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Convective quasi-equilibrium (QE) has for several decades stood as a key postulate for
parametrization of the impacts of moist convection at small scales upon the large-scale
flow. Departures from QE have motivated stochastic convective parametrization, which
in its early stages may be viewed as a sensitivity study. Introducing plausible stochastic
terms to modify the existing convective parametrizations can have substantial impact,
but, as for so many aspects of convective parametrization, the results are sensitive to
details of the assumed processes. We present observational results aimed at helping
to constrain convection schemes, with implications for each of conventional, stochastic or
‘superparametrization’ schemes. The original vision of QE due to Arakawa fares well as a
leading approximation, but with a number of updates. Some, like the imperfect
connection between the boundary layer and the free troposphere, and the importance of
free-tropospheric moisture to buoyancy, are quantitatively important but lie within the
framework of ensemble-average convection slaved to the large scale. Observations of
critical phenomena associated with a continuous phase transition for precipitation as a
function of water vapour and temperature suggest a more substantial revision. While the
system’s attraction to the critical point is predicted by QE, several fundamental
properties of the transition, including high precipitation variance in the critical region,
need to be added to the theory. Long-range correlations imply that this variance does not
reduce quickly under spatial averaging; scaling associated with this spatial averaging has
potential implications for superparametrization. Long tails of the distribution of water
vapour create relatively frequent excursions above criticality with associated strong
precipitation events.
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1. Introduction

(a ) Overview

Moist convection is among the most important of the physical processes occurring
at small scales not resolved at the grid size of climate models, currently on the
order of 100 km in the horizontal. The bulk effects of these small scales must be
parametrized as a function of the large-scale variables. Convective quasi-
equilibrium (QE) postulates that fast removal of buoyancy by moist convective
up/downdraughts at small scales establishes a response of the ensemble mean
convective heating, moisture sink and other properties that maintain statistical
stationarity, balancing the large-scale flow, which is assumed to be slowly varying.
Many variants of the associated closures lie at the heart of the parametrizations of
moist convection in most current climate models, and similar considerations are
relevant to numerical weather prediction models, despite their higher resolution.

Traditional parametrizations represent only the ensemble mean of the small
scales as a deterministic function of a large-scale flow, disregarding fluctuations
arising at the small scales. A sense that small-scale fluctuations are important
motivated the development of stochastic convective parametrizations. The first
generation of stochastic convective parametrizations may be viewed as a
sensitivity study indicating that the impacts can indeed be substantial. However,
stochastic parametrization introduces new parameters and processes; the climate
solution exhibits some of the same dismaying sensitivity to these as it does to the
traditional convective parametrization. Thus it becomes pressing to better
characterize the statistics of convection in a manner that can inform stochastic
convective parametrization and our understanding of convection in general.
Observational work with this aim is the main theme of this paper.

After reviewing issues in QE stochastic convective parametrization in §2, we
present observational results from current projects in §§3 and 4. We argue that
these affirm some aspects of QE, but that some of these results suggest a new
interpretation of QE that may be highly compatible with stochastic convective
parametrization. We then discuss ways in which one might in the future bring
these properties into representations of deep convection, discussing implications
for both stochastic convection schemes and ‘superparametrization’ approaches.

(b ) Convective QE and motivation for stochastic schemes

The original vision of convective QE is articulated in Arakawa & Schubert
(1974): ‘When the time scale of the large-scale forcing, is sufficiently larger than
the [convective] adjustment time,. the cumulus ensemble follows a sequence of
quasi-equilibria with the current large-scale forcing. We call this. the quasi-
equilibrium assumption.’ ‘The adjustment. will be towards an equilibrium
state. characterized by. balance of the cloud and large-scale terms.’
Convection acts to reduce a measure of buoyancy, which in their parametrization
is the cloud work function A (for each of a spectrum of entraining plumes).

The system is slowly driven by large-scale forcing (moisture convergence,
evaporation and radiative cooling) generating conditional instability, while
small-scale convection provides a fast dissipation of buoyancy. Above the onset
threshold, strong convection and precipitation greatly increase, pushing the
system quickly back towards onset values. Thus, a statistical equilibrium tends
Phil. Trans. R. Soc. A (2008)
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Figure 1. (a) Schematic of convective QE as envisioned by Arakawa & Schubert (1974). Adapted
from Arakawa (2004). The line denoted ‘QE curve’ represents the statistical equilibrium towards
which the system is postulated to be adjusted by deep convection, which is posited to act quickly
relative to the large-scale forcing. The thick dashed part of this curve indicates zero buoyancy and
the onset of convection through conditional instability (the solid line at relative humidityZ1
corresponds to large-scale saturation). (b) Precipitation rates (solid curves) averaged over the 512 km
domain from a two-dimensional cloud-resolving model (CRM) in response to an imposed large-scale
forcing with cooling and moistening (dashed curve). A sequence of five different time intervals
responding to repetitions of the same forcing are overlaid. The large variations from one instance to
another, even for these domain averages, are departures from QE. Adapted from Xu et al. (1992).
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to be established among buoyancy-related fields: temperature T and moisture q,
including their vertical structures, are constrained. Arakawa (2004) provided a
schematic, shown here in figure 1a, for the original QE postulate.

There are, however, several issues regarding QE that need to be addressed.
First, using a finite adjustment time scale makes a difference in the behaviour, as
does the value of the adjustment rate or plume closures affecting this (Betts &
Miller 1986; Gregory & Rowntree 1990; Emanuel 1991, 1993; Moorthi & Suarez
1992; Emanuel et al. 1994; Yu & Neelin 1994; Zhang & McFarlane 1995; Pan &
Randall 1998). Furthermore, the ensemble size of deep convective elements in a
typical climate model (order of 100 km) grid box over a 10–30 min time
increment is not large. One should expect variance about the ensemble mean
in such an average. This variance can drive large-scale variability (even more so in
the presence ofmesoscale organization). Another issue relates to complex influences
on vertical structures, such as convectively coupled wave modes (Straub &
Kiladis 2003; Haertel & Kiladis 2004; Tian et al. 2006) discussed in §3. Raymond
(1997) noted a tendency for the atmospheric boundary layer (ABL) to reach
its own form of QE, mostly between surface fluxes and convective downdraughts,
even as the free troposphere is being affected by remote wave dynamics.

