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ABSTRACT

A modified shallow water mode! with simplified mixed layer dynamics and a sea surface temperature (SST)
equation is employed to gain a theoretical understanding of the modes and mechanisms of coupled air-sea
interaction in the tropics. Approximations suggested by a scaling analysis are used to obtain analytic results for
the eigenmodes of the system. A slow time scale, unstable eigenmode associated with the time derivative of the
SST equation is suggested to be important in giving rise to interannual oscillations. This slow SST mode is not
necessarily linked to conventional equatorial oceanic wave modes. A useful limit of this mode is explored in
which the wave speed of uncoupled oceanic wave modes is fast compared to the time scales that arise from the
coupling. This is referred to as the fast-wave limit, The dispersion relationship in this limit is used to present a
number of coupled feedback mechanisms, which contribute simultaneously to the instability of the SST mode.

It is suggested that interannual oscillations observed in a hybrid coupled general circulation model (HGCM)
are related to the slow SST mode. A method of testing applicability of the fast-wave limit in any coupled model
through distorted physics experiments is presented. Such experiments with the HGCM are employed to dem-
onstrate that the fast-wave limit is quite a good approximation for interannual oscillations at moderate coupling.
It is shown that the time delay associated with oceanic wave propagation across the basin is not essential to the
existence of interannual coupled oscillations.

Asymptotic expressions are also derived for the eigenvalues of coupled Rossby and Kelvin wave modes in
the simple model. The manner in which various coupling mechanisms affect the stability of these modes is
discussed and the results are used to explain the behavior of a secondary bifurcation found in the HGCM in
terms of coupled Kelvin wave instability. For coupled Rossby and Kelvin modes, various coupling mechanisms
oppose one another, suggesting that instability of these modes will be less robust to changes of model parameters

and basic state than that of the SST mode, in which all coupling mechanisms tend to give growth.

1. Introduction

The interpretation of behavior found by numerical
integration in a general circulation model (GCM) al-
ways presents difficulties due to the number and com-
plexity of the processes involved. The approach taken
here is to construct the minimum model with which
some theoretical understanding may be gained of the
phenomena observed in more complicated coupled
models. Pioneering studies of El Nifio, such as Cane
and Zebiak (1985), Zebiak and Cane (1987), Schopf
and Suarez (1988), Philander et al. (1984) and Hirst
(1988), have been carried out with modified shallow
water models and so a model of this class is employed.
Because the space of potentially important parameters
is fairly large even in this simplified model, analytic
results are preferred over numerical ones and the model
is constructed and scaled in such a way as to permit
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this. In particular, some degree of independence from
the exact formulation of the atmospheric model is
sought, albeit at the expense of some idealization.
The analytic, asymptotic results obtained from the
simple model depend on a number of assumptions,
not all of which will necessarily hold in a coupled sys-
tem of full complexity. They are presented to provide
a conceptual framework in which to discuss the mech-
anisms contributing to interannual oscillations. As a
concrete demonstration of their utility, they are applied
to understanding the results of a more complex model.
This other model is a hybrid coupled general circulation
model for El Nifio studies, described in Neelin (1990,
N hereafter). The model consists of an ocean general
circulation model in an idealized Pacific Ocean basin,
coupled to a two-level, steady-state atmospheric model
with parameterized moist processes. The combination
of an ocean GCM with a simpler steady atmospheric
model is referred to as a hybrid coupled GCM or
HGCM. The choice of coupling to a steady atmospheric
model permits the examination of a deterministic cou-
pled system unperturbed by atmospheric variability,
which nonetheless has the full nonlinearity of an ocean
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GCM. As described in N, interannual oscillations are
found in the HGCM which resemble the El Nifio-
Southern oscillation (ENSO) cycle in a number of
ways. Equatorially trapped coupled oscillations of three
to four year period arise as a Hopf bifurcation as pa-
rameters affecting the coupling or the climatology are
changed. Factors tending to favor instability include a
reduction of the climatological upwelling, an increase
of the atmospheric model wind stress response to sea
surface temperature (SST) anomalies or an increase
in the near-surface vertical temperature gradient along
the equator. At higher coupling, a secondary bifurca-
tion occurs, giving rise to additional five to six month
oscillations which complicate the time evolution of the
coupled system. The results from the simple model are
employed to explain the mechanisms giving rise to
these bifurcations.

A question of importance to tropical coupled mod-
eling is whether the lag time associated with uncoupled
oceanic mode transit times across the basin is essential
to interannual coupled oscillations. This hypothesis was
formulated as a simple delayed oscillator model by
Schopf and Suarez (1987) to provide an analog to
modified shallow water model results. A similar model
in a slightly different parameter range has been shown
by Battisti and Hirst ( 1988) to account reasonably well
for the oscillation found in the Cane and Zebiak model.
The simple model presented here is employed to sug-
gest that in some parameter regimes, the wave transit
time is not important, and a useful idealization of a
mode independent from the oceanic wave modes is
given. Perhaps most importantly, a distorted physics
method for testing these theoretical results in any
primitive equation or shallow water model is put for-
ward. Such distorted physics experiments are presented
with the primitive-equation HGCM to obtain definitive
results on the question of whether wave time scales are
essential to the existence of interannual oscillations.

The simple model is presented in section 2 and a
scaling analysis is carried out in section 3 to suggest
small parameters that may be useful in generating ap-
proximations. A case of particular note is referred to
as the “fast-wave” limit, since it occurs when the equa-
torial wave speed is sufficiently fast compared to time
scales of advection and coupling that the ocean comes
into dynamic adjustment quickly compared to the ef-
fects of coupling. In section 4, asymptotic results for
eigenvalues are obtained by an expansion in small pa-
rameters both for coupled Kelvin and Rossby waves
and for the SST mode. Section 5 focuses on dimen-
sional results for the SST mode in the fast-wave limit
and distorted physics experiments to test the applica-
bility of this limit in the HGCM are presented in section
6. Because the results of these two sections may be of
particular interest to some readers, the sections are
structured such that it is possible to skip directly from
section 2 to section 5, omitting the detailed analysis of
sections 3 and 4.
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One of the main conclusions drawn from the be-
havior of the HGCM in N, and its relationship to be-
havior found in larger coupled GCMs, is that a range
of flow regimes can occur in the coupled system even
for relatively small changes in parameters. The expe-
riences of the various coupled GCM efforts show that
an understanding of this range of behavior is essential
if one hopes to properly understand the phenomena
and pitfalls which may occur in attempting to model
El Nifio in large and expensive models. The results
obtained here are used to suggest interpretations of
some of the coupled GCM results obtained by other
investigators. However, it is worth prefacing this dis-
cussion from the outset with the caveat that these results
are relevant to a particular subset of flow regimes. The
conclusions of this study are not necessarily in contra-
diction to those of Schopf and Suarez (1987) and Bat-
tisti and Hirst (1988) even though the mechanism pro-
posed here for interannual coupled oscillations is dif-
ferent. Possible links between these cases are suggested
in section 7.

2. The simple model

The ocean component of the simple model is based
on a modified shallow water model with a fixed-depth
mixed-layer. This model is intended to be similar to
that of Zebiak and Cane (1987) and its implementation
by Battisti (1988) in several respects, a choice which
is made partly in the hope of understanding the simi-
larities and differences between that model and the hy-
brid GCM.

The principal, observationally motivated simplifi-
cation employed in the model derives from the fact
that the strongest SST response to upwelling, advection
and thermocline depth anomalies is confined to a fairly
narrow band along the equator for the phenomena
being considered. Both mean and anomalous upwelling
act within a degree or two of the equator and the mean
thermocline is much shallower in this region. Although
meridional advection tends to spread the region of SST
anomaly to a somewhat different extent in different
regions, the SST anomaly can, for purposes of under-
standing, be taken to have fixed meridional structure.
A useful model may thus be obtained by considering
a surface temperature equation for the equatorial band
alone. This equation governs the thermodynamics of
a box whose depth is that of the surface mixed layer,
H,, roughly 40 m, and whose width, L, is characteristic
of the width of the upwelling (although this proves not
to be a very important parameter for this equation in
its present application ). The longitudinal dependence
of this SST anomaly is then multiplied by the assumed
meridional structure of the SST anomaly when it is
passed into the atmospheric model. This approach is
rather different from that of Hirst (1986,1988) in which
a simple parameterization of SST dependence on, for
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instance, thermocline depth is assumed to apply uni-
formly in latitude. ‘

The form of the vertical and meridional differencing
is important since temperatures outside the box are
fixed or parameterized; an upstream advection scheme
ensures suitable behavior. Written for total SST, the
scheme is

w
Hl-l/Z

6,T+ uléxTJr%(w) (T_Tsub)

) |
—%(—w)%(r— Tv) + ex(T—To) =0 (1)

y

where 7T is the temperature of the equatorial surface
box and #(w) = 1, if w > 0, = 0, otherwise, is the
Heaviside function. The Newtonian cooling term rep-
resents all one-dimensional vertical processes—mixing,
sea surface sensible and latent heat fluxes, long and
short wave radiation—which tend to move the system
toward a radiative-convective-mixing equilibrium in
absence of large scale horizontal dynamics in the upper
ocean or atmosphere. T represents the SST value at
the equator which would occur in this state, say, 29°C,
and er is the inverse damping time of these combined
processes. The surface meridional velocity at the
northern boundary of the equatorial box, vy, is as-
sumed to be equal and opposite the value at the south-
ern boundary, and the off-equatorial temperature a
distance L, north of the equator, Ty, is assumed here
to be the same as that south of the equator. The vertical
velocity at the bottom of the mixed layer, w, brings up
subsurface temperatures, 7y, over a characteristic
vertical scale, H,.;,>, which is larger than H, but less
than the thermocline depth which characterizes shallow
water equation dynamics. If one considers a case of
easterly imposed winds of large longitudinal scale pro-
ducing an Ekman-drift meridional circulation with
upwelling along the equator and vy directed poleward,
this equation will decay from arbitrary initial condi-
tions toward an equilibrium temperature that is a
weighted mean of Ty, and Ty,

_ w w
T = Tew T+ €71 +er), (2
(Hl-n/z v 0)/(H1-1/2 T) )

with a decay time [(w/H.12) + er] 7.

For typical climatological values of upwelling, the
decay time associated with the dynamics will be on the
order of a month over much of the basin, whereas that
associated with surface processes will be several times
longer. This results in an equatorial cold tongue that
is closer to subsurface temperatures than to the radia-
tive equilibrium value. For the case of westerly winds
causing downwelling, the vertical advection term does
not act but rather the meridional advection term brings
in off-equatorial temperatures. Typically 7 will not
be that different than 7, so meridional “inwelling”
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simply shuts off the cold tongue. The finite differenced
continuity equation,
Un w
2—=—— 0,1,
L, H, !
implies that for long zonal scales the temperature decay
time scale associated with dynamics will be of the same
order of magnitude in both upwelling and downwelling
cases. :
A parameterization like that of Zebiak and Cane
(1987) is adopted for the effect of vertical displacements
of the thermocline on the subsurface temperature

Tsub = Ts + 'Yh (4)

where T is the characteristic temperature that would
be upwelled from a thermocline undisturbed by dy-
namics, and 4 is the departure of the thermocline depth
from its no-motion value. A deeper thermocline cor-
responds to /4 positive and thus to warmer Ty, with
« on the order of 107! K m™!, Nonlinear modifications
should be included in this equation when considering
large thermocline displacements but estimating the
correct form of the nonlinearity is not straightforward
and the linear relation is sufficient for the present.

