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ABSTRACT

Coupled ocean-atmosphere models exhibit a variety of forms of tropical interannual variability that may be
understood as different flow regimes of the coupled system. The parameter dependence of the primary bifurcation
is examined in a “stripped-down” version of the Zebiak and Cane model using the equatorial band approximation
for the sea surface temperature (SST) equation as by Neelin. In Part I of this three-part series, numerical results
are obtained for a conventional semispectral version; Parts I and 11l use an integral formulation to generate
analytical results in simplifying limits. In the uncoupled case and in the fast-wave limit (where oceanic adjustment
occurs fast compared to SST time scales), distinct sets of modes occur that are primarily related to the time
scales of SST change (SST modes) and of oceanic adjustment (ocean-dynamics modes). Elsewhere in the
parameter space, the leading modes are best characterized as mixed SST /ocean-dynamics modes; in particular,
the continuous surfaces in parameter space formed by the eigenvalues of each type of mode can join.

A regime in the fast-wave limit in which the most unstable mode is purely growing, with SST anomalies in
the eastern Pacific, proves to be a useful starting point for describing these mergers. This mode is linked to
several oscillatory regimes by surfaces of degeneracy in the parameter space, at which two degrees of freedom
merge. Within the fast-wave limit, changes in parameters controlling the strength of the surface layer or the
atmospheric structure produce continuous transition of the stationary mode to propagating modes. Away from
the fast-wave limit, the stationary mode persists at strong coupling even when time scales of ocean dynamics
become important. On the weaker coupling side, the stationary mode joins to an oscillatory mode with mixed
properties, with a standing oscillation in SST whose growth and spatial form may be understood from the SST
mode at the fast-wave limit but whose period depends on subsurface oceanic dynamics. The oceanic dynamics,
however, is only remotely related to that of the uncoupled problem. In fact, this standing-oscillatory mixed
mode is insensitive to low-coupling complications involving connections to a sequence of uncoupled ocean
modes at different parameter values, most of which are members of a discretized scattering spectrum. The
implication that realistic coupled regimes are best understood from strong rather than weak coupling is pursued
in Parts Il and II1. The interpretation of the standing-oscillatory regime as a stationary SST mode perturbed by
wave dynamics gives a rigorous basis to the original physical interpretation of a simple model of Suarez and
Schopf. However, viewing the connected modes as different regimes of a mixed SST/ocean-dynamics mode
allows other simple models to be interpreted as alternate approximations to the same eigensurface; it also makes
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clear why varying degrees of propagating and standing oscillation can coexist in the same coupled mode.