Figure 1b shows an example from Xu et al. (1992) that motivated our own
interest in stochastic convection schemes. Different instances of precipitation are
shown from a cloud-resolving model (CRM) averaged over a domain that might
roughly compare with a large-scale model grid (albeit from a two-dimensional
CRM) for a case with shear, promoting mesoscale organization. The following
three features may be noted: (i) Xu et al. (1992) concluded that the similarity
among realizations was sufficient for convection to be parametrizable, (ii) there is
a substantial lag of the onset of rainfall relative to the large-scale forcing,
Phil. Trans. R. Soc. A (2008)
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suggesting that convective processes are not as quickly adjusting as originally
hoped, and (iii) there is much variance among realizations for the same large-
scale forcing—capturing these departures from QE is the motivation for
stochastic parametrizations discussed in §2.

Superparametrization (e.g. Grabowski 2001; Khairoutdinov & Randall 2001;
Randall et al. 2003), in which a few small grid cells of a CRM are embedded within
each large-scale grid point, retains (and potentially exaggerates) fluctuations
associated with small scales. It also aims to address a host of issues such as the
accurate representation of convective plumes and the level of detrainment for
cloud water. We thus also discuss the implications of observations of precipitation
variance for superparametrization.
(c ) Simple considerations in the moisture and thermodynamic equations

For reference, the temperature and moisture equations are provided here,
along with considerations used in subsequent sections,

vtT CV$svCvpðsuÞKKTV
2sCCK ZQc CvpðFRCFTÞ; ð1:1Þ

vtqCV$qvCvpðquÞKKqV
2q ZKQq CvpFq; ð1:2Þ

where dry static energy sZTCf and f is geopotential, with heat capacity at
constant pressure cp absorbed into temperature T, latent heat of condensation
absorbed into specific humidity q and acceleration due to gravity absorbed into
pressure p; v is horizontal wind; Qc is convective heating; KQq is the moisture
sink; FR, FT and Fq are vertical (diffusive for T and q) fluxes of radiation, sensible
heat and moisture, respectively; and u is vertical velocity in pressure
coordinates. KT and Kq are horizontal diffusivities parametrizing small-scale
mixing. CK is conversion to kinetic energy (sometimes neglected in (1.1)).

To provide a thumbnail sketch of how a QE scheme can be implemented,
consider that one has some model of a convective plume that yields a temperature
Tc of the convective element as a function of pressure, and of the large-scaleT and q.
In the simplest case of a plume rising adiabatically from the boundary layer, Tc is
just the moist adiabat; inclusion of entrainment produces a dependence on
environmental T and q in the free troposphere. The buoyancy depends on the
difference TcKT (actually the virtual temperature, including direct effects of
specific humidity on density, but for presentation purposes we omit the details
of this). One suchmeasure is convective available potential energy (CAPE), which
can be written as AZRd

Ð
ðTcKTÞ d ln p, where Rd is the gas constant of dry air

(Emanuel 1994). Arakawa & Schubert (1974) and related schemes used a cloud
work function for a spectrum of entraining plumes with differing Tc.

QE closures typically postulate that a weighted vertical integral measure of
buoyancy is rapidly reduced. The simplest case is typified by the Betts & Miller
(1986, BM) convective adjustment scheme, in which

Qc Z ðTcKT CxÞ=tc; Qq Z ðqcðTÞKqCxÞ=tc; ð1:3Þ
whenever the vertical integrals of these quantities are positive. This scheme
tends to reduce (TcKT ) level by level when moisture exceeds a critical value
qc(T ). In (1.3), BM is shown with a stochastic term, x, to be described later (xZ0
for the standard BM scheme).
Phil. Trans. R. Soc. A (2008)
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Parallels can be seen in the Zhang & McFarlane (1995, ZM) convective scheme
in which the closure assumption MbFhA/tc creates a tendency for CAPE, A, to
be reduced exponentially

vtAC/ZKMbFhðACxÞ=tc; ð1:4Þ
where tc is an assumed convective time scale (Z2 hours); Mb is the updraught
cloud base mass flux; and F is the rate of CAPE removal per unit Mb from a
cloud plume model. A stochastic component x will be defined later; xZ0 for the
standard ZM scheme.

The energy constraint that the vertical mass-weighted integral b$ of convective
heating equals latent heat by moisture loss implies

Q̂c ZQ̂q: ð1:5Þ
If most of the condensed water falls out of the system within the grid box, then
the precipitation will be approximately given by PZQ̂q.

Several points may be noted regarding (1.5). First, in any stochastic term the
convective heating should be matched by a corresponding moisture sink,
respecting (1.5), or it will produce unphysical effects. Second, (1.5) can have
substantial effects within convection schemes; in (1.3), for instance, it implies that
Tc is determined by ½q̂cKq̂CT̂ � (Neelin & Zeng 2000). Third, (1.5) implies that
summing vertical integrals of (1.1) and (1.2) yields an equation (the moist static
energy budget) in which the convective heating does not appear. Thus variations
in the heating do not directly change the sum ðT̂Cq̂Þ. The column water vapour,
wZq̂, also known as precipitable water, will be important in observational
analysis below, where we use the symbol w for consistency with other work.

