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ABSTRACT

An interdecadal oscillation in a coupled ocean–ice system was identified in a previous study. This paper
extends that study to further examine the stability of the oscillation and the sensitivity of its frequency to various
parameters and forcing fields. Three models are used: (i) an analytical box model; (ii) a two-dimensional model
for the ocean thermohaline circulation (THC) coupled to a thermodynamic ice model, as in the authors’ previous
study; (iii) a three-dimensional ocean general circulation model (OGCM) coupled to a similar ice model. The
box model is used to elucidate the essential feedbacks that give rise to this oscillation and to identify the most
important parameters and processes that determine the period. Numerical experiments in the 2D THC–ice model
show that the model stability is sensitive to the ocean–ice coupling coefficient, the eddy diffusivity, and the
strength of the thermohaline-circulation feedback per unit surface-polar density perturbation. The coupled model
becomes more stable toward low coupling, greater diffusion, and weaker THC feedback. The period of the
oscillation is less sensitive to these parameters. Nonlinear effects in the sea-ice model become important in the
higher ocean–ice coupling regime where the effective sea-ice damping associated with this nonlinearity stabilizes
the model. Surface Newtonian damping is also tested. The 3D OGCM, which includes both wind stress and
buoyancy forcings, is used to test this coupled ocean–ice mechanism in a more realistic model setting. This
model generates an interdecadal oscillation whose characteristics and phase relations among the model variables
are similar to the oscillation obtained in the 2D models. The major difference is that the oscillation frequency
is considerably lower. This difference can be explained in terms of the analytical box model solution in which
the period of the oscillation depends on the rate of anomalous density production by melting/cooling of sea ice
per SST anomaly, times the rate of warming/cooling by anomalous THC heat advection per change in density
anomaly. The 3D model has a smaller THC response to high-latitude density perturbations than in the 2D model,
and anomalous velocities in the 3D case tend to follow the mean isotherms so the anomalous heat advection is
reduced. This slows the ocean–ice feedback process, leading to the longer oscillation period.

1. Introduction

Interdecadal variations of oceanic temperature and
salinity, and sea-ice extent in the North Atlantic Ocean
are major signals in the marine climate system (Dickson
et al. 1988; Mysak et al. 1990; Walsh and Chapman
1990). Notable variations include the Great Salinity
Anomaly (GSA) in the North Atlantic Ocean in the
1970s (Mysak et al. 1990; Dickson et al. 1988). Recent
analyses also reveal apparent quasi-oscillatory modes
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with interdecadal timescales in the North Atlantic
(Kushnir 1994; Deser and Blackmon 1993) and globally
(Ghil and Vautard 1991). Numerical models have sug-
gested potential mechanisms for decadal oscillations as-
sociated with the thermohaline circulation (THC) (e.g.,
Weaver et al. 1991; Winton and Sarachik 1993; Del-
worth et al. 1993; Huang 1993, 1994; Chen and Ghil
1995). Such climate variations may result from inter-
actions among different components of the climate sys-
tem. Since the THC involves long timescales, it is po-
tentially a rich source for such low-frequency variations.
The THC variability is primarily controlled by those
physical processes that determine the sea surface tem-
perature (SST) and salinity (SSS) at the subpolar North
Atlantic Ocean where deep water is formed. The pres-
ence of sea ice not only changes the surface heat flux
but also modifies the surface freshwater flux. Sea ice is
thus postulated to play an important role in the THC-
related climate variations. The objective of this paper
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is to explore important feedbacks in the THC–sea-ice
coupled system by using a hierarchy of models.

In a previous study, we suggested that a mechanism
that involves active ocean–ice interaction may contrib-
ute to such variability (Yang and Neelin 1993, hereafter
YN93). This paper extends the study of YN93 to ex-
amine this oscillation over a broad range of parameters
and forcing fields, and to test it in a more realistic three-
dimensional primitive equation model. This paper also
presents an analytical solution to elucidate the essential
physics of the oscillation. The effect of nonlinearity of
the sea-ice model will also be discussed.

In the next section, models used in this study, in-
cluding a two-dimensional THC model, a three-dimen-
sional ocean general circulation model, and a thermo-
dynamic sea-ice model, will be introduced. The solution
of an analytical box model will be studied in section 3
to highlight the essential feedbacks that give rise to this
type of oscillation. The sensitivity of this model to var-
ious physical parameters and forcings will be discussed
in section 4 by using the same two-dimensional model
as that in YN93. Results from the three-dimensional
model will be discussed in section 5.

2. Models

a. A two-dimensional THC model

The zonally averaged THC model of YN93 is used
to calculate the oceanic temperature, salinity, and ve-
locity. The overturning circulation is driven by the me-
ridional density gradient, that is,

4 4] c ] c g ]r
A 1 A 5 , (1)V H4 2 2]z ]y ]z r ]y0

where c is the streamfunction; AV and AH are the vertical
and horizontal eddy viscosities, respectively; r is the
water density; and g is the gravitational acceleration
rate.

The temperature and salinity are determined by ad-
vection and mixing:

2 2]T ](yT) ](wT) ] T ] T
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where kH and kV are horizontal and vertical diffusion
coefficients. The model domain extends from 708S to
708N with a constant depth of 4000 m. The model res-
olution is 28 in the horizontal and 200 m in the vertical.
Equations (1)–(3) are solved numerically, using bound-
ary conditions of no-normal flow and no-normal flux at
all rigid walls. No wind stress is applied at the surface.
The so-called mixed boundary condition is used at the
surface, in which the SST is dampened toward a pre-
scribed equilibrium state while a virtual salt flux is ap-
plied to approximate the freshwater flux:

]T k (T 2 T) if d 5 0aw erC k 5 (4)p V 5]z k (T 2 T) if d . 0iw f

]S ]d
k 5 F(y) 1 S , (5)V 01 2]z ]t

where Te is a prescribed equilibrium temperature for the
air–sea heat flux, which decreases sinusoidally from
278C at the equator to the seawater freezing temperature
T f 5 228C at the ice edge; kaw is the air–sea heat flux
coefficient; and kiw is the water–ice heat flux coefficient,
which is usually smaller than kaw; F( y) is specified as
an approximation to the evaporation-minus-precipita-
tion rate; d is the ice thickness; and S0 is the mean
surface salinity.

YN93 used a linear equation of state, that is, r 5
r0(1 2 aT 1 bS) with a 5 2 3 1024 8C21 and b 5 8
3 1024 psu21. The real equation of state is highly non-
linear in temperature. For example, the United Nations
Educational, Scientific, and Cultural Organization
(UNESCO) equation of state (Gill 1982) estimates that
]r/]T varies from 20.3 kg 8C21 at 258C to 20.026 kg
8C21 at 228 for S 5 35 psu. Therefore, we include a
nonlinear equation of state in this study. Following Win-
ton and Sarachik (1993) we use a third-order polynomial
approximation to the UNESCO equation:

2r(T, S) 5 0.7968S 2 0.0559T 2 0.0063T
25 31 3.7315 3 10 T . (6)

One of the most noticeable differences in using (6),
as opposed to the linear equation in YN93, is that the
overall THC strength is considerably weaker under the
same forcing. The overturning cell is dominated by the
thermal mode, and thus its strength is controlled to a
large extent by the meridional density contrast contrib-
uted by temperature gradient. The use of (6) greatly
reduces that temperature contribution to r in cold water.
We adjust the values of AV and AH such that the model
produces about 15 sverdrups (106 m3 s21) of deep water.

