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ABSTRACT

Convective parameterizations in general circulation models (GCMs) generally only aim to simulate the mean
or first-order moment of convection; higher moments associated with subgrid variability are not explicitly
considered. In this study, an empirically based stochastic convective parameterization is developed that uses an
assumed mixed lognormal distribution of rainfall, tuned with parameter values derived from observations, to
control selected nonmean statistical properties of convection. Testing of this stochastic convective parameteri-
zation reveals that large-scale model dynamics interacts heavily with the convective parameterization, in ways
such that the resulting output is fundamentally different from the input. This suggests stochastic parameterizations
cannot be calibrated outside of a model’s dynamical framework. Implications are discussed for the relative merits
of the empirical approach versus another approach that introduces the stochastic process within the framework
of the convective parameterization. Inclusion of the variance arising from unresolved scales by stochastic pa-
rameterization of convection is found to have a substantial impact upon atmospheric variability in the Tropics,
including intraseasonal and longer timescales.

1. Introduction

In the atmosphere, it is reasonable to hypothesize that
for a given large-scale temperature and moisture field,
there is a contribution to the variability of convection
that arises inherently from small-scale motions, but
which are not well represented by large ensemble
means. Though this process has relatively short corre-
lation scales in both time and space, it can act as a noise
forcing that potentially shows up at the large scales.
Very little is understood, however, about the extent to
which this hypothesis may be true. This present study
seeks to gain some insight into the variability in con-
vection that is not captured by ensemble means.

Because general circulation models (GCMs) have fi-
nite grid sizes, and thus must, in general, determinis-
tically parameterize subgrid phenomena in terms of
grid-level variables, these models implicitly assume that
the unresolved phenomena can be considered in an en-
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semble mean sense. As, on the whole, GCMs simulate
the climatology of precipitation relatively well, this as-
sumption seems justified. Work using a cloud resolving
model also suggests that the assumption that subgrid
convection can be considered in an ensemble mean
sense is reasonably accurate (Xu et al. 1992). They find
that the mean effects of convection closely follow the
large-scale field, which is consistent with the notion that
convection is fundamentally parameterizable.

At the same time, however, Xu et al. also find a sub-
stantial amount of convective ‘‘scatter’’ about the mean
that is not determined by the large-scale environment.
Such ‘‘scatter’’ in fields crucial to the simulation of
convection, such as vertical motion, can have a standard
deviation on the order of the mean values (Katzfey and
Ryan 2000).

Simulations by GCMs of some of the other statistical
features of precipitation besides the mean have been
lacking. For example, through the use of a 3-hourly
outgoing longwave radiation (OLR) measurement–
based proxy for deep convective activity for winter
1984, Ricciardulli and Garcia (2000) find that the var-
iance of tropical precipitation is substantial, and that the
vast majority of the variance is contained at high fre-
quencies (periods between 6 h and 2 days). Comparing
this with a National Center for Atmospheric Research
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(NCAR) Community Climate Model (CCM3) run with
the Zhang–McFarlane convective parameterization
(Zhang and McFarlane 1995), Ricciardulli and Garcia
show the modeled variance of vertically integrated trop-
ical deep convective activity is much less than seen in
observations, and of the variance that is produced, the
majority is not contained in high frequencies (except in
the Amazon basin). However, the CCM3 simulation of
mean convection is quite similar to observations. Ric-
ciardulli and Garcia also find that the variance found in
OLR observations is distributed broadly even down to
small scales (zonal wavenumber k . 60), and that only
40% of the variance is found at large scales (k , 15).

Over the tropical ocean, the majority of daily precipi-
tation values are of low intensity, with approximately 60%
of all days having zero precipitation. A global precipitation
frequency distribution (Lau et al. 1996) shows similar
characteristics. GCMs, however, have a difficult time sim-
ulating the frequency of occurrence of low monthly pre-
cipitation (0–1 mm day21) rates; every one of the At-
mospheric Model Intercomparison Project (AMIP) GCMs
underestimates this component (Lau et al. 1996).

If the physical hypothesis described earlier is true
(i.e., there exist variations in convection that may in-
fluence large-scale climate, but which are not well de-
scribed by the ensemble mean), then current GCM pa-
rameterizations (which follow the large-scale and which
appear unable to simulate variance associated with un-
resolved processes), may need to be improved to include
such phenomena. (In a modeling framework, the en-
semble mean quantities roughly correspond to resolved
phenomena, while the physical processes not well de-
scribed by the ensemble means correspond to unre-
solved variability.) Admittedly, because of the ways
convective parameterizations are implemented in nu-
merical models, in practice the parameterizations do in-
clude some of the variance usually associated with un-
resolved processes. For instance, numerical noise re-
sulting from instantaneous adjustment [as in the Manabe
et al. (1965) scheme], the use of ‘‘trigger functions,’’
and other nonlinearities, provide some such variance.
This variance can be viewed as an accident or after-
thought, although a ‘‘trigger function’’ approach could
be viewed as a way of mimicking unresolved variance
within a deterministic framework. Explicit representa-
tion of the unresolved higher moments of convection
has been lacking.

In order to help quantify the importance of representing
these deviations from the ensemble mean, and as an al-
ternative to such a deterministic method of quantifying
the importance of unresolved variance, we suggest that
stochastic convective parameterizations can be developed
that explicitly include the effects of the higher moments
of convection. There is a long history of work related to
representing parts of the climate system as stochastic
processes (e.g., Leith 1975; Hasselmann 1976; Oerle-
mans 1979; Farrell and Ioannou 1994; Penland and Ma-
trosova 1994; Eckert and Latif 1997; Blanke et al. 1997;

Kleeman and Moore 1997; Saravanan and McWilliams
1998; Majda et al. 1999; Timmermann and Lohmann
2000). In most cases, the stochastic process is not in-
tended for use in GCM parameterizations, and in general
the stochastic representation is not a ‘‘parameterization,’’
in the sense that the statistics are not closely linked to
resolved processes. Buizza et al. (1999) model error in
parameterized processes by a random multiplier sampled
from a uniform distribution in the European Centre for
Medium-Range Weather Forecasts Ensemble Prediction
System, and find an increase in ensemble spread and
improvement in probabilistic precipitation forecasts.
However, Buizza et al. are not trying to represent a spe-
cific physical process, but rather uncertainty regarding
parameterization processes in general. Yu and Neelin
(1994) use a linearized primitive equation numerical
model of the tropical atmosphere under moist convective
adjustment to investigate the impact of white stochastic
forcing in the temperature and v equations, and find peak
response at low frequencies and low wavenumbers. We
aim to apply such stochastic methods to a parameteri-
zation operating in a nonlinear context.

We propose that methods of including unresolved var-
iance through a stochastic parameterization may be
grouped into two general approaches or classes:

• Approach 1. Stochastic processes introduced within
the framework of the convective parameterization, in-
formed by at least some of the physics that contribute
to unresolved variance.

• Approach 2. Directly controlling the statistics of the
overall convective heating by specifying a distribution
as a function of model variables, with this dependence
estimated empirically.