If QE ties moisture and temperature closely together when convection is
occurring, so that moisture is slaved to T̂ , an approximation used in some
theoretical considerations (e.g. Emanuel et al. 1994), then the moist static energy
equation governs the thermodynamics to a leading approximation. If so,
stochastic variations in convective heating and precipitation would have little
effect on the large-scale dynamics. This indicates the potential importance of
departures from strict versions of QE. Variations in Qc of sufficiently large
amplitude relative to the mean will frequently shut down convection. This
removes any QE constraints until the convection begins again. Smoothly posed
QE schemes tend to operate rather more continuously than observed convection,
so one principal effect of stochastic convection schemes is to intermittently break
the QE constraints. We will argue below that the large ensemble average
envisioned in the original posing of QE is a first approximation, rather than a
constraint applying at short time scales. The intermittent departures from QE
are inherent properties of convection, and it should be possible to set up the
physics of stochastic schemes to include this in a manner that mimics convection.
2. Issues in stochastic deep convective parametrization

(a ) Implementations of stochastic convective parametrization

Given the deterministic convection schemes operating under QE constraints, a
scheme that randomly perturbs the system from QE would be a reasonable first
approach to stochastic parametrization; this was indeed the method used in the
Phil. Trans. R. Soc. A (2008)
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earliest attempts. Buizza et al. (1999), for instance, perturbed all parametrized
quantities using a uniform distribution in order to test the effects of such a
representation of model error on ensemble spread. Yu & Neelin (1994) noted
that noise could support tropical wave variability in a simplified primitive
equation model.

Lin & Neelin (2000), seeking to represent fluctuations in convection arising at
the small scales, such as those seen in figure 1b, introduced stochastic
perturbations to large-scale CAPE in a BM convective parametrization in an
intermediate-complexity atmospheric model. Noise x from a first-order
autoregressive (Markov) process was added to the difference TcKT as in (1.3).
In an alternate stochastic scheme, an empirically estimated precipitation
distribution (lognormal, with separately parametrized probability of zero
precipitation), adjusted at each time step to match the mean of the deterministic
convective scheme, provided stochastic convective heating (Lin & Neelin 2002).

Lin & Neelin (2003) described two stochastic parametrizations implemented
in the National Center for Atmospheric Research Community Climate Model
(CCM3): the CAPE-Mb and vertical structure of heating (VSH) schemes. In
the CAPE-Mb scheme, random variations are introduced to the relation-
ship between cloud base mass flux (Mb) and CAPE. Physically, the random
component may be thought of as grid-scale response to subgrid variability. Thus,
a noise perturbation x is added to CAPE, as in (1.4). The VSH scheme is a first-
cut look at effects of stochastic vertical structure variations, for instance,
corresponding to variation in detrainment levels of convective elements. Noise x is
introduced as a perturbation to temperature at each level, with x̂Z0 to ensure
moist static energy conservation and to contrast with the CAPE-Mb scheme
where ensemble mean heating is directly perturbed.

Majda & Khouider (2002) defined a stochastic model based on small-scale
convective inhibition (CIN) and coupled this model with a prototypical mass-flux
convective parametrization through area fraction for deep convection, boundary-
layer equivalent potential temperature and stratiform mass flux. Inclusion of the
scheme produces eastward propagating convectively coupled waves that
qualitatively resemble observations (Khouider et al. 2003).

Berner et al. (2005), following the suggestion of Palmer (2001), implemented
an additional stochastic forcing on streamfunction based on a cellular automata
model aiming to represent the mesoscale organization of convective systems in
the European Centre for Medium-Range Weather Forecasts (ECMWF)
Integrated Forecasting System (IFS). Madden–Julian oscillation (MJO)-like
variability results, though without a spectral peak. Tompkins & Berner (in press)
implemented a scheme in the ECMWF IFS, applying a uniformly distributed
stochastic input to humidity, which then influences triggering and updraught
humidity in the deterministic convective parametrization. This scheme results in
increased ensemble spread, though less so than the Buizza et al. (1999) scheme.
Combining the two schemes increases prediction skill in mid-latitudes, though
with mixed results in the tropics.

Teixeira & Reynolds (2008) applied a stochastic component to select tendencies
related to the convective parametrization in the Navy Operational Global
Atmospheric Prediction System weather prediction model. The stochastic
component is drawn from a normal distribution and is applied to the tendency
calculated by the deterministic parametrization. This results in significant
Phil. Trans. R. Soc. A (2008)
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ensemble spread in dynamical variables such as 500 hPa geopotential height and
winds. Plant & Craig (2008) drew random values in cloud base mass-flux-related
variables from distributions motivated by statistical mechanics considerations
(Craig & Cohen 2006), and calculated convective tendencies using the
deterministic Kain & Fritsch (1990) cloud model. Tests of the scheme in a
single-columnmodel yield results consistent with mean temperature and humidity
profiles from CRM simulations.

Stochastic convective schemes so far have focused on the thermodynamic
aspects of convection; it is worth noting parallel efforts to parametrize mesoscale
circulations and momentum transport (e.g. Moncrieff & Klinker 1997; Moncrieff &
Liu 2006) or to give subgrid-scale plumes more individual identity (Kuell et al.
2007), directions that may be highly useful to future stochastic parametrization.
(b ) Sensitivity to stochastic parametrization

Just as simulated climate and variability are sensitive to different deterministic
convective schemes (Maloney & Hartmann 2001; Tost et al. 2006), one can expect
corresponding sensitivity to the introduction of the stochastic parametrization
schemes described in §2a. Even the early simple tests of stochastic parametriza-
tion produced substantial effects. Buizza et al. (1999) found improved forecast skill
as a result of the inclusion of a stochastic representation for model error. Lin &
Neelin (2000) found in their perturbations to model CAPE that, depending on the
autocorrelation time, the stochastic scheme improved the simulated probability
distribution of daily mean precipitation in tropical regions. For grid-scale noise at
a 1-day e-folding time scale, the scheme enhanced intraseasonal equatorial
wavenumber-one 850 hPa zonal wind spectra power.