Like many other THC models, the ocean model (1)–
(3) with boundary conditions (4) and (5) produces mul-
tiple equilibria under hemispherically symmetric forc-
ings. The symmetric two-cell circulation is unstable to
finite-amplitude perturbations and can be shifted to a
more stable one-cell circulation, such as Fig. 1 shown
in YN93, with sinking near the northern boundary and
upwelling elsewhere.

b. The three-dimensional model

The three-dimensional ocean model used in this study
is the Geophysical Fluid Dynamics Laboratory (GFDL)
Modular Ocean Model (MOM) (Pacanowski et al.
1993). The model physics, as described by Bryan
(1969), uses the hydrostatic and Boussinesq approxi-
mations and a nonlinear equation of state. The numerical
schemes are discussed in detail in Pacanowski et al.
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FIG. 1. Schematic of the box model.

(1993). In our application, a mixed boundary condition
is used, in which the SST is relaxed toward the zonally
averaged SST climatology of Levitus (1982), and the
virtual salt flux is diagnosed from a steady state obtained
by restoring the SSS to Levitus’s salinity climatology.
The model domain extends from 108 to 758N. As we
will discuss later in section 4, the coupled ocean–ice
oscillation arising from using a half-basin model is quite
similar to that using a full-basin model. Thus, the results
from this half-basin model can be extended to a larger
domain. Because long simulations are needed for each
run, we decided to use a rather coarse resolution of 48
3 48 in the horizontal. A vertical depth of 4500 m is
divided into 15 levels in thickness increments from 30
m at the surface to 630 m at the bottom. The relaxation
time for the surface heat flux is 30 days.

c. A thermodynamic sea-ice model

The sea-ice model used in this study is the same as
that used by Yang and Neelin (1996) and Zhang et al.
(1995). This model, originally constructed by Welander
(1977), is similar to that of Maykut and Untersteiner
(1971). YN93 used this model to derive the linearized
ice model used there. The detailed derivation can be
found in these previous papers. Here we present only a
brief description of how changes in the heat budget lead
to freezing and melting.

Major heat fluxes at the upper surface of sea ice in-
clude solar radiation (Fr); longwave radiation from the
atmosphere (FL); reflected solar radiation (aFr), where
a is the surface albedo; outgoing radiation («Ls ),4T s

where «L is the longwave emissivity, s is the Stefan–
Boltzmann constant, and Ts is the surface temperature
of sea ice; and heat conduction [2Ki(dT/dz)z50], where
Ki is the thermal conductivity. In addition, there are
several smaller fluxes, such as sensible heat flux (Fs),
latent heat flux (Fl), and the penetrating radiative flux
through the surface (I0). Since the seasonal cycle is ex-
cluded in our model, we assume that the upper surface
temperature of sea ice is always below the freezing point
and no melting occurs at the upper surface. As discussed
in Maykut and Untersteiner (1971) and in Thorndike

(1992), a balance of the major heat fluxes at the upper
surface takes the form

dT
4(1 2 a)F 2 I 1 F 2 « sT 1 K 5 0. (7)T 0 L L s i1 2dz

z50

We now linearize the longwave radiation from the ice
surface at the freezing temperature Tf , that is,

4 4 3« sT ø « sT 1 (4« sT )(T 2 T ), (8)L s L f L f s f

and substitute it into (7):

dT
K 5 k (T 2 T ), (9)i ai a s1 2dz

z50

where kai 5 4«Ls and Ta 5 (1 2 a)Fr 2 I0 1 FL 13T f

3«Ls /kai, with Ta the equilibrium temperature for the4T f

surface heat flux that would be the sea-ice surface tem-
perature if there were not upward heat conduction, and
kai the surface heat flux coefficient. Thorndike (1992)
estimated that the value for kai is about 4.6 W m22 8C21

for «L 5 1, s 5 5.7 3 1028 J m22 s21 K24, and T f 5
271.2 K. In this paper we will use kai 5 5.0 W m22

8C21.
At the bottom of the sea ice, the growth rate of sea

ice is determined by the difference of upward heat con-
duction and heat flux from the ocean Fw, that is,

]d dT
r L 5 K 2 F , (10)i f i w1 2]t dz

z52d

where ri is the density of sea ice and L f is the latent
heat of fusion.

We further assume that the sea-ice temperature profile
is linear in the vertical, with uniform upward heat con-
duction:

K (T 2 T )dT dT i s fK 5 K 5 . (11)i i1 2 1 2dz dz d
z52d z50

The heat flux from ocean to sea ice, Fw, is poorly es-
timated. A linear Newtonian relaxation form is often
used in which Fw is related to the difference between
the freezing temperature that applies in a thin boundary
layer at the ice’s lower surface, and the ocean temper-
ature T |z50 below this layer:

Fw(T) 5 kiw(T 2 T f), (12)

where kiw is the water–ice heat flux coefficient. Note
that T is the ocean temperature for the surface layer just
below an assumed thin wall layer at the water–ice in-
terface where the temperature transitions to the freezing
temperature, T f. The water–ice heat exchange coeffi-
cient, kiw, characterizes the bulk exchange across this
layer, just as kaw characterizes the exchange in open
ocean regions according to (4). There is considerable
variation in the value and interpretation of kiw in the
literature. For instance, Houssais and Hibler (1993) take
the ocean temperature immediately below the ice to be
at freezing. Although this would appear similar to spe-
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cifiying a large value of kiw in (12), it in fact assumes
that the ocean model can resolve the thin transition layer.
Under finite differencing, this is equivalent to having
kiw set by the ocean surface diffusivity and resolution.
Our usage assumes a bulk parameterization for the wall
layer and is consistent with Willmott and Mysak (1989).
The heat diffusion into the thin mixed layer is estimated
to be rCpkV (T 2 T f)/Dz, where Cp is the specific heat
of seawater and kV is the vertical diffusivity. For Dz 5
200 m, r 5 1000 kg m23, and Cp 5 4000 J kg21, the
heat flux coefficient kiw 5 rCpkV /Dz ranges from 1 to
10 W m22 8C21 for kV varying from 0.5 3 1024 m2 s21

to 5 3 1024 m2 s21. This is considerably smaller than
kaw, which is determined by linearizing the total air–sea
heat flux (Haney 1971). In an equilibrium state, all heat
that enters into the thin mixed layer beneath the sea ice
must be diffused through the ice. If sea ice has an in-
sulating effect, then kiw must be less than kaw.

Combining (10)–(12) yields the one-layer thermo-
dynamic sea-ice model

]d k K (T 2 T )ai i f a
r L 5 2 k (T | 2 T ). (13)i f iw z50 f]t K 1 dki ai

The coupling between the ocean and sea ice is through
the surface freshwater flux term in the upper boundary
condition (4) for the salinity and the water–ice heat flux
term in (13).