This equatorial strip approximation reduces the
temperature equation to a partial differential equation
in longitude and time only. It makes the interaction
with the dynamical equations considerably more trac-
table since only equatorial values of u;, w and 4 are
required. Particularly useful simplifications occur for
the vertical shear component of the flow when a mod-
ified shallow water model with a mixed layer of con-
stant depth is employed, following Cane (1979). The
shallow water system governs the dynamics of a con-
stant-density, reduced-gravity layer representing the
ocean above the thermocline, while the wind stress is
deposited into a shallower, fixed-depth mixed layer and
mixed down into the remainder of the shallow water
layer by interfacial friction representing turbulent
mixing. This differential deposition of wind stress drives
a circulation within the shallow water layer which per-
mits the model to reproduce equatorial upwelling and
qualitative features of the equatorial surface current/
undercurrent dynamics. Denoting the current in the
surface mixed layer by u; and the specified depth of
this layer by H,, the current in the remainder of the
shallow water layer by u, and the mean height of this
layer by H,, with H = H, + H,, the equations may be
written in terms of the vertical mean and vertical dif-
ference current,

Um = (Hyuy + Hauz)/H,

(3)

(5)

H
Ug = (u1~uz)g2,

defined such that

Uy = Ug + Uy,
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and
w = H (9, + 0,0;) + Hi(Oxthm + d,Um)

(6)

Interfacial stress between the ocean layers is assumed
proportional to the difference in current between the
two layers, Tinwerfaciat/ (pH1) = €4(4) — uz) and time de-
rivatives in the equations for the vertical difference
current are neglected relative to this strong damping,
yielding purely local equations in space and time (as
in Cane and Zebiak 1987). The characteristic merid-
ional length scale of this frictionally driven vertical dif-
ference circulation is determined by the damping time
scale of vertical mixing: L, = ¢4/ 8. For the purposes
at hand, the meridional component of the surface
stress, 77, may be neglected since wind perturbations
are predominantly zonal in the coupled oscillations of
interest. With this simplification, the expression for u,
and w;, at the equator are

= wy; + W,,.

Ug = b;)TJ (7)
Wa = (—by + Hlbuax);LH (8)

where b, ~ H,/(H,¢;) and b,, ~ (H,/Ly)b, and 7./
denotes the equatorial value of the zonal component
of the surface stress, 7*. Henceforth, the variables w;
and u, will denote the equatorial values of the vertical
difference currents, since these values are all that are
required in (1). Averaging over a box of width L, would
change the coefficients by factors on the order of unity.
The contribution to vy at the meridional boundaries
of the box in the SST equation is, consistent with the
continuity equation,

o= — Ly p T
4 2H, ” pH'

(9)

In choosing values for the parameters in this Cane
and Zebiak mixed layer, one would like to choose ¢,
and H, such that magnitudes of w, and u, and the
meridional structure would simultaneously match the
ocean GCM. To mimic the meridional extent of the
upwelling region and the strength of the upwelling re-
sponse, a damping ¢, ~ (2 days) ! is required; to obtain
the correct value for u, a value several times smaller
would be needed, especially for westerly stress. The
advection of momentum which is neglected in these
equations can be important and might be better cap-
tured by a model such as Schopfand Cane (1982), but
for present purposes the linearity and simplicity of the
Cane and Zebiak formulation is ideal.

The vertical mean of the momentum equations for
the two layers, together with the continuity equation
for the shallow water layer are
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1
Oty — JO + g0h = — 17

oH (10)
O, + fit,, + g0, =0 (11)
3.8h + c,* (Ot + O,0,,) = 0. (12)

The stress at the bottom of the shallow water layer has
been neglected; damping due to this effect could be
included but is weak since vertical mixing drops off
sharply below the thermocline. The meridional com-
ponent of the surface stress has also been dropped as
in (7) and (8). The gravity wave phase speed, c,, is
usually chosen to match that of the first or second ver-
tical mode for reasonable thermal structure. Depending
upon assumptions regarding the vertical profiles of
temperature and momentum deposition, c,?/g need
not be identical to H in (10) when tuning to a vertically
continuous model. Loss of heat content by vertical
mixing and surface heat transfer is very slow and has
been neglected.
The atmospheric model may be written

1 X
7 = AT
T (T, y)

(13)
where A is a linear but nonlocal function of the T field
over the entire basin and of the assumed meridional
structure; A might be, for example, a Matsuno-Gill
model (Matsuno 1966; Gill 1980) with heating pro-
portional to SST, a Lindzen-Nigam (1987) model or
a linearized version of the Neelin-Held (1987 )-Neelin
(1988) model, all of which are closely related to a first
approximation (Neelin 1989).

The model given by (1), (3), (6)-(13) and a non-
linear version of (4) could be numerically integrated
in a basin with the usual boundary conditions in the
shallow water equations. It contains essentially the
same physics as the Zebiak and Cane (1987) model,
albeit stripped down to facilitate derivation of analytic
asymptotic results.

3. Scaling arguments

One may now consider scaling arguments for this
simple but representative coupled system. For a heu-
ristic derivation in dimensional form of the SST mode
results in the fast-wave limit, the reader may proceed
directly to section 5. It is conventional to nondimen-
sionalize the shallow water equations on an equatorial
B-plane using the equatorial radius of deformation Lp
= (¢,/B)""* ~ 3 X 10° m as a length scale and Azp
= (Bc,) /% ~ 1.5 days as a time scale where ¢, is the
oceanic gravity wave speed. For motions of basin scale
in the Pacific, this scaling would exaggerate the scale
separation between the time scale of oceanic adjust-
ment by equatorial waves and the time scale of tem-
perature change by advection because the radius of de-
formation in the ocean is an order of magnitude smaller
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than the zonal basin scale. To take this into account,
a different length scale, L,, is used for the zonal deriv-
atives and the quantity

o = Lp/L« (14)

is introduced as the ratio between these. For basin scale
motions the suitable time scale is

At = 8,7 'Atp = L,/ c,, (15)

the time scale of wave propagation across the basin.
The scale of the meridional velocity is also a factor of
4; smaller than the conventional scaling, reflecting the
small meridional velocities characteristic of equatorial
long waves. The conventional scaling is recovered by
setting 6; = 1. The thermocline depth perturbations
are scaled in the conventional manner by ¢,?/g.

As a temperature scale, one can choose AT = (T
— Ty), or similar quantity to measure the magnitude
of temperature anomalies which can be generated by
upwelling, or, in a case where longitudinal temperature
gradients in a basic state are more important, AT
= L8, T|. The zonal wind stress from the atmospheric
model for a given temperature perturbation field,
A(T', y), is expressed in units of acceleration as it
acts on the shallow water layer. When A is scaled to
have an order unity response to an order unity tem-
perature perturbation, the coefficient for the magnitude
of the atmospheric response per degree of temperature
perturbation will be denoted 4. An important scale in
the coupled system is thus AA7—a measure of the
magnitude of the wind stress acceleration on the shal-
low water layer which can be generated by the feedback
of advectively induced temperature perturbations
through the atmospheric model.

Nondimensionalizing according to these scales
yields:

s, — y*oh + 0 h* = (;—D AXT*, 6,¥*) (16)
L

0,20+ 0% + y*uk + 3ysh* = 0
at‘h* + 6x:u;",, + ay.v;",, =0

(17)

(18)

where starred variables are nondimensionalized and
ép = AtpAAT/c, (19)

is a small nondimensional number measuring the ratio
of the conventional equatorial beta-plane adjustment
time scale to the time scale of acceleration of currents
in the shallow water layer by stress anomalies produced
by coupling. In (16) the quantity é;, which arose on
the lhs, has been divided through to the rhs of the
equation where it corrects 6p for the asymmetry in
zonal and meridional scales. In (17) when &, is small
the time derivative of v,, drops out and the equatorial
long wave approximation is obtained. In the uncoupled
system, this approximation would be the only conse-
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quence of the anisotropic scaling, but in presence of
coupling the correction to 8, by 6, is important. It may
also be noted that, even if meridional wind stress
anomalies had been retained and assumed to have the
same magnitude as the zonal component, they would
be multiplied by 8, rather than 65/, , indicating their
lesser importance.

The quantity 8, = L,/ L is the ratio of the atmo-
spheric radius of deformation to the oceanic radius of
deformation. It appears in (16) because Lp has been
used to nondimensionalize y, while L, characterizes
the meridional length scale of the atmospheric response
to temperature anomalies.

Turning to the vertical difference current, V,, driven
by the vertical profile of the deposition of wind stress,
the meridional length scale of the Ekman upwelling
zone, L;, is almost the same as the radius of defor-
mation, Lp, so it is not necessary for present purposes
to introduce an additional meridional length scale (al-
though caution must be used when taking limits which
change Lp). A suitable scale for the nondimensional-
ization of u,is AtzAAT with At; ~ b, being the effective
vertical mixing time scale relating the wind stress ac-
celeration to u,. The same scale applies to vy, while
the vertical component, w,is further scaled by a factor
of H,/Lp. A useful nondimensional parameter is the
ratio of the conventional beta-plane time scale, Aip
= (Lp/c,), to the time scale of vertical advection by
perturbation upwelling

H, -1
0a = (LD/CO)/(Alde-AAT/Hl)

= At AAT/c,. (20)

The corresponding ratio for zonal advection by per-
turbation currents, u,, is smaller by a factor of ;. No-
tice that, after rearrangement in (20), this parameter,
which measures the coupling of vertical difference cur-
rents, is analagous to §p, which measures the coupling
of the vertical mean currents. '
A similar nondimensional quantity, é., may be de-
fined for the climatology as the ratio of Atz to the time
scale of vertical advection by climatological upwelling,
(W/H,,,5)"", where Wis a representative value of w.
Climatological quantities, denoted by overbars, are not
divided into V; and V,, components. Scaling the cli-
matological zonal current, i, as L,W/H,.,,> (300 cm
day™! yields 1.1 m s™'), the corresponding ratio for
zonal advection by climatological currents is also 6.
The climatological advection time scale is also used to
nondimensionalize the radiative—convective-mixing
damping time scale, e, although this is slower than

" the advection time scale.

For the sake of definiteness in presentation, a lin-
earization of the simple model temperature equation
about an upwelling mean state, w > 0, is considered
since this is the most relevant case. Similar scaling ar-
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guments would apply more generally. The basic state
vertical and horizontal temperature gradients are de-
noted 7, and 7,. Denoting perturbation quantities by
primes, the specific temperature equation under con-
sideration is thus:

— ) - - =
OeT*' + 0uf'TY + 61 wE'TY +up/TY +wi/'T¥
L
60 =% %* ! 60 %k t 4 * kD KT
+ U7 0 T* + = W¥(T* — HY¥vy*h*')
73 oL

dc
+ 6—e’;T*' =0 (21)

L

where T, and vy have been nondimensionalized by
AT/H, and T, by AT/L,; H* = (c,%/g)/H,. The
time derivative in (21) is scaled exactly as in (16)-
(18) by the time scale of zonal adjustment, Az. As a
result, factors of 6,! correct several of the terms for
the anisotropic scaling, just as on the rhs of (16).

The nondimensionalized vertical difference currents
are given by

ug' = bt A¥(T*) (22)

wi' = (=bk + 8.b} ds) AXT*") (23)
where A, is the equatorial value of A. The superscript
star will henceforth be dropped from the nondimen-
sional quantities.

For AAT = 2 X 1077 m s72, a value which corre-
sponds to stress anomalies of 0.3 dyn cm™ potentially
being produced by the atmospheric model for realizable
SST anomalies, and an oceanic phase speed of 2.5 m
s, one obtains 6, = 1.0 X 1072 « 1. For these same
values, §; = 3.3 X 1072 is almost as small. The largest
zonal length scale under consideration is the basin scale
over 2z, L, = 2.4 X 10°m, so §,~" = 8.0 at largest.
Thus both é,/8; and 6,4/6; are fairly small even for
coupling of realistic magnitude although the latter ap-
proaches order unity at the longest zonal scales. By
reducing the magnitude of the atmospheric model re-
sponse to SST anomalies, or by decreasing the oceanic
adjustment time scale by increasing the oceanic wave
speed, these parameters can both be made arbitrarily
small. A reasonably convincing case can thus be made
for considering at least 65/6; as a small parameter in
obtaining asymptotic expressions for the coupled
modes. On the other hand,

Op
HE i (AAT/g)(Lx/H,) = 0.3
will be treated as potentially being of order one, since
it is both larger and has a different phase speed depen-
dence than the other terms.