An important difference between the two is that in
approach 1, the distribution (of such quantities as pre-
cipitation, days of zero precipitation, etc.) is not known
in advance and is determined by interactions of the sto-
chastic process with both the other elements of the con-
vective parameterization and with the large-scale dynam-
ics. In approach 2 there is an implicit assumption that
the distribution, for example, of precipitation, is suffi-
ciently independent of interactions with the large-scale
such that it is reasonable to estimate outside the model
framework. It is not clear in advance which approach is
likely to be more fruitful, and so we endeavor to set up
and test examples of each.

In approach 1, a variety of levels of modeling is fore-
seen. As an example of a highly complex version of a
stochastic parameterization using approach 1, one could
embed a randomly initiated simplified model of meso-
scale systems [such as the archetypal mesoscale models
proposed by Moncrieff (1981, 1992)] in a GCM con-
vective parameterization. On the other end of the range
of complexity, one could model buoyancy related var-
iables as the sum of an ensemble mean component and
a Gaussian distributed noise, within an existing param-
eterization.
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Lin and Neelin (2000, hereinafter LN) develop such
an elementary example of stochastic parameterization
using approach 1 by adding a stochastic component to
convective available potential energy (CAPE) related
variables within an intermediate-level atmospheric mod-
el’s existing Betts–Miller (1986) convective parameter-
ization (in the present study this is referred to as the
‘‘CAPE scheme’’). This implicitly assumes that the
Betts–Miller scheme gives a plausible response of sub-
domains in a grid box to variable CAPE. The source of
the stochastic component of convection is then modeled
as arising from these subensembles, rectified by the non-
linearity of the convective elements. The random com-
ponent is a first-order autoregressive process with an
autocorrelation timescale tj, and is forced by Gaussian
noise with mean zero and standard deviation sz.

Lin and Neelin (2000) find that results using this
scheme depend strongly on tj, and that model simu-
lations of total precipitation variance and the probability
distribution function of precipitation improve with the
use of the stochastic parameterization. Higher values of
tj (20 min, 2 h, and 1 day cases were tested) yield results
more closely matching observations. The addition of
stochastic convection results in an increase in intrasea-
sonal spectral power in low-wavenumber 850-hPa zonal
wind anomaly.

In the present study, a first attempt at a stochastic
convective parameterization using approach 2 is devel-
oped, where variance is added by tailoring the convec-
tive heating so that it reproduces certain statistical prop-
erties derived from observations. This type of empiri-
cally derived parameterization is similar in ways to the
point process models (e.g., Eagleson 1978; Rodriguez-
Iturbe et al. 1987) used in hydrology to represent tem-
poral rainfall, while reproducing selected statistical
properties. The choice of statistical properties is in-
formed by work from the remote-sensing community,
which is concerned with the extrapolation of total rain-
fall from satellite measurements (e.g., Kedem et al.
1990). Although the aim of the stochastic parameteri-
zation described in this study is to represent subgrid
rainfall at the grid-scale level, (instead of extrapolating
rainfall from grid-scale measurements), similar distri-
butions and relationships would be expected to apply.

Beginning from such statistical approaches to rep-
resenting rainfall and considering how they might be
adapted to the problem of stochastic convective param-
eterization, we posit the following methodology (as an
example of approach 2, which is to be tested):

• The distribution should have a mean value equal to
the ensemble mean of convection generated by the
traditional convective scheme.

• The shape of the distribution is based (at least in part)
on observations.

• Parameters describing the distribution are expressed
as functions of the ensemble mean of convection gen-
erated by the traditional convective scheme.

• The value of precipitation that is input into the model

dynamics is obtained by choosing randomly from the
distribution.

It is also hypothesized that the statistical properties of
most importance will be those that are poorly repro-
duced by current GCM convective parameterizations
(e.g., frequency of zero precipitation, total variance).
Thus, the distribution used in the scheme should aim to
capture those properties. The particular implementation
in this present study of a stochastic parameterization
based on these principles is referred to as the ‘‘empirical
lognormal scheme.’’ A description of other distributions
that were tested in the course of this work and why we
chose to use the lognormal distribution, is given at the
end of section 3.

The assumptions one makes in formulating the em-
pirical lognormal scheme may or may not work well.
When evaluating a new parameterization methodology
(such as described in approach 2), it can be instructive
to choose a reasonable example of that methodology
and work it all the way through, rather than focusing
on the details of the parameter choices of the distri-
bution. The validity of these assumptions and the use-
fulness of this approach can thus be tested. For such
tests, an intermediate-level model is preferred to a full-
scale GCM, due to computational expense.

In section 2, the atmospheric model used in this test-
ing is described. The empirical lognormal scheme is
described in detail in section 3. In section 5, the effects
of the stochastic scheme on intraseasonal variability is
described. Given that grid-scale precipitation data con-
tains both small-scale and large-scale effects, one con-
cern is how well a scheme at least partly based on such
data will do in simulating convection; these results are
presented in section 6. Sensitivities of various quantities
(e.g., variance) are also examined. The conclusions fo-
cus on a critical examination of the validity of the pos-
ited assumptions that underlie this case study of a sto-
chastic parameterization by approach 2. For instance,
we are led to revise our presumption that a stochastic
parameterization must preserve the input ensemble
mean. We highlight the most substantial challenge to
approach 2, which will have to be faced by any empirical
parameterization: the assumption that the distribution
can be determined without considering the interaction
with model dynamics. A checklist of considerations to
help guide future development is presented.

2. Model description

The numerical model used in this present study is
version 2.1 of the Neelin–Zeng quasi-equilibrium trop-
ical circulation model (QTCM1), a primitive equation–
based atmospheric model that focuses on simulating the
tropical atmosphere. For a full description of model for-
mulation (for v2.0), see Neelin and Zeng (2000); Zeng
et al. (2000) provide initial results of the model (using
v2.1). The QTCM1 is more complex than a simple mod-
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el, and includes full primitive equation nonlinearity and
a radiative–convective feedback package. The model
also has a simple land soil moisture routine, but does
not include the effects of topography. Being simpler
than a full-scale GCM, the QTCM1 is easier to diagnose
and is computationally faster. For its convective param-
eterization, the QTCM1 uses the Betts–Miller moist
convective adjustment scheme (Betts and Miller 1986),
a scheme that is also used in some GCMs. The con-
vective scheme is described more fully in section 3.

In the QTCM1, a Galerkin expansion is used to rep-
resent the vertical structure of atmospheric temperature,
humidity, and velocity, in contrast with most full-scale
GCMs, which use multiple homogeneous layers. As the
vertical basis functions of the expansion are chosen us-
ing analytical solutions that assume convective quasi-
equilibrium conditions, only a few need be retained. For
temperature and humidity, the QTCM1 uses only a sin-
gle vertical mode. For velocity, the QTCM1 uses a sin-
gle baroclinic mode defined using the Galerkin expan-
sion in temperature, as well as a separately defined bar-
otropic velocity mode. Finite differencing is used in the
horizontal with grid points every 5.6258 in longitude
and 3.758 in latitude.

