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Climatemodels exhibit high sensitivity in some respects, such as for
differences in predicted precipitation changes under global warm-
ing. Despite successful large-scale simulations, regional clima-
tology features prove difficult to constrain toward observations,
with challenges including high-dimensionality, computationally
expensive simulations, and ambiguity in the choice of objective
function. In an atmospheric General Circulation Model forced by
observed sea surface temperature or coupled to a mixed-layer
ocean, many climatic variables yield rms-error objective functions
that vary smoothly through the feasible parameter range. This
smoothness occurs despite nonlinearity strong enough to reverse
the curvature of the objective function in some parameters, and to
imply limitations on multimodel ensemble means as an estimator
of global warming precipitation changes. Low-order polynomial
fits to the model output spatial fields as a function of parameter
(quadratic in model field, fourth-order in objective function) yield
surprisingly successful metamodels for many quantities and facil-
itate a multiobjective optimization approach. Tradeoffs arise as
optima for different variables occur at different parameter values,
but with agreement in certain directions. Optima often occur at
the limit of the feasible parameter range, identifying key parame-
terization aspects warranting attention—here the interaction of
convection with free tropospheric water vapor. Analytic results
for spatial fields of leading contributions to the optimization help
to visualize tradeoffs at a regional level, e.g., how mismatches
between sensitivity and error spatial fields yield regional error
under minimization of global objective functions. The approach
is sufficiently simple to guide parameter choices and to aid inter-
comparison of sensitivity properties among climate models.

climate model optimization ∣ metamodeling ∣ precipitation bias and
sensitivity

Interest in systematic parameter sensitivity and optimization has
been developing both in the context of global average climate

sensitivity associated with increased greenhouse gases and the
effort to improve the model climatology (1–7). Some of this work
has focused on variations with parameter of a climate sensitivity
defined by the change of global average surface temperature
under doubled CO2, some on optimizing the simulation of
current climate features by tuning parameter values. Here we
examine related questions in sensitivity and optimization, with a
particular interest in precipitation. Despite capturing large-scale
features, simulations of precipitation in current climate are
subject to considerable regional-scale bias (8–12). A common ex-
perience is that the simulated climatology exhibits high sensitivity
to parameterization changes in certain respects but nonetheless
proves difficult to constrain toward observations. At the same
time, predicted changes in seasonal precipitation under global
warming exhibit striking disagreement among models (13–15).
This manifestation of sensitivity is a critical limitation to confi-
dence levels in regional-scale prediction of hydrological cycle
changes, and is thus arguably more important for human and
ecosystem impacts, on the timescale of a human lifetime, than the
climate sensitivity for global average temperature.

The underlying nature of the system has an enormous impact
on which of the large literature of strategies for evaluation of
sensitivity and optimization are suitable. Is the parameter depen-
dence reasonably smooth in at least some leading measures of
the simulation, or does it exhibit discontinuities of derivative
or multiple minima? A common dilemma is a model revision
yielding improvement in one field or region, but degradation
in another—is this tradeoff due to a fundamental lack of robust-
ness (16) or to challenges in maneuvering in a space that is high
dimensional in parameter inputs and very high dimensional in
model output fields?

A brief listing of the setup of the problem helps to frame the
approach. (i) A climate modeler generally has a priori informa-
tion about the range through which it is plausible to vary each
parameter, thus determining a feasible range for a constrained
optimization problem. Whether parameter range boundary
solutions are commonly encountered or whether optima primar-
ily occur in the interior is of interest. (ii) The number of para-
meters N to be considered can easily be 10–30, although typically
only a subset of these will have strong sensitivity. Brute-force
sampling at density s gives an order-sN problem, but optimization
procedures can have much better scaling properties, especially if
the relevant measures can be approximated as smoothly varying
over parts of the parameter space. (iii) Objective functions that
could be used for optimization procedures are poorly agreed on,
although there has been considerable attempt to define scalar
“metrics” to condense information (17, 18). (iv) Climate model
simulations required to evaluate objective functions at different
points in parameter space are costly. Shorter simulations incur
substantial error in estimating climate quantities due to intrinsic
variability. (v) There will typically be an a priori standard case
based on plausible guesses of parameter values. The climate
modeler must decide whether to update these values based on
information from the optimization and assessment process.