The time scale of advection by climatological cur-

rents, (W/H,.,;2)"", is one or two months where up-
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welling is strong. The value of 4, is thus in the range
0.025 to 0.05 and é./6, reaches 0.2 to 0.4 at basin
scales. In most cases, this parameter will not be treated
as small, especially since one does not usually consider
letting the climatology approach zero. It will, however,
prove useful to examine a case where all three of
8c/0r, 6p/6; and 8,4/ 6;, are taken to be small. Taking
the basic state to be fixed, the simplest way to justify
this is in the idealized limit where the ocean is assumed
to adjust quickly compared to all of the coupled-ad-
vective time scales. Specifically, the time scale of
oceanic adjustment across the basin must be short
compared to all of: 1) the time scale of acceleration of
vertical mean currents by the wind stress created by
the coupling, as measured by dp; 2) the time scale of
advection by vertical difference currents due to the
coupled wind stress, as measured by 8,; and 3) the
time scale of advection by climatological currents, as
measured by §.. This limit will be referred to as the
“fast-wave limit” since it assumes that the equatorial
wave speed, ¢,, is sufficiently fast to bring the ocean
into dynamic adjustment rapidly compared to changes
due to coupling and temperature advection.

The present choice of scaling is not unique. For in-
stance, one might consider re-scaling u},, w;,, and A’
by 8p/6; so that the small parameters all occur in the
temperature equation. For nonlinear modeling, this
would be preferable, but for the linear eigenvalue
problem considered here, the results are independent
of such changes.

4. Eigenmodes

Consider the eigenvalue problem obtained from the
linearized system, (16)-(18) and (21)-(23), assuming
a time dependence exp(Ar). Taking all nondimensional
variables to be order unity or less, and dropping the
superscript *, all variables and the eigenvalue are ex-
panded in orders of a small parameter, 6 = dp/0;:

T'=TO £ 57D 4 §27@) 4 ...

A= 2O+ 50D 4 s\D 4 ..., (24)

At zeroth order in 6, the shallow water equations
separate from the temperature equation in the sense
that one obtains a subset of solutions which correspond
exactly to uncoupled modes of the shallow water equa-
tions in both frequency and eigenstructure. These
modes do also include non-zero temperature compo-
nents but these are produced diagnostically from the
temperature equation once the eigenvalue is known.
Coupling (in the sense of modification of the eigen-
value) will occur at next order in é for these conven-
tional modes.

An additional eigenmode arises in this model whose
eigenvalue corresponds to the time derivative in the
temperature equation in the limit of small coupling.
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This will be referred to as the SST mode, although it
may also have large currents and thermocline displace-
ments associated with it. It tends to be more strongly
affected by coupling and will be treated separately from
the coupled ocean wave modes.

a. Coupled Rossby and Kelvin modes

The scaling arguments above suggest that much in-
formation about the behavior of coupled Rossby and
Kelvin waves under reasonably realistic conditions can
be obtained by examining the case of waves which are
weakly coupled in the sense that § is considered small.
In order to obtain simple solutions, a periodic domain
in longitude is used rather than a finite basin. Basic
state parameters are assumed constant in x and time.

Employing the long-wave approximation [i.e.,
dropping the §,29,v,, term in (17)] and writing the
shallow water equation component of the model in
terms of ¢ = u + A gives

d>
)\(F +2 - y2)q+ ikq

d? d . N
=8—-——y—+1}]4 2
a(dyz Y3 ) T (25)
where
g = geM™,  A(T,y) = A(y)Te ™ (26)

and the SST equation is given by the Fourier transform
of (21).

To obtain asymptotic expressions for the modifi-
cation of the conventional oceanic modes by coupling,
consider é = 6p/4; to be small in (25). It is unnecessary
to assume the SST equation terms to be small in this
case, so this limit can always be accessed by turning
down the coupling even if 6./6; and 8,/ 6; may poten-
tially approach O(1). The results in this “low-coupling
limit” thus include the fast-wave limit but do not de-
pend on it, although as the fast-wave limit is ap-
proached, they apply for stronger coupling as well. An-
other limit within the range of validity of these low-

-coupling limit results will also be introduced, which is
roughly the converse of the fast-wave limit in that the
time dependence may be neglected in the SST equation
for specific modes—this will be referred to as the “Phi-
lander limit.” Physically, the low-coupling limit de-
pends on having the wave adjustment time scales suf-
ficiently fast compared to the acceleration time scales
due to the coupled wind stress that the wave modes
maintain their identity to a first approximation. If
dp/ 6, were not small, the wind stress coupling would
strongly modify the oceanic eigenmodes relative to their
structure in the uncoupled case.

Expanding (25) in orders of é yields the usual un-
coupled wave modes at zeroth order
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G =q¥,, n=0,12--- (27)
ik
-
A =1 (28)

where ¥, = e’ /2H, (), H, being the Hermite poly-
nomial of order n. The currents and thermocline per-
turbations associated with each g, are

un(O)(y) = Qn(O) (% ‘)bn - n\bn-—Z)

b O(y) = qn“”(% Yo + nl//n—z)

2n
O ) = {
L (¥) =tk 5
where only even values of n, corresponding to sym-
metric modes are of interest here; n = 0 corresponds
to the Kelvin wave, n = 2 to the first Rossby mode,
and so on. ‘
The SST equation at zeroth order yields

@' ¥n-1 (29)

_ — 0 _
uOT, + w, 0T, - 6—” W Hyyh,©
L

T’(o) = — 6 6
AO 4+ |22+ 2 (—p, + ispbuk) AT,
6[, 6L
I T X
+ 8uby AT + — ik + — er
51, 6L

(30)

where the equatorial value of 4(y), denoted 4,, is a
complex scalar with 0 < arg(4,) < w/2. The complex
phase of 4, represents the zonal phase relation between
wind stress and SST anomalies. If westerly/easterly
anomalies appear in zonal phase with warm/cold water
then arg(4,) is positive real; if westerly/easterly
anomalies appear a quarter wavelength to the west of
warm/cold anomalies, then arg(A,) is positive imagi-
nary. The magnitude and phase of 4, will depend on
k in a manner determined by the particular atmo-
spheric model. The quantities (u,, w,, A.) in (30) de-
note equatorial values of the shallow water equation
variables as these appear in the temperature equation.
Specifically, for the first Rossby mode

1.
%@ = =3¢, p, @ = g, © O = _ 3 ikg,©
(31)
and for the Kelvin mode

1 .
1@ = B =20, w® = iku,©. (32)

The perturbation to the eigenvalue at next order is
obtained by the Rayleigh-Schrédinger technique just
as for the steady Schrodinger equation (Nayfeh 1973;
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Landau and Lifschitz 1965) with the slight variant that
the perturbation “potential” at this order depends on
the zeroth order eigenvalue. Proceeding by reduction
of order (Bender and Orszag 1978), one puts §¢(3)
= §9(y)n(y). This yields, after cancellation and mul-
tiplication by §©

d d? d
© & | (502 sof 4 _ 4
A [(" ’dy] a (dyz ydy ‘)

X AP)TO + zk (q“”)2

Integrating in y with boundary condltions of decay
at oo, and integrating the first term on the rhs twice
by parts, making use of the properties of ¥,,, gives

(33)

-V2 0)
N P—— ~T 5 (4)
2"n!(2n — 1) , (0
where the convention 0! = 1 is employed and
n—1) [ 4
5= [P A oy, gy, (35)

Because of the e™*/2 dependence of y,,, the details
of the atmospheric model wind stress outside of an
oceanic radius of deformation from the equator will
be unimportant for the gravest oceanic modes. Since
the atmospheric radius of deformation is much larger
than that in the ocean, I, will be given to zeroth order
in §, by taking 4(y) to be constant in y. For the first
Rossby and Kelvin modes, respectively, one has in this
approximation

12=2, ILy=1 (36)

We thus obtain the eigenvalue to first order in
6p/ 6, for the first Rossby mode

A= +— A,
6V2 0. ¢
- k- O _
3iTx—§ T, + iﬁ_ wH,y
XT3 t (37)
——il=w —( —b,, + iké;b,)A.T,
3 6L
- 0 8.
+ 6dAebuTx+ u11k+‘_€T
oL or
and for the Kelvin mode
1 6p
=—ik+-—=—A4,
V2o, "¢
~iT, + kT, +l§ wH y
X 3 . (38)
k+z[5‘ ——( —b, + ikd;b,)A.T,
L
- b,
+ 844, T + =< 11ik + = er
oL oz
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The correspondence of the terms of (37) and (38)
to the SST equation may be seen by referring to (30);
in particular, the terms in the denominator refer to 7'
terms. A large variety of processes affect the stability
of these modes and some mechanisms affect others in
a non-additive manner. If the terms associated with
coupling through w/; and u}; are large, the picture be-
comes complicated, but fortunately, the scaling analysis
suggests that their effects are secondary to the extent
that 8,/6, is small. Dropping these for simplicity, and
redimensionalizing, the dispersion relationships are, for
the first Rossby mode

ok
A=
'3
k. v e,
3T, ~ S H\ T, + i—— 2y
+ 1 A 3 Hl-l/2g (37r)
6V2"°

ko i( . )
- €
: Hl-l/Z g

and for the Kelvin mode

- — w
~iTy+ kH\T, + i —y

24 Hy.png

e —

v—z- cok - ﬁlk + l( id + GT)
Hy

(38%)

The three terms in the numerator in both expressions
arise from u,,Ty, w,, T, and (W/H,.;;2)vh'. For con-
venience, these contributions to the numerator will be
referred to as N1, N2 and N3, respectively, for both
modes. Where necessary, the denominator will be re-
ferred to as D. The first term in the denominator comes
from the frequency of the unperturbed mode; the
expressions have been arranged so that this appears as
a positive real term. It is expected to be the largest term
in the denominator for realistic basic states and dom-
inates as the fast-wave limit is approached, when wave
time scales are faster than advective time scales. The
second term in the denominator Doppler-shifts this
frequency due to temperature advection by the cli-
matological surface current. This can have considerable
effect on the Rossby wave, since the westward surface
current along the equator is not that much slower than
the Rossby wave speed. This current advects the SST
perturbations in the direction of propagation of the
Rossby mode, thus helping to keep the wave and SST
components of the mode in phase for longer and re-
ducing the effective frequency affecting interactions
among the coupling terms in (37’).

The third term of the denominator, (w/H,.;;» + er),
acts as a combined damping term in the SST equation
but has a very different effect on the coupled wave
modes and can greatly alter the stability properties if
it is large. To take an extreme case which exemplifies
this, consider the limit of very large w in both numer-

A= —ic,k +
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ator and denominator. In this case, the SST equation
is effectively reduced to T =~ yh which is a case con-
sidered by Philander et al. (1984) and also explored
by Hirst (1986). The Kelvin wave eigenvalue becomes,
for this case
A= —icok + = 4, (39)
0 VE € g ‘Y
which grows through Re(4,), i.e., to the extent that
wind stress from the atmospheric model is in zonal
phase with the SST perturbation. The Rossby wave is
damped for this case. This limit does not hold for rea-
sonable parameter values, but it serves to point out
that the w term in the denominator can act to favor
certain types of instability through its interaction with
terms in the numerator. The behavior in this limit
contrasts strongly with the behavior when the ¢,k term
dominates the denominator, as occurs when the fast-
wave limit is approached. In the fast-wave limit, for
large ¢,, the Kelvin wave eigenvalue becomes

Wy
Hy., gk
which is damped by the coupling through Im(4,), i.e.,
to the extent that the zonal phase of the wind stress is
in quadrature with the SST perturbation. The Rossby
mode is similarly damped. The same term of the de-
nominator, N3, measuring the effect of thermocline
perturbations, is responsible for both the Kelvin mode
growth in the first case and decay in the second, ac-
cording to how it is influenced by the denominator,
and for the Rossby mode decay in both cases.

