif and Barnett
cases are given in NW99. Although the spatial patterns
of the heat flux and wind stress differ among Pacific
and Atlantic cases, the underlying physical interpreta-
tion is the same.

The eigenvectors of the interdecadal mode for the Lau
and Nath (1990) case and the Latif and Barnett-like case
are shown in Figs. 10 and 11, respectively. Both cases
have a period of 24 yr and a decay rate on the order of
1022 yr21 or less. Like the case in the North Atlantic,

the SST anomalies have a north–south dipole pattern
and the zonal structure of the geostrophic streamfunc-
tion has a smooth large-scale pattern, which decays east-
ward. This mode propagates toward the west and os-
cillates with time. Consistent with the results obtained
in NW99, the period and the zonal length scale in the
North Pacific are longer than that in the North Atlantic.
We note that for either case, the eigenvalue and eigen-
vector of the interdecadal mode are qualitatively similar.
This indicates that the interdecadal mode is fairly in-
sensitive to the detailed features of the basis functions
or feedback patterns, and is not very sensitive even to
the sign of the heat flux feedback.

For the Latif and Barnett (1994) case, in which there
are large heat flux and wind stress feedbacks, the SST
mode has a positive growth rate of 7.7 yr21. The SST
anomalies and streamfunction of the SST mode are sim-
ilar to the case of Fig. 9, and are still dominated by the
nonlocal heat flux and wind stress feedbacks, respec-
tively. The interdecadal mode has the same period and
spatial structures as that in the Latif and Barnett-like
case (Fig. 11), indicating that the feedback magnitudes
do not have significant influence on the interdecadal
mode. Furthermore, the interdecadal mode is not un-
stable even for large positive heat flux feedback and
strong wind stress feedback.

6. Analytic approximations to the eigenvalue
problem

To better understand the physical mechanism of the
large-scale coupled modes, especially the interdecadal
mode, we look for a near-analytic solution of frequency.
Because the term ^u1 VH(s)& in frequency Eq. (3.20) or
(3.21) has a complicated dependence on frequency, in-
volving both shape and coefficients, it is unlikely that
an exact analytic solution can be obtained. Instead, we
look for an approximate analytic expression for fre-
quency, and from it, some insight into the dynamic pro-
cess selecting the time and spatial scales of the large-
scale motions in the coupled system.

For m 5 1, ec between 0 and 1 yr21, and n between
0 and 104 m2 s21, the orders of magnitude of b1, b2,
and b3 are 100 yr21, #1021 yr22, and 1021 yr23, re-
spectively, for the Atlantic case, the Lau and Nath
(1990) case, and the Latif and Barnett-like case. Our
numerical results show that bH is of the order of 1021

yr23 or less for both the interdecadal and SST modes.
We look for near-analytic solutions for the SST mode
and interdecadal mode under these circumstances. By
assuming bH is known, the frequency equation (3.21)
has three explicit analytic solutions for frequency. Using
power series and scaling analysis [see Weng (1997) for
detailed derivation], these solutions can be simplified to
approximate expressions for the frequency for SST and
interdecadal modes, respectively,
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FIG. 5. The eigenvector of the interdecadal mode in the North Atlantic (for e 5 1 yr21 and n 5
100 m2 s21.) (a) The real part of T̃(x, y), (b) the real part of (x), (c) the imaginary part of T̃(x,c̃
y), (d) the imaginary part of (x).c̃

TABLE 1. Estimate of various terms in Eq. (6.3) for the North Atlantic and North Pacific oceans when m 5 1, ec 5 1 yr21, and n 5 0.

Term 1 Term 2 Term 3 Term 4 Term 5

Atlantic
Lau and Nath case (1990)
Latif and Barnett-like case
Latif and Barnett case (1994)

2.73
2.73
2.73
2.73

20.82
21.79

1.31
7.65

0.04
0.26
0.28
2.67

#1023

#1023

#1022

#1022

20.14
#1022

0.1
20.13

b 2 b 2 b b3 H 1 2s ø 2b 2 (6.1)1 1 2b1

b 2 Re(b ) 2 b b Im(b ) b3 H 1 2 H 1s ø 62,3 2 !2b 2b b 2 Re(b )1 1 3 H

b 2 Re(b )3 H6 i , (6.2)! b1

where bH is bH(s1) in (6.1) and bH(s2,3) in (6.2).