Multiobjective Approach
A standard optimization approach is to lump variables ϕk into a
single weighted cost function, such as

J ¼ ∑
k

wkf k; f k ¼ hðϕk − ϕobs
k Þ2iβk; [1]

where f k is an objective function associated with a particular as-
pect of the climate system, such as the square error (β ¼ 1) or rms
error (β ¼ 1

2
) in Eq. 1, of a particular climate variable ϕk relative

to the observed field ϕobs
k . Typically, ϕk will be time averages

(although they could include regression coefficients or other
statistics) that depend on space and season, and hik is a spatial
average (or spatial and seasonal average) over a domain of inter-
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est. The domain might be global, but there may also be user-de-
pendent preferences for particular averaging regions, hence the
inclusion of subscript k on the spatial average. Optimization of a
weighted cost function yields a single optimum (at considerable
cost if the procedure involves functional evaluations using the
climate model) that is a compromise among these variables.
However, the preference vector of weights wk is arbitrary,
because it depends on how a particular user values accuracy in
certain regions or in certain variables.

Adopting elements from multiobjective optimization (19–23)
provides a natural fit for climate modeling in several respects.
Treating f k as multiple objective functions, optima for each of
which are to be considered simultaneously, can identify tradeoffs
among variables, the best case for each variable, and dominance
relations among potential optima. In addition, much information
relevant to decisions on parameter update are qualitative, e.g.,
indications from a field campaign that a parameterization is less
trustworthy in a certain range. Such higher-level information can
be subjectively combined in choosing among optima.

Metamodel for Climate Field Parameter Dependence
The climate modeling problem has close parallels to high-dimen-
sional design problems with computationally expensive black-box
functions, optimization strategies for which are reviewed in ref. 24.
Results below on smoothness in certain measures lead us to adopt
a strategy of fitting the parameter dependence, termed metamo-
deling (25, 26), with a low-order polynomial. An important
distinction is that the metamodel here is created for the spatial
and seasonal vector field of the climate model output, not merely
for the objective functions. Advantages of this approach include
analytic insights that aid visualization of the potentially strong
regional dependence of the sensitivity and optimization. To the
extent that the metamodel is successful, optimization for multiple
objective functions is relatively inexpensive. This approach
addresses a nagging issue—that a parameter optimization choice
based on one set of objective functions is always vulnerable to re-
evaluation by additional criteria. Here, alternative objective func-
tions are easily added from the same set of climate model runs.

Climate Model Setup
We examine these issues in the International Centre for Theore-
tical Physics climate model (27, 28), which has been used for a
number of climate problems (29, 30). Here a triangular trunca-
tion at total wavenumber 30 (T30) version is used, roughly
equivalent to a 3.75° × 3.75° spatial resolution. We examine both
a set of runs with the atmospheric general circulation model
(AGCM) forced by observed sea surface temperature (SST)
and the AGCM coupled to a mixed-layer (ML) ocean, using a
simple estimate of ocean heat flux transport divergence known
as a Q-flux (31). The Q-flux is set such that observed SST is
approximated at the standard parameter values and does not vary
with parameter. For the imposed-SSTcase, ensembles of ten 25-y
runs (1978–2002), differing in their initial conditions, are carried
out for each parameter value considered. For the AGCM-ML
runs, 260-y runs are carried out at each parameter value, omitting
a 10-y spin up and using ten 25-y averages for analogous statistics.

Parameter Dependence and Fits to Model Output Fields
Here we illustrate the parameter space dependence using four
parameters that can have significant impact on the model solu-
tion: the subgrid scale wind gustiness that controls the minimum
wind speed in the bulk formula for surface fluxes, a viscosity para-
meter measured as a damping time, a cloud albedo parameter,
and the relative humidity parameter from the deep convective
parameterization, RHconv, which represents the observed inhibi-
tion of convection unless free troposphere relative humidity is
sufficiently high.