To provide a terminology for distinguishing between
these extremes, a slightly generalized version of the
Philander et al. limit of (39) will be considered. The
case where the Doppler-shifted frequency in the de-
nominator of (37') and (38’) can be neglected relative
to the other terms of the denominator will be referred
to as the Philander limit. Physically, this means that
for the particular mode in question, the frequency—
Doppler-shifted by the advection of SST anomalies—
is sufficiently small compared to the damping terms
that the 8,7’ term of the SST equation may be neglected
relative to the other T' terms. Note that even if a par-
ticular mode is reasonably well approximated by the
Philander limit, the limit should not be applied to the
model as a whole because it will never hold true for
the SST mode. Assuming that the effect of the mean
surface currents does not actually reverse the sign of
the Doppler-shifted frequency, the complex phase of
the denominator, arg(D), will be in the range 0 to 7/
2 for the Kelvin wave and —=/2 to 0 for the Rossby
wave. arg (D) =~ 0 occurs as the fast-wave limit is ap-
proached and the Philander limit corresponds to the
+w/2 case. The Philander limit is thus in some sense
the opposite of the fast-wave limit and provides a con-
venient means of referring to different extremes within

. 1 )
A = —ick + zﬁ‘Ae (39)
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the low coupling limit. However, it should be noted
that the fast-wave limit is actually approached in two
stages for these wave modes. The ¢,k term dominates
the denominator for smaller ¢, than is required for the
N3 term to dominate the numerator.

The stability properties of the Rossby and Kelvin
modes for a case with realistic parameters are sum-
marized in Fig. 1. In addition to standard numerical
values used in section 3, the following values have been
assumed: 7,= 0.1 Km™!, 7, = —0.33 X 10 * K m™",
vy=01Km', g=42X102ms2,¢,=25ms™},
W/H,. ;2 = (30 days) ™, #; = -0.4 m s™', k = 4.2
X 107" m™!, e; = (125 days)'. These yield values of
the complex phase of the denominator, arg(D), of 21°
for the Kelvin wave and —71° for the Rossby wave. If
the effect of #, is neglected in the Rossby wave, arg(D)
is reduced to about —49°. In other words the Kelvin
wave is reasonably close to the fast-wave limit, as far
as the denominator is concerned, while the Rossby
wave, because of the effects of Doppler-shifting by the
mean currents, is actually not that far from the gen-
eralized version of the Philander limit. The complex
phase of the atmospheric model, representing the rel-
ative zonal phase of wind stress anomalies and SST
anomalies, is taken to be 60°. This is reasonable for
both the atmospheric model used in the HGCM and
the Gill model, although it is possible to get zonal phase
shifts in the range from about 45° to approaching 90°,
for individual Fourier components, depending on the
parameters chosen.

Figure 1 shows the three terms of the numerator for
each mode, summed graphically in the complex plane
of the numerator. The demi-plane in which the nu-
merator could give instability is shown by shading. It
is rotated by an angle —arg(A,) + arg(D) by the effects
of the complex phase of the atmospheric model and
the denominator. When the sum of the three numerator
terms lies in the shaded area, the coupling tends to
produce instability; this is determined purely by the
model basic state and does not depend on the strength
of the coupling at this level of approximation. However,
this tendency must be large enough to overcome
damping time scales in the ocean model—these have
been omitted from (37') and (38’) for simplicity but
would simply appear additively as long as they are small
compared to ¢,k. A coupling strength on the order of
1077 m s72 K is required before the coupled insta-
bility can overcome a (200 day)~! damping in the
shallow water ocean component of the model.

For the Rossby mode, it may be seen that the
u,, T term, N1, tends to give instability for almost all
reasonable values of arg(4,) and arg(D), assuming 7T,
< 0, as occurs through most of the Pacific. The w},T,
term, N2, favors instability in the case shown, but
would oppose it if arg( D) were smaller. The (w/H).,2)
X «vh' term, N3, strongly opposes instability due to N1
and, in this case, overcomes it so that the net effect of
the coupling is to stabilize the Rossby mode. It would
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a) Rossby mode Im(N)

- Arg(Ag)
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b) Kelvin mode

FIG. 1. Effects of various terms on the stability of the coupled Kelvin and Rossby modes according to the dispersion relations (37’) and
(38’). The three terms of the numerator, N = N1 + N2 + N3, are shown summed in the complex plane. They are associated with the
oy T, Wy T, and (W/H,.,;2)vh' terms of the SST equation, respectively. The demiplane in which these can produce instability is shaded;
it is rotated by the complex arguments of the atmospheric wind stress feedback, arg(A4.), which represents the zonal phase lag between
stress and SST anomalies, and of the denominator, arg(D), which measures the relative effects of the uncoupled frequency versus damp-
ing on the zonal phase of SST anomalies produced by advection. Note T, < 0.

(a) Rossby mode: N1 = 3iTy, N2 = —~VskH\T,, N3 = i(%/Hy.112)(co/ 8)Y. D = (¢,k/3) + th1k — i[(W/H\.1;2) + er.
(b) Kelvin mode: N1 = —iT,, N2 = kH,T,, N3 = i(W/H,.,2)(¢,/8)¥. D = ¢,k — ik + i [((W/H\.y;2) + €T].

not be difficult to find unstable basic states, however.
A reduction in v or an increase in 7, would accomplish
this by reducing N3 or increasing N1. Either of these
would be aided by an increase in arg(A,) (i.e. westerlies
farther to the west of warm SST). Such destabilization
could also be accomplished by decreasing w, although
in this case two opposing effects must be taken into
account. Both the N3 term and arg(D) depend upon
w. While the former strongly opposes instability, the
closeness of this mode to the Philander limit, with large
arg(D), acts to favor instability. Since decreasing w
decreases both of these terms, the net effect on stability
is small, although a sufficient reduction could produce
a weak tendency to instability for the case shown.
For the Kelvin mode, the u},7T, term, N1 tends to
weakly oppose instability. The (w/H,_1,2)vh' term, N3,
acts strongly to oppose instability, as in the Rossby
wave. The w}, T, term, N2, on the other hand, is much
more significant than in the Rossby case and tends to
produce instability. The net result is slightly stable for
the case shown. Here arg(4,) tends to oppose instability
for this mode; instability is favored when the zonal
phase lag between stress and SST anomalies is reduced;
arg(D) again aids instability, although its effects are
small in this case, i.e. the Kelvin wave is closer to the
fast-wave limit than to the Philander limit. However,
as noted in (39), if w were greatly increased, the effects
of increasing arg(D) would cause all terms of the nu-

merator to become destabilizing, especially N3 which
under normal circumstances has the opposite effect.
In other words, all coupled terms tend to destabilize
the Kelvin wave in the Philander limit.

The physical mechanism responsible for destabiliz-
ing the Kelvin wave is vertical advection of the mean
vertical temperature gradient by upwelling anomalies
produced by zonal convergence of u},. Because the fre-
quency of the mode is approximately determined by
the properties of the uncoupled mode, these upwelling
anomalies determine the SST anomaly itself, rather
than the SST tendency. The SST anomalies will tend
to appear in zonal quadrature with the upwelling
anomaly since the uncoupled mode is purely propa-
gating—the advection anomalies may be thought of as
moving at a fixed phase speed, leaving temperature
anomalies in their wake. To the extent that the wind
stress is in zonal phase with the SST anomaly, the cur-
rents produced by this stress will feed back positively
on the upwelling anomaly, producing growth. For the
Rossby mode, the destabilizing tendency is due to zonal
advection of the (negative) mean zonal temperature
gradient by the perturbation zonal velocity. The SST
anomalies are determined by a slightly more compli-
cated balance in this case, since the SST damping term
is significant and must be taken into account along
with the frequency of the uncoupled mode. In the Phi-
lander limit, when the frequency is negligible compared
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to the damping, the SST anomalies have opposite zonal
phase to the advection anomaly to maintain balance
in the SST equation; in the fast-wave limit when the
frequency dominates, the SST anomalies appear in
quadrature, although in the opposite direction to the
Kelvin wave case, since the phase speed is negative.
The realistic case has SST anomalies with intermediate
zonal phase given by arg(D). Physically, arg(D) rep-
resents the difference in zonal phase of the SST anom-
alies in presence of both propagation and damping rel-
ative to the zonal phase due to propagation alone.
When the combined zonal phase shift due to this effect
and the zonal phase of the atmospheric model is 90°,
the wind stress is optimally positioned to feed back
positively on to the currents to give growth by u), .

It may also be seen from Fig. 1 that for most of the
realistic cases, whether stable or unstable, the effect of
coupling is to slow the mode relative to its uncoupled
phase speed. All three terms in the Kelvin wave in Fig.
1b act to produce a positive imaginary correction to
the frequency, which opposes the zeroth order eastward
propagation. For the Rossby wave case shown, the net
effect of the numerator terms is to produce a negative
imaginary, i.e. eastward, correction to the phase speed,
thus slowing the zeroth order propagation. However,
it is possible to find cases where the reverse occurs—
the destabilizing N1 term in the Rossby wave actually
tends to increase the phase speed of the mode due to
the effects of the denominator.

The analytic results given by (37') and (38’) may
be compared with the numerical results of Hirst (1986,
1988) who used a shallow water model without a sur-
face layer, with an SST equation which contains ad-
vection by the shallow water currents ( #,, in the present
notation) and a parameterized tendency for SST to
increase as the thermocline deepens, applied at all lat-
itudes. The latter mechanism corresponds approxi-
mately to the (W/H),. ;2)vh' term of the SST equation
in the present model. Hirst found that the zonal ad-
vection mechanism tends to cause decay of the Kelvin
wave and to destabilize the Rossby wave, while the
Kelvin wave is unstable only in a limit corresponding
to (39). Although his model does not include the ap-
parently important w},, T, term or the #; and w/H,_,,»
terms, the analytic results are consistent with his when
these terms are dropped, and the numerical results
suggest that the asymptotic expressions hold over a very
considerable range of coupling.

The complexity of the parameter dependence evi-
dent in Fig. 1 makes the analytic results particularly
useful, for instance, in deducing the differing roles of
the mean upwelling in both favoring and opposing in-
stability and the dependence of this effect on other pa-
rameters. They prove similarly helpful in explaining
the secondary instability found in the HGCM results.
The second mode of variability, which arises above the
secondary bifurcation in the HGCM, has small merid-
ional velocities and is symmetric about the equator
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with maximum zonal velocity and heat content anom-
alies on the equator and confined near it. Its phase
speed, about 1.5 to 2 m s~! is only a little less than
that of an equatorial Kelvin wave. A natural expla-
nation is the growth and equilibration of unstable cou--
pled Kelvin waves, although there was previously no
known mechanism which could produce these for re-
alistic parameters, nor account for their growth during
the warm phase of the ENSO oscillation. At the same
time, it is of interest to understand why no mode is
seen in the HGCM experiments which looks like a
coupled Rossby wave.

Although the secondary bifurcation in the HGCM
occurs on a periodic solution, the ENSO-period oscil-
lation is sufficiently slow that it may be regarded as
approximately stationary compared to the Kelvin wave
period. Under this two-timing assumption, it suffices
to consider basic state values characterizing warm and
cold phases of the interannual oscillation, respectively,
in the Kelvin wave dispersion relation (38’). It may
be seen that for the reasonably large values of w used
in Fig. 1, the N3 term stabilizes both the Kelvin and
Rossby modes. During the cold phases of the inter-
annual oscillation, increased upwelling further stabi-
lizes both modes. During the warm phases, the up-
welling is greatly reduced across much of the basin
resulting in a great reduction in the N3 term. In the
Rossby mode, arg(D) is also greatly reduced when the
upwelling is small, so the mode remains stable on the
whole. In the Kelvin wave, the effects of arg(D) are
not nearly as important so the reduction of N3 permits
the mode to become unstable due to the effects of N2.
The Kelvin wave instability thus arises from the
w',T, term of the SST equation and is modulated by
the effects of the (w/Hj.;,2)yh' term which tends to
shut it off during the cold phase. In the HGCM, this
effect is enhanced because the effective arg(A4.) is
smaller during the warm phase than under normal
conditions when the nonlinearity tends to shift the at-
mospheric model response to SST anomalies westward
toward the region of warmest water.