The QTCM1 provides a reasonable simulation of
tropical climatology and interannual variability (Zeng
et al. 2000). An earlier version of the model was used
to study Madden–Julian oscillation (MJO)-like tropical
intraseasonal variability (Lin et al. 2000). The v2.1 re-
lease of the QTCM1 was also used in the stochastic
convective parameterization study by LN.

The equation for the projection of tropospheric tem-
perature onto the temperature basis function T1 (in units
that absorb heat capacity) has the form

] T 1 [L. S.] 5 Q ,t 1 c (1)

where [L. S.] denotes large-scale dynamics terms plus
other parameterized quantities such as radiation and
nonmoist convective turbulent heat transfer. Here Qc is
the vertically–averaged convective heating, which will
be the object of our stochastic parameterization efforts.
The vertical distribution of heating is determined im-
plicitly in the QTCM1 framework and is unmodified in
the current stochastic scheme. In the version of the
Betts–Miller convective parameterization used by
QTCM1, convective heating Qc is given by , whereBMQc

1
BMQ } H (C )C . (2)c 1 1tc

The convective relaxation timescale tc has a value of 2
h, H(C1) is zero for C1 # 0, and one for C1 . 0, and
C1 is a measure of the CAPE, projected onto the model’s
moisture and temperature basis functions, q1 and T1. In
the stochastic convective schemes, Qc becomes a ran-
dom variable whose distribution depends on the large-
scale moisture and temperature related variables from
the QTCM1 at any given time step.

3. Description of the empirical lognormal scheme

Being a highly nonlinear process, a full statistical
characterization of precipitation requires consideration
of a variety of measures. Which measures are chosen
depends upon the purposes of the model. For instance,
in a land surface water balance model (Eagleson 1978),
the three important characteristics of rainfall whose sta-
tistics need to be properly simulated are time between
storms, storm duration, and depth of water deposited by
the storm. As the present study is an early attempt at
studying the effects of the unresolved deviations from
large-scale forced precipitation, it focuses on simulating
two relatively gross statistical measures: precipitation
variance and distribution of precipitation (including the
percentage of time precipitation equals zero). It is hy-
pothesized that much of the subgrid scale variance that
shows itself at the grid scale will be high-frequency and
low-magnitude. At the same time, one aims to preserve
the mean precipitation simulated by the model.

In the empirical lognormal scheme, unlike the CAPE
stochastic parameterization used in LN, the algorithm
behind the Betts–Miller parameterization is assumed not
to adequately represent the relationship between subgrid
precipitation and the grid-scale variables but rather only
the relationship between the ensemble mean precipita-
tion and grid-scale variables. The results of the Betts–
Miller calculated precipitation using (2) is used as input
into a stochastic convection generator, which uses an
empirically determined probability distribution to de-
termine the value of precipitation that is seen by the
model’s prognostic temperature and moisture equations.

The nonlinear nature of precipitation adds certain
constraints to the choice of probability distribution in
modeling rainfall. First, because precipitation is posi-
tive-only, the distribution cannot have negative values.
Second, since a large percentage of the time there is no
precipitation, there will need to be a discrete probability
that precipitation is identically zero. Finally, the distri-
bution needs to model a decaying probability of occur-
rence as intensity increases.

Following Kedem et al. (1990), precipitation is mod-
eled in this study as following a mixed lognormal dis-
tribution, where nonzero intensities are described by a
continuous lognormal distribution, and zero intensity is
described by a discrete impulse probability. Although
there is question as to whether the lognormal distribu-
tion appropriately describes conditional rain rate (e.g.,
Jameson and Kostinski 1999), such a distribution rep-
resents the gross features of rainfall nonlinearity, de-
scribed above.

The cumulative distribution function (CDF) of this
mixed distribution is (Kedem et al. 1990)

P(R # r) 5 G(r) 5 (1 2 p)H(r) 1 pF(r), (3)

where R is the area average rain rate (a random variable),
and 1 2 p equals P0, the probability that R 5 0. In this
study, rainfall is generally expressed in energy units (W



1 MARCH 2002 963L I N A N D N E E L I N

FIG. 1. Value of P0 vs annual mean of the MSU daily data (in the
period 1 Jan 1979–31 Dec 1995). The best-fit line follows (7).

m22). To convert to mm day21, divide by 28.2. The
function H(r) is zero for r , 0, and one for r $ 0. The
function F(r) is the CDF for the lognormal distribution,
whose probability density function f (r) 5 F9(r), for r
. 0, is given by (Kedem et al. 1990)

f (r, m, s)


1 1

2 exp 2 (lnr 2 m) , r . 0
1/2 25 [ ]rs (2p) 2s (4)


0, r # 0,

where m and s are parameters describing the lognormal
distribution (if Y is a lognormally distributed random
variable, then X is a normally distributed random var-
iable with mean m and variance s2 for Y 5 eX). The
units of m is ln(W m22), while s is unitless (Kedem et
al. 1990). Parameter s is also known as the shape pa-
rameter of the lognormal distribution. The mean and
variance for R are defined as (Kedem et al. 1990)

2s
E[R] 5 p exp m 1 (5)1 22

2 2Var[R] 5 p exp(2m 1 s )[exp(s ) 2 p]. (6)

The value of P0, the probability that R 5 0, is pa-
rameterized as a function of :BMQc

BMP 5 exp(2m Q ),0 p c (7)

where mp 5 0.007 and is determined by a curve fit by
eye of the relationship from observations (Fig. 1). The
dataset is described in section 4a; all spatial points in
the microwave sounding unit (MSU) dataset are shown
that had missing values over less than 30% of the time
series.

The empirical lognormal scheme assumes that the
Betts–Miller convective parameterization provides an
accurate estimate of the mean area average rain rate,
that the grid box area is large enough so that it is sta-
tistically homogeneous in time and space, and thus E[R]
5 , where is the value of convective heatingBM BMQ Qc c

(Qc) calculated by the Betts–Miller scheme based on
grid scale C1. From this assumption, one can directly

parameterize Qc as a function of and s, using (5)BMQc

and (7). However, in order to simulate the effects of
varying the autocorrelation timescale of convection, the
randomly chosen convection is embedded in an auto-
regressive scheme. Thus, convective heating Qc at time
step t is modeled as

BMQ 5 j Q ,c t c (8)

where the factor j t is scaled to have a mean of 1, and
is described by

j 5 e j 1 (1 2 e )y ,t j t21 j t (9)

where ej is an autoregressive coefficient defined for a
given s and tj.

The characteristic timescale for j (tj) is defined as
the time for the autocorrelation function of Qc to fall to
e21. Runs with values of ej 5 0.356, 0.844, and 0.986
are made, which correspond approximately to values of
tj 5 20 min, 2 h, and 1 day, respectively.