AGCM Forced by Observed SST Case. Fig. 1 shows results for slices
along the four selected parameter directions for the case of
seasonal precipitation. Contrary to our initial expectations, the
parameter dependence proves rather smooth in large-scale mea-
sures. We underline the caveat that this approximate smoothness
will not necessarily hold for regional-scale measures or more exo-
tic statistics. The fact that it tends to hold for measures such as
global rms error or spatial correlation to observations for clima-
tological fields can be of great utility in the estimation of sensi-
tivity and optimization. This property motivates use of low-order
polynomial fits below. Estimation error is small for the global rms
error for the 10-member ensemble used here, but variation
among 25-y averages for individual ensemble members is illu-
strated in Fig. 1D. A single 25-y run would suffice for a first es-
timate of sensitivity and nonlinearity but would have limitations
for statements regarding smoothness.

Fitting Strategy. Consider a quadratic metamodel fit to a climate
field ϕ on the space of N parameters, letting μi denote the para-
meter taken relative to the standard value

~ϕ ¼ ϕstd þ∑
N

i

aiμi þ∑
N

i¼1
∑
N

j¼1

bijμiμj; [2]

where ϕ can be a climatological field, anomaly regression, or
other statistic from model output. Each coefficient aiðx;tÞ,
bijðx;tÞ is a high-dimensional vector over space and season, with
bij ¼ bji. Any objective function, such as the rms error or spatial
correlation to the observed field, can then be reconstructed from
the metamodel ~ϕ.
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Fig. 1. Root-mean-square error of the ensemble mean AGCM precipitation
in June–August (JJA), relative to National Centers for Environmental Predic-
tion reanalysis. The AGCM values are compared to the rms error recon-
structed from the quadratic metamodel (Eq. 2) using endpoints for each
parameter and to its linear counterpart. Note that the linear metamodel
gives quadratic terms (with positive curvature) in the rms error. Parameters
are given on the abscissa (nondimensional if no units given). The vertical size
of the symbols gives the two standard error estimation range for the ensem-
ble mean. D also shows the rms error for 10 individual ensemble members to
illustrate the estimation error that would be associated with a single 25-y run.
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The N diagonal values of bij can be fit along with the linear
coefficients ai from the 2N endpoints of the μi ranges, along with
the standard case. Thus an order-N first-fit procedure yields an
estimate of the importance of quadratic nonlinearity in addition
to linear sensitivity. The off-diagonal bij coefficients can be eval-
uated from the corners of pairwise planes (or an equivalent num-
ber of suitably distributed points). Because the procedure is of
order N2, it should in practice be done for a pruned subset of
parameter directions. Here results with off-diagonal bij use
rms fits to values from all four corners of each pairwise plane.
Specific algorithm implementation and seasonal dependence is
further discussed in the SI Appendix. Here the aim is to illustrate
the broad system behavior.

Fig. 1 shows the rms error along four parameter axes con-
structed from the quadratic metamodel (Eq. 2). The fit uses only
the endpoints and the standard case so AGCM values in the
interior constitute independent validation points. Also shown
is the rms error constructed from the linear term of Eq. 2, equiva-
lent to a linear metamodel constructed from the same points and
required to pass through the standard case. For the first two para-
meters shown, gustiness and viscosity, the linear metamodel
works fairly well over the entire parameter range, with the quad-
ratic term a small correction. For the second two, the cloud
albedo parameter and RHconv, the linear fit works over some
neighborhood, but the quadratic terms become important over
the full range. For both these cases, optima occur at or near
the limit of the feasible parameter range, an uncomfortable situa-
tion for the climate modeler that occurs fairly often in our results.
In both cases, positive curvature associated with the linear term is
opposed by negative curvature associated with the quadratic
effects. For RHconv, these actually reverse the curvature of the
objective function, with the striking implication that no interior
minimum can occur.

Mixed-Layer Case and Sensitivity Under Change of CO2.These proper-
ties tend to be inherited in the mixed-layer run, as seen in Fig. 2A
for the case of RHconv. The smoothness of the solution for large-
scale measures and the reasonable fit of the quadratic metamodel
are reproduced, as is the negative curvature of the rms error.