a. The SST mode

From (6.1), the frequency of the SST mode is dom-
inated by 2b1. We use 2b1 as the frequency to estimate
bH. With the aid of (3.22)–(3.25), (6.1) can be written as

s ø 2 e 1 m^u Q & 1 m^u V &1 T 1 FB 1 E
| | | | | |} ]}}}} }}}}z z z

term 1 term 2 term 3

4 2mbkL ^u Im(V )& 2 b mL ^u Re(V )&1 P H0 1 P2 2
2b b1 1

| | | |}}}}}}}}}}} }}}}}}}z z

term 4 term 5

(6.3)

where we omit terms whose dimensional order of mag-
nitude is smaller than 1022 year21. This approximate so-
lution clearly shows that the effect of heat flux is to pro-
duce a nonoscillatory SST mode, consistent with the nu-
merical results in section 4. Whether the nonlocal heat flux
feedback causes the mode to decay or grow depends on
the sign of ^u1QFB&, and on its magnitude compared to eT.
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FIG. 6. The time–longitude dependence of (a) the geostrophic streamfunction, and (b) the SST anomalies at 508N for the
interdecadal mode in the North Atlantic when ec 5 1 yr21 and n 5 100 m2 s21

FIG. 7. The zonal structure of geostrophic streamfunction for one phase of the interdecadal mode
in the North Atlantic for different values of viscosity n. The phase shown in Fig. 5d is chosen
for illustration: (a) n 5 10 m2 s21, (b) n 5 500 m2 s21, (c) n 5 1000 m2 s21.

When m 5 1 and ec 5 1 yr21, (6.3) gives a decay rate
of 3.65 yr21 in the North Atlantic, and 4.3 and 1.2 yr21

in the North Pacific for the Lau and Nath (1990) case and
Latif and Barnett-like case, respectively. These decay rates
are close to the numerical results obtained in section 4.
Table 1 gives the values of the five terms in Eq. (6.3) for
the standard coupling case. For all cases, the decay rate
of the SST mode is mainly due to the local negative heat
flux feedback (i.e., 2eT) and the nonlocal heat flux feed-

back (i.e., ^u1 QFB&). The advection of climatological SST
by geostrophic current plays a relatively small role in the
SST mode. The Ekman current effects are small except
in the Latif and Barnett case, where the strong wind stress
feedback produces a substantial Ekman component that
reinforces the positive heat flux feedback.

The approximate analytic expression for frequency
given in (6.3) is obtained under the assumption that the
atmospheric wind stress and heat flux feedbacks are
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FIG. 8. Same as Fig. 4 except in the North Pacific for the Lau and Nath (1990) case.

small. However, when atmospheric wind stress and heat
flux are large [such as the Latif and Barnett (1994) case],
we find that (6.3) still holds for the SST mode. In this
case, a direct calculation from (6.3) gives a growth rate
of 7.7 yr21, which is basically the same as the numerical
result obtained in section 5. This is because the positive
heat flux feedback [term 2 in (6.3)], assisted by the
Ekman feedback (term 3), overcome local decay.

b. The interdecadal mode

The approximation (6.2) holds if bH is O(1021 yr23)
or less. From Eq. (3.21), this holds if frequency is of
O(1021 yr21). Using (3.8) and (3.22)–(3.25), (6.2) can
be further simplified to

dominant
z}}}}]| |

1/22 4e K 1 nK bk mac 1s ø 2 6 i 1 12,3 2 22 2 221 2K 1 l K 1 l b bk1
| | | |]}}}}} }}}}}}}}}}}z z

term 1 term 2

21/2
ma bk ma ma1 2 11 1 1 1 ,

2 2 22 2 2 22 1 22b (K 1 l ) 2b (K 1 l ) b bk1 1 1
| | | |}}}}}}} }}}}}}}}}}}}}z z

term 3 term 4
(6.4)

where K 2 and b1 are given by (3.7) and (3.22), respec-
tively, and

a 5 ^u Im(V )& 1 ^u Im(V )& (6.5)1 1 P 1 H

a 5 ^u Re(V )& 6 ^u Re(V )&. (6.6)2 1 P 1 H

The real part of s 2,3 is determined by terms 1, 3,
and 4, while the imaginary part of s 2,3 is determined
by term 2. Here bk and K 2 1 l22 are of the orders
of 1024 yr21 km22 and 1023 km22 , respectively. In both
oceans, ^u1 VP & is of the order of about 1024 yr22 km22 .
Then ^u1Im(VP )&/b1 bk in term 2 may be comparable
with 1 when m 5 1. However, numerical results show
that a1 is of two orders of magnitude smaller than that
of ^u1Im(VP )& due to the cancellation of the two terms
in a1 . Therefore, term 2 is dominated by bk/(K 2 1
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FIG. 9. Same as Fig. 4 except in the North Pacific for the Latif and Barnett-like case.