The linearized version of this thermodynamic sea-ice
model used in YN93 was

]d9 k «iw iw
5 2 T9 2 d9, (14)

]t r L r Li f i f

where d9 and T9 are anomalous ice thickness and SST,
respectively, and ei 5 kiw /riL f is an effective damping
coefficient resulting from the dependence of heat con-
duction on ice thickness. When sea ice is thicker, the
heat flux from ocean to atmosphere through the upward
heat conduction inside sea ice becomes less efficient,
and therefore, ice tends to melt at the water–ice inter-
face. This process provides a restoring of sea ice toward
an equilibrium thickness d0. The damping coefficient,
determined by linearization of the nonlinear sea-ice
model about the equilibrium state, is given by

2K k (T 2 T )i ai f a
e 5 . (15)i 2(K 1 k d ) r Li ai 0 i f

Within the reasonable range of parameters, ei varies
from (5 yr)21 to (15 yr)21.

Coupling the THC model to the nonlinear sea-ice
model with freely varying ice edge will be discussed in
section 4f. The linearized version will be used for most
runs of the two-dimensional model and for the analytical
box model. Coupling of the nonlinear ice model to the
OGCM is discussed in section 5.

3. Sea-ice–THC interaction on interdecadal time
scales—A box model

A remaining important issue regarding the YN93 sea-
ice–THC oscillation mechanism is what sets the period
of the oscillation. The primary purpose of this section
is to elucidate such parameter dependences by using a
box model. Such a box model has proven useful in a
recent study on feedbacks of sea ice on the THC stability
in response to long-term climatic forcings (Yang and
Neelin 1996). This model consists of four boxes, two
in the upper layer to represent the high- and low-latitude
surface regions, respectively, and another two to divide
the deep ocean (Fig. 1). The THC variations of interest
are localized near the deep convection region in YN93.
Furthermore, they occur as variations about a state that
always has a mean poleward flow at the surface and
polar sinking. Using upstream differencing between the
boxes, variations in the deep polar box do not affect the
surface polar box. If we neglect variations in the low-
latitude boxes relative to the surface polar box, the sur-
face polar T, S equations decouple from the other boxes.
This reduction is not suitable for THC multiple equi-
libria, but it captures the essential oscillation mechanism
of interest here. The linearized equations for surface
polar temperature and salinity anomalies, determined by
the advection and the surface fluxes, are

]T9 V DT k0 0 iw1 T9 2 y9 1 T9 5 0 (16)
]t L L rC Dp

]S9 V DS S ]d90 0 01 S9 2 y9 2 5 0, (17)
]t L L D ]t

where V0 and y9 are the mean and the anomalous me-
ridional velocities, respectively; DT0 and DS0 the dif-
ferences of the mean surface temperature and salinity
between the low- and high-latitude boxes; L and D are
the meridional extent and the depth of the surface polar
box; and kiw is the heat flux coefficient between sea ice
and the ocean.

For the temperature equation (16), the main contri-
bution to the temperature change comes from the surface
damping and the anomalous heat transport. The contri-
bution of mean flow, which is usually smaller than other
terms, acts as a damping, and its effect can be combined
into the surface Newtonian cooling term. Like most box
models, the meridional velocities are proportional to the
density differences between the two surface boxes, that
is,

y9 5 g(2aT9 1 bS9). (18)

Due to a strong surface damping on SST, the first term
on the right-hand side of (18) is small, and it only con-
tributes a small additional damping to SST when (18)
is substituted into (16). Therefore, we may assume that
the anomalous circulation is driven by the anomalous
salinity alone. This simplification is strongly supported
by the numerical model of YN93. The salinity change



DECEMBER 1997 3063Y A N G A N D N E E L I N

FIG. 2. The oscillation period as a function of ice–water coupling
coefficient as determined by a solution [(22)] to the analytical box
model.

is totally dominated by the freshwater flux associated
with the ice freezing and melting. The small damping
effect of the mean flow is negligible, and the anomalous
salinity advection is small since the mean gradient of
salinity is quite small. As such, (16)–(18) can be sim-
plified to

]T9 DT k0 iw2 y9 1 T9 5 0 (19)
]t L rC Dp

]S9 S ]d902 5 0. (20)
]t D ]t

y9 5 gbS9. (21)

The linearized thermodynamic sea-ice model (14) is
used here. At decadal timescales, the anomalous sea-
ice growth rate is approximately determined by the
anomalous heat flux from the ocean, that is, the first
term on the rhs of (14). For simplicity, we can drop the
second term on the rhs of (14). The eigenvalue of (18)–
(21), plus (14) with this approximation, for time de-
pendence exp(vt), is

kiw

v 5 2 2rC Dp
| |

|}}}}
R4

1/22 DT S k k0 0 iw iwgb 6 i 2 . (22)1 2L Dr L 2rC D i f p
| | | | | | | |

| | | |22 }} }}}} }2}}2} 
R R R R1 2 3 4 

As (22) shows, the frequency is not determined by any
one oceanic or ice process alone, but rather by a com-
bination of parameters from both, namely the circulation
change per unit salinity change (R1), the mean meridi-
onal temperature gradient leading to rate of SST change
by anomalous advection (R2), and the rate of freshening
by ice melt per SST anomaly (R3). The square root of
the product of these gives the essence of the frequency.
A modification to this frequency, plus a damping effect,
is provided by the strength of surface damping on SST
(R4). Unfortunately, (22) does not provide an explana-
tion for the growth of the oscillation in the more com-
plex models, only for the period. Using the fuller box
model equations (16)–(17), and the full ice equation
(14), yields additional small damping terms, plus one
term from (2DS0y9/L) that tends to oppose damping but
is too small to explain growth.

The interdecadal period is very robust in (22). For
example, Fig. 2 shows the period 2p/Im(v) as a function
of kiw (the main tunable parameter in this box model)
for the following values of parameters: DS0 5 2 psu,
DT0 5 158C, L 5 1000 km, D 5 1000 m, S0 5 35 psu,
a 5 1.5 3 1024 C21, b 5 8 3 1024 psu21; g 5 DV0 /
(2aDT0 1 bDS0) is chosen such that the mean deep
water formation rate DV0 is 15 Sv. As Fig. 2 shows, the
period approaches infinity when the coupling coefficient

kiw approaches 0 (approaching the uncoupled regime).
As kiw increases, the feedback process accelerates and
the period of the oscillation shortens. Except for a small
parameter regime for weak coupling, the period of the
oscillation is at interdecadal timescales between 10 and
15 yr.