For the case of changes between doubled CO2 and preindus-
trial AGCM-ML runs, we cannot of course show rms error
because no observations are available. To provide a rough sense
of the parameter dependence, Fig. 2B shows rms differences of
the model spatial field at each parameter point relative to the
spatial field at a reference parameter value, here using the cur-
rent climate optimum along the RHconv axis. The metamodel is
the quadratic fit as a function of parameter as in Eq. 2 but to the

spatial field Δϕ ¼ ϕ2× − ϕpre, where ϕ2× and ϕpre are 250-y
averages from the doubled CO2 and preindustrial cases, respec-
tively, and the two-standard error range is estimated from ten
25-y intervals. Again the rms difference evolves smoothly,
exhibiting substantial nonlinearity that is well fit by the quadratic
metamodel.

Fig. 3 shows the linear and quadratic contributions of the me-
tamodel (Eq. 2) in the RHconv direction (fit from endpoints only)
for the AGCM-ML preindustrial CO2 case. The spatial pattern is
that of the coefficients ai, bii, and the magnitude is given at para-
meter endpoint μimax (i.e., at RHconv ¼ 0.9 relative to standard
value). The sum of the two fields gives the precipitation change
from the standard case at μimax. Both the linear sensitivity and
the quadratic nonlinearity are sufficiently strong to produce
substantial modifications of the precipitation pattern across
the parameter range, especially in the tropics where convective
precipitation is the dominant contribution. These spatial patterns
provide a view of where changes are occurring at the regional
scale and of the regional importance of nonlinearity. Analytic
results that further exploit these properties are discussed below.

Fig. 4 shows corresponding linear and quadratic contributions
to the parameter sensitivity of the precipitation change under
CO2 doubling. The strength of the sensitivity is comparable to
the magnitudes of seasonal precipitation differences in the tro-
pics seen across a multimodel ensemble in the Coupled Model
Intercomparison Project 3 archive (e.g., refs. 14 and 15). The
substantial differences in the pattern of change predicted under
global warming are here seen in a single model, occurring rela-
tively smoothly under parameter variations. A key feature is the
importance of the nonlinear term, which is overall of comparable
importance to the linear term and can exceed it in particular
regions.

Analytic Approximations and Regional Contributions
Climate model output comes in the form of high-dimensional
vector fields, but these fields are easily interpreted by a climate
modeler as geographic information. It can thus be highly advan-
tageous to have analytic solutions that present aspects of the
optimization problem in this form. A common class of question
is the difference between an optimization based on a regional
spatial average, as opposed to the global average. Analytic ap-
proximations to the optimization based on the metamodel permit
examination of such differences. Recall that the quadratic fit
(Eq. 2) to the AGCM field ϕ gives rms or square-error objective

Convective rel. hum. param.

rm
s 

di
ffe

re
nc

e 
 (

m
m

/d
ay

) 

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

rm
s 

er
ro

r 
(m

m
/d

ay
)

2.8

2.6

2.4

2.2

2.0

Convective rel. hum. param.
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

BA

JJA JJA
AGCM ens mean
Quadratic metamodel
Linear metamodel

AGCM ens mean
Quadratic metamodel
Linear metamodel

Fig. 2. (A) Root-mean-square error of ensemble mean June–August (JJA)
precipitation as in Fig. 1D, but for the mixed-layer coupled case, with rms
error reconstructed from linear and quadratic metamodels using endpoints
for the relative humidity parameter. (B) Change JJA precipitation for doubled
CO2 minus preindustrial CO2 runs, shown as rms difference between the
spatial field for each value of RHconv and the case for RHconv ¼ 0.9 (the value
with minimum rms error in the climatology). The vertical size of the symbols
gives the two standard error estimation range.
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Fig. 3. Ensemble-mean measures of June–August precipitation parameter
sensitivity in RHconv for the AGCM-ML, preindustrial CO2 case (A) linear
contribution ai multiplied by μimax to give units of millimeter per day for
a value that would occur at the positive end of the feasible range; (B) quad-
ratic contribution bii , similarly given as biiμ