1. Introduction

The importance of tropical ocean-atmosphere in-
teraction has been recognized since Bjerknes (1969)
first hypothesized its role in the El Nifio~Southern Os-
cillation (ENSO) phenomenon, the most prominent
interannual oscillation of the tropical climate system.
The essence of Bjerknes’ postulate still stands as the
basis of present-day work—that ENSO arises as a self-
sustained cycle in which anomalies of sea surface tem-
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perature (SST) in the Pacific cause the trade winds to
strengthen or slacken, and that this in turn drives the
ocean circulation changes that produce anomalous
SST. Beginning at about the same time, the foundations
for modeling the tropical coupled system were laid
through the study of the individual components: the
dynamics of the equatorial ocean response to wind
stress in shallow-water models (e.g., Moore 1968; Cane
and Sarachik 1977, 1981; McCreary 1976), modified
shallow-water models (e.g., Cane 1979a,b; Schopf and
Cane 1983) and ocean general circulation models
(ocean GCMs or OGCMs; e.g., Philander and Paca-
nowski 1980; Philander 1981); and the semiempirical
finding that simple atmospheric models with steady,
damped shallow-water dynamics could provide a rea-
sonable approximation to the low-level tropical at-
mospheric response to SST anomalies (e.g., Matsuno
1966; Gill 1980; Gill and Rasmusson 1983).
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The basis for a more quantitative understanding of
coupled- ocean-atmosphere interaction was provided
by coupled models constructed from variations on such
modified shallow-water ocean and simple atmospheric
models: both in simple linear versions (Lau 1981; Phi-
lander et al. 1984; Gill 1985; Hirst 1986, 1988; Wakata
and Sarachik 1991; Neelin 1991) and nonlinear ver-
sions (e.g., Cane and Zebiak 1985; Anderson and
McCreary 1985; Zebiak and Cane 1987; Battisti 1988;
Battisti and Hirst 1989; Schopf and Suarez 1988; Ya-
magata and Masumoto 1989; Graham and White
1990). The latter are often referred to as “intermediate”
coupled models within a model hierarchy that now
also includes, in order of increasing complexity, hybrid
coupled models (consisting of an ocean GCM coupled
to a simpler atmospheric model, e.g., Neelin 1989b,
1990; Latif and Villwock 1990; Barnett et al. 1993,
personal communication) and coupled GCMs (in
which both components include relatively complete
physical parameterizations and primitive equation dy-
namics, e.g., Philander et al. 1989; Philander et al. 1992;
Lau et al. 1992; Sperber and Hameed 1991; Gordon
1989; Meehl 1990; Nagai et al. 1992; Mechoso et al.
1993; Neelin et al. 1992). Most of these models produce
interannual variability through coupled interactions
that have significant parallels to ENSO dynamics.

However, there are very considerable differences in
the nature of the coupled variability produced by the
different models (e.g., Neelin et al. 1992). In models
where parameter dependence has been examined, the
system shows considerable sensitivity and a rich variety
of flow regimes have been found, both in nonlinear
systems (e.g., Zebiak and Cane 1987, hereafter ZC;
Battisti 1988; Neelin 1990; Ghil et al. 1991) and in
linear models that exhibit multiple mechanisms of
coupled interaction (e.g., Hirst 1986, 1988; Battisti and
Hirst 1989; Neelin 1991, hereafter N91; Wakata and
Sarachik 1991). The character of the interannual vari-
ability in nonlinear models is largely determined by
the first bifurcation from the climate state (Neelin 1990;
Miinnich et al. 1991); in other words, by the leading
unstable mode of the system linearized about the cli-
matological state. Many of the most pressing questions
about the range of coupled variability found in coupled
models can thus be addressed by understanding the
relation between flow regimes in the linear problem.

At the same time, the search for simple prototype
systems to provide conceptual analogs for the modes
of coupled variability has led in a number of apparently
contradictory directions. Much current terminology is
based on the Rossby and Kelvin modes of the uncou-
pled ocean in an infinite or periodic basin, presumably
because these are most familiar to oceanographers. A
significant step toward thinking in terms of the fully
coupled problem was advanced by Schopf and Suarez
(1988) and Suarez and Schopf (1988, SS hereafter)
using a “toy” model with a single spatial variable to
explain the oscillation in their intermediate coupled
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model; Battisti and Hirst (1989, BH hereafter) showed
that a version of this model could be fit to a number
of important aspects of the oscillation in the ZC model.
Often referred to as the delayed-oscillator model, it
consists of a differential-delay equation representing
the time evolution of SST averaged over a small eastern
equatorial box, with a net growth tendency representing
local positive feedback mechanisms due to coupling
and a delayed negative feedback representing the
equatorial wave adjustment process; how literally the
latter should be interpreted in terms of off-equatorial
Rossby wave packets reflecting from the western
boundary has been the subject of debate (Graham and
White 1988; Battisti 1989). The model is designed to
represent the regime in which SST variability occurs
as a standing oscillation in the strongly coupled eastern
basin, and in which time scales of ocean wave dynamics
provide the “memory” of the system essential to the
oscillation.