The variable yt is the random precipitation value cho-
sen from the mixed lognormal distribution (3), for the
current time step t. The distribution of yt is scaled so
that it has a mean of 1. From (5), we then derive a
relationship between m and s for yt for E[R] 5 1:

21 s
m 5 ln 2 . (10)1 2p 2

Thus, based on (7), (8), and (10), we have a stochastic
parameterization of Qc that is solely a function of

and s.BMQc

Short et al. (1993) tally rain-rate statistics over a num-
ber of regions and conditions (monsoon and premon-
soon rainfall in Darwin, Australia; Florida rain gauge
data; and Global Atmospheric Research Programme
(GARP) Atlantic Tropical Experiment (GATE) radar
measurements in the tropical Atlantic Ocean), and at a
few different sampling resolutions (e.g., 1 and 10 min).
They find a linear relationship between the mean and
standard deviation of conditional rain rate (i.e., the rain
rate when there is rain), with a slope for standard de-
viation versus mean of 5/3. For a lognormally distrib-
uted conditional rain rate, using (5) and (6), this implies
a constant s of 1.153 (Short et al. 1993).

In LN, the variance amplitude of the stochastic forcing
is set by matching model precipitation spectral power in
a target frequency band (from 10.4 to 10.5 day21, cho-
sen to approximate the amplitude of the white noise floor
due to unrepresented convective processes). In this study,
we considered using this method. However, in prelimi-
nary tests, the highest values of target frequency band
spectral power we could obtain in the tj 5 1 day case,
without numerical problems, was approximately 5–10
times less than seen in the MSU observations. The reason
for this appears to be partly because the low frequency
variability responds strongly to the stochastic input for
this value of tj, even more so than in LN. Instead of
choosing the amplitude of the white noise input as in
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FIG. 2. 850-hPa zonal wind spectral power of daily mean anomalies for (a) wavenumber 1 and
(b) wavenumber 2 in an equatorial band from 5.6258N to 5.6258S. Runs are shown for tj equals
20 min (triangle), 2 h (diamond), and 1 day (asterisk). A control run with deterministic Qc is
shown by the dotted line (square). Units of power are (m s21)2. Std dev of the spectral power
estimator is 10%.

LN, we examine the response of the model to a stochastic
scheme where values of s are the same, and thus where
the variance of the stochastic input term yt (in the absence
of model feedbacks) is fixed and given by (6). In the
empirical lognormal scheme used in this study, all model
runs are set to s 5 4, which is approximately the highest
level of s usable for all experiments.

In principle, this stochastic parameterization will
provide input values of variance in accordance to (6),
while preserving the value of the mean. In practice, to
prevent unrealistic values of Qc , a maximum cutoff
value of 50 000 W m22 is applied (which is approxi-
mately the record measured 1-day rainfall in a hurri-
cane). Values greater than this cutoff, which are rea-
sonably infrequent, are set to 0. One expects, however,
that this will skew the distribution of Qc such that the
mean will be underestimated. This can be verified by
running the model using the climatological value of
Qc taken from a control run as the value for . AtBMQc

the same time, one also expects climatology is domi-
nated by large-scale processes, and thus will be robust.
Analysis of these issues are found in sections 7 and
8a. A minimum cutoff is also applied to account for
possible machine precision limitations; values less than
1025 W m22 are set to 0.

Because the maximum cutoff value has this effect on
the mean Qc represented by the empirical lognormal
scheme it affects the first point in the posited method-
ology: preservation of the mean given by the traditional
scheme by the stochastic parameterization. Sensitivity
experiments can be made by attaching a constant scaling
factor a to (8) such that the empirical lognormal scheme
is altered from (8) into

BMQ 5 aj Q .c t c (11)

The maximum cutoff for Qc of 50 000 W m22 and the
minimum cutoff of 1025 W m22 are still applied, as
described in section 3. The value of a can be used to
change the mean in an aggregate sense, when it is af-
fected by the maximum cutoff. It can also be used to
test impacts in the model climatology of not preserving
the mean in the non-mean-preserving stochastic param-
eterization. Changing the scale factor is similar to
changing 1/tc, since the two are more or less formally
equivalent. In section 8, sensitivity tests with different
a will reveals surprises concerning how stochastic con-
vection interacts with the large-scale.

Besides the mixed lognormal distribution, other dis-
tributions were tested. A mixed exponential distribution
did not provide much improvement over the mixed log-
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FIG. 3. Spectral power for daily mean anomalies of OLR normal-
ized by an estimate of background spectral power for tj equals (a)
20 min, (b) 2 h, and (c) 1 day in an equatorial band from 5.6258N
to 5.6258S. Areas with values greater than 1.1 are shaded. Contour
interval is 0.2. Diagonal lines denote constant phase speed.

normal in terms of the tail decrease with large values
and the necessity of imposing a maximum cutoff value.
A mixed beta distribution was also tried, because the
cumulative distribution function converges to one at a
finite value. However, computing the beta distribution
at each time step and grid point in space ended up being
computationally too expensive. The mixed lognormal is
presented here largely because of the precedent in the
remote sensing literature, and because the main results
appear to depend more strongly on dynamical feedbacks
than on the particular distribution chosen.

Model runs are conducted both with and without mod-
el dynamics. In the runs without model dynamics, the
stochastic parameterization is run using climatological
Qc from the control run as the stochastic parameteri-
zation’s input value of .BMQc

4. Data and analysis methods

a. Data

The ideal dataset for calculating the precipitation sta-
tistics relevant for development (and evaluation) of a
stochastic convective parameterization should cover
both land and ocean, consist of aggregated measure-
ments (that approximate GCM grid cells) versus point
measurements, span a relatively long time period to en-
able the spectral analysis results to be reasonably sig-
nificant, and have fine enough resolution such that in-
dividual convective complexes as well as mesoscale sys-
tems are resolved. A dataset that meets all these criteria
is not found. For the purposes of the present study,
which represents an initial sensitivity test of the ap-
proach 2 stochastic parameterization methodology, the
Spencer (1993) daily precipitation estimates [calculated
from passive radiometer measurements by the MSU car-
ried on the Television Infrared Observational Satellite-
N (TIROS-N) and National Oceanic and Atmospheric
Administration (NOAA) series of polar orbiting satel-
lites] is an appropriate compromise. Although the MSU
estimates only include oceanic regions, the dataset is
relatively long, extending from 1 January 1979 through
31 October 1996. Climatology is calculated as the long-
term mean from 1979 to 1995. The grid spacing of the
dataset is 2.58 3 2.58 latitude and longitude. If the sen-
sitivity tests suggest that this stochastic parameterization
approach may be fruitful, one could imagine future work
using additional datasets to produce a more refined es-
timate of the distribution.

b. Analysis methods

Three cases of tj are examined: 20 min (which is the
model time step), 2 h, and 1 day. A control run is made
using the deterministic convective parameterization de-
scribed in (2). Model runs 46 years (each year consisting
of twelve 30-day months) in length are conducted using
climatological sea surface temperature (SST) as the low-

er boundary forcing. The SST used is from the Reynolds
and Smith (1994) blended dataset. The first year of sim-
ulation is discarded to remove any residual spinup.

Daily means of model variables are used in all anal-
ysis. Calculations of climatology, variance, and esti-
mates of the probability distribution function (pseudo-
PDF) of the model runs use the first 10 years of the
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FIG. 4. Pseudo-PDF of observed (MSU) and model daily mean precipitation in (a) a region of frequent convection
(model 5.6258N, 1808–202.58E; MSU 58N, 1808–202.58E), and (b) a region of infrequent convection (model 9.3758S,
241.8758–275.6258E; MSU 108S, 242.58–2758E). Bin size of probability estimate is 10 W m22. MSU is the thick solid
line. Model runs shown are for tj equals 20 min (triangle), 2 h (diamond), and 1 day (asterisk). Note (a) and (b) have
different x- and y-axis scales.

analysis period; wavenumber–spectral power calcula-
tions use all 45 years of the analysis period. Calculations
of variance for the MSU observations use the timeseries
extending from 1 January 1979 to 31 December 1995,
and use anomalies obtained by subtracting the 1979–
95 long-term mean.