l22 ), which is of the order of 1021 yr21 for both
oceans. This term is familiar as the ocean baroclinic
Rossby wave frequency for wavenumber k. Thus the
bottom line of the analysis of the apparently complex
coupled system is a very simple result for the inter-
decadal frequency. And yet the results in Fig. 3 argue
strongly that coupling is essential to the interdecadal
mode. The most important effects of coupling in (6.4)
come from the fact that k is chosen by the atmospheric
feedback. We underline that (6.4) does not hold as m
→ 0, since dominance of the particular solution is
assumed (see appendix C for a form suitable for ex-
amining low coupling cases).

For the decay rate, for example, when ec equals 1
yr21 and n equals 102 m2 s21, term 1 is of the order of
1023 yr21. Similarly, a2 is two orders of magnitude
smaller than ^u1Re(VP)& due to the cancellation of the
two terms in a2. Then term 3 is of the order of 1024

yr21 or less and term 4 is less than about 1023 yr21. In

this case, the real part of the frequency is dominated by
term 1, but term 4 also plays a role. Thus, the friction
and diffusion terms in the vorticity equation cause the
wave to decay, but the large spatial scales make the
decay relatively slow.

Another consequence that may be drawn from (6.4)
concerns the heat flux feedback. Both the local and
nonlocal heat flux feedback effects are contained in
b1 [which is given by (3.22)]. The magnitude of the
terms containing b1 , and the nature of the dependence,
indicate that the heat flux feedback will not amplify
the interdecadal mode. This differs, for instance, from
the conjecture of Latif and Barnett (1994). The effect
of the heat flux feedback is felt most directly in the
SST mode as discussed above. On the slow, inter-
decadal timescales, the time derivative of SST is neg-
ligible, so the effect of the heat flux feedback on the
interdecadal mode is on the pattern of SST anomalies,
in a balance that also involves the advection of the
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FIG. 10. Same as Fig. 5 except in the North Pacific for the Lau and Nath (1990) case.

climatological SST by the ocean currents. If the heat
flux feedback is set to zero, the interdecadal mode
still exists. Heat flux feedbacks thus modify the
mode, but in a way that is very indirect; correlation
of heat flux into the ocean with warm SST does not
necessarily imply destabilization of the interdecadal
mode.

Although (6.4) is obtained under the assumption
that atmospheric wind stress and heat flux feedbacks
are small, we test this expression for larger feedbacks,
such as the Latif and Barnett (1994) case. We find
that the interdecadal mode period is still dominated
by (K 2 1 l22 )/bk. Since the main effect of the feed-
backs is to choose the spatial scale, this continues to
be true with the larger magnitude of the feedback.
The timescale set by Rossby wave propagation re-
mains the same.

For a simple case n 5 0, the approximate analytic
solution for (x) [see Weng (1997) for detailed deri-c̃
vation] is

2 ˜mlt L ^u T &A 1c̃(x) ø
2rHs9

26ia 6ikx e K (L 2x)/bc x3 e {e [e 2 1]
2 2 2 2 2 2e K L /b x(2be 6ib kl )/[e 1(bkl ) ]c x c c1 (1 2 e )e },

(6.7)

where
2 4e K 1 nK bkcs9 5 s 2 6 i . (6.8)2,3 2 22 2 22K 1 l K 1 l

From the above expression, the x dependence of the
streamfunction is determined by the two terms in the
curly bracket. The first term shows a sinusoid wave
shape, which decays toward the east. Its length scale is
set by the length scale of the wind stress feedback. The
decay of the wave toward the east is caused by friction
and b-effect. The second term matches the boundary
condition 5 0 at the western boundary. In this ap-c̃
proximate solution, (x) at the eastern boundary is notc̃
exactly zero but is very close.

7. Summary

Eigenvalue analysis is used to examine the modes of
the simple ocean–atmosphere model whose response un-
der stochastic forcing was analyzed in WN98 and
NW99. The method of eigenvalue analysis used here
may prove interesting for other systems involving non-
local feedbacks: rather than brute force numerical meth-
ods, we first reduce the system analytically, taking inner
products over the basin. Nonlocal feedbacks act via their
inner product with the SST basis function with which
they are associated.