2
imax in millimeters per day. The

two contributions add to the total difference between μimax and the stan-
dard case, where subscript i denotes RHconv.
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functions f (here omitting subscript k) that have fourth-order
terms in μ. Using square error (which has the same extrema as
rms), expanding in μ about a reference value, here the standard
case, retaining second-order in μ in f , and differentiating yields

∇μf ¼ g þ Aμ; [3]

gi ¼ 2haiϕerri; [4]

Aij ¼ Aji ¼ 2ðhaiaji þ 2hbijϕerriÞ; [5]

where g is the gradient in μ and A the Hessian matrix from the
curvature, both evaluated at the standard case, and ϕerr ¼ ϕstd −
ϕobs is the error of the standard case compared to observations. A
standard quadratic optimization problem (32) minμ f , with con-
straints μimin ≤ μi ≤ μimax would give Aμ ¼ −g for interior solu-
tions that fall within the feasible μ-range, if additional conditions
on the curvature are satisfied. For f associated with seasonal pre-
cipitation, Figs. 1D and 2A showed that the problem is nonconvex
in the RHconv direction, corresponding to A not being positive
semidefinite, when hi is a global average. When a boundary
solution occurs, interior solutions for other variables can be
found with the same Aij and a slight adaptation of g (see SI
Appendix). Thus considerable insight into the optimization
problem can be gleaned from the approximation (Eq. 3) (noting
that this approximation is not used for numerical multiobjective
optimization below, which carries all terms).

The off-diagonal terms in A act to change the orientation of
the basin in which the optimization occurs. Off-diagonal contri-
butions come from both the linear sensitivity via haiaji and from
hbijϕerri. These off-diagonal terms are often small compared to
the diagonal (i.e., parameter pairs often do not interact strongly),
so focusing on the diagonally dominated problem ∂μi f ¼ gi þ Aiiμi
yields a sense of basic behavior. The form of gi is a spatial projec-
tion of the sensitivity ai with the error of the standard case, ϕerr.
Thus regional sensitivity is only effective at yielding a reduction in
error to the extent that the spatial pattern of ai matches the error
pattern. For an interior solution, if bii is small, the μi optimum
would simply be −haiϕerri∕ha2i i. This expression implies that
the distance moved in μi is a tradeoff between the part of the
sensitivity that projects on the error, and thus can reduce it,
and the part of the sensitivity that is orthogonal to the error (un-
der the inner product corresponding to the average used in the
objective function). When using a global average measure, this
tradeoff has substantial implications for regional errors. Suppose
ai has a large value in a small region that does not project on the

error. The optimization will yield a solution that reduces global
error, at the cost of introducing a large error in that region—a
likely explanation for this common modeling experience.

The linear contribution ha2i i has positive curvature, consistent
with the possibility of having an interior minimum. However the
quadratic term 2hbiiϕerri can reverse this curvature if sufficiently
negative, as in Fig. 2a. Again only the projection on ϕerr matters.
Recall that the quantity acting like an inner product, hi, is typi-
cally a spatial average, but can be user dependent, e.g., a regional
measure instead of a global average. For a quick view of whether
objective functions defined for spatial averages on different re-
gions will tend to have properties similar to the global average
or strongly differing, one can examine maps of the spatial struc-
ture of these contributions such as those shown in Fig. 5. The
quantity ðaiϕerrÞ normalized by the diagonal contribution ha2i i
(Fig. 5A) is proportional to contributions to the objective func-
tion gradient gi in RHconv (at μ ¼ 0). The fact that most points on
the map are negative indicates that optimization using various
regional averages in the objective function will most commonly
yield optima that move in the same, positive direction in
RHconv as occurs when the global average was used. The quantity
2biiϕerr∕ha2i i (Fig. 5B) is the contribution of nonlinearity in the
model field to the diagonal term. The global average of this term
is negative, with magnitude larger than one, so it reverses the cur-
vature. The fact that this term has large negative contributions
almost everywhere indicates that this influence of nonlinear
terms in the RHconv direction tends to hold consistently for regio-
nal averages. For other parameters, regional properties need not
be so consistent with those of the global optimization, for instance
containing regions of opposite sign. Examination of the spatial
patterns in the analytic solution can provide a low-cost way of
identifying such regional issues and can be easier to interpret than
a large number of regional objective functions.