On the other hand, a large class of coupled regimes
exists in which the time scales of ocean wave dynamics
are not essential to interannual oscillation. A distorted
physics method for testing this was employed in N91
to show that artificial increases to the wave speed in
the OGCM component of a hybrid coupled model did
not fundamentally affect the oscillation in a moderate-
coupling flow regime. An idealized but mathematically
and conceptually useful limit was introduced to explain
oscillations of this type: in the fast-wave limit, the time
scales of dynamical adjustment of the ocean are taken
to be fast compared to the time scales of SST evolution
through coupled processes. The slow modes of the
coupled system are then associated with the time de-
rivative of the SST equation, and hence referred to as
SST modes. Steady-state ocean dynamics is crucial to
SST modes in the fast-wave limit, but wave time scales,
by definition, are not. Hirst (1986, 1988) and N91
showed, by numerical and analytical methods, respec-
tively, that a number of physical processes cooperate
in the destabilization of SST modes, whereas they
compete in terms of the direction of propagation.
Propagation is essential to the period in these modes
and they provide a good prototype for slowly propa-
gating modes in a number of intermediate models and
GCMs (e.g., Anderson and McCreary 1985; Yamagata
and Masumoto 1989; Meehl 1990; Lau et al. 1992).

Because the SS delayed oscillator model is based on
the SST equation, it was natural to hypothesize that
nonpropagating SST modes away from the fast-wave
limit might be perturbed by wave time scales to produce
standing oscillations. Such a connection is inherent in
Wakata and Sarachik (1991 ) in which the relation be-
tween a propagating regime of Hirst (1988) and a
standing-oscillation regime is demonstrated. Puz-
zlingly, two models aimed at producing more rigorous
derivations of the SS delayed oscillator, Cane et al.
(1990, CMZ hereafter) and Schopf and Suarez (1990),
are formulated in what we call the fast-SST limit: the
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limit in which time scales of SST adjustment are as-
sumed to occur fast compared to time scales of ocean
wave dynamics, that is, the converse of the fast-wave
limit. These models are also constrained to assume the
coupling occurs at a single point rather than across all
or most of the basin.

It is our purpose in this three-part paper to show
how such seemingly contrary idealizations of a coupled
mode can be reconciled, to make connections between
different flow regimes for the leading coupled modes
in a finite basin, and to provide prototypes for coupled
mode behavior in system where partial differential
equations for spatial structure are solved explicitly. We
use two versions of the “stripped-down” intermediate
model introduced in N91 and here solved in a finite
basin. The model is designed to capture all the essential
mechanisms of the ZC model, but with simplifications
that permit more detailed analysis. In Part I, we ap-
proach the problem numerically using a conventional
semispectral method for the ocean component. In Part
11, a formulation of the model is derived that permits
analytical or near-analytical solutions to be derived in
special limits; the low-coupling limit is outlined in Part
II, while the more novel fully coupled cases are elab-
orated in Part HI.

To keep this multiparameter bifurcation problem
tractable, the key is to choose a few crucial parameters
that capture the range of behavior of interest, and to
restrict the exploration to regimes that are either close
to that of the real system or provide useful simplifi-
cations while remaining closely connected to the re-
alistic regimes. A detailed scaling to justify the param-
eters chosen is given in Part II with the analytic model
derivation and a discussion of the ranges of validity of
the several limits employed; in Part I the parameters
are introduced on a more pragmatic basis. The tracing
of modes—temporal eigenvalues and the correspond-
ing spatial structures—through parameter space is em-
phasized in both numerical and analytical work. It
proves simpler in terms of articulating the physical re-
lation between modes in different regimes to trace the
few leading modes (i.e., most unstable or least stable)
rather than restricting attention to where the leading
mode first becomes unstable. Obviously, the leading
mode is directly related to a primary bifurcation of the
original system whenever it is destabilized relative to
the explicit damping.