Ocean basin modes in the uncoupled system have
nearly continuous spectrum and no preferred structures,
so none of these modes would be expected to stand out
in a stochastically forced problem. Most of this spectrum
is essentially unaffected by coupling. The SST modes
found in both coupled and uncoupled systems are main-
ly affected by the heat flux feedback. The uncoupled
SST mode decays purely with decay rate determined by
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FIG. 11. Same as Fig. 5 except in the North Pacific for the Latif and Barnett-like case.

the local surface heat flux feedback. Coupling increases
or decreases the decay rate of the corresponding un-
coupled SST mode depending on whether the nonlocal
heat flux feedback is negative or positive. The similarity
between the nonlocal heat flux feedback and the spatial
pattern of SST anomalies of the coupled SST mode
provides the evidence of the dominant role of the heat
flux in the SST mode. This mode is nonoscillatory.
These results are consistent with those found in a sto-
chastically forced case (NW99): heat flux plays an im-
portant role in generating SST anomalies whose power
spectra is basically red, as in Hasselmann’s (1976) hy-
pothesis.

One interdecadal mode stands out distinctly. It is
so strongly affected by coupling that it is qualitatively
different from any mode in the uncoupled ocean spec-
trum. This is the most interesting mode not only be-
cause of its large spatial scale and its interdecadal
timescale, but also because this mode is weakly de-
caying. The slow decay assists its maintenance by
stochastic forcing from the atmosphere. The stream-
function of this mode propagates to the west and has
a smooth large-scale pattern, which decays eastward
due to the b-effect as balanced by the friction term.
The large-scale north–south dipole pattern of the SST
anomaly is generated by the advection of climatolog-
ical SST by perturbation geostrophic currents. SST
tends not to show westward propagation, since the
basic state SST gradient is concentrated in the certain
regions. Mechanisms of SST advection by mean cur-
rents (Sutton and Allen 1997; Latif and Barnett 1996)

are not included here. Due to the longer zonal wave-
length of the wind stress in the North Pacific than that
in the North Atlantic, the period and zonal length
scale of the interdecadal mode in the North Pacific
are longer than that in the North Atlantic but not in
proportion to the basin width. These features are sim-
ilar to those found in the EOF and power spectral
analyses of the time series obtained from integrating
the model for the coupled case with small heat flux
(NW99).

In NW99, we used time integration method to test
the Latif and Barnett (1994) case in a stochastically
forced system. Due to their large heat flux and wind
stress feedbacks, SST anomalies grow exponentially
with time. Here in the eigenvalue analysis, we are able
to examine the interdecadal mode in this large-feedback
case. The period and spatial structure of the mode are
insensitive to the magnitude of the feedbacks. The SST
mode can become unstable in this case but the inter-
decadal mode does not. We note that nonoscillatory in-
stabilities such as that found for the SST mode are often
by-products of flux-correction or anomaly modeling
(Neelin and Dijkstra 1995), so we do not emphasize this
case.

As shown by NW99 and WN98, the interdecadal
mode can be excited by atmospheric stochastic wind
stress forcing. The power spectrum of the stochasti-
cally forced case exhibits a reddened background
spectrum, on top of which the interdecadal mode can
appear as a spectral peak. Although the amplitude of
the atmospheric feedback is weak compared to the



SEPTEMBER 1999 2771W E N G A N D N E E L I N

internal atmospheric variance, coupling plays an es-
sential role in producing a mode whose signature is
distinct from other modes in the system. The analyt-
ical results show how, despite the apparent complex-
ity of matching ocean boundary conditions, and the
seeming weakness of the atmospheric feedback, the
imprint of the atmospheric spatial pattern nontheless
emerges as an important constraint on the ocean Ross-
by wave dynamics. The feedback can thus set a pre-
ferred length scale and provide an eastward return
mechanism to complement westward long Rossby
wave propagation. The overall similarity of the modes
found in the eigenvalue problem here provides con-
firmation that the leading EOFs and spectral peaks in
the stochastically forced case are indeed associated
with a well-defined large-scale interdecadal coupled
mode of the system. This interdecadal mode is due to
the dynamic interaction between the large-scale oce-
anic circulation and the atmosphere as suggested by
Bjerknes (1964) and Kushnir (1994). Seeking such
coupled interdecadal oscillations in observations,
however, may be expected to be challenging, given
that there is a large amount of variance associated
with the red response of other modes to atmospheric
stochastic forcing.
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APPENDIX A