Multiobjective Optimization
The success of the metamodel over the feasible parameter range,
permitting the construction of various objective functions,
facilitates multiobjective optimization, with separate objective
functions for each major climate variable. Repeated optimiza-
tions using standard packages for constrained optimization
(here the Nonlinear Interior point Trust Region Optimization
package, ref. 32) prove quite practical, although advanced multi-
objective techniques (20, 21) could be applied.
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Fig. 6 quantifies the contradiction among objective functions,
i.e., the tradeoffs in optimizing for one variable versus another,
as the location of the optima in parameter space for different
climate variables, illustrating with the June–August season.
The spread of the optima in parameter space is substantial in
two of the parameter directions shown. In the RHconv direction,
the optima all occur at or near the same boundary of the feasible
range. This agreement favors an update of the parameter value,
but the fact that it occurs at the end of the feasible range suggests
careful scrutiny of the physical processes involved in the parame-
terization in this range. The sensitivity to high values of water
vapor in the free troposphere required for convective onset is clo-
sely related to other work pointing to the importance of a moist
environment in the lower troposphere for development of deep
convective plumes (33–38). In the other parameters in Fig. 6,
boundary optima are also common. Boundary optima are like-
wise found in other measures we have examined. In selecting
parameter updates, these boundary optima would tend to be
distrusted to a degree that depends on the climate modeler’s con-
fidence in the parameterization at the end of the range.

The optima in Fig. 6 are a nondominated set, i.e., comparing
the objective functions f k between any two optima, one cannot
improve one f k without making others worse. Additional infor-
mation about the tradeoffs among optima are provided by con-
structing from the proxy the set of values of f k when each is at its
own optimum (the ideal objective vector or utopia point) (19, 22).
These values provide a useful normalization for the objective
function f k. Examining normalized f k at each of the other optima
indicates that some tradeoffs are only a few percent worse than
the optimum value and highlights certain others. For instance, a
significant tradeoff in this model involves land surface tempera-
ture, which is roughly 30% off its optimum value at the optima for
precipitation, vertical velocity, and low-level wind.

Also shown in Fig. 6 is a comparison of a metamodel based on
order-N climate model evaluations versus a procedure that uses
order N2. The cheaper order-N procedure, using the approxima-
tion that parameters do not interact strongly in the quadratic
terms, works well enough for most variables that examination
of the properties would be useful prior to investing in the addi-
tional runs, and could guide the choice of these.

Discussion
Examination of the properties of a climate model parameter de-
pendence suggests that simple strategies for creating metamodels
can provide considerable utility. The relative smoothness in
parameter space of large-scale measures of model climatological
error and of corresponding sensitivity under greenhouse forcing

—even for notoriously nonlinear quantities such as precipitation
—is good news for many optimization or sensitivity estimation
strategies. Departures from smooth behavior may be anticipated,
so it is encouraging that useful results can be obtained by adapt-
ing entry-level methods from different areas; extensions to deal
with potential complications exist in each.

Spatial Field Metamodel Benefits and Applicability. Fitting a meta-
model, here quadratic, to spatial and seasonal fields of climate
model statistics as a function of parameter yields several desirable
properties. One is not locked into a particular objective function
or set of objective functions from the outset. From a sufficient set
of climate model runs, different users can evaluate metamodels
for various fields and derive user-dependent objective functions.
Furthermore, linearity versus nonlinearity in the fields themselves
is very much of interest for evaluation of strategies like multi-
model ensemble averages. The linear terms in the metamodel
yield quadratic contributions in typical objective functions, which
can be directly compared to contributions of nonlinear terms. For
further insight into the occurrence of smoothness, consider the
contrast to linearization of a climate model about a known tra-
jectory or stationary point. Although parameterizations, notably
for precipitation, have locally strong nonlinearities, large internal
variability tends to have a smoothing effect on the statistics typi-
cally used in objective functions. There may well exist quantities
from the same climate simulations that would not have smooth
parameter dependence. The quality of the metamodel fit is best
evaluated for objective functions based on regional or large-scale
averages, rather than at the climate model grid scale, to avoid
distracting exceptions that do not affect the larger picture.