With substantial impacts comes substantial sensitivity, and new parameters
requiring observational constraints. For instance, Lin & Neelin (2000) found their
stochastic CAPE scheme to be sensitive to the autocorrelation time scale of the
input noise, suggesting that time-scale parameters associated with prognostic
convective ormesoscale elementswill need to be quantified in future schemes. Tests
with Lin & Neelin’s (2002) empirical stochastic parametrization showed such
strong interaction of the heating with large-scale dynamics that they concluded
that a stochastic parametrization cannot be calibrated off-line. Rather, comparison
to observations should be done with output from a full model simulation.

The importance of this model feedback can be seen in the intraseasonal
response to stochastic convective schemes. If a deterministic climate model’s
interaction of convection with large-scale dynamics yields damped MJO-like
intraseasonal variability, a stochastic scheme will act to enhance that MJO-
like variability to more closely resemble observations, as in the Lin & Neelin
(2000) example. In contrast, if a deterministic climate model does not have a
clear mode that yields MJO-like variability, the impact of a stochastic scheme
will be less straightforward. As a detailed example, we consider the effects of the
stochastic convective parametrizations of Lin & Neelin (2003), joined to the ZM
convective parametrization (as described in §1c).

Figure 2 shows equatorial precipitation and 850 hPa zonal wind, u850, spectral
power for the CAPE-Mb and VSH schemes of Lin & Neelin (2003), compared to a
CCM3 control run. The format follows figs 4 and 5 of Maloney & Hartmann
(2001), which provides observations and deterministic convection scheme results.
Phil. Trans. R. Soc. A (2008)
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Figure 2. Zonal wavenumber versus period plot of equatorial spectra of (a) control run
precipitation, P, (b) CAPE-Mb scheme precipitation, (c) VSH scheme precipitation, (d ) control
run 850 hPa zonal wind, u 850, (e) CAPE-Mb scheme u 850, and ( f ) VSH scheme u850. The spectra
are shaded above 6 units of 104 (W mK2)2 for precipitation and above 150 (m sK1)2 for u 850. The
spectral estimator has a standard deviation of 10%. See Lin & Neelin (2003) for analysis details.
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While the inclusion of stochastic variance can increase spectral power, it does not
necessarily excite the portion of the wave spectrum corresponding to observed
intraseasonal variability. For instance, in the CAPE-Mb scheme, spectral power
in both u850 and precipitation is shifted to lower frequency westward waves.
Spectral power in u850 increases notably, but precipitation power remains nearly
unchanged. The VSH scheme dramatically increases spectral power in u850 and
precipitation, but it excites a broad range of wave frequencies, both eastward and
westward propagating. Such results suggest that tuning stochastic convective
parametrizations may be as difficult as tuning the deterministic parametrizations
they are meant to improve.

Efforts have been made to constrain the formulation of stochastic parametriza-
tions using arguments from first principles and statistics from CRMs. For instance,
using principles from equilibrium statistical mechanics, for the case of negligible
plume–plume interaction, Craig & Cohen (2006) derived an analytical expression
for the probability distribution of total cloudmass flux over a region. Cohen&Craig
(2006) confirmed these theoretical results using CRM simulations. CRM modelling
by Shutts & Palmer (2007) also confirmed the findings of Craig & Cohen (2006) that
individual cloud mass flux follows a Boltzmann exponential distribution, though
Shutts & Palmer (2007) found a different dependence between the mean and
standard deviation of coarse-grained effective temperature tendencies than that was
predicted by Craig & Cohen (2006).

While CRM studies are valuable, there is a clear need to derive additional
constraints on the stochastic parametrization problem from observations. In the
next section, we discuss results aimed at better characterizing the statistics of
observed convection at short time scales and small space scales.
Phil. Trans. R. Soc. A (2008)
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3. Vertical structure associated with QE

Several studies have indicated that tropical temperature profiles are constrained
towards convective plume temperatures lifted from warm, moist ABL conditions,
approximated by moist adiabats (Xu & Emanuel 1989; Brown & Bretherton
1997) or including entrainment (Kuang & Bretherton 2006), as predicted by QE.
Figure 3a,b shows temperature perturbations from radiosondes at different
pressure levels regressed on their free-tropospheric vertical averages along with
correlations, as well as similar regressions made using an ensemble of reversible
moist adiabats raised from typical tropical surface conditions. Both the monthly
Comprehensive Aerological Reference Dataset (CARDS; Eskridge et al. 1995)
averages and the daily Tropical Ocean Global Atmosphere Coupled Ocean–
Atmosphere Response Experiment (TOGA–COARE) data (Ciesielski et al.
1997) show fairly good agreement with QE predictions (the moist adiabatic
curve) in the free troposphere. The negative deviations aloft are due to
dynamical constraints as discussed in Holloway & Neelin (2007). The departures
from QE expectations in the ABL (consistent with Brown & Bretherton (1997))
may be interpreted in terms of wave dynamics spreading the temperature signal
horizontally from localized convection in the free troposphere, while competing
effects from surface fluxes occur in the ABL. The lower correlations indicating
less vertical coherence at higher time resolution fits with several recent studies
showing that there are more complicated vertical temperature perturbation
structures at these scales associated with tropical wave features (e.g. Straub &
Kiladis 2003; Haertel & Kiladis 2004).