These results also suggest that it is not surprising to
find no Rossby wave instability in a system which tends
to give Kelvin wave instability, and vice versa, since
important mechanisms tending to destabilize the one
usually tend to stabilize the other. A potentially im-

_portant exception to this occurs in the case of more

modest upwelling or smaller effect of subsurface tem-
peratures, i.e. a smaller (W/H,_;,»)vh' term. Then both
Rossby and Kelvin modes can simultaneously become
unstable as the Philander limit is approached by re-
ducing the phase speed ¢,. Overall, because of the
competition between opposing terms in the growth rate,
both coupled Kelvin and Rossby wave instability ap-
pear to be quite sensitive to parameter changes. Models
with different basic states and parameterizations may
thus be expected to give differing results. The SST
mode, on the other hand, may be expected to prove
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more robust since all the coupling mechanisms con-
tribute to growth, including the (w/H,.;,2)yh" mech-
anism which tends to stabilize the Kelvin and Rossby
modes.

b. The SST mode

When é = 65/6; < 1, the remaining eigenmode of
the system, the SST mode, has zero u,,, w), and A’
components at zeroth order. These variables appear at
first order since they are of the same order as the wind
stress term. However, the effects of these first order
variables on the SST equation cannot necessarily be
neglected. The SST mode thus tends to be more
strongly affected by coupling than the ocean wave
modes and further assumptions are required to obtain
simple solutions. For instance, if the (w/Hy.(;»)vh'
term is less significant than estimated from the scaling,
1e. if

Oy Bo ¢

aL L
but at least one of 6,/6;, 8./8, or 64 are of O(1), then
the SST mode separates completely from the shallow
water system at zeroth order, yielding

o 8 _ _
)\‘°)=—i(w+er+1ku1)+ibwAeTz—6db,,AeTx

740 = ~b,d TO

70 = b,AT® (40)
and u,® = w,\» = 1,/® = 0. At next order a series
solution may be obtained for the correction to the ei-
genvalue currents and thermocline displacement The
terms w and ez tend to give dampmg in (40) which is
opposed by the w; T, and u; T, growth terms. When
the coupling approaches zero, this mode is one of pure
temperature decay.

However, the scaling analysis suggests that the effects
of subsurface temperature anomalies on the SST equa-
tion are rather important, i.e., one should treat

f— H* % o(1).
or
When this is true, the SST mode then becomes linked
to the shallow water component of the model through
the (W/H\.1,2)vh' term. In general, the SST mode can
be affected by the effects of wave propagation in the
shallow water equations through this linkage, despite
the low-coupling assumption of small §,/6;. While
this case is potentially of considerable interest to the
coupled problem, it appears difficult to treat analyti-
cally. However, a very simple solution may be obtained
which includes the linkage of the SST mode to the
shallow water equations through (W/H,_;,,)v#’, in the
case where all of 6,/6;, 64/6; and 6./6; are small and
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can be treated as O( ). Since these terms measure the
relative time scales of various coupling effects compared
to the time scale of wave propagation across the basin,
this always holds true as the fast-wave limit is ap-
proached, when the time scales of wave propagation
across the basin are small.

In this fast-wave limit case, not only does the SST
equation separate from the shallow water equation at
zeroth order, implying that V,,(®) = 0, but the eigen-
value corresponding to the SST mode is also zero at
this order. The eigenvalue is of order § and is obtained
from the O(6) SST equation, while the O(é) shallow
water equations are simply

—y0, D+ 9,4 = A(T?) (41)
Vi + 3,00 =0 (42)
At + 8,0, = 0. (43)

The solution for (41)-(43) is familiar; the currents

are in Sverdrup balance (Sverdrup 1947) and

8 = (1 = ya,) A(T?, 6,). (44)

The equatorial value of 4", is independent of the me-
ridional structure of the wind stress:

axhe (1) = A(T®). (45)

The wind stress is balanced by the pressure gradient
along the equator in this mode since the ocean has
come into adjustment rapidly compared to the slow
time scale.

The contribution of the vertical mean currents to
the vertical velocity, w,,, is identically zero at this order.
When the atmospheric wind stress varies slowly in y
compared to the oceanic radius of deformation, the
horizontal currents u,, ("’ and v,,"? also become small.
Since

Ostim'") = 8,2 A(T'?, 6,), (46)
advection by u,, belongs to the higher order effects and
may be neglected in the order § temperature equation
when 6,2 < 1.

This limit of the SST mode is thus characterized by
a balance between wind stress and pressure gradients
with very small vertical mean currents (order §,28),
while the temperature and vertical difference currents
are large (order unity). Because the mode in this case
has a slow (order &) time scale of evolution, it may
appropriately be referred to as the slow SST mode in
the fast-wave limit. The propagation characteristics are
determined entirely by the evolution of the temperature
equation, coupled nonlocally through the wind stress
to the frictionally driven vertical difference currents,
and to the temporally-adjusted thermocline pertur-
bations.

The assumption that é./6, and 6,/ 6, are small—i.e.
that the equatorial wave speed, ¢,, is sufficiently fast
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compared to the advection—-coupling time scales that
the ocean comes into dynamic adjustment even in the
zonal direction much more quickly than the SST mode
evolves due to coupling and temperature advection—
is not strictly valid for motions of basin scale in the
Pacific. However, the resulting equations are suffi-
ciently handy that it is worth employing this expansion
as a convenient fiction. This limit of the SST mode
appears to be the simplest available solution which may
be considered as a possible analog of the interannual
oscillation found in some coupled models, such as the
HGCM.

If none of the parameters are assumed small, analytic
solutions become increasingly cumbersome, involving
series expansions of the atmospheric model y-depen-
dence. The SST mode becomes coupled to the long
Rossby and Kelvin oceanic wave modes and the time
scale of wave propagation may potentially become im-
portant in the SST mode eigenvalue. When dp/0. is
taken to be O(1), the wave modes also begin to lose
their identity due to coupling. However, the scaling
suggests that the SST mode for realistic parameters may
be expected to share qualitative characteristics with the
slow SST mode in the fast-wave limit, for which there
is a simple, analytic expression. Thus, it is to the fast-
wave limit that we turn for a qualitative understanding
of the processes giving rise to the instability of the SST
mode.

5. The slow SST mode in the fast-wave limit

The dimensional equations for the SST mode in the
fast-wave limit may be obtained from the scaled equa-
tions of the previous sections, retaining terms to order
5. However, it is worthwhile to restate the derivation
heuristically in dimensional form. The feedback of
temperature anomalies producing wind stress anom-
alies and thus oceanic anomalies, which in turn give
temperature tendencies through anomalous advection,
defines characteristic coupling time scales. If these time
scales are much slower than the time scale of wave
propagation across the basin, then the eigenvalue
problem separates into two classes of modes: the slow
SST mode and the (relatively fast) modified oceanic
modes. Within the SST mode, the ocean dynamics
tends to come into balance quickly on the interannual
time scales over which SST is evolving. In the idealized
limit in which ocean wave modes are made very fast,
the SST mode remains slow and its currents and equa-
torial height field are in Sverdrup balance with the wind
stress. Although this is presented here as an idealization,
McPhadden and Taft (1988) show evidence that this
equatorial balance, (50), holds to a good approxima-
tion on annual and longer time scales in observations.
The relevance of the fast-wave limit to practical situ-
ations is greatly aided by the fact that higher meridional
ocean wave modes, which have slower time scales,
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contribute relatively little to the adjustment of the near-
equatorial fields, and thus to the coupling, compared
to the faster gravest meridional modes.

For the SST equation linearized about a basic state
with mean upwelling, and assuming a time dependence
exp(Ar), the equations for the SST mode in the fast-
wave limit are

AT + wiy T, + :wm.(T' — A hY) + uy T
+ 00T + unTi+ eT" =0 (47)
wg = (—by, + H1b,0x) AT") (48)
ug = b, A(T") (49)
g0xhe = A(T") (50)
Oty = B718,2 AT, y). (51)

The off-equatorial values of 4’ and v}, may be obtained
diagnostically from (44 ) and Sverdrup balance respec-
tively and w), = 0. The u}, term is small and will be
dropped from the temperature equation in subsequent
discussion, employing the approximation that the at-
mospheric wind stress varies slowly in y compared to
the oceanic radius of deformation. The smallness of
u,, also suggests that the above equations may be ap-
plied in a basin of finite zonal extent with oceanic
boundary conditions automatically satisfied to a good
approximation (although a boundary condition for
(50) is still required ). The primary difference between
the zonally periodic case and the finite-basin case is
thus the extent of the SST anomalies affecting the at-
mospheric model (excluding zonally symmetric modes
from consideration ). Examination of the zonally pe-
riodic case may be justified as an approximation to the
case where the influence of the nonoceanic part of the
domain on the atmospheric response does not penetrate
significantly into the ocean domain, and where zonal
inhomogenieties of the ocean basic state are do not
strongly restrict the effects of coupling within the ocean
basin.

With this justification, the response may again
be examined for SST anomalies of the form 7'
= T exp(ikx). The equatorial atmospheric model re-
sponse A.(T') = A.T, is all that is required, where 4,
is a complex scalar, its phase representing the amount
by which the zonal phase of the wind stress at the equa-
tor differs from that of the temperature for the wave-
number k Fourier component. Since westerly wind
stress occurs over and to the west of a warm anomaly,
Re(A4,) > 0 and Im(A4,) > 0. For the particular case
of a Gill (1980) model with heating proportional to
SST and expanding the assumed y-structure of the SST
anomalies as

S(y) = 2 Sin(y/La),

n=0
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where L, is the atmospheric radius of deformation,

hod ! 2n—1
- _ —13yn/2 n
Ae Arz:o( D n\,2(n-1)
2 )
(2n — 1)e,? + ike,
(2n — 1)%,% + k?

X[(n— l)Sn+%Sn_2] (52)
where ¢, is the atmospheric damping expressed as an
inverse length scale, A is the proportionality constant
for the amplitude of the atmospheric response and the
sum 1is taken only over even values of » with S_, = 0.
Both real and imaginary parts of 4, depend on the
zonal wavenumber. For reasonable values of ¢,, and
scales less than or on the order of the Pacific,' the at-
mospheric response, especially Re(A4,) tends to be
larger at larger zonal scales. The emphasis on the equa-
torial value of the zonal wind stress from the atmo-
spheric model, 4., in these results is in accord with the
findings of Harrison (1989), upon forcing an ocean
GCM with full versus near-equatorial observed wind
stress anomalies, and with experiments on near-equa-
torial versus full winds by Battisti (1988) in a coupled
model.

For the case of a periodic basin, with w and other
basic state parameters independent of longitude, the
dispersion relation for the slow SST mode in the fast-
wave limit is simply

- _ 1 w
A= Ab, T, — A-H b, ikT, + — A,
10t ikg i Hyp
(A1) (A2) (B)
- AebuTx - ( + GT) - lkil_[ (53)
1-1/2
(C) (D) (E)

The correspondence between the terms of (53) and
the terms of the linearized SST equation, (47), is given
in Table 1, which also summarizes the contribution of
each term to the propagation and growth characteristics
of the SST mode. The first four terms all contribute to
instability of the mode. The terms Al and A2 are as-
sociated with anomalous upwelling of mean temper-
ature gradients. The main effect is that of A1 which is
due to the upwelling perturbations associated with cir-
culation in the vertical-meridional plane, while A2 is
due to upwelling associated with zonal divergence. The
latter is small except at small zonal scales. Although

! The limits k —> 0 and ¢, > k should both be avoided in considering
the Gill model. This is because a major deficiency of this model is
its poor simulation of the zonally symmetric part of the flow in the
vicinity of the equator, as pointed out by Neelin ( 1988) on practical
grounds and Lindzen and Nigam (1987) on theoretical grounds.
Similar problems arise when ¢, is large compared to k.
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the meridional temperature gradient does not appear
explicitly in A1, it may be taken to represent the com-
bined effects of meridional as well as vertical advection
by vertical-meridional circulation anomalies. This is
demonstrated in the Appendix by consideration of a
slightly more complex finite differencing scheme.