4. Ocean–ice interaction and interdecadal
oscillations in the two-dimensional model

The analytical solution presented in the previous sec-
tion suggests that the oscillation and its frequency are
dependent on various parameters and processes, such as
the water–ice heat flux coefficient kiw, which controls
both sea-ice growth rate and the damping by surface
fluxes on SST variation in the ice-covered areas, the
dynamical response of the circulation to the density
change, eddy diffusivity, and the freshwater flux asso-
ciated with sea-ice melting/freezing, etc. We investigate
sensitivity to such parameters in the two-dimensional
ice–THC model in this section.

a. Sensitivity to the coupling coefficient kiw

The most important parameter in this system is prob-
ably the water–ice heat flux coefficient kiw. The coupling
between the THC and sea ice is essentially through the
heat flux between water and ice, which in turn controls
the temporal change of sea-ice thickness. This heat flux
plays both stabilizing and destabilizing roles. A stronger
heat flux coefficient results in greater Newtonian damp-
ing on the SST variation in the ice-covered area, pro-
viding a negative feedback to the system. The devel-
opment of the coupled oscillation, however, relies on
the same heat flux coupling, as measured by this co-
efficient, to melt ice.

The model produces oscillations in almost the entire
range of kiw, although it is stable at the low coupling
limit. The values of other physical parameters chosen
in this section are kV 5 5 3 1025 m2 s21, kH 5 1 3
102 m2 s21, ei 5 (15 yr)21, while AV 5 60 m2 s21 and
AH 5 6 3 107 m2 s21 are chosen such that the THC
transport is 15 Sv for a basin width of 6000 km. The
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FIG. 3. Time series of anomalous THC overturning strength, defined
as the maximum anomalous streamfunction times a zonal width of
6000 km, in the 2D coupled ocean–ice model between 668 and 708N
at 1000 m in depth for kiw 5 1 W m22 8C21 (solid line), 15 W m22

C21 (dashed line), 50 W m22 8C21 (dotted line), and 150 W m22 8C21

(dashed–dotted line). Unit: Sv (106 m3 s21).

value of kaw is chosen to give a 1-yr relaxation timescale
for SST, kaw /(rCpD) 5 (1/yr)21, in the upper 200 m;
F(y) is diagnosed from a steady state, which is achieved
by strongly constraining the SSS toward the Levitus
(1982) climatology; S0 5 35 psu; T f 5 228C is the
freezing temperature.

Figure 3 shows a 50-yr time series of anomalous THC
overturning for various values of kiw. The anomalous
THC is defined in this 2D model as the maximum anom-
alous streamfunction times a zonal width of 6000 km.
The solid line is in the very low coupling regime, kiw

5 1 W m22 8C21. At such weak coupling, the model is
stable and produces a damped oscillation with a period
of about 12 yr. As discussed in the next section, the
oscillation can be sustained by stochastic forcing. In the
moderate coupling regime (kiw 5 15 W m22 8C21;
dashed line), the oscillation is self-sustaining with a
period of about 10 yr. If we further increase the coupling
to kiw 5 50 W m22 8C21, the period is shortened to about
9 yr (dotted line). At a very strong coupling (kiw 5 150
W m22 8C21), the period is shortened to about 8.2 yr
(the dashed–dotted line). This agrees with our analytical
solution (22), which suggests that the period is longer
at weaker coupling. The period is fairly insensitive to
this coupling coefficient since it only changes from 12
to 8.2 yr as coupling is changed by more than two orders
of magnitude. The reasons for this small sensitivity can
be understood by reference to the box model (22). There
are two terms in (22) that can affect the oscillation fre-
quency v. First, the main oscillation term—the product
R1 R2 R3—depends on kiw via R3, the freshwater feedback
from sea-ice. Second, R4 from damping on SST varia-
tions also has a kiw dependence. A greater kiw accelerates
the ocean–ice feedback loop and tends to shorten the
oscillation period (R3). It also dampens T9, increasing
R4, and thus tends to slow the feedback. These two
effects cancel each other to a certain extent and reduce
the overall sensitivity of v in (22) to kiw. The amplitude
of THC variation is about 1 Sv for most cases except
the very small coupling case (kiw 5 1 W m22 8C21). The
anomalous SSS and ice thickness in these cases vary

around 0.1 psu and 0.25 m. The anomalous SST varies
from about 0.258C at low coupling to less than 0.058C
at high coupling.

The critical value of kiw for sustained oscillation is
about 15 W m22 8C21 for the chosen parameter values.
As we shall see later, this critical coupling coefficient
becomes smaller for smaller diffusivities. For instance,
Fig. 4 shows the anomalous THC for kiw varying from
5 to 15 W m22 8C21 when kV and kH are reduced to 1
3 1025 and 1 3 106 m2 s21, respectively. The oscillation
can be sustained at about kiw 5 12 W m22 8C21 for this
smaller diffusion regime.

The intrinsic physics of the oscillation is explained
by the feedback loop of YN93. For example, Fig. 5
shows four model variables at 678N for kiw 5 25 W m22

8C21. The anomalous circulation (solid line) is driven
by the salinity anomaly (dashed line), and therefore the
former lags the latter by about a quarter cycle. The
salinity rate of change is dictated by the sea-ice rate of
change (dashed–dotted line) and so they are almost in
phase. The sea ice is controlled by the SST anomaly
(dotted line). As shown in YN93, the surface salinity
anomaly (Fig. 6b) is strongly localized in the area of
sea-ice variation (Fig. 6d). The temperature (Fig. 6a)
and circulation (Fig. 6c) vary over broader areas.

b. Stochastic forcing in a weak coupling regime

In the previous section, we discussed the model sen-
sitivity to the coupling coefficient kiw. We found that
the oscillation period is fairly insensitive to this param-
eter, but the model is stable at a lower coupling regime.
In this section, we will show that even without insta-
bility at this regime, the oscillation can be forced by
random noise. In the real climate system both the ocean
and the atmosphere are constantly subject to different
temporal- and spatial-scale forcings. There has been in-
creasing interest in the role of stochastic forcing in gen-
erating low frequency climate variability. Hasselmann
(1976) noted that the heat capacity of the upper ocean
can act as an integrator for random heat fluxes from the
atmosphere and yield a red noise response. Mikolajew-
icz and Maier-Reimer (1990) applied stochastic forcings
to an OGCM and found significant model variability on
interdecadal to centennial timescales. Attempts have
been made to explain such variability in terms of Has-
selmann’s stochastic model. But it remains unclear what
determines the intrinsic frequencies, if any, in ocean
models. In our model, we know that a clear decadal
period is determined by the THC–sea-ice feedback. We
are interested in the effect of stochastic forcing on this
oscillation when it is stable. For the same parameter
setting as in section 4a, Fig. 7 displays two examples
of stochastically forced runs. In these two cases, a tem-
porally white but spatially correlated noise is applied to
the equilibrium temperature for heat flux for a particular
latitude band. The spatial dependence is a half-sinusoi-
dal curve from 608 to 708N with an amplitude of 28C.
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FIG. 4. Time series of anomalous THC strength (Sv; defined as in Fig. 3) in the weak diffusion
regime of the 2D model at kV 5 1 3 1025 m2 s21 for (a) weak coupling at kiw 5 5 W m22

8C21, (b) moderate coupling at kiw 5 10 W m22 8C21, and (c) stronger coupling at kiw 5 15 W
m22 8C21.

FIG. 5. A 30-yr segment for anomalies of streamfunction (solid),
temperature (dotted), salinity (dashed), and ice thickness (dashed–
dotted) taken at the surface at 678N near the northern boundary of
the 2D model. Units: m2 s21 for streamfunction, 8C for temperature,
psu for salinity, and m for ice thickness.