Overall, observations of tropical temperature perturbations such as those in
figure 3a,b show fairly good agreement, especially at larger scales and in the free
troposphere, with the idea of a dominant vertical structure that is not far from
moist adiabatic as hypothesized from QE constraints. Figure 3c (adapted from
C. E. Holloway & J. D. Neelin 2008, unpublished manuscript) shows that
moisture vertical structure, conditionally averaged on precipitation, also varies
most in the free troposphere, whereas there are smaller changes in the ABL.
These profiles are made using 5 years of radiosondes and optical gauge 60 min
precipitation averages at the Nauru Island (0.58 S, 166.98 E) Atmospheric
Radiation Measurement (ARM) Program observation site (Stokes & Schwartz
1994). Figure 3c supports growing evidence in the literature that traditional
convective parametrizations, which tend to emphasize the ABL moist static
energy, are not giving enough weight to the role that lower free-tropospheric
dryness plays in suppressing deep convection (e.g. Parsons et al. 2000; Raymond
2000; Grabowski 2003; Derbyshire et al. 2004). While QE thinking has in
principle always included entrainment (Arakawa & Schubert 1974), more
emphasis must be placed on accurately taking free-tropospheric moisture into
account. Recently there have been increasing efforts to include these processes in
current schemes (e.g. Zhang & Mu 2005; Zhang & Wang 2006).

Analysis of the Nauru ARM sonde data suggests that most of the q variance
associated with w variance occurs in the lower free troposphere above the ABL,
although there is also a small but significant q variance in the ABL associated withw
variance. Figure 4a shows precipitation and entraining CAPE conditionally
averaged on w for the ARM data (C. E. Holloway & J. D. Neelin 2008, unpublished
manuscript). The sharp pickup of precipitation at a high enough value of w agrees
Phil. Trans. R. Soc. A (2008)
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with satellite analyses in Bretherton et al. (2004) and Peters & Neelin (2006). The
entraining CAPE (Brown & Zhang 1997), taken for the positively buoyant part of
the path of lifted 1000 hPa parcels entraining 0.1% of environmental air per hPa (so
that the virtual Tc from §1c includes mixing with T ), also shows a sharp pickup,
which appears to be due to both the moister free troposphere and the slightly higher
ABLmoist static energy associated with larger w. The CIN is always below 6 J kgK1
Phil. Trans. R. Soc. A (2008)
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Figure 5. (a) Pickup of ensemble-average precipitation hP i in each 0.3 mm bin of column water
vapour w for 1 K bins of the vertically averaged tropospheric temperature T̂ . Western Pacific
hPðw;T̂Þi as a function of w for T̂Z269–274 K; lines show power-law fits above criticality of the
form (4.1). (b) The critical value of column water vapour wc at which the onset of strong convection
occurs, as a function of vertically averaged tropospheric temperature T̂ ; dots give the values
determined as in (a), here combined from the tropical west Pacific, east Pacific and Atlantic. The
vertically integrated saturation value of water vapour is also shown. Schematic elements indicate
the pickup in precipitation and the band of high precipitation variance near criticality.
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for these composite profiles, and there is no obvious relationship between CIN and
the precipitation pickup. The three highest CAPE values have average levels of
neutral buoyancy (which would theoretically correspond to cloud-top heights)
approximately 150 hPa instead of below the 450 hPa level for the other bins
(although these values are rather sensitive to choices of mixing profiles and
adiabatic processes). Column water vapour w, which is readily available from
satellites, therefore acts as more than a proxy for conditions conducive to deep
convection; it is associated with both ABL and free-tropospheric contributions to
buoyancy due to entrainment. As figure 4b illustrates,w also has significantly higher
temporal autocorrelations than cloud water and precipitation (as seen in ARM
microwave radiometer (MWR) and optical gauge data), suggesting that it can be
thought of as a relatively slowly varying environmental control variable on which to
compute statistics of sporadically occurring precipitation. Column water is also
potentially useful for convective scheme transition probabilities (or trigger
functions). The ARM MWR data in figure 4a show that probabilities of
precipitation for the next hour, given no current precipitation, increase dramatically
at high values of w.
4. Characteristics of the transition to strong convection

Examining the transition to strong convection at high time resolution, Peters &
Neelin (2006) noted that the statistical properties of precipitating convection
conform to those observed near continuous phase transitions, known as critical
Phil. Trans. R. Soc. A (2008)
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phenomena. The observed properties include a rapid pickup of precipitation,
P, above a critical value of precipitable water, wc. The ensemble average, hP i,
conditioned on w, approaches a power law above criticality

hP iðwÞZ a½ðwKwcÞ=wc�b; if ðwKwcÞO0: ð4:1Þ

This is in contrast to a linear relation assumed in some convective
parametrizations such as (1.3). Here this relationship is seen in figure 5a
with column water vapour and precipitation retrievals (Hilburn & Wentz
2007) from the Tropical Rainfall Measuring Mission Microwave Imager (TMI),
with the added dimension that it is examined for various values of vertical
average tropospheric temperature T̂ from ERA40 reanalysis (Uppala &
coauthors 2005).

Another confirmed expectation from the theory of phase transitions is a peak
in the precipitation variance, s2

P , near wc (figure 6a). These properties are related
to long-range spatial correlations in the critical region, observed as a non-trivial
power-law dependence of the precipitation variance on the spatial averaging
scale (Peters & Neelin 2006), implications of which will be discussed in §5c.
Power-law dependence of fluctuations on averaging scale has been previously
observed in the time domain for CAPE (Yano et al. 2001).

The amplitude a and the critical value wc, in (4.1), are expected to be sensitive
to the details of the processes involved. The exponent b, on the other hand, is
predicted to be robust. This was confirmed observationally: b is comparatively
invariant under changes of ocean basin (Peters & Neelin 2006) or temperature.
While critical values, wc(T ), and amplitudes a(T ) needed to be adjusted for each
value of (vertically averaged) tropospheric temperature in figure 5a, no changes
were made to b. Rescaling the water vapour axis with wc(T ) and the
precipitation axis with a(T ), the curves collapse (figure 6a). The dependence
of the critical value, wc, on tropospheric temperature is shown in figure 5b.
Rather than wc being a constant fraction of saturation, at higher temperature the
transition occurs at greater subsaturation.