Matching the Boundary Conditions on the
Potential Vorticity Equation

The homogeneous solution, cH, can be obtained by
solving the differential equation (3.10) with the bound-
ary conditions of (i) no flow across the boundary and
(ii) a no-slip condition on the western and eastern
boundaries. That is,

c (x) 1 c (x) 5 0, for x 5 0, or x 5 L (A.1)H P x

] [c (x) 1 c (x)] 5 0, for x 5 0, or x 5 L , (A.2)x H P x

where x 5 0 and x 5 Lx correspond to the western and
eastern boundaries, respectively. This gives

˜mlt ^u T &A 1c (x) 5 c (x, s), (A.3)H h2 2 2rH(A 1 b k )

where

(A.4)r x r x r x r x1 2 3 4c (x, s) 5 c e 1 c e 1 c e 1 c e .h 1 2 3 4

When the horizontal diffusion term is included, the
four roots, r1, r2, r3, and r4, can be obtained numerically
from

4 2 2 2 22 4 2nr 2 (2nl 1 s 1 e )r 2 br 1 s(l 1 l ) 1 nl 1 e lc c

5 0. (A.5)

The four amplitudes c1, c2, c3, and c4 can be determined
by the boundary conditions (i) and (ii). Note both the
roots ri and amplitudes ci (i 5 1, 2, 3, 4) depend on
frequency.

Without the horizontal diffusion term (i.e., n 5 0),
(3.10) becomes a second-order differential equation. For
a form similar to (A.3) (with c3 5 c4 5 0), the two roots
are

2 2 22 2 1/22b 6 {b 1 4(s 1 e )[s(l 1 l ) 1 e l ]}c cr 5 .1,2 2(s 1 e )c

(A.6)

Amplitudes c1 and c2 can be determined by boundary
condition (i), which gives frequency dependent solu-
tions

r L2 xe cosa 2 cos(kL 1 a)xc 5 A1 r L r L2 x 1 xe 2 e
r L2 xe sina 2 sin(kL 1 a)x2 bk (A.7)

r L r L2 x 1 xe 2 e

r L1 xe cosa 2 cos(kL 1 a)xc 5 A2 r L r L1 x 2 xe 2 e
r L1 xe sina 2 sin(kL 1 a)x2 bk . (A.8)

r L r L1 x 2 xe 2 e

APPENDIX B

Uncoupled Ocean Modes

When (m 5 0), Eqs. (3.3) and (3.4) become the
uncoupled ocean-only model in which the shallow
water subsystem separates from the SST anomaly
equation. There are two types of modes in this un-
coupled system: the SST mode and the ocean basin
mode, which can be obtained by solving the uncou-
pled ocean model with certain boundary conditions.
Here we present the case when n 5 0. The boundary
condition used is no flow across the western and east-
ern boundaries.

The frequency of the SST mode can be obtained
from SST equation and is

s 5 2eT. (B.1)

The associated eigenvector is

c̃(x) 5 0,
(B.2)˜5T(x, y) 5 arbitrary.

The arbitrary spatial pattern is associated with a de-
generate set of eigenmodes with the same frequency.
This degeneracy can be broken by including diffusion,
or by coupling.

Ocean basin mode solutions are known (e.g., Ped-
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losky 1987), and are mainly discussed in the baro-
tropic case. We provide solutions for the baroclinic

case simply for reference. The frequency of the un-
coupled ocean basin modes is

22 22 2 2 2 22 2 1/22e l 6 {(2e l ) 2 b [4(l 1 l ) 1 (2pn /L ) ]}c c xs 5 2e 1 . (B.3)c 2 22 24(l 1 l ) 1 (2pn /L )x

When n is small such that l22 k (pn/Lx)2, (B.3) can
be approximated by

e bcs ø 2 6 i . (B.4)
2 22 1/22 2(l 1 l )

In this small limit, the decay rate is about ec/2 and
the frequency is about 9 yr21. This timescale is mainly
determined by the b-effect and the Rossby deformation
radius since l is much smaller than l21.