Term B is due to the effect of thermocline pertur-
bations on the subsurface temperature, which is com-
municated to the surface temperature equation by the
mean upwelling. The effect of term B is similar to the
instability mechanism due to an assumed dependence
of SST on thermocline depth considered by Philander
et al. (1984) and Hirst (1986). Term C is due to ad-
vection of mean zonal temperature gradients by
anomalous currents. This term is different than the
zonal advection mechanism considered by Hirst (1986)
since the advection is due to vertical difference currents
introduced by inclusion of a mixed layer. Here, the
destabilizing effect appears in the SST mode. The term
D is a damping term which tends to oppose instability.
It includes not only the damping time scale due to
vertical mixing and surface fluxes, ¢, but also the dy-
namical damping time scale, w/ H,_y 2, which is of pri-
mary importance. The term E is just advection of the
temperature perturbation by the mean current which
can affect the propagation of temperature anomalies
but not the growth. Dependence of the terms of (53)
on zonal length scale enters both through the explicit
dependence on k and through 4., as may be seen from
(52). Long zonal scales tend to be more favorable to
growth,

Terms C and A2 contribute to growth through the
imaginary part of the atmospheric model coefficient,
Im(A.), and tend to give eastward propagation due to
Re(A4,). Terms Al and C contribute to growth due to
Re(A4,.) and tend to give westward propagation due to
Im(A4,). In other words, to the extent that the atmo-
spheric model zonal wind stress is in phase with the
SST anomaly along the equator, the coupled mode will
tend to grow through A1 and C and propagate eastward
due to A2 and B. To the extent that westerly anomalies
appear in quadrature (90° to the west) of a warm
anomaly, the coupled mode will grow through B and
A2 and propagate westward due to Al and C.

The basic state coefficients in coupled GCMs are far
from being zonally uniform, so the simple periodic-
basin dispersion relation (53) can give only qualitative
insight into the relative contributions of the various
mechanisms, especially in the case of zonal advection,
since the region of large T is actually quite restricted.
It may be seen from (53) that a diagnostic analysis of
the surface temperature equation of the ocean com-
ponent would not by itself give much insight into the
relativé importance of these processes to the coupled
instability. The coefficients of coupling by the atmo-
spheric model back to the dynamics of the mixed layer
and thermocline must also be known to estimate the
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TABLE 1. Terms of the dispersion relation (53) for the SST mode in the fast-wave limit summarized by correspondence to terms of the
linearized SST equation, (47), and their contribution to propagation and growth characteristics of the mode. The real and imaginary parts
of the atmospheric equatorial response Re(4,) and Im(4,) indicate the extent to which the Fourier component of the zonal wind stress is
in phase or in quadrature, respectively, with temperature in the zonal direction.

Term of SST mode dispersion relation

. e rl—An . - *( + 67) o
Aebw Tz "‘AeHlbulsz lkg Hl—l/2 —‘A,bu Tx Hl—l/Z -lku|
Referred to in text as (Al) (A2) (B) ) (D) (E)
. . A ! = W ’ = w ’ ' -
From term in SST equation waT, waT, - Yhe ugTy T + ¢T 06, T’
Hl—l/Z Hl—l/Z
Propagation tendency West East East West — (as ;)
Growth by Re(4,) Im(4,) Im(4,) Re(4.) (Damping) —

contribution of each term and the form of this feedback
is different for the different mechanisms. An exception
is the comparison of terms A1 and C—because these
have the same form, comparison of the corresponding
SST equation terms does give information about their
relative importance. Insofar as the basin mode of the
HGCM resembles the periodic-domain mode of (53),
and using values of basic state parameters characteristic
of averages across the basin, for a mode with a zonal
scale characteristic of the Pacific one finds that the
contribution of A2 is small but the other three growth
terms are of the same order of magnitude. The growth
rate is a balance between the damping term D, and the
sum of terms A1, B and C, with C less important than
the other two. The damping and growth terms both
have time scales on the order of a month to a few
months; where these cancel exactly the bifurcation oc-
curs.

In the HGCM experiments of N, three different ef-
fects were considered which moved the system toward
or away from the bifurcation. Increasing the heat con-
tent of the oceanic basic state was found to move the
system away from instability due to associated changes
in the vertical temperature profile. The loss of insta-
bility is caused by a reduction in 7, in term Al and a
reduction in v in term B. Another parameter used to
change the stability properties of the system was a rel-
ative coupling coefficient which reduced the atmo-
spheric wind stress anomalies relative to a run with
sustained oscillations. The effect of this coefficient in
(53) is simply to reduce the atmospheric feedback pa-
rameter, 4., proportionately and thus to reduce all of
the instability terms. The other effect which moved the
system across the bifurcation was a reduction of the
mean wind stress in the climatology, resulting in a new
basic state which was unstable to the slow coupled
mode. The reduction of the climatological wind stress
had several effects on the basic state: a substantial de-
crease in w and T, with T, and v tending to decrease
in the east and increase in the west of the basin. If one

considers the effect of these changes on the instability
terms, they appear on the whole to be stabilizing. In
particular, terms B and C are substantially reduced by
the decreases in w and 7,. The reason that the basic
state goes unstable is that the damping term D is sub-
stantially reduced by the reduction in w, while the in-
stability term A1 remains relatively unchanged.

The contributions to the propagation speed of terms
Al, B and C of (53) are of similar magnitude but op-
posing sign. The mode tends to propagate westward
due to the substantial zonal phase lag between wind
stress and SST (e.g., westerly wind anomalies occur to
the west of a warm anomaly) which permits the com-
bined effects of Al and C to outweigh the eastward
tendency of B. In the periodic-basin mode represented
by (53), the frequency of the oscillation is determined
by the phase speed of the mode, with cold phases fol-
lowing in the wake of each warm phase due to the
easterlies to the east of the warm anomaly and vice
versa. The period of the SST mode in this fast-wave
limit, periodic-basin case would be sensitive to the
phase of the wind stress relative to the SST anomaly
in the atmospheric model, and to the relative impor-
tance of the anomalous upwelling and thermocline
depth instability mechanisms. However, this sensitivity
would be moderated in the full model by the fact that
the fast-wave limit does not apply if the slowness as-
sumption is violated. If the period suggested by (53)
were much shorter than a year, the time scale of wave
propagation across the basin could not be assumed
small compared to the coupled time scale and the fast-
wave limit would break down.

Another feature worth examining in the slow SST
mode is the form of thermocline perturbation anom-
alies which are in balance with the wind stress according
to (44). As an example, consider the case of a wind
stress with a Gaussian meridional structure with a half-
width given by the atmospheric radius of deformation,
L,. The y-structure of the thermocline depth is then
given by
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gikh = A,T exp[—y*/(2L,2)1(1 + y*/L,%) (54)

with maxima occurring at one atmospheric radius of
deformation off the equator. This form suggests that
caution should be exercised when attempting to identify
heat content anomalies in observations with oceanic
Rossby waves. The slow SST mode can have qualita-
tively similar features even though it is completely in-
dependent of the characteristics of Rossby wave prop-
agation in the fast-wave limit.

The question of locality versus nonlocality may also
be considered for the SST mode in the fast-wave limit.
Although the atmospheric component of the model is
always nonlocal to an extent determined by the at-
mospheric model damping radius, the growth terms
Al, A2 and C are essentially local, as far as the ocean
component is concerned, since they are due to advec-
tion by anomalous currents produced by local wind
stress. The thermocline perturbation term, B, is non-
local; although the thermocline gradient is in local bal-
ance with the wind stress according to (50), the ther-
mocline perturbation which enters the growth term ef-
fectively depends on a zonal integral of wind stress.
The comparable importance of local and nonlocal ef-
fects within the ocean component is in accord with
GCM experiments by Harrison ( 1989 ) who examined
SST anomalies produced by observed wind stress
anomalies for the 1982-83 event compared to SST
anomalies produced when the wind stress anomalies
were restricted to subregions of the basin. Locally forced
anomalies in the eastern Pacific were found to be
roughly twice as large as those forced remotely by winds
in the western Pacific. Nonlocal effects in the SST mode
are, of course, communicated by oceanic wave modes,
but in the fast-wave limit this communication is as-
sumed to occur quickly compared to the evolution of
the mode.

Finally, it should be noted that the fast-wave limit
cannot be examined in a coupled model such as the
HGCM by reducing the coupling of the anomalies be-
cause the damping of SST by the mean upwelling would
not be reduced proportionately. As a result, the mode
would decay rapidly. This is the reason for distinguish-
ing between the fast-wave limit and the low-coupling
limit, as discussed in section 4.

6. Distorted-physics experiments

Motivated by the scaling analysis of the section 3,
one can attempt to design experiments with the hybrid
GCM coupled system in order to test the extent to
which the fast-wave limit of the SST mode is relevant
to the oscillation observed in the HGCM. Because the
SST mode can also be affected by wave propagation
time scales for the most realistic scaling, the hypothesis
to be tested needs to be phrased more precisely. The
Schopf and Suarez (1988 ) delayed oscillator hypothesis
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and the fast-wave limit may be taken as the two extreme
paradigms of behavior for interannual oscillations. In
the case of the delayed oscillator, if the delay due to
information propagation across the basin is too small,
the unstable mode does not oscillate at all but under-
goes pure exponential growth. In the fast-wave limit,
even if the wave speed is very fast—that is, so fast that
the ocean may be regarded as coming instantaneously
into adjustment on the time scale of the slow mode—
there is still a low frequency period due to propagation
of the slow SST mode. The question to be examined
may be posed as follows: is the (uncoupled ) equatorial
wave propagation time scale across the basin essential
to the existence of the oscillation? Subsidiary questions
would be: are the time scale and nature of the oscillation
much the same in the fast-wave limit as they are with
realistic parameter settings?

These questions can be answered in a straightforward
manner in any numerical coupled model by means of
distorted physics experiments in which the wave speed
of the model is artificially changed without altering the
steady balance in any of the model equations. This
trick has been used, for instance, by Bryan and Lewis
(1979), to accelerate the spinup of an ocean model to
equilibrium. In their computational application, wave
speed is reduced to relax numerical stability criteria
and reduce the cost of integration to equilibrium. In
the present application, motivated by hypothesis test-
ing, we rather perversely wish to do the opposite, which
has the side effect of increasing computational costs.

Slightly different variants of the technique are pro-
posed for shallow water models and primitive equation
models. In the primitive equation case, the time deriv-
atives of the momentum equations are multiplied by
an artificial factor, 8,4, relative to the time derivatives
in the temperature equations. For comparison, we il-
lustrate the primitive equation version in the shallow
water equations. The modification would appear as

0arOU — fO+ g3h = A (55a)
SO0 + fu+ gd,h =0 (55b)
d,gh + ¢,*(du+ 3,v) =0 (55¢)

The equatorial Kelvin wave speed becomes ¢4/ and
the equatorial long Rossby wave speed becomes
—chm?/2n + 1), n=1,2, -+ -, For 6,5 > 1, the
wave speed is reduced; for 6,1 < 1, it is increased. Be-
cause of the square root dependence on 68,4, a quad-
rupling of the wave speed increases the computational
cost by a factor of sixteen. (Although the limiting nu-
merical criterion in the HGCM involves vertical mixing
rather than wave speed, the required reduction of ti-
mestep with 8, is essentially the same).