Figure 6a is a direct observational assessment of the QE postulate. It shows
the distribution of observed water vapour values (the four upper curves),
conditioned on non-zero precipitation rate. Most notably, the distribution is
clearly peaked in the vicinity of the critical point, with the frequency of observed
occurrences decreasing fast for increasing water vapour values. In other words,
the system spends most of its precipitating time near the transition to
convection, as predicted by QE.

The precipitation variance, shown in figure 6a (the four middle curves), is an
indicator of the susceptibility of the system. A high intrinsic variance (and
therefore susceptibility) near the QE state is expected if the QE state can be
identified with the critical point of a continuous phase transition. The observed
variance peaks near the critical point identified from the order parameter pickup
(ensemble-average precipitation pickup, also shown in figure 6a). In principle,
this could be the result of unresolved variations in water vapour or other
variables, coupled with the fact that precipitation changes most rapidly here.
The theory of critical phenomena, however, suggests high variance to be an
intrinsic property of the system which is not due to insufficient measurement
resolution. Figure 6b shows the event-size distribution for the Nauru ARM site
Phil. Trans. R. Soc. A (2008)
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optical gauge precipitation. The event size is the rain integrated over an event,
defined as consecutive measurements of non-zero rain rate (Peters et al. 2002).
Event size is proportional to the energy released and has clear analogues in other
self-organized critical systems. The scale-free distribution of event sizes is further
evidence of the extreme sensitivity of the system.
5. Prototypes for these observed properties and implications

We use this section to further discuss some of the observed properties in the light
of what is known from simpler prototype models.

(a ) A simple model exhibiting critical phenomena

System-wide self-organization towards critical points of continuous phase
transitions is a well-established field of research in statistical mechanics. In self-
organized critical systems, of which moist convection appears to be an example,
energy-dissipation rates (order parameters such as precipitation) pick up as a
function of energy density (tuning parameters such as column water vapour).
Perhaps the simplest model displaying such behaviour was introduced by Manna
(1991). It is defined on a lattice to which particles are added. A hard-core
repulsion is implemented, such that each site can harbour not more than one
particle. Wherever this local threshold is surpassed, particles topple to randomly
chosen neighbouring sites, where they can induce further topplings, leading to
system-wide avalanches that transport particles to the open boundaries where
they are dissipated.

The overall effect of these dynamics is an attraction to the critical point of
an underlying absorbing-state phase transition (Tang & Bak 1988; Dickman
et al. 1998). These dynamics are best demonstrated using a small system
where finite-size effects are similarly important as they seem to be in the
atmosphere. Figure 7 shows data for a system of 20!20 sites. Although
the model is clearly not a representation of moist convection, it exhibits
properties that can be qualitatively compared with those observed for convection
in figure 6.

A high energy density in the system leads to activity, defined as the density of
unstable sites during avalanches (blue pluses in figure 7a). Activity in turn
reduces the energy density through dissipation at the open boundaries. Since a
new particle is added whenever the system has avalanched into a stable
configuration, it hovers around criticality (turquoise symbols in figure 7a). In the
case of the Manna model, the self-organization towards criticality is so strong
that we need to force the system away from criticality to explore the underlying
phase transition. This is done here by implementing periodic boundaries such
that no self-organization takes place and we can fully control the particle density
(which is now conserved). The critical point is characterized by a divergence of
the system’s susceptibility to perturbations. This is reflected in the peak in the
order parameter variance (pink crosses in figure 7a).

This extreme sensitivity is also expressed by the distribution of avalanche
sizes. Here we count the number of local topplings, starting from the addition of a
particle and ending at a new stable configuration. The probability distribution of
such energy-release events is scale free and reminiscent of event-size distributions
Phil. Trans. R. Soc. A (2008)
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Figure 6. (a) Western Pacific observed characteristics from TMI data as a function of column water
vapour normalized by the critical value wc for each value of T̂ : probability density function of w for
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(b) The precipitation event-size distribution for the Nauru ARM site time series.

J. D. Neelin et al.2594
observed at Nauru, figure 6b, as well as those in the mid-latitudes (Peters et al.
2002). In figure 7b we show the avalanche-size distribution along with its known
exponent; in the thermodynamic limit of infinite system size, the distribution
would follow a power law over an infinite range. The analogy with atmospheric
event-size distributions suggests they can occur even for fixed, slow forcing—in
other words, a scale-free range of precipitation events is associated with the
organization towards the critical point in QE.
(b ) Implications of the exponential tails

In figure 6a it was shown that the distribution of the atmospheric tuning
parameter (the water vapour) has strongly non-Gaussian tails. There is a
Gaussian-like core, but the tails are much better described by exponentials. One
effect of these exponential tails is that we are able to observe the underlying
phase transition. In the Manna model, the distribution is highly Gaussian, with
the result that occurrences drop very rapidly above the critical point in the self
organizing case. To observe the behaviour above criticality, we needed to
introduce periodic boundaries. The question remains how it is possible that the
atmosphere ever fluctuates as far from criticality, or QE, as it does.

A possible answer is provided by tracer dispersion in forced advection–diffusion
problems, in which the tracer probability density distribution can have a Gaussian
core with exponential tails (e.g. Gollub et al. 1991; Majda 1993; Shraiman & Siggia
1994). This can occur, for instance, in the two-dimensional case

vtqCv$VqK k0V
2q Z f ; ð5:1Þ
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with v a non-divergent random flow field, when a large-scale gradient of tracer q is
maintained (Shraiman & Siggia 1994) or when including a forcing f, such as
Gaussian random forcing or resetting q in strips (Pierrehumbert 2000).