Implications for Optimization Strategy.Despite relative smoothness
of large-scale measures, nonlinearity can be important over the
range of certain parameters for quantities like precipitation. In a
parameter affecting the relative humidity associated with deep
convection, nonlinear terms are large enough to reverse the cur-
vature of the rms error objective function for seasonal precipita-
tion climatology. This curvature reversal yields a sharp minimum
in the objective function at the boundary of the feasible range.
Nonlinearity contributes to occurrence of boundary optima in
other parameters and quantities as well. For the climate model
setup of the constrained optimization problem, optima on the
boundary typically imply a solution at the limit of permissible
values. Rather than blind numerical optimization of a weighted
sum, a preferable use of multiobjective information is to supply
feedback to the modeler on key tradeoffs and parameterization
ranges, and on physical processes for which further scrutiny and
development is likely to yield bias reduction.

Analytic results show clearly how large sensitivity does not
necessarily lead to reduction in model error relative to an a priori
standard parameter setting. When the sensitivity is dominated by
linear terms, interior optima come from a tradeoff between the
part of the sensitivity that projects on the error spatial pattern and
the part that does not, which tends to create new errors in sensi-
tive regions when a global objective function is used. Nonlinear
terms likewise enter the optimization at leading order through
their projection on the error spatial pattern.

Overall, these methods contribute to a language of assessing
and reporting parameter tuning, compactly quantifying the dilem-
mas. For the question of robustness versus sensitivity in climate
models, the results highlight the contribution of having more
processes and spatial degrees of freedom exhibiting substantial
sensitivity than constraints upon these.

Implications for Multimodel Ensemble Mean and Model Intercompar-
ison.Nonlinearity of parameter dependence has a particularly im-
portant role in the sensitivity of precipitation under greenhouse
gas increases. In the face of strong model disagreement, current
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practice is to base projections on multimodel ensemble means.
The magnitude and spatial distribution of the parameter sensitiv-
ity of doubled-CO2 precipitation changes seen here suggests that
parameter dependence within a single model can provide a
useful prototype for thinking about a multimodel ensemble.
The analogue of the multimodel ensemble would be an ensemble
of randomly chosen parameter values within the feasible range.
First, consider a case where a certain parameter setting repre-
sents the true system and the model ensemble consists of para-
meter values randomly distributed about this true value without
bias, i.e., the expected value of the parameter settings is the cor-
rect value. In this excessively optimistic scenario, would a multi-
model ensemble average give an accurate estimate of the true
precipitation change? The multimodel average of the linear con-
tributions to the parameter sensitivity would indeed have an ex-
pected value of zero—but this error calculation would not hold
for the nonlinear contributions. The size of the nonlinearity
found here suggests this effect is likely to be a substantial issue.
Furthermore, the common occurrence of the best match of cur-
rent climate simulations to observations at the end of the a priori
parameter range suggests that a model ensemble whose para-
meters are symmetrically distributed through such a range is
likely to be biased.

The simple strategy for simulations used here is close to com-
mon modeling practice while providing an economical means of

extracting more information. A recent extraordinary effort (5),
investigating sensitivity for 10 parameters, invested on the order
of 104 simulations—a quadratic metamodel could be estimated
with less than 100 (see SI Appendix) making such estimations
more widely feasible. The approach could thus form the basis
for a Sensitivity Model Intercomparison Project (SensMIP) in
which different models would provide a comparable sampling
of their respective most dangerous parameter set. SensMIP ques-
tions would include whether the space of possible regional cli-
mate change patterns spanned by each model’s feasible range
compares to that spanned by the set of models at their standard
values, the degree of nonlinearity associated with leading physical
processes that impact these, and whether optimization informa-
tion from the current climate metamodel could help constrain the
range of possibilities for climate change. If so, and if smoothness
properties prove comparable to those here, metamodeling of the
parameter dependence across a set of leading models could yield
more quantitative assessment of regional climate change.
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