Surfaces of continuously connected eigenvalues (ei-
gensurfaces hereafter) corresponding to different modes
remain distinct through subregions of parameter space,
but singularities occur at which two or more eigensur-
faces join. A large literature of techniques for exploiting
such singularities exists (e.g., Golubitsky and Schaeffer
1985; Golubitsky et al. 1988); we confine attention to
the properties that provide insight into how coupled
modes are constructed. It proves convenient here to
refer to these by the algebraic multiplicity of the de-
generate eigenvalues and corresponding eigenvectors:
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for example, 2-degeneracy for the degeneracy of mul-
tiplicity two that occurs when a pair of eigenvalues
merges. Some, but not all, of these degeneracies cor-
respond to codimension two and higher bifurcations
of the original system. A summary of some relevant
properties is given for reference in the Appendix. While
the degeneracies subdivide the parameter space in some
respects, many physical properties of the modes are
continuous across the degeneracies; other properties
change without explicitly crossing a degeneracy. Dis-
cussion emphasizes the physical properties wherever
possible, and in most cases this yields a good sense of
why a degeneracy must occur, given the dominant bal-
ances in two regions.

In Part I, section 2 presents the model in conven-
tional form with realistic basic state; section 3 outlines
the connection between flow regimes within the fast-
wave limit for this case to provide comparison to the
analytical versions in Part III and to the more realistic
parameter regimes of sections 4 and 5. Section 4 con-
tains the heart of the paper: a detailed analysis of the
connection between a regime with a purely growing
SST mode in the fast-wave limit and the regimes where
this mode becomes mixed with ocean-dynamical time
scales. Section 5 examines some of the simplest non-
linear cases and section 6 provides conclusions for Part
I, drawing also on results from Parts II and III.

2. Model
a. Ocean component

Among the intermediate coupled models, the ZC
model has had considerable success at quantitative
simulation of ENSO anomalies and even at prediction
(Cane et al. 1986; Barnett et al. 1988). This results
from a careful parameterization of the processes that
affect SST and to the inclusion of an embedded surface
layer for surface currents and equatorial upwelling due
to Ekman-like dynamics, narrow equatorial upwelling
being particularly crucial to the coupled problem. The
ocean model component is closely related to that of
ZC, but stripped down as in N91 to facilitate analysis.
The principal simplification is motivated by the fact
that the strongest surface temperature response to up-
welling, advection, and thermocline depth changes is
confined to a fairly narrow band along the equator in
the ENSO phenomenon. Thus, a simple equation for
SST in the equatorial band is constructed following
N91. This equation governs the thermodynamics of a
box of the surface mixed layer centered on the equator.
With an upstream advection scheme for the vertical
and meridional differencing of advection into the
equatorial surface band, the total SST equation can be
written as

3T + 1,0, T + # (W) —— (T — Tau)
H,s

2
= # (o0 T = Tw) + (T = To) = 0, (1)

v
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where T is the surface mixed-layer temperature of the
equatorial band, u, the zonal surface current, w and
vy the vertical and meridional surface currents appro-
priate for the upstream differencing, and % is an an-
alytic version of the Heaviside function. The Newton-
ian cooling represents all physical processes that bring
the system toward a radiative-convective-mixing
equilibrium in absence of dynamical advection with
Ty = 29°C the equilibrium SST value at the equator;
L, is the width of the box, T is the off-equatorial SST
at a distance L, from the equator, and H,s = 75 m is
the depth scale characterizing upwelling of subsurface
temperatures, Tg,,, from the underlying shallow-water
layer. Here we set Ty = T, and assume symmetry of
SST and antisymmetry of the meridional current. A
diffusion term can be useful when considering certain
aspects of very weakly coupled cases (see Part I1) but
makes no difference to the numerical results considered
here.

A parameterization like that of Zebiak and Cane
(1987) is employed for the effect of the vertical dis-
placement of the thermocline on the subsurface tem-
perature,

Too=Ts + (TO - TsO) tanh[(he + hO)/H*] (2)

Here T is the characteristic temperature being up-
welled into the surface layer and A, is the equatorial
value of the thermocline depth departure from its no