This is multiplied by a random variable from a uniform
distribution. For kiw 5 1 W m22 8C21 (Fig. 7a), the
unforced coupled model produces a damped oscillation
(solid line) while the oscillation is sustained by the ran-
dom forcing. Figure 7b shows the case when the same
stochastic forcing is applied to the model at kiw 5 5 W
m22 8C21. The amplitude of the noise-forced oscillation
increases with coupling since the decay rate is smaller.
In both cases, the decadal timescale can be clearly seen
despite the aperiodicity introduced by noise. In an un-
coupled run, no decadal period is found and the am-
plitude of the response is much smaller (Fig. 8). Without
the sea-ice feedback, the SST (Fig. 8a) varies without
a clearly defined frequency, a typical result for a system

that integrates the white random forcings to yield a red
spectrum response (Hasselmann 1976). Since the salin-
ity is no longer connected with temperature variations
via sea ice, its response is very small (Fig. 8b), which
leads to a very weak response in the THC as well (Fig.
8c).

c. Sensitivity to the eddy diffusivity

Parameter settings are as in section 4a, with stronger
coupling kiw 5 25 W m22 8C21. Here we vary the dif-
fusivity kV of both salinity and temperature, while
changing the lateral diffusivity kH proportionately. Fig-
ure 9a shows the anomalous THC overturning for kV 5
1 3 1024 m2 s21. With this high diffusivity, the oscil-
lation is slowly decaying (Fig. 9a), although essentially
with the same period and characteristics discussed for
the case with lower diffusivity and coupling in section
4a. As the diffusivity is reduced, for kV 5 5 3 1025 m2

s21, instability of this oscillation gives rise to a limit
cycle solution to the coupled system (Fig. 9b). As the
diffusivity is decreased to kV 5 1 3 1025 m2 s21, a
second bifurcation occurs and the model generates both
the decadal oscillation and longer timescale variations.
In this case, the amplitude of the decadal oscillation
slowly increases with time until the excursions become
comparable to the magnitude of the mean overturning.
Eventually, the reduced overturning phase shuts down
the circulation to the point where it can no longer sustain
the decadal oscillation, which then builds up again from
low amplitude. This behavior is very similar to that of
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FIG. 6. Latitude–time plots for anomalies of (a) temperature, (b)
salinity, (c) streamfunction, and (d) sea-ice thickness. Contour in-
tervals: 0.058C, 0.025 psu, 0.05 m2 s21, and 0.05 m.

FIG. 7. Anomalous THC strength (as in Fig. 3) in the weak coupling
regime of the 2D model, (a) for kiw 5 1 W m22 8C21 and (b) for kiw

5 5 W m22 8C21. In both panels, the dashed–dotted line shows a run
with stochastic forcing, while the solid line shows a run evolving
without stochastic forcing from an initial anomaly.

FIG. 8. Anomalies of (a) temperature (8C), (b) salinity (psu), and
(c) THC overturning strength (Sv) of the 2D ocean-only model with
stochastic forcing.

the Rossler attractor (e.g., Nayfeh and Balachandran
1995; Strogatz 1994), which fundamentally involves
three directions in the phase space: a spiral out from an
unstable stationary point and reinjection into the vicinity
of this point by nonlinear terms, via a third direction.
The resulting motions may be chaotic. While this be-
havior is very interesting, it is not clear whether it is
relevant to the observed ocean–ice system. An overall
conclusion is that although the variation of the eddy
diffusivity changes the model stability, the period of the
decadal oscillation remains essentially unchanged.

d. Model sensitivity to the THC feedback

One crucial part of the feedback loop is the THC
change per density change. In the box model, the period
has roughly a square root dependence on this parameter.
In the 2D model, this is harder to directly control with
the available physical parameters. As a test, we intro-
duce a control parameter m such that

c ( y, z, t) 5 c0( y, z) 1 mc9( y, z, t), (23)

where c is the total streamfunction, c0 is the mean
streamfunction from the THC climatology, and c9 is the

deviation of c from its mean and is driven by the density
anomaly according to the momentum equation (1). By
varying the parameter m, we can change the THC re-
sponse to a density anomaly without altering the mean
field. Based on a limited number of runs (not shown),
the period indeed appears to roughly follow a m1/2 de-
pendence. When m increases, it accelerates the feedback
loop linking the surface freshwater flux to the THC heat
transport and therefore shortens the period of the os-
cillation, supporting the analytical result (22).

e. Newtonian damping on the SST variation

The Newtonian relaxation form for the surface heat
flux provides an effective damping on the SST variation
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FIG. 9. Time series of anomalous THC strength (as in Fig. 3) for different diffusivities: (a)
strong diffusion, (b) moderate diffusion, and (c) weak diffusion. Unit: Sv.

FIG. 10. Anomalous THC strength (as in Fig. 3) for a case with weaker Newtonian damping
[y 5 0.5 in (24)]. Unit: Sv.

and provides a negative feedback to the decadal oscil-
lation. To examine the impact of this on the oscillation
without change of the model climatology, we modify
the damping on the anomalous SST only. A control
parameter n is introduced so that the surface condition
(5) can be written as

]T
rC k 5 k (T 2 T) 2 nk T9, (24)p V iw f iw]z

where T is the mean SST. In this experiment, we also
assume that the enhanced surface damping on the SST
does not affect the ocean–ice coupling coefficient in the
sea-ice equation [i.e., n is only applied to (24)].

Parameter settings are as in section 4a, with kiw 5 25
W m22 8C21. For stronger damping at n 5 2, the os-
cillation is stable. For n 5 1 the oscillation is sustained
as shown before. When n is decreased to 0.5, a 19-yr
period oscillation arises (Fig. 10) due to period doubling
of the decadal oscillation. For even smaller damping,
the model generates chaotic oscillations (not shown).

f. The nonlinearity of the sea-ice model

The nonlinearity of the sea-ice model comes from the
heat conduction term, that is, the first term on the right-
hand side of (13). In this section, we use the same THC
model and couple it to the fully nonlinear ice model
(13). At a steady state, the mean sea-ice thickness is
determined

K (T 2 T ) Ki f a id 5 2 , (25)
k (T 2 T ) kiw f ai

by where d and T are the mean ice thickness and SST,
respectively. For smaller kiw, the mean ice thickness d
is greater. For thinner mean ice, the effective damping
on sea-ice variability is greater according to (15).