In the case of a modified shallow water model, such
as Zebiak and Cane (1987), Battisti and Hirst (1988)
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or the one presented in section 2, distorted physics ex-
periments are even easier. The artificial factor, ,y,
should be introduced in front of the time derivative of
the height equation, (55c), as well as (55a,b). The wave
speed is increased proportional to 81, instead of its
square root and computational limitations are much
less significant. Unfortunately, this option is not viable
in a primitive equation model such as the HGCM,
since there is not such a clear separation between the
temperature equations that are involved in wave prop-
agation and the temperature equations of the near-sur-
face levels. It should be emphasized that changing the
wave speed parameter in a modified shallow water
model would be inferior to distorted physics experi-
ments for testing the importance of wave time scales,
since it would change the steady balance in presence
of damping. For this reason, the use of 6, provides
the clearest definition of the fast-wave limit in realistic
models, since it permits the rate of adjustment of the
ocean to be changed in isolation from other effects.
The correspondence between distorted physics ex-
periments and the scaling arguments of section 3 is
straightforward. To see this most clearly in considering
the slow SST mode derivation, simply rescale a slow
time appropriate to its evolution using the small pa-
rameter § of (24). Then all the time derivatives of the
nondimensional shallow water equations (16-18) are
multiplied by §, relative to the time derivative term of
the surface temperature equation (21) of the simple
model. The artificial small parameter, 6,., of the dis-
torted physics experiments appears in an exactly an-
alagous way, and “improves” the time scale separation
between wave modes and the SST mode. Distorted
physics experiments thus provide a rigorous way of
defining the fast-wave limit which parallels the small
parameter expansion used in the simple model case.
For the purpose of conducting distorted physics ex-
periments in the HGCM, a case of slightly lower-than-
standard coupling seems most appropriate as a control
because of the simplicity of the evolution and because
it may be hoped to avoid complex effects which might
occur in a more highly nonlinear case. The numerical
integration presented as Run-III in N is used. In this
integration, the wind stress response of the atmospheric
model was reduced. This had the effect of removing
the coupled Kelvin wave secondary oscillations, thus
permitting the ENSO-period oscillation to be seen more
clearly, although at smaller amplitude than for the
original parameter values. The evolution of SST
anomalies along the equator over the first six years of
this control run is presented for reference in Fig. 2. An
initial wind stress perturbation in the western part of
the basin initiates a growing unstable coupled mode
that equilibrates into a periodic limit cycle of just over
three year period. The westward propagation of anom-
alies is very clear during the cold phase. The warm
phase begins with westward propagation of weak warm
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Fi1G. 2. Evolution of sea surface temperature anomalies along the
equator over the first six years of the control run. Contour interval
0.5°C.

anomalies which follow in the wake of the cold anom-
alies. When the warm anomalies reach the central part
of the basin, they grow in magnitude and the direction
of propagation reverses, with the region of strongest
anomalies moving back eastward into the eastern part
of the basin.

The distorted-physics experiments are identical to
the control, except for the introduction of 6,5 into all
momentum equations and the attendant reduction of
timestep; 6.x = 1/4 for the doubled wave speed ex-
periment, and 6, = 1/16 for the quadrupled wave
speed experiment. The runs are begun with a wind
stress anomaly applied in the western Pacific over a
period of one month, as for the control. In order to
demonstrate the difference in wave speed between the
control and the distorted-physics experiments, Fig. 3
shows the evolution of zonal current anomalies over
the first six months of the control run (Fig. 3a), com-
pared to doubled and quadrupled wave speed runs (Fig.
3b,c). The oceanic Kelvin wave packet excited by the
initial wind stress anomaly may clearly be seen prop-
agating eastward across the basin. The dominant phase
speeds visible in the packet are characteristic of the
first and second vertical modes, consistent with the re-
sults of ocean-only experiments. The increased rapidity
of the adjustment process in the distorted-physics ex-
periments may be clearly seen in these figures, occur-
ring in weeks rather than months in the quadrupled
wave speed case. The much more slowly evolving cur-
rent anomalies which persist after the completion of
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the adjustment are due to the self-sustaining coupled
oscillation and are changing on El Nifio time scales.

The doubled wave speed experiment was integrated
for six years, for which the SST anomaly evolution
along the equator is shown in Fig. 4. The general form
of the oscillation is clearly very much the same as the
control, although the time scale is about 32 months
instead of 37. This reduction is considerably less than
one would expect if the time scale of propagation of
information across the basin were the main factor in
setting the period of the oscillation, considering that
this has been cut in half.

The westward propagation of anomalies also appears
slightly more pronounced in the doubled wave speed
run than it was in the control. The mode looks more
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F1G. 3. Evolution of zonal surface current anomalies along the
equator over the first six months of (a) the control run, (b) the doubled
wave speed experiment, and (c¢) the quadrupled wave speed experi-
ment. Contour interval 10 ms™',

like a periodic-basin mode in which cold and warm
anomalies succeed each other in a westward progres-
sion, the easterly wind stress to the east of each warm
anomaly contributing to the maintenance of the fol-
lowing: cold phase and vice versa. Furthermore, the
time scale characteristic of the cold phase is not at all
modified relative to the control. This tends to confirm
the hypothesis that there is indeed an underlying phase
speed, and therefore period, of the ENSO-period os-
cillation in the HGCM, which would exist even if the
rate of information propagation across the basin were
infinitely fast.

The doubled wave speed experiment alone would
not be entirely conclusive since Battisti and Hirst
(1988) find that the period of oscillation in the delayed
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FIG. 4. As in Fig. 2, but for the doubled wave speed experiment.

oscillator can be considerably longer than twice the
delay time due to wave propagation if the growth rate
associated with the coupling is slow. Since there is a
slight reduction in period between the control run and
the doubled wave speed run, it is clear that the time
scale of wave propagation does have some effect, al-
though it does not appear to be of primary importance.
In order to make these results more precise, the quad-
rupled wave speed run was carried out, the results from
which may be seen in Fig. 5. The integration was lim-
ited to 4.5 years due to the computational costs, but
this is enough to clearly establish the form and period
of the oscillation. The evolution is remarkably similar
to that of the doubled wave speed run, with a period
which is shorter by only a half-month. It seems safe to
extrapolate that this form and period would persist vir-
tually unchanged in the limit of further wave speed
increases.

These results serve to strongly confirm the hypothesis
that slowly evolving coupled oscillations can exist even
when the equatorial wave speed is so fast that the ocean
comes into dynamical adjustment very quickly com-
pared to the coupled evolution. Furthermore, the os-
cillations in the quadrupled wave speed experiment
bear considerable resemblance to the oscillations in
the control run, suggesting that, not only does the os-
cillation exist in the fast-wave limit, but this limit cap-
tures a significant part of the dynamics of the oscillation
found at realistic parameter values.

However, the scaling analysis of section 3 suggested
that, for a basin size of the Pacific, the fast-wave limit
should be only marginally valid. It is relatively easy to
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carry out a further experiment to establish whether this
is true by decreasing, instead of increasing, the wave
speed. The results of a halved wave speed experiment
are shown over six years in Fig. 6, again for SST anom-
aly along the equator. Other than using 4, = 4, this
experiment is identical to the others. The oscillation is
qualitatively the same, but is weaker, and the period
has increased to closer to four years. This is consistent
with what is expected from the simple model. As the
wave speed becomes slower, the adjustment time scale
becomes longer, and therefore more important. The
weakening of the oscillation with slower wave speed
suggests that the instability mechanism due to subsur-
face temperature perturbations associated with ther-
mocline depth changes [term (B) of (53)] contributes
significantly to the growth rate in the control case. As
the wave speed slows, it takes longer for the slope of
the thermocline to come into balance with the wind
stress, thus making this term less effective in supporting
the oscillation. This effect can thus be understood in
terms of the fast-wave limit analysis. However, one
might remark that the choice of control experiment
was probably a fortunate one for obtaining such clean
results. For stronger coupling, where nonlinearity be-
gins to affect the period of the oscillation, the effect of
the wave speed changes on the period might have been
less clear.

These results are consistent with the suggestion,
based. on scaling analysis, that the fast wave limit does
not strictly apply to the slow ENSO mode of the control
run, but that this limit is nearby (in the sense that it
can almost be obtained by a mere doubling of the wave

TIME (YEARS)

140E 180E 180E 160W 140W 120W 100W
LONGITUDE

FIG. 5. As in Fig. 2, but over the 4.5 years of the
quadrupled wave speed experiment.
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FIG. 6. As in Fig. 2, but for the halved wave speed experiment.

speed). Furthermore, the oscillation found in the fast-
wave limit inherits the characteristics of the control
oscillation to a large degree—certainly sufficiently for
this limit to be a useful conceptual tool in discussing
the oscillation.

It is also interesting to note that much of the asym-
metry between the warm and cold phases found in the
control run oscillation persist in the fast-wave limit.
Although the discussion of the slow SST mode and
fast-wave limit has been carried out in a linear context
using constant coefficients for basic state values, it is
interesting to speculate on why this might occur when
nonlinear considerations are taken into account. Dur-
ing the warm phase, the upwelling is reduced or even
shut off over a significant portion of the basin. Once
the equatorial SST has warmed up to the temperature
of the adjacent off equatorial regions, and the zonal
gradient of SST has been flattened out over much of
the basin, further changes in circulation can have only
arelatively small effect on SST except in the remaining
upwelling regions in the east. The evolution thus pro-
ceeds more slowly during the warm phase. In a realistic
basic state, in which w is very small in the western part
of the basin, this nonlinearity, represented by the up-
stream advection scheme in (1), enters even when the
oscillation is near the bifurcation.

7. Conclusions and discussion

The scaling considerations presented in the context
of a simple modified shallow-water model yield a
number of asymptotic results useful for the discussion
of tropical air-sea interaction. These analytic eigen-
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value results have some degree of independence from
the precise form of the atmospheric model. It is sug-
gested that the eigenmode associated with the time de-
rivative of the SST equation, termed the SST mode,
is of fundamental importance to understanding inter-
annual oscillations in coupled GCMs and in ENSO.
In the limit when the equatorial wave speed is fast
compared to time scales arising from the coupling, the
SST mode appears as a slow eigenvalue which is in-
dependent of the faster wave-propagation time scales.
In this fast-wave limit, the time scale of equatorial wave
dynamics is unimportant to the oscillation, although
thermocline perturbations in balance with the coupled
wind stress anomalies can still play an important role.
The scaling analysis suggests that the interannual os-
cillation observed in the hybrid coupled GCM exists
at the boundary between the region of validity of the
fast-wave limit and the region of parameter space where
the slow SST mode becomes mixed with coupled ver-
sions of the traditional equatorial oceanic wave modes.
Because of its simplicity, the fast-wave limit represents
a useful conceptual tool. It clearly illustrates one ex-
treme of the possible behavior of the coupled system,
and shows in a simple context the manner in which
several different mechanisms can all contribute to the
growth rate of the ENSO unstable mode, while tending
to cause propagation in different directions.

Asymptotic expressions are also obtained for coupled
versions of the conventional equatorial ocean wave
modes. These expressions are valid at low coupling
whether or not the fast-wave limit applies, although
their range of validity extends to higher coupling as
the fast-wave limit is approached. In these modified
ocean modes, multiple mechanisms also affect the
coupling, but tend to oppose each other in causing
growth and decay. This suggests that the instability of
the SST mode, in which all mechanisms contribute to
growth, should be much more robust to changes in
parameters than instability of coupled ocean modes.
However, the propagation characteristics of the SST
mode, which is affected by coupling at zeroth order,
will depend greatly on the balance of mechanisms sup-
porting it in a particular model, while the oceanic
modes retain their uncoupled form and frequency to
a first approximation. The SST mode can propagate
slowly eastward or westward, or remain stationary. The
robustness of the instability and sensitivity of the char-
acteristics of the SST mode suggest that interannual
oscillations of this type might be found in many cou-
pled models, but that the form and appearance of these
oscillations may differ.