The anomalies used in calculating variance and spec-
tral power for the model runs are calculated at each grid
point by removing daily mean deviations from a spline
fit to the monthly climatology over the respective analysis
periods. No detrending is applied. Pseudo-PDFs are cal-
culated by counting the number of values that fall inside
a bin, and dividing by the total number of values in the
time series. Plots of pseudo-PDFs show the pseudo-PDF
value for the middle of the bin. The spectral power es-
timates use the ‘‘summing’’ method (Press et al. 1989,
465–466), with a nonoverlapping bin group size of K 5
101, to control the error of the estimator, and a Hanning
window to control frequency leakage. This bin group size
yields a bandwidth of 0.006 23 day21, which implies the
longest period that can be interpreted physically on the
spectral power plots is 160 days.

5. Effects of the empirical lognormal scheme on
intraseasonal variability

Runs using the empirical lognormal scheme described
in section 3 (a 5 1) are conducted for the three auto-
correlation timescales tj 5 20 min, 2 h, and 1 day. Figure
2 shows wavenumbers 1 and 2 spectral power for 850-
hPa zonal wind in an equatorial band, for the three tj

cases. The addition of stochastic noise produces notice-
able effects on eastward propagating intraseasonal vari-
ability. In wavenumber 1, one sees preferential enhance-
ment of lower frequency variability. In wavenumber 2,
the enhancement effects are more broadly spread in fre-
quency. Higher values of tj generally produce higher
levels of intraseasonal variability spectral power. A west-
ward peak is seen in wavenumber 1 spectral power, for
which we do not have an explanation. The enhancement
of atmospheric variability also extends to lower frequen-
cies (i.e., 160 days in the spectral power figures). While

the spectral power at longer timescales is just as sensitive
to the autocorrelation timescale as that at intraseasonal
timescales, it raises the possibility that nonresolved var-
iance may contribute in a nonnegligible manner even to
very low frequency climate variability.

Figure 3 shows the ratio of OLR spectral power to
an estimate of the background power [using a meth-
odology from Wheeler and Kiladis (1999, hereinafter
WK) with slight modifications] in an equatorial band
for the three tj cases. The most important differences
in methodology are described by Lin et al. (2000). Val-
ues of the ratio greater than 1.1 are taken as exceeding
the 95% significance level. Although Fig. 3 in the pre-
sent study is structured to be similar to Fig. 3 in WK,
extreme caution should be exercised in any comparison
since the methodology assumes that the model repre-
sentation of background power is such that the model
signal’s relationship to model background is similar to
the relationship between the observed signal and ob-
served background power. Indications are that this may
not be true for the model. Thus, the areas in Fig. 3
showing significant power to background ratio should
not be interpreted as demonstrating the intraseasonal
variability in the model has a certain type of structure,
but only that the variability when compared to the mod-
el’s background, has a certain structure.

From Fig. 3, one sees the low-frequency signal is
concentrated in wavenumber 1. The magnitude of the
signal is not as high as in WK or Lin et al. (2000). In
the version of the model used in Lin et al., extratropical
disturbances were stronger and the evaporation–wind
feedback tended to be stronger, either of which may
account for a stronger MJO-like signal in that version.
Comparing results over several wavenumbers for dif-
ferent tj (Figs. 3a–c), increasing tj tends to be asso-
ciated with a slower phase speed in the eastward prop-
agating signal. Phase speed from dry dynamics alone is
faster than phase speed with moist dynamics, since the
moist dynamics requires time for such feedbacks to be
set up. At longer autocorrelation time, one might expect
that large random deviations are less frequent, which
would enable more time for organized convective feed-
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FIG. 5. Variance of daily mean precipitation for MSU observations.
Units of (W m22)2. Contour interval is 10 000.

FIG. 6. Variance of daily mean precipitation for model runs using
the empirical lognormal scheme (a 5 1), with tj equals (a) 20 min,
(b) 2 h, and (c) 1 day. Units of (W m22)2. Contour interval is 2000.
All panels in this figure share the same color bar.

backs to act. Thus, we speculate that for tj 5 20 min,
compared to the cases when tj 5 2 h and tj 5 1 day,
the stochastic convection acts at a timescale such that
a dry dynamical response is favored, while at the longer
tj, the increased autocorrelation time enables the moist
response to make a larger contribution.

6. Simulation of precipitation by the empirical
lognormal scheme

a. Probability distribution function

Figure 4 shows the pseudo-PDF for observed and
model generated daily mean precipitation, for tropical
regions of frequent and infrequent convection. In the
frequent convection region (Fig. 4a), the peak of pseu-
do-PDF is shifted towards low magnitude days for lower
values of tj. Compared to observations, the model over-
estimates the probability of days less than approximately
200 W m22. In the infrequent convection region (Fig.
4b), higher values of tj do a better job in simulating
the observed pseudo-PDF. In comparison, the CAPE
scheme in LN, for tj 5 1 day, simulates the pseudo-
PDF much better than the results in Fig. 4 (see appendix
A for results using the CAPE scheme).

b. Variance

Figure 5 shows total variance of observed MSU daily
precipitation. Figure 6 shows total variance of model
daily precipitation for the three tj cases. Immediately
one notices that the model underestimates peak ob-
served variance by at least a factor of 4. The CAPE
scheme in LN also underestimates observed variance.
Still, variance simulated by the model shows some of
the gross features seen in observations, such as placing
the maximum variance in regions of high climatological
convection.

In theory, both schemes should allow one to set ar-
bitrary levels of variance. In practice, numerical con-
straints limit how much stochastic variance can be spec-
ified. The variance shown in Fig. 6 is about the maxi-
mum variance that can be obtained, with the empirical
lognormal scheme, without the model encountering

problems with numerical stability (presumably associ-
ated with occasional large excursions of heating).

As seen in Fig. 6, the formulation used for imple-
menting the autocorrelation timescale (9) results in less
variance with higher tj, since at higher tj, the weight
in front of the stochastic input term yt in (9) decreases.

When precipitation variance (Fig. 6) is compared to
the spectral power plots for u850 in Fig. 2, one finds that
while the largest level of precipitation variance is at
lowest value of tj, the largest value of spectral power
associated with intraseasonal variability is at the largest
value of tj. This lack of a one-to-one correspondence
between precipitation and 850-hPa zonal wind total var-
iance is also seen when comparing precipitation anom-
aly spectral power (not shown) and 850-hPa zonal wind
anomaly spectral power (Fig. 2). This suggests that the
coupling between convection and circulation may be
more nuanced than suggested by the oscillating heating
source mechanism that has been proposed as an expla-
nation for the MJO (e.g., Chang 1977).

c. Climatology
Figure 7 shows January and July precipitation cli-

matology for the control run. Figure 8 shows January
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FIG. 7. (a) Jan and (b) Jul precipitation climatology (W m22) for
the control run. Contour interval is 50. All climatology plots in this
paper share the same color bar.