Figure 11 shows the anomalous THC overturning for
various values of the coupling coefficient kiw, with other
parameters as in section 4a. For weak coupling at kiw

5 2.5 W m22 8C21, the oscillation is in the decaying
regime in the nonlinear coupled model (Fig. 11a). For
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FIG. 11. Anomalous THC strength (as in Fig. 3) from coupling to the nonlinear version of
the sea-ice model with freely varying ice edge (a) kiw 5 2.5 W m22 8C21; (b) kiw 5 5 W m22

8C21; (c) kiw 5 10 W m22 8C21; and (d) kiw 5 15 W m22 8C21.

greater coupling coefficient, kiw 5 5 W m22 8C21 (Fig.
11b) and kiw 5 10 W m22 8C21 (Fig. 11c), the oscillation
slowly decays from its initial amplitude and equilibrates
to an oscillation with smaller amplitude, about 0.5 and
0.6 Sv in these two cases, respectively. However, if kiw

is further increased to 15 W m22 8C21, the oscillation
again decays relatively quickly. The period of the os-
cillation for these four different parameter values varies
from 11 to 9 yr, with a longer period in the low coupling
regime. Therefore, the nonlinearity does not signifi-
cantly affect the frequency. The major change in com-
paring with cases that use the linearized sea-ice model
is the loss of instability in the large coupling regime.
This is because the ice thickness is very thin according
to (25) when a greater kiw is used. For example, the
average mean ice thickness ranges from 0.9 m at kiw 5
15 W m22 8C21 to 2.5 m at kiw 5 5 W m22 8C21. For
thicker sea ice, the effective damping is greater. This
explains why the nonlinear sea-ice model does not have
sustained oscillation in the high coupling regime.

Figure 12 shows a case for a weaker diffusion regime,
kV 5 1 3 1025 m2 s21 for the same values of kiw as in
Fig. 11. Again, the solution is stable for a weaker cou-
pling (Fig. 12a for kiw 5 2.5 W m22 8C21). The oscil-
lation grows initially before it reaches another stationary
point for kiw 5 5 W m22 8C21. When kiw is further
increased to 10 W m22 8C21, the decadal oscillation is
sustained with an amplitude of about 10 Sv (Fig. 12c),
much greater than that in the stronger diffusion regime.
The model is stable for an even greater kiw (Fig. 12d)
for the same reason as explained above. Like the pre-
vious case, the frequency is fairly insensitive to the
coupling coefficient kiw. Figure 13 shows snapshots of

anomalous model conditions when the THC is at its
peak for the case of kiw 5 10 W m22 8C21. The upper
layer is warmer (Fig. 13a) due to poleward heat trans-
port, which melts sea ice and results in lower surface
salinity (Fig. 13b) and density (Fig. 13c). This is con-
sistent with the physical explanation of YN93.

g. Equivalence of the interdecadal ice–THC
oscillation in one-cell and two-cell cases

Most THC models, including the zonally averaged
model used in this study, possess multiple equilibrium
states for given parameters (Bryan 1986; Marotzke et
al. 1988; Welander 1986). Like our previous study
(YN93), most results have been presented for a decadal
oscillation about a pole-to-pole one-cell THC climatol-
ogy. In order to produce such an oscillation, the im-
portant property is that the THC responds positively
(negatively) to a positive (negative) density anomaly at
high latitudes. Therefore, the model is not sensitive to
which THC is used as the model climatology as long
as there is polar sinking and the model parameters are
kept unchanged. The only noticeable difference is that
the two-cell THC overturning is somewhat weaker in
comparison with the one-cell state. Therefore, the damp-
ing associated with the mean flow on the temperature
anomaly is smaller. When comparing results using these
two climatologies, we found that the periods are essen-
tially unchanged but the amplitude of the oscillation is
greater for the two-cell case (not shown). This holds
despite differences between the mean surface T–S fields
in these two climatologies. The Northern Hemisphere
is saltier and warmer in the one-cell case due to the
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FIG. 12. As in Fig. 11 but with a smaller eddy diffusivity, kV 5 1 3 1025 m2 s21.

FIG. 13. Snapshot of the model condition at a time of peak cir-
culation: (a) temperature anomaly (8C), (b) salinity anomaly (psu),
(c) density anomaly (kg m23), and (d) anomalous THC strength (Sv;
as in Fig. 3). Contour intervals: 0.018C, 0.01 psu, 0.005 kg m23, and
0.1 Sv.

across-equator transports. The change in the mean sa-
linity has little effect on the oscillation since the salinity
anomaly is dominated by sea-ice melting and freezing.
The temperature gradient could potentially have a strong
effect on the oscillation since it directly affects anom-
alous heat advection, but the difference in the mean ]T0 /
]y between these two climatologies is small because of

the strong Newtonian relaxation. In conclusion, the de-
cadal oscillation remains virtually the same when a two-
cell symmetric THC climatology is used.

h. Use of a sponge layer in a smaller model domain

Although the two-dimensional ice–THC model is use-
ful for diagnosing the physical mechanism, our ultimate
goal is to study the ice–THC oscillation in a three di-
mensional OGCM. Such a task requires a tremendous
amount of computing resources for the timescale of in-
terest. As shown in that of YN93, the ice–THC oscil-
lation is confined to a relatively small area in the vicinity
of the sea ice. It should thus be possible to simulate it
using a relatively small portion of the ocean basin, using
a sponge layer to mimic an open-boundary condition.
We test this in the two-dimensional model as an aid in
preparing GCM experiments. In the sponge layer, the
temperature and salinity are damped toward their cli-
matological values. To make our point that a small ocean
domain can be successfully used, we truncate the south-
ern portion rather severely, placing the sponge layer at
508N. The coupling coefficient is fixed at 25 W m22

8C21 and other parameters are as shown in section 4a
and Fig. 5. Figure 14 shows the anomalous THC over-
turning strength for this sponge layer case (solid line)
and a full-basin model (dashed line). The periods of
their oscillations are exactly the same. The amplitude
of the sponge layer is somewhat greater, perhaps due to
increases in anomalous circulation per density anomaly
in the severely truncated basin. These results suggest
that it is very reasonable to use a regional North Atlantic
OGCM with a sponge layer at the southern boundary
to capture this oscillation.
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FIG. 14. Comparison of anomalous THC strength (as in Fig. 3)
obtained from a full-basin 2D model solution (dashed–dotted line)
to a solution from a model version with a sponge layer at 508N model
(solid line). Unit: Sv.

FIG. 15. Time series of the zonally averaged (a) SST and (b) SSS
at 688N over a 5000-yr spinup process in the 3D OGCM. Units: 8C
and psu.

FIG. 16. The zonally averaged (a) temperature and (b) salinity at
the equilibrium state of the 3D OGCM after the spinup run (contour
intervals: 18C and 0.1 psu).

5. Coupled ocean–ice oscillation in a
three-dimensional model

In previous sections, the role of ocean–ice interaction
in forcing a type of interdecadal oscillations is examined
in simple models, including an analytical box model
and a zonally averaged two-dimensional model. The
mechanism of this oscillation needs to be tested in a
primitive equation model before it can be extended to
explain interdecadal oscillations either from a GCM
simulation or from an observation. In this section, we
present results from a coupled ocean–ice model that
consists of the GFDL OGCM MOM and a nonlinear
thermodynamic sea-ice model (13). The model domain,
resolution, and forcing fields are described in section
2b. We first run the OGCM for 5000 yr to an approx-
imately steady state and then diagnose the virtual salt
flux from this state. The surface salinity condition is
then switched from Newtonian restoring to flux form.
The model is restarted and run for another 5000 yr to
get the new quasi-steady state under the mixed boundary
condition. To show this spinup process, we plot time
evolution of the zonally averaged SST (Fig. 15a) and
SSS (Fig. 15b) between 668N and 708N from the second
5000-yr run using the mixed boundary condition. The
model fluctuates after switching to the new boundary
condition but reaches a steady state after about 3000 yr.
Figure 16 shows the zonally averaged distributions of
(a) temperature and (b) salinity. The maximum tem-
perature is about 258C, located in the surface near the
southern boundary. The maximum salinity occurs in the
subtropics. The model does not include the seasonal
cycle, and thus nonlinear subharmonic variations (e.g.,
Yang and Huang 1996; Yang and Honjo 1996) are ex-
cluded.