These results extend the numerical eigenvalue results
of Hirst (1986) with regard to coupling of conventional
wave modes, but differ significantly with regard to the
SST mode. Important coupling mechanisms arise from
inclusion of a surface mixed-layer, which strongly af-
fects the SST mode. The equatorial-band approxima-
tion used in the current model is felt to be preferable
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on physical grounds and avoids the high degree of de-
generacy that arises at low coupling for analagous
modes when SST tendency terms are parameterized
uniformly in latitude. Asymptotic expressions for cou-
pled Rossby and Kelvin modes may be used to repro-
duce several of the results of Hirst’s model by dropping
terms from the present model. However, the coupled
Kelvin wave is suggested to be destabilized by a differ-
ent mechanism, involving anomalous upwelling of
mean vertical temperature gradient due to divergence
in the shallow water component of the model. The
coupled Kelvin wave behavior is consistent with the
mode which arises in the HGCM as a secondary Hopf
bifurcation. When mean upwelling is strong, the mode
is stabilized by the term involving mean upwelling of
subsurface temperature anomalies due to thermocline
perturbations.

These results appear to be very different than those
of Battisti and Hirst (1988), in which it is suggested
that the Schopf and Suarez (1988) delayed oscillator
mechanism can explain the time scale and other fea-
tures of the oscillation in the Cane and Zebiak ( 1985)
model. However, like the slow SST mode, the time
variability in the delayed oscillator model is associated
with the time derivative of the SST equation. If the
form of the delayed oscillator equation is correct, then
it is very reasonable to hypothesize that it must be re-
lated to the slow SST eigenmode. The fast-wave limit
and the delayed oscillator may thus simply represent
different extremes of the same mode.? In the HGCM,
for the parameter values examined here, the interan-
nual oscillation behaves very much as it does in the
fast-wave limit, and cares relatively little about the time
scale of wave reflections off the western boundary. If
on the other hand, the coupling were cut off throughout
much of the basin, as effectively occurs in the Cane
and Zebiak model, the slow zonal propagation which
gives rise to the period of the SST mode in the fast-
wave limit would be inhibited, although it could still
have a growth rate. Under these conditions it is very
plausible that the linkage of the SST mode to oceanic
wave modes which occurs at high coupling could be-
come important to the existence of an oscillation. The
tendency of the HGCM to couple across much of the
basin, for the cases examined in N, is not necessarily
the most realistic situation, although it does appear to
characterize other coupled GCM results as well. The
simplest characteristic that distinguishes the slow SST
mode in the fast-wave limit from the delayed oscillator
is the slow zonal propagation of SST anomalies in the
former, versus growth of SST anomalies in place in

2Gince the draft of this paper was first circulated, work with
F.-F. Jin (Neelin et al. 1990) has indicated that this hypothesis is
essentially correct—although the relationship of the SST mode to
oceanic modes is more complex than the delayed oscillator equation
would suggest—and work by A. Hirst (personal communication,
1990) suggests similar conclusions.
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the latter. Examples of both are found in observed SST
time series.

The SST mode analysis presented here provides a
simple framework in which some of the other recent
coupled GCM results may be understood. Meehl
(1990) finds westward-propagating coupled equatorial
anomalies of interannual time scale in a global 5° lat-
itude-longitude four-layer ocean GCM coupled to the
NCAR R15 community climate model. Meehl notes
that these modes appear to have little to do with equa-
torial wave propagation and have a close association
between SST anomalies and westerly/easterly wind
stress to the west of warm/cold SSTs producing up-
welling anomalies. These anomalies can continue
propagating from the Pacific into the Indian Ocean
due to the existence of mean upwelling across both
basins. There is little zonal SST gradient in the cli-
matology. Similar slowly westward-propagating cou-
pled anomalies are found in a coarse-resolution global
ocean GCM coupled to the GFDL R15 atmospheric
GCM, one of the two coupled GCMs described in Phi-
lander et al. (1989). In this case, advection of the mean
vertical, zonal and meridional temperature gradients
by perturbation currents all appear to be important
during the onset phase of warm or cold periods. Both
of these oscillations, exhibiting slow propagation of co-
herent atmospheric and oceanic anomalies and appar-
ent lack of oceanic wave effects, appear to fit well into
the slow SST mode hypothesis. In fact, the oscillation
in these models most likely corresponds to the simplest
version of the SST mode [given by (40) which requires
fewer assumptions than the slightly more complicated
version given by (53)] since the contribution of the
thermocline depth anomalies is apparently not signif-
icant. The differences between the two models, in terms
of which advection mechanisms dominate, is of sec-
ondary importance since all mechanisms contribute to
the same mode. Whether advection by upwelling/ me-
ridional current anomalies or zonal current anomalies
is more important to the instability makes relatively
little difference to the evolution of the anomalies be-
cause both contribute in the same manner in the SST
mode dispersion relationship.

The coupled phenomena described by Philander et
al. (1989) in coupled model with a high resolution
tropical Pacific Ocean component, on the other hand,
appear to be much more difficult to understand in
terms of the asymptotic results obtained here. The in-
terannual warm and cold phases are generally of longer
duration and what might be a secondary instability of
roughly one year period complicates the evolution. The
SST anomalies associated with the long period oscil-
lation appear mainly to develop in place as a standing
oscillation, although some eastward propagation may
be noted. The main propagation tendency is seen in
the subsurface heat content, which shows extremely
slow eastward propagation. Although this propagation
is too slow to be associated with any individual un-
coupled ocean mode, it also fits poorly with the fast-
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wave limit of the SST mode. However, as noted in the
SST mode derivation, when the fast-wave limit fails,
the SST eigenmode still exists but becomes mixed with
the effects of the oceanic wave modes. It seems likely
that to properly understand the results of the Philander
et al. high-resolution model, an analysis of this more
complex parameter regime is required, although this
is difficult to carry out analytically.

The HGCM coupled experiment used here to dem-
onstrate the applicability of the fast-wave limit appar-
ently represents an intermediate region of parameter
space in which the thermocline perturbation term in
the SST equation is of similar importance to the per-
turbation current terms, but in which the fast-wave
limit still applies. The dispersion relationship (53) for
the SST mode in the fast-wave limit indicates that when
the thermocline perturbation term increases in impor-
tance, it opposes the tendency to westward propagation
due to the perturbation current terms. This may explain
why the propagation of SST and associated anomalies
is complex in the HGCM, with both westward and
eastward propagation appearing during different pe-
riods, as well as stationary growth of anomalies during
the warm phase. A balance between eastward and
westward propagation tendencies will tend to create
stationary growth of the SST mode, especially under
the zonally inhomogeneous basic state conditions. The
distorted physics experiments in the HGCM indicate
that the low coupling control run is close to being well
described by the fast-wave limit, but also that the region
of parameter space where this fails is not far removed.
These lend credence to the idea that relatively small
differences between coupled models which affect the
relative importance of thermocline versus advection
processes (for instance, the sharpness of the vertical
temperature gradient in the thermocline) and the ef-
fective coupling (for instance, if wind stress is deposited
over a shallower layer) may lead between regimes in
which the interannual oscillation is well represented
by the SST mode in the fast-wave limit, and regimes
in which the interaction of this mode and modes as-
sociated with wave dynamics must be considered.

While the fast-wave limit of the SST mode is in-
tended to represent a useful idealization, the distorted
physics method presented here provides a straightfor-
ward means of accessing this limit in almost any model
for which sufficient computer resources are available.
In the HGCM experiment in which it was tested, it
proved to be a far better approximation than expected
since the form and period of the oscillation were little
changed as the equatorial wave speed was increased.
Any model in which slow propagation of SST anom-
alies is observed is a reasonable candidate for testing
the applicability of this limit. Whether the real ENSO
cycle can be reasonably described in terms of the slow
SST mode in the fast-wave limit or whether it is essen-
tial to treat the more complicated combination of the
SST mode with wave effects—such as is represented
by the delayed oscillator mechanism—must await fur-
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ther modeling results. In the interim, the robustness of
the SST mode, in the sense that multiple mechanisms
contribute to its growth and period, actually represents
a major problem for ENSO simulation, since simula-
tion of a sustained oscillation of interannual time scale
does not guarantee that it is produced by the same
mechanism or combination of mechanisms as the real
system.
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APPENDIX
Effects of Meridional Advection

The SST equation, (1), employs an equatorial strip
approximation with first-order upstream-differencing
in both vertical and meridional directions. When lin-
earized about a state with mean upwelling and pole-
ward meridional circulation, the upstream differencing
implies that the meridional advection term does not
appear explicitly, although its effects are implicitly
present. In analysis of the contribution of various heat
budget terms to the tendency of equatorial SST in cou-
pled GCM experiments, however, the meridional ad-
vection terms will appear as important as the vertical
advection terms due to the linkage of vertical and me-
ridional circulation. A slightly more complicated treat-
ment of the linearized SST equation is presented here
to make it clear that advection due to the perturbation
meridional currents may be treated implicitly in the
vertical advection term for conceptual purposes.

Consider the perturbation SST equation for a narrow
equatorial strip, as before, but in this case derived by
averaging over a box of width L, in the meridional
direction with perturbation meridional currents and
the basic state SST field assumed to have a fixed struc-
ture in y

v'(x, y) = vap(x)u(y)

T(x, y) = T(x) + AT(x)0(y)
where »(+L,/2) = 1 and 6(+L,/2) = 1, v'p(x) is
the perturbation meridional velocity at the north face
of the box and AT'(x) > 0 is the temperature difference

between the north and south faces of the box and the
equator. The contribution of the v'7), term to the time
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tendency of y-averaged SST perturbations will be
AT(x)
(Ly/2)

where ( )y denotes meridional averaging over the box
and

—vT,) = —v'(x)

L,od
Al=voojf2;ﬂy)

is a nondimensional constant due to the assumed me-
ridional structure. For the simplest case, when »(y) is
linear and 6(y) is quadratic, M = 2/3.

For the case »(y) linear and w', 4’ constant within
the box, the continuity equation ( 3) may be used with-
out modification and for the SST mode we employ
(48) and (49) for w' and u’. The contribution of the
perturbation advection terms to the SST perturbation
tendency thus becomes
AT

L,/2

T =uT,—wT,— vy M+ .-

i

~b, TxAT") + bw( T. + %Z M)Ae(T’)
1
— H\B,T,LATY + + - -.

It may be seen that the only effect of this treatment
compared to simple upstream differencing is to modify
the coefficient of one term, replacing 7, by (7, + (AT/
H,)M). This expression holds for zonally varying basic
states; for the periodic basin case with zonally constant
coeflicients, the dispersion relation for the SST mode
in the fast-wave limit is identical to (53) except for this
modification to the coefficient in the term denoted Al
in Table 1, resulting in a slight increase in the strength
of this term. No new physics is introduced, since this
term in both cases measures the effects of advection
by perturbations to the vertical-meridional circulation.
The strength of this effect is increased in the present
treatment because the meridional spreading of the SST
anomaly produced by upwelling is taken into account
explicitly.

For simple modeling purposes, the form of the SST
equation used in (1) and (21) is preferred due to the
simplicity and because the treatment considered in this
Appendix is difficult to apply in the nonlinear case.
The point demonstrated here is simply that, because
advection by anomalous meridional circulation is ef-
fectively a slave to the corresponding vertical advection
term, the latter may be used for conceptual purposes
to represent both effects.

The role of mean meridional currents is to spread
the SST anomaly produced by near-equatorial advec-
tion, as discussed by Battisti (1988). This effect is also
treated implicitly in the equatorial strip model in the
assumed y-structure of the atmospheric forcing. The
results are insensitive to this structure, provided the
meridional integral of the forcing of the atmosphere
by SST is sufficiently large.
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