There are parallels to this in the vertical integral of the moisture equation (1.2),

vt q̂Ccv$VqCcqV$vKKqV
2q̂ ZKPCE; ð5:2Þ

where P and E denote loss and gain terms due to precipitation and evaporation.
Lower tropospheric advection is important (Parsons et al. 2000), with water
vapour acting at first order like a passive tracer until convection begins.
Evaporation and moisture divergence terms tend to set a large-scale gradient. The
question of whether the complex loss term by precipitation and its feedbacks with
moisture convergence act sufficiently like f in (5.1) to explain the exponential tails
can presumably be answered by analysing models of various degrees of complexity
between (5.1) and full CRM.
(c ) Variance about QE and the superparametrization variance
estimation problem

Superparametrization approaches (Randall et al. 2003) aim to estimate the
statistics for a large-scale model grid cell from an embedded CRM. Computation
time constraints imply that smaller grid cells of this model can cover only a small
fraction of the area of the large-scale model cell—otherwise one would incur
the computational cost of running the CRM globally. The variance scaling in the
critical region has potential implications for this.
Phil. Trans. R. Soc. A (2008)



J. D. Neelin et al.2596
The following back-of-the-envelope argument suggests the likelihood that if the
CRM were to produce the correct variance at the scale of its own grid cells, then
the superparametrization approach would tend to overestimate the variance
appropriate to the larger grid size. Consider coarse graining onto a larger L!L grid
the results, say precipitation, of a CRM run at high resolution over a large domain.
The averaging process reduces the variance. If the precipitation were spatially
uncorrelated (from one high-resolution cell to the next), the precipitation variance
would decrease by the trivial scaling factor LK2. In superparametrization, however,
the averaging will be done over the far smaller number of high-resolution grid cells,
M, that one can afford to run per coarsemodel grid box of sizeLG!LG. The variance
in the uncorrelated case will then decrease by a factor ofMK1 instead of LK2

G , where
LG is measured in units of the fine resolution grid size.

This problem has the potential to be serious. If the CRM grid is 4 km, and
the large-scale model grid is 200 km so that LGZ50, for the uncorrelated case the
variance at the 200 km scale should be a factor of 1/2500 as large as at the 4 km
scale. If only 16 CRMpoints are actually run in that region (assuming they continue
to behave as they would in the fully resolved case), then the variance would decrease
only by a factor 1/16, resulting in a 156-fold overestimate of the variance.

The long-range correlations found in the critical region change this
dramatically. Peters & Neelin (2006) found that while subcritical microwave-
estimated precipitation variance below criticality scales roughly by the trivial
scaling above, in the critical region precipitation variance scales as LK0.46. With
the caveat that this has only been determined within the range from LZ25 to
200 km, we can examine the implications of this non-trivial scaling. For the
example above, variance at the 200 km scale would then be only decreased by a
factor of 50K0.46Z0.17. Using the same scaling for a three-dimensional CRM
with 16 points in the horizontal yields a factor of MK0.46/2Z0.53. The
overestimate is thus only by a factor of three. Similar effects should apply for
a two-dimensional CRM (e.g. figure 1b), although the scaling probably differs.

These examples provide only a very rough illustration of the issue. Many
additional factors can enter: feedbacks between the large scale and the CRM in the
superparametrization may alter the statistics; numerical factors such as excess
diffusivity may affect the CRM variance; and because superparametrization (and
convective parametrization in general) interrupts turbulent cascades between the
plume scale and large scale, more sophisticated treatment may be necessary.
Nonetheless, knowledge of the empirical scaling may aid in assessing such impacts.

A converse of this quick calculation is to consider implications of the spatial
scaling for the fluctuations about QE that one should aim to reproduce at different
model grid sizes. Increasing LG by a factor of 8 in the LK0.46 scaling yields only
a reduction of 0.4 in the variance near critical, and only 0.3 for a factor of 16 in
LG. Thus even on coarse model grids, variance about traditional QE remains
an important effect to capture.
6. Discussion

(a ) Reinterpreting QE

There are a number of important pragmatic issues regarding the implementation
and consequences of convective QE, involving the boundary layer versus the free
Phil. Trans. R. Soc. A (2008)



2597Rethinking convective quasi-equilibrium
troposphere and the temperature and moisture structure. On short time scales,
variations in temperature occur about the deep tropospheric structure charac-
teristic of QE postulates, although at larger time and space scales the free
troposphere tends to match QE expectations. Variations in the vertical structure
of convective heating about that predicted by QE can have substantial impacts in
stochastic schemes. The importance of free tropospheric water vapour places a
premium on representation of entrainment; as a by-product, it makes column
water vapour—for which we have abundant observations—a good indicator of
conditions conducive to convection. While important for revising convective
schemes, the issues of vertical structure are less fundamental to the principle of QE
than are the following considerations, which suggest a reinterpretation of QE.

A number of these features are illustrated in figure 8, which overlays a
schematic of the observed features on the empirically determined critical surface
for column water vapour as a function of temperature from figure 5b. The sharp
pickup in precipitation at a particular set of values of temperature and moisture
corresponds qualitatively to the original QE postulate. Interpreting precipitation
as our observable for strong convection and dissipation of buoyancy and allowing
for the fact that we have expressed our diagram with different temperature- and
moisture-related variables, there is a qualitative correspondence to Arakawa’s
diagram 1a for the original QE postulate.

However, as argued in Peters & Neelin (2006), the empirical properties of the
onset of convection correspond closely to properties of a continuous phase
transition. This implies that the transition associated with QE is inseparable
from a number of important statistical properties.

—The ensemble-average precipitation does not increase linearly with the
distance from criticality. With a functional form like equation (4.1), there
would not be a single convective time scale as in a linear relationship.

—High precipitation variance near criticality (where the system spends much of
its time) is expected even in absence of changes in the large-scale forcing.

—This precipitation variance has a non-trivial scaling under spatial averaging in
the critical region, corresponding to long-range (power-law) spatial correlations.
The variance decreases with spatial averaging much less quickly than for
independent points, so spatial averaging is not very effective at establishing the
large-ensemble average envisioned in the original QE postulate. For instance, a
factor of 64 increases in grid box area yields only a factor of 0.4 in variance.