FIG. 8. (a) Jan and (b) Jul precipitation climatology (W m22) for
the empirical lognormal scheme (a 5 1), for tj 5 1 day. Contour
interval is 50. All climatology plots in this paper share the same color
bar.

FIG. 9. (a) Jan and (b) Jul precipitation climatology (W m22) for
the empirical lognormal scheme (a 5 1), without model dynamics,
for tj 5 1 day. Contour interval is 50. All climatology plots in this
paper share the same color bar.

and July precipitation climatology for model runs using
the empirical lognormal scheme for tj 5 1 day (a 5
1). Comparable figures for tj 5 20 min and 2 h are
similar, except regions with the most extreme precipi-
tation are larger for the tj 5 1 day case.

Compared with the control run, the climatology for
the stochastic case is generally similar, although it has
lower maxima in tropical convergence zones, and has
a spatial structure that is more diffused. A variety of
causes may contribute to producing such a climatology.
The implementation of a maximum precipitation cutoff
(described in section 3) in the stochastic parameteri-
zation may be removing the large values needed to bal-
ance the low-magnitude values to reproduce the mean
set by the standard Betts–Miller convective scheme. It
is also possible that the stochastic component itself af-
fects climatology, producing less rainfall in areas that
would otherwise receive more. Comparing these results
to a case where the stochastic parameterization operates
without model dynamics may help us understand how
the empirical lognormal scheme affects climatology (see
next section).

7. The empirical lognormal scheme, without model
dynamics

The stochastic parameterization is run without model
dynamics by setting the input value of in the em-BMQc

pirical lognormal scheme to the value of precipitation
climatology from the control run. Figure 9 shows pre-
cipitation climatology for such a run (a 5 1). Only the
case for tj 5 1 day is shown; climatology for tj 5 20
min and 2 h are nearly identical, at a contour interval
of 50 W m22.

Although the precipitation climatology without model
dynamics (Fig. 9) retains a structure with a tropical
maximum, the peak magnitude of the climatology is
noticeably lower than in the case with model dynamics
(Fig. 8), and in turn is much lower compared to the
control run (Fig. 7). Since in the case without model
dynamics the cutoff is the only cause of reducing the
mean of precipitation, such a cutoff decreases clima-
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FIG. 10. Variance of daily mean precipitation for model runs using
the empirical lognormal scheme (a 5 1), with no model dynamics,
with tj equals (a) 20 min, (b) 2 h, and (c) 1 day. Units of (W m22)2.
Contour interval is 2000. All panels in this figure share the same
color bar.

FIG. 11. (a) Jan and (b) Jul precipitation climatology (W m22) for
the empirical lognormal scheme, a 5 11, for tj 5 1 day. Contour
interval is 50. All climatology plots in this paper share the same color
bar.

tology quite substantially. At the same time, as the case
with model dynamics shows, the model dynamics works
to increase the climatology to much higher values.

Figure 10 shows total variance of daily mean precip-
itation for the empirical lognormal scheme (a 5 1) with
model dynamics removed. As one would expect, and as
in the case with model dynamics included, higher values
of tj have lower total variance. Variance is lower,
though, when model dynamics are removed, implying
that the model dynamics act to increase variance that is
provided to the system.

One outstanding question has been the importance of
the shape of the probability distribution, both for low-
magnitude days as well as the tail of the distribution
(the latter of which is altered by the maximum cutoff ).
The experiments described in this section, however, sug-
gest that interactions with model dynamics may be more
important than distribution shape. Further experiments
will test the sensitivity of climatology and other quan-
tities, to help elucidate the relative importance of de-
terministic versus stochastic processes.

8. Sensitivity of the empirical lognormal scheme to
a scaling factor

In section 7 it was seen that while the maximum
precipitation cutoff (discussed in section 3) substantially
decreases the magnitude of the precipitation climatol-
ogy, model dynamics work against the reduction. In this
section, a case is considered where the precipitation
climatology produced by the stochastic parameterization
matches the control run climatology, in an aggregate
sense. This is done by setting a in (11) to 11, which is
a value that will produce a climatology that matches
that given in the control run (Fig. 7). Runs are made
with and without model dynamics, using a 5 11. In the
case without model dynamics, the stochastic scheme
uses precipitation climatology from the control run as
the input value for , as described in section 3.BMQc

a. Climatology

Figure 11 shows precipitation climatology for the em-
pirical lognormal scheme, with a 5 11, with model dy-
namics. Comparable figures for tj 5 20 min and 2 h are
similar, except that regions with the most extreme pre-
cipitation are larger for tj 5 1 day. Figure 12 shows
precipitation climatology for the same case, except with
model dynamics removed (as described in section 3). For
the runs without model dynamics, only the case with tj

5 1 day is shown; climatology for tj 5 20 min and 2
h are nearly identical, at a contour interval of 50 W m22.

In comparing Fig. 11 and Fig. 12, one finds that pre-
cipitation climatology is the same using the stochastic
parameterization with and without model dynamics, and
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FIG. 12. (a) Jan and (b) Jul precipitation climatology (W m22) for
the empirical lognormal scheme, no model dynamics, a 5 11, for tj

5 1 day. Contour interval is 50. All climatology plots in this paper
share the same color bar.

FIG. 13. (a) Jan and (b) Jul precipitation climatology (W m22) for
deterministic run with tc 5 22 h for this figure should be compared
to Fig. 8 (see text). Contour interval is 50. All climatology plots in
this paper share the same color bar.

that both reproduce the climatology of the control run.
This implies that inclusion of a stochastic component to
precipitation does not necessarily substantially alter the
distribution or magnitude of climatological convection.

That the precipitation climatology for the empirical
lognormal scheme, with a 5 11, nearly reproduces the
climatology from the control run also suggests that pre-
cipitation climatology is fundamentally a function of
the model, as opposed to the presence of a stochastic
component. This also suggests that tests be made for
the deterministic case with a different tc, since tc is
more or less formally identical to a in the empirical
lognormal scheme (11).

Figure 13 shows precipitation climatology from the
deterministic tc 5 22 h run. This climatology is nearly
the same as that for the empirical lognormal scheme,
with a 5 1, with model dynamics (Fig. 8; the similarity
is clearest when comparing to the case of tj 5 1 day).
At the same time, when a 5 11, the climatology is
almost identical to the deterministic case when tc 5 2
h (Fig. 7). Since Qc is proportional to 1/tc, in the de-
terministic case this is equivalent to multiplying Qc by
11. This implies that in both cases using the empirical
lognormal scheme (a 5 1 and 11), the climatology is
insensitive to the inclusion of stochastic noise itself, but
rather is more sensitive to changes that effectively act
as changes to tc. Because CAPE in the Tropics so easily
adjusts to balance with large-scale dynamics, the effect
after interaction with dynamics of a scaling factor in the
Qc term (whether it be a or 1/tc) is more nuanced than
might be expected.