When n is large such that l22 K (pn/Lx)2, (B.3) can
be approximated by

bLxs ø 2e 6 i , (B.5)c 2pn

which shows that the decay rate is about ec, and for
given n, the frequency is determined by b-effect and
the width of the ocean basin. As n goes to infinity, the
frequency goes to 0.

The eigenvectors associated with the frequency given
by (B.3) are

npx22e x /(bl )cc̃(x) 5 2e sin1 2Lx

x x
3 6sin 1 i cos (B.6)1 2 1 2[ ]D D

L [c̃(x)]
T̃(x, y) 5 , (B.7)

s 1 ec

where L and s are given by (3.14) and (B.3), respec-
tively, and

D21 5 l2 1 l22 1 (pn/Lx)2 2 (ecb21l22)2. (B.8)Ï
When n is small, D is around 32 km. Here D decreases

as n increases, and is real because l22 is greater than
(ecb21l22)2.

APPENDIX C

Small Coupling Case

This appendix gives the solution form for the coupled
frequency, suitable for taking the limit of small cou-
pling. For a simple case n 5 0,

1/22a(s) 1 i2pn
22 22 2 2 2 222e l 6 (2e l ) 2 b 4(l 1 l ) 2c c5 1 2 6[ ]Lx

s 5 2e 1 , (C.1)c 2a(s) 1 i2pn
2 224(l 1 l ) 2 1 2Lx

where

2 2 2(s 1 e 2 mB)(A 1 b k ) 2 m^u V & 2 m^u V &T 1 p 1 h2
a(s) 5 ln (C.2)

2 2 2[ ](s 1 e 2 mB)(A 1 b k ) 2 m^u V & 2 m^u V &T 1 p 1 h1

B 5 ^u Q & 1 ^u V & (C.3)1 FB 1 E

ltAV 5 L [bk sin(kx 1 a) 2 A cos(kx 1 a)] (C.4)p rH

ltA r x r (x2L )2 1 xV 5 L{(A cosa 2 bk sina)e 1 [A cos(kL 1 a) 2 bk sin(kL 1 a)]e } (C.5)h1 x xrH

ltA r x r (x2L )1 2 xV 5 L{(A cosa 2 bk sina)e 1 [A cos(kL 1 a) 2 bk sin(kL 1 a)]e } (C.6)h2 x xrH
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FIG. C1. (a) The spatial distribution of the SST anomaly, and (b)
the zonal dependence of the streamfunction in the North Atlantic
Ocean for the gravest ocean basin mode (n 5 61).

and L is given by (3.14). Here r1 and r2 are given by
Eq. (A.6), A is given by Eq. (3.6), and A, r1, r2, ^u1Vh1&,
and ^u1Vh2& are functions of frequency.

In the limit m goes to zero, a(s) goes to zero. In this
limit, (C.1) is the same as (B.3), which is for the un-
coupled ocean basin modes. For the standard coupling
case (m 5 1), a(s) is much less than 1 for the ocean
basin modes shown in Fig. 3. Therefore, (C.1) with a
ø 0 gives the approximate frequency for the coupled
ocean basin modes. Consequently, their spatial struc-
tures of (x) and T̃(x, y) are similar to that of the cor-c̃
responding uncoupled modes. Figure C1 shows (x) andc̃
T̃(x, y) for n 5 1, which are very similar to the eigen-
vectors of the corresponding uncoupled mode given in
(B.6) and (B.7), respectively.

The interdecadal mode is in principal also contained
in (C.1)–(C.2), for the case n 5 0, although in practice

this form appears numerically impractical. However, the
differences between (C.1) and the approximation (6.4)
that gives the dominant behavior of the interdecadal
mode illustrate the subtlety of the transition to low cou-
pling. Letting m → 0 in (6.4) gives incorrect results
because the coupling terms have been assumed not to
be small. In (C.2), letting m → 0 gives a(s) → ln(1) 5
0 so (C.1) results in ocean basin modes. If m is not
small, then when

A2 1 b2k2 ø 0, (C.7)

a(s) can be large when ^u1Vh2& differs sufficiently from
^u1Vh1&. Since (C.7) gives the interdecadal frequency by
the Rossby-like dispersion relation, and small s gives
r1 and r2 very different, ^u1Vh2& in fact differs from
^u1Vh1& by many orders of magnitude (and hence pro-
duces numerical problems in finding the interdecadal
mode). Physically, what this process illustrates is that
the importance of the coupling must be measured via
its effect on ocean spatial structures, rather than by com-
parison to atmospheric uncoupled variability.
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