—These long-range correlations are associated with scale-free critical clusters
reflected in the event sizes in figure 6b and Peters et al. (2002), as well as in the
broad size distributions of mesoscale convective systems (Mapes & Houze 1993;
Houze 2004; Nesbitt et al. 2006; O. Peters et al. 2008, unpublished work).

The transition further exhibits dynamics characteristic of self-organized
criticality as described in §§5 and 4. While the above properties are shared by all
(including equilibrium) critical systems, below we present dynamical aspects
specific to self-organized non-equilibrium critical systems.

—The probability density function for column water vapour exhibits a sharp
drop near critical. This is associated with the sharply increasing sink for water
vapour/buoyancy above criticality.
Phil. Trans. R. Soc. A (2008)
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—For precipitating points, the PDF has a peak below criticality, i.e. the system
spends much of its time close to the critical point, as envisioned under QE.
However, the width of the distribution is substantial. For the approximately
Gaussian core, plus or minus 1 standard deviation covers the region from
roughly 0.8 wc to wc, for points measured at a scale of (25 km)2.

—Above criticality, the PDF for water vapour has an approximately exponential
tail. Relative to a Gaussian, this slow decay above criticality implies relatively
frequent occurrences of high precipitation. This behaviour is commonly
observed in forced advection–diffusion processes.

The high variance near criticality is one of the clearest differences from
convective QE as originally conceived. A large fraction of the precipitation
occurs in the critical region, with another substantial contribution from
the excursions above criticality (approx. 70 and 25%, respectively, for the
observations in §4). It is thus not surprising that QE schemes have tended to be
deficient in precipitation variance, with both temperature and moisture pinned
too close to the postulated equilibrium. These are aspects that stochastic
convective schemes and superparametrization aim to address, and both have the
potential to incorporate information from the observations presented here.

(b ) Conjectures for stochastic convection schemes

Given that conventional aspects of convection schemes are in need of revision
to include such information as the dependence on tropospheric water vapour, and
given the unfortunate sensitivity to the details of implementation in both types
of parametrization, it makes sense to rethink both conventional and stochastic
Phil. Trans. R. Soc. A (2008)
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aspects together. Approaches seeking to constrain the stochastic processes from
observations and CRMs appear promising, along with basic principles such as
care to conserve moist static energy.

The manner in which observations of precipitation, water vapour and
temperature collapse to simple dependences expected from critical phenomena
summarized above is highly suggestive. The fact that some of these properties
occur commonly in simple systems, including lattice models as seen in the
parallels between figures 6 and 7, suggests that we ought to be able to capture
them in our convective schemes. The fact that some properties are universal
implies that they do not provide a test of whether a system contains the correct
physics for convection, but systems that aim to represent the statistics of
convection should include them. It also suggests that systems simpler than fully
resolving convection can be devised that will include some of these properties
that have now been so clearly observed for convection.

One promising approach, adapting lattice models for use at the subgrid scale,
has been initiated (Majda & Khouider 2002; Khouider et al. 2003). While the
specifics of the moist physics based on CIN do not match the observations here,
the approach is adaptable to different physics, whether from meteorology or
other systems (Katsoulakis et al. 2003). The key points of neighbour interactions
at the subgrid scale are included at low computational cost—the challenge is to
accurately implement the complex physics of convection onset into a binary on/
off representation at the convective scale. Empirical evaluation of transition
probabilities should aid in this endeavour.

On the more computationally intensive side of the proposed solutions, these
properties may be approximated in models that attempt to coarsely resolve
convection (Kuang et al. 2005; Pauluis & Garner 2006; Knutson et al. 2007), and
this should be investigated. Checking these properties in CRMs will also help to
isolate the physics, in particular whether the plume scale is sufficient or cloud
microphysics, such as aggregation and fallout processes, is involved. There is reason
to believe that the network of superparametrization CRM points envisioned by
Randall et al. (2003) should be able to capture some aspects of the long-range
correlation seen in the observations, and it is posited that the long-range correla-
tions should help with the issue of correctly estimating grid-scale variance from a
small sample of points. Examination of superparametrization strategies to
determine whether they can yield the same exponents as a full grid will be of interest.

Between these two approaches in terms of computational intensity, there is
room for schemes similar to recent stochastic approaches, adapting convective
plume models akin to those from conventional parametrizations, but including
stochastic representations of the subgrid-scale fluctuations. Conjectures based on
the observational results here suggest that carrying water vapour at slightly
higher resolution than the wind field to interact with parametrized convective
plumes might aid in capturing the exponential tail of the water vapour
distribution above criticality.

An appealing conjecture for such next generation schemes comes from analogy
with certain other systems exhibiting critical phenomena. Conventional parame-
trizations are the equivalent ofmean field theory in that individual elements interact
only with the large-scale mean.While mean field theory can approximate the pickup
of an order parameter in a phase transition, albeit with incorrect exponent, its
usefulness is often limited (e.g. Yeomans 1992) by non-negligible effects of
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fluctuations. The mesoscale literature already provides a list of positive near-
neighbour feedbacks (e.g. Mapes (1993), Redelsperger et al. (2000), Tompkins
(2001), Houze (2004), Moncrieff & Liu (2006) and references therein), including:
uplift by cold pools; mesoscale surface-flux enhancement; seeding from mesoscale
anvils; andwater vapour increases in the vicinity of previous plumes by detrainment,
rain re-evaporation or baroclinic wave convergence. Inclusion of interaction among
subgrid-scale plumes may thus be a key to capturing the phenomena noted here.
Fortunately, the long-range correlations imply that the exact details of the physics
should not be necessary to obtain the properties of §6a, opening the door to
parametrizations that approximate these interactions cheaply.
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