Note that in the case of deterministic tc 5 22 h, total
variance, as well as spectral power separated into wave-

numbers (not shown), is decreased substantially. Thus,
the effect of a scaling factor in a deterministic case is
different than in a stochastic case. For the stochastic
case, in comparing the runs with the scaling factor
changed from a 5 11 to a 5 1, one finds a slight
decrease in total variance of precipitation and an in-
crease in low-wavenumber 850-hPa zonal wind anomaly
spectral power at intraseasonal timescales. In the de-
terministic case, for a comparable change in the Qc scal-
ing factor (i.e., tc 5 2 h to tc 5 22 h) total variance
(not shown) is decreased to nearly negligible levels, and
850-hPa zonal wind anomaly spectral power (not
shown) spectral power shows a general decrease in low
wavenumber power with period between 20 and 80
days. This result is consistent with previous analysis of
the response of the tropical atmosphere to changing tc,
as represented in deterministic linear models (Yu and
Neelin 1994; Neelin 1997). In those models, increasing
tc acts to suppress higher wavenumbers by allowing the
tropical atmosphere to deviate from quasi-equilibrium
and thus become more convectively damped.

These results suggest the following ideas about pre-
cipitation climatology and the inclusion of a stochastic
component to convection:

• Climatology is fundamentally determined by large-
scale model processes. Changes to the stochastic con-
vection parameterization that would appear in an off-
line test (no dynamical feedbacks) to affect the mean
precipitation turn out to be of secondary importance
when feedbacks are included.

• The climatology of the system tends toward a state
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FIG. 14. Variance of daily mean precipitation for model runs using
the empirical lognormal scheme, a 5 11, with tj equals (a) 20 min,
(b) 2 h, and (c) 1 day. Units of (W m22)2. Contour interval is 2000.
All panels in this figure share the same color bar.

FIG. 15. Variance of daily mean precipitation for model runs using
the empirical lognormal scheme, no model dynamics, a 5 11, with
tj equals (a) 20 min, (b) 2 h, and (c) 1 day. Units of (W m22)2.
Contour interval is 5000 (which is different from other model run
variance figures). All panels in this figure share the same color bar.

that is set by the choice of parameters unrelated to
the presence of stochastic noise (such as tc).

• The method with which one parameterizes the sto-
chastic nature of convection can change the precipi-
tation climatology of the model in a way similar to
changing convective timescale tc.

• In general one expects stochastically driven variations
in the presence of nonlinearity to affect the mean state,
but (perhaps surprisingly) this mechanism appears
secondary to the processes listed above.

Having explained some of the effects on climatology,
and seen that the stochastic parameterization itself does
not have much impact on the behavior of climatology,
we examine the impact of a 5 11, as well as model
dynamics, on total variance and pseudo-PDF, quantities
that should be more influenced by the fluctuating nature
of a stochastic scheme versus a deterministic scheme.

b. Variance

Tropical precipitation total variance for the a 5 11
case with model dynamics (Fig. 14), for tj 5 20 min,
is comparable to the a 5 1 case. For tj 5 1 day, the

a 5 11 case has tropical precipitation variance weaker
than the a 5 1 case; the variance maximum no longer
remains even in the Tropics.

Comparing the a 5 11 case with model dynamics to
the a 5 11 case without model dynamics, one finds
quite different behavior than in the a 5 1 case (with
and without model dynamics). Figure 15 shows total
precipitation variance for a 5 11, with model dynamics
removed. One finds that total variance produced by the
stochastic scheme in absence of model dynamics is quite
substantial. And yet, this variance does not translate into
very much total variance when it is filtered through
model dynamics. In fact, the model dynamics appears
to act in a manner opposite to how it behaves in the a
5 1 case, where the variance with model dynamics is
higher than without model dynamics. We do not have
an explanation for this behavior, but it clearly underlines
the strong modifications that occur by interaction with
model dynamics.

c. Probability distribution function

Figure 16 shows the pseudo-PDF for a region of fre-
quent convection and a region of infrequent convection,
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FIG. 16. Pseudo-PDF of observed (MSU) and model daily mean precipitation in a (a) region of frequent convection
(model 5.6258N, 1808–202.58E; MSU 58N, 1808–202.58E), and a (b) region of infrequent convection (model 9.3758S,
241.8758–275.6258E; MSU 108S, 242.58–2758E). Bin size of probability estimate is 10 W m22. MSU is the thick solid
line. Model runs shown are for a 5 11 for tj equals 20 min (triangle), 2 h (diamond), and 1 day (asterisk). Note (a)
and (b) have different x- and y-axis scales.

FIG. 17. Spectral power for 850-hPa zonal wind (a) wavenumber 1 and (b) wavenumber 2 in
an equatorial band from 5.6258N to 5.6258S. Runs for a 5 11 are shown for tj 5 20 min (triangle),
2 h (diamond), and 1 day (asterisk). A control run is shown by the dotted line (square). Units of
(m s21)2. Std dev of the spectral power estimator is 10%.

for the empirical lognormal scheme with a 5 11. The
pseudo-PDF for the empirical lognormal scheme with
a 5 11, without model dynamics, is not shown.

Compared to the empirical lognormal scheme with a
5 1, the a 5 11 pseudo-PDF seems to better match the
observed pseudo-PDF, both in areas of frequent and
infrequent convection. As one would expect, setting a
5 11 generally decreases the frequency of low-mag-
nitude days. Yet, in comparison to the a 5 1 runs, the

strength of the intraseasonal variability is much less (see
section 8d), suggesting that a better match of the ob-
served distribution is not enough by itself to enhance
intraseasonal variability.

In the a 5 11 (as well as the a 5 1) case, the prob-
ability of zero values in regions of frequent convection
is substantially underestimated, and thus could probably
be improved. As it stands, we do not know whether or
not it is a leading order effect. In the a 5 1 case, the
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pseudo-PDF of the stochastic convection without model
dynamics (not shown) is quite different from with model
dynamics, particularly at low-magnitude days. For a 5
1, model dynamics also acts to alter the distribution of
low-magnitude days (not shown). Because model dy-
namics can substantially change the distribution of Qc,
one must iterate around the interaction with model dy-
namics to obtain a match with observations.

d. Spectral analysis

Figure 17 shows spectral power for daily mean anom-
alies of 850-hPa zonal wind for the empirical lognormal
scheme with a 5 11. The impact of the stochastic
scheme on increasing spectral power of intraseasonal
variability is much less. Of what effect there is on spec-
tral power, the largest occurs for the tj 5 20 min case.
This is in contrast to the a 5 1 case, where tj 5 1 day
has the largest intraseasonal response. For the tj 5 20
min case, however, the spectral power for a 5 11 is
only somewhat less than for a 5 1. For no obvious
reason, something in the interaction with dynamics is
filtering the variance when a scaling factor is applied
(as in the a 5 11 case).

Analysis similar to that used to produce Fig. 3 is also
conducted for a 5 11. The results (not shown) are similar
to Fig. 3 and likewise show a reduction of the phase speed
of the eastward propagating signal with increasing tj.