The active coupling with the sea-ice model (13) is
turned on at the end of this second 5000-year run. We
chose the equilibrium temperature (Ta) to vary sinuso-
idally from 258C at 408N to 2358C at the northern
boundary and set kai 5 5 W m22 8C21. This form of Ta

is specified roughly according to the winter air tem-
perature in the ice-covered region in the subpolar North
Atlantic (Oort 1983). This produces a sea-ice cover

north of 528N for the standard run, using kiw 5 5 W
m22 8C21. The model oscillates when ice interaction is
included. Figure 17 shows a 1000-yr evolution of sea-
ice thickness, SST, and SSS taken at 688N in midbasin.
The period of the oscillation is about 25 yr. The mech-
anism for this oscillation is essentially the same as that
explained in the previous section. A careful examination
shows that the sea-ice variation lags that of SST by one-
quarter of a cycle, while the peak of sea-ice variation
leads the trough of SSS variation by a quarter cycle.
This phase relation is very similar to that found in the
YN93’s coupled ocean–ice oscillation. The overturning
circulation also oscillates with the same frequency. Fig-
ure 18 shows the overturning cell at maximum and min-
imum strength during one oscillatory cycle. The THC
varies from about 13 to about 7.5 Sv in this run. Because
of this oscillation, the northward transport of heat also
oscillates. The total northward transport of heat at 508N
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FIG. 17. Evolution over 1000 yr of (a) sea-ice thickness, (b) SST,
and (c) SSS taken at 688N in the center of the zonal domain from
the 3D coupled OGCM–sea-ice model (kiw 5 5 W m22 8C21). Units:
8C and psu.

FIG. 19. Time series over 1000 yr from the 3D coupled model of
the total northward transport of heat at 508N. Unit: PW.

FIG. 20. Distribution of sea-ice thickness over the northern part of
the domain of the 3D coupled model at times of (a) the minimum
and (b) the maximum sea-ice and areal coverage, and (c) the differ-
ence between these two states. Contour interval: 0.25 m. Zero line
is thickened.

FIG. 18. Streamfunction for the zonally integrated transport form
the 3D coupled model at the time of (a) the maximum and (b) the
minimum strength of the overturning cell in the last oscillatory cycle
before the end of the 1000-yr run shown in Fig. 7. Contour: 0.5 Sv.

oscillates between about 0.2 and 0.3 PW (Fig. 19). Fig-
ure 20 shows the maximum and minimum sea-ice dis-
tributions and the difference between these two phases.
The ice edge slightly changes between these two states
in the central and eastern parts of the basin, but the
change of the ice edge per se is not the dominant feature
of the differences. The change in ice thickness occurs

over a broad region, especially in the central part of the
domain and with amplitude near the ice edge of up to
1.1 m. Circulation in the wind-driven horizontal gyres
exhibits relatively small change, as seen, for instance,
in the depth-integrated transport streamfunction (Fig.
21).
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FIG. 21. The barotropic transport streamfunction in the 3D model.
Unit: Sv.

FIG. 22. Snapshots of anomalous zonally averaged temperature from the 3D model distribution
at (a) a warm state and (b) a cold state. Both states were taken during the last oscillatory cycle
before the end of the 1000-yr run shown in Fig. 7. Contour interval: 0.058C.

The anomalous temperature distributions at warm
(Fig. 22a) and cold (Fig. 22b) phases show that the
maximum variations occur in the upper 1000 m over a
region about 208 latitude wide near the northern bound-
ary. The salinity variations (Fig. 23) are likewise trapped
in the upper 1000 m. They are more localized near the
northern boundary in the ice region during fresh or salty
phases. During transition phases, additional salinity
anomalies due to advection may be noted south of the
ice region.

The oscillation characteristics are consistent with the
YN93 results. It is worth underlining that this oscillation
is not the same as the heat–ice oscillation identified by
Welander (1977) and recently examined by Zhang et al.
(1995) in a 3D model. The heat–ice oscillation discussed
in those two papers arises due to change of sea-ice extent
and the associated change in thermal insulation effect
and salinity does not play a significant role. Welander’s
(1977) model did not include salinity and a similar fresh-
water conceptual model was used by Zhang et al. (1995)
to explain their model oscillations. In contrast, salinity
plays a leading role in our model oscillation. Turning

off the salinity feedback from sea-ice melting and freez-
ing stabilizes the model state and the oscillation dis-
appears. In addition, the heat–ice oscillation of Welan-
der (1977) and Zhang et al. (1995) should become more
robust when a smaller ocean–ice heat flux coefficient
kiw is used since it amplifies the effect of thermal in-
sulation. As shown in the following sensitivity test, os-
cillations are damped when a smaller kiw is used in our
model.

Figures 24 and 25 show the sensitivity to the ocean–
ice coupling coefficient, kiw. When the value of this
parameter is reduced from 5 to 2 W m22 8C21, the model
becomes stable and no oscillation is generated (Fig. 24).
The model produces chaotic variations when kiw is in-
creased to 30 W m22 8C21 (Fig. 25). These are quali-
tatively consistent with the two-dimensional model’s re-
sults shown in section 4a. Additional experiments also
show that the model stabilizes in a more diffusive re-
gime.

The most significant difference between the oscilla-
tion in the two dimensional model and the oscillation
in the three-dimensional model is that the period is con-
siderably longer in the latter. Since the same sea-ice
model is used in both 2D and 3D cases, the differences
are due to the model representations of oceanic pro-
cesses. As explained in the simple box model (22), the
oscillation period is controlled by a number of pro-
cesses, labeled R1, R2, R3, and R4. Both R4, which mea-
sures the ocean–ice coupling and the surface Newtonian
damping on SST in ice-covered areas, and R3, which
measures the freezing/melting rate in response to an SST
anomaly, remain unchanged since the same ice model
is used. The cause for the longer oscillation period in
the 3D model is most likely due either to the difference
in the circulation response to density anomalies, that is,
R1 in (22), or to the differences in anomalous heat ad-
vection [R2 in (22)] when the flow has a three-dimen-
sional structure. In the 3D case, the change of salinity,
as shown in Fig. 17c, is about 0.5 psu, and the corre-
sponding change of the THC is about 5.5 Sv (Fig. 18).
However, in the 2D case, the surface salinity oscillates
within 0.075 psu (dashed line in Fig. 5). The stream-
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FIG. 23. Snapshots of anomalous zonally averaged salinity from the 3D model taken at (a) a
salty-to-fresh transitional phase, and at (b) a fresh phase. Both states were taken during the last
oscillatory cycle before the end of the 1000-yr run shown in Fig. 7. Contour interval: 0.02 psu.

FIG. 24. As in Fig. 17 except using a smaller ocean–ice coupling
coefficient (kiw 5 2 W m22 8C21).

function anomalies in the same case varies between
20.125 m2 s and 0.175 m2 s, about 20.75 to 1.05 Sv
for a basin width of 608 in longtitude. Therefore, the
THC response per salinity anomaly, as measured by
(21), that is, gb 5 y9/S9, ranges from about 24 in the
2D case to about 11 in the 3D case. In other words, the
THC has a greater response to the salinity anomaly in
the 2D case than in the 3D case. Interpreted in terms
of the box model solution, R1 is smaller in the 3D model,
which tends to lower the frequency of the oscillation.
Considering the second possible cause associated with
anomalous heat advection, in the 3D model, currents
tend to have a large component along isotherms, where-
as only the cross-isothermal component contributes to
advection. The contour lines of temperature averaged
over the upper 1000 m and the flow vectors in our 3D
model clearly show this structure (Fig. 26). The upper
branch of the overturning circulation is primarily along
the western boundary where the isotherms are tilted
northwestward in the same direction as the flow fields.
Anomalous velocity, like the mean flow field, is greatest

along the western boundary. For instance, Figs. 27a and
27b show the anomalous velocity (vectors) averaged in
the upper 1000 m and anomalous upwelling (contours)
at z 5 21000 m in maximum and minimum states of
the overturning circulation. Since the anomalous veloc-
ity, especially near the western boundary, tends to par-
tially follow isotherms, the anomalous heat advection
v9=T0 is correspondingly smaller than that in the 2D
case, where isotherms are assumed zonal, resulting in
larger advection for the same magnitude of overturning
circulation anomaly. Interpreted in terms of the box
model, R2 in (22) is reduced in the 3D model, which
tends to increase the oscillation period. The meridional
temperature gradient averaged in the upper 1000 m, that
is, (]T0 /]y)dz /D0 for D0 5 1000 m, is about 22.50∫2D0

3 1025 cm21 at 558N in the 2D model and about 21.3
3 1025 cm21 in the western boundary layer of 208 in
longitude, where the anomalous currents are strongest
at the same latitude.

Fitting the roughly estimated numbers from these two
processes into the box model solution (22), we find a
period for the 3D oscillation of slightly more than twice
that for parameters estimated from the 2D model. This
agrees quite well with the actual model results. The
smaller THC response to density changes and reduction
of anomalous heat advection in the 3D model thus seems
to explain the longer period of the coupled ocean–ice
oscillations. The mechanism for the oscillation, how-
ever, is essentially the same as that explained in the box
model solution (22) and in the two-dimensional model.

6. Summary

In summary, we have reexamined the coupled ocean–
ice oscillation previously identified by Yang and Neelin
(1993), and tested its sensitivity to various physical pa-
rameters and surface forcing fields in a two-dimensional
model and in a three-dimensional primitive equation
model. An analytical box model is used to elucidate
essential feedbacks that give rise to this oscillation and
to identify the most important processes and parameters
that determine the oscillation period. According to the
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FIG. 25. As in Fig. 17 except using a greater ocean–ice coupling coefficient (kiw 5 30 W m22

8C21).

FIG. 26. Mean temperature contours and mean current fields (vec-
tors) from the 3D model, both averaged in the upper 1000 m, for the
case shown in Fig. 18.

box model, the oscillation mechanism can be summa-
rized (dropping some quantitatively important but no-
nessential terms) by

frequency 5 [R1R2R3]1/2,

where

R 5 (THC velocity anomaly per salinity anomaly),1

R 5 (temperature gradient), and2

R 5 (rate of freshening by ice melt per SST anomaly).3

A salinity increase in the sinking region causes an in-
crease in the surface velocity of the overturning cir-
culation (R1; m s21 psu21). This advects warm temper-
atures into the sinking region due to the temperature
gradient between the sinking region and the region
where the inflow comes from (R2; K m21). The warming
melts ice, which gives a freshening tendency that leads
to the opposite phase of the cycle (R3; psu s21 K 21).
This makes clear that the oscillation timescale is truly
a characteristic of the coupled system, depending on a
combination of factors from both the ocean and the ice.
None of these factors is a timescale characteristic of the
individual systems.

When coupled with a linearized version of the sea-
ice model, the 2D model becomes stable in the weak
coupling regime and generates self-sustained oscilla-
tions as the ocean–ice coupling coefficient increases.
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FIG. 27. Anomalous velocities (vector) averaged over the upper
1000 m and upwelling field (contour lines in m day21) at the depth
of 1000 m (a) at a state of maximum THC overturning and (b) at a
state of minimum THC overturning.

The oscillation period is quite insensitive to the intensity
of this coupling. The model becomes more stable when
greater diffusivity is used. In the stable parameter re-
gime, interdecadal oscillations can be sustained by sto-
chastic forcing. The coupled instability is sensitive to
the amplitude of THC feedbacks, as determined by vis-
cosities AV and AH in the 2D model equation (1) or g
in the box model solution (22). The model becomes
more unstable and its oscillation period shortens toward
greater THC feedback. We have also examined the case
of using a nonlinear sea-ice model. The model behaves
similarly as in the linear case when a small or an in-
termediate ocean–ice coupling coefficient is used, but
becomes stable in high coupling regime. This can be
explained in terms of the change of the effective damp-
ing on sea ice associated with the change of sea-ice
thickness. The period of the oscillation in the nonlinear
sea-ice case is also robust. Chaotic behavior of the os-
cillation was found in some parametric regimes. Inser-
tion of a sponge layer in the 2D model is used to show
that the essential variability is rather localized and thus
a regional model can be used for studies with the 3D
model. An additional experiment was run to show that
the oscillation is also robust when a two-cell THC cli-
matology is used.

Results from using the GFDL OGCM MOM coupled
with the nonlinear sea-ice model are also presented. This
3D model also produces an interdecadal coupled ocean–
ice oscillation. The mechanism is the same as that iden-
tified in the 2D model and explained in the box model.
The major difference is that the period of oscillation
becomes considerably longer, roughly 26 yr. The longer
period is mainly due to a smaller THC response to sa-
linity anomalies and to smaller poleward heat advection
by anomalous flow fields in the 3D model compared to
the 2D model. The box model explains the reduction in
frequency as a reduction in both R1 and R2 (above). In
terms of making a case for this oscillation mechanism
being likely to occur in the observed ocean–ice system,
some caveats on the 3D model are the lack of realistic
geography, the relatively coarse resolution, the lack of
ice advection, and the simple atmospheric boundary
conditions. Nonetheless, the robustness of the oscilla-
tion in the two dimensional THC–ice model where it
was first predicted, and the new demonstration of its
existence in the three-dimensional model are encour-
aging. It suggests that this physical mechanism is worth
seeking in data and in coupled ocean–atmosphere–ice
GCMs.
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