9. Discussion and conclusions

When developing convective parameterizations that
seek to include the effects of unresolved convective pro-
cesses upon grid-scale variables, two different ap-
proaches can be taken. In approach 1, the behavior and
physical effects of unresolved processes (i.e., effects
associated with subgrid convective motions and meso-
scale systems) are modeled. Thus, it is not assumed that
the overall distribution of convective heating is known
in advance. The scheme used in LN provides an ele-
mentary example of such a modeling approach. In that
study, it was assumed that unresolved effects in buoy-
ancy related variables (the model’s formulation for
CAPE) could be described as a first-order autoregressive
red noise process. This is, in the simplest sense of the
term, a ‘‘model’’ of the physics involved in the unre-
solved processes, and thus the effect of this noise upon
total convective heating is not known beforehand. The
extent to which the scheme in LN can simulate the ob-
served probability distribution of convective heating is
thus a measure of the validity of the assumptions LN
make in the ‘‘model’’ of the unresolved physics. On the
other end of the spectrum in this first class of approaches
to stochastic convective parameterizations would be a
randomly initiated simplified model of a mesoscale sys-
tem embedded within a GCM grid cell.

In approach 2, a stochastic parameterization is for-
mulated that does not seek to explicitly model the effects

of unresolved processes per se, but rather seeks to just
control the key higher-moment statistics of the convec-
tive heating that the model sees. Theoretically, this ap-
proach would lend itself most readily to implementation
in a full-scale GCM; the stochastic scheme would be
calibrated offline, to match the key statistical traits ob-
served in actual precipitation, and then implemented
into the GCM. Another way to think about the difference
between these two approaches to stochastic parameter-
ization is that in approach 1, one parameterizes the phys-
ics of the unresolved processes using a stochastic frame-
work, while in approach 2, one parameterizes the sta-
tistics of the convective heating, using a stochastic
framework. The empirical lognormal scheme used in
this study illustrates the latter approach for a model of
intermediate complexity.

As in LN, this present study suggests that the inclu-
sion of unresolved variance in the form of a stochastic
convective parameterization affects intraseasonal vari-
ability. When considered further, the results of these two
studies also suggest a checklist of considerations that
appear important in formulating a stochastic convective
parameterization:

• The influence of a stochastic parameterization on in-
traseasonal variability may be very different from the
influence on the climatology. To leading order, cli-
matology appears to be only modestly affected by the
inclusion of a stochastic component (beyond ways that
are comparable to changing the deterministic param-
eterization). Intraseasonal variability, on the other
hand, appears to be sensitive to the presence of noise,
as well as to details of its parameterization.

• Effects of autocorrelation time differ with context.
Changing the autocorrelation time of a stochastic process
that acts on elements within a convective scheme (such
that the process is operated on by the nonlinearities of
the convective scheme, as well as the nonlinearities of
the model dynamics) has a substantial effect. There ap-
pears to be less sensitivity to changes in autocorrelation
time of a stochastic process that acts outside the scheme
(such that the autocorrelation time is operated on by the
nonlinearities of the model dynamics alone).

• Preservation of the mean vertically integrated con-
vective heating is not crucial. We initially postulated
that a useful property of the stochastic parameteri-
zation would be that it yield the same mean as a related
deterministic scheme. The results suggest that even if
the convective parameterization (without model dy-
namics) does not reproduce climatology, once the sto-
chastic parameterization is implemented in an atmo-
spheric model, the model dynamics will tend to adjust
the mean towards a climatology intrinsic to the model,
for given parameter settings.

• Heating strongly interacts with the large-scale, some-
times unexpectedly. Prior to this study, we hypothe-
sized that an empirical stochastic parameterization
could be calibrated offline, and then implemented in
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FIG. A1. Pseudo-PDF of daily mean precipitation in region of frequent tropical convection for
(a) MSU (58N, 1808–202.58E during the period 1 Jan 1979–31 Dec 1995), and (b) model runs
using the CAPE scheme for tj 5 1 day (5.6258N, 1808–202.58E for 10 model years). Bin size
for both pseudo-PDFs is 10 W m22.

the atmospheric model. The results of this study sug-
gest this is not a workable strategy since heating and
large-scale dynamics are so intertwined. This is par-
ticularly dramatic when total variance and probability
distribution are considered. Parameters affecting the
probability distribution of heating need to be chosen
in the context of interactive model dynamics.

During this study, attention was paid to finding a
probability distribution that would properly represent
the key features of stochastically varying convection,
while at the same time would satisfy numerical con-
straints that inevitably enter into modeling efforts. The
major constraints included ensuring model precipitation
did not reach values that would cause numerical prob-
lems and limiting the computational expense required
for inverting a distribution. We note the caveat that the
distribution used in this study has deficiencies (espe-
cially in representation of the probability that precipi-
tation equals zero) that may be important. In the end,
however, the results suggest that large-scale effects of
model dynamics so strongly affect the behavior of con-
vection in the model that details of the distribution are
not as important as was believed.

Implementation of the empirical lognormal example
of stochastic parameterization approach 2 suggests that
the atmosphere (as simulated in this model) selectively
and heavily modifies any input variance. The main pos-
tulated merit of approach 2 is the hope that one might
be able to parameterize the unresolved variance sepa-
rately from considerations of model dynamics. The re-
sults of this study suggests such direct control of the
distribution of convective heating ignores important
feedbacks, since interactions with model dynamics so
strongly influence effects of the stochastic convection.
Yet, as seen in LN, even a simple example of approach
1 to stochastically parameterizing unresolved variance
(where the physics of the convective elements are mod-
eled stochastically) yields a probability distribution of
precipitation that more closely matches observations
than the approach used in the present study. Accord-
ingly, approach 1 is recommended.

Perhaps more importantly, the results of approach 2
strongly support the LN approach 1 results suggesting
that the effort of developing stochastic convective pa-

rameterizations is worthwhile. Results from experiments
using both the physical modeling and empirical ap-
proaches indicate that large-scale intraseasonal vari-
ability is affected. While less conclusive, there are in-
dications that atmospheric contributions at longer time-
scales are likewise affected. Results from this present
study suggest unresolved variance strongly interacts
with large-scale dynamics, even if the precise charac-
teristics of its representation are crudely formulated. The
overall conclusion of both approaches is to provide
modeling evidence that a substantial percentage of the
large-scale variance observed in the atmosphere (not
only in precipitation, but also in winds) might be the
response of the large-scale to smaller-scale variability.
It appears that the higher-moment effects (as opposed
to just the mean) of convective scale and mesoscale
motions may be important to the climate system, and
that modeling these effects may be a useful—and chal-
lenging—task to accomplish.
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APPENDIX

Pseudo-PDF for the CAPE Scheme

Figures A1 and A2 show pseudo-PDFs in a region
of frequent tropical convection for the CAPE scheme
used in LN, for the tj 5 1 day case. Pseudo-PDFs of
MSU observations are also shown, for comparison.
These plots can be compared to model runs using the
empirical lognormal scheme (Figs. 4 and 16).
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FIG. A2. Same as Fig. A1, except the natural logarithm of pseudo-PDF is plotted on the y

axis. Bin size for both pseudo-PDFs is 10 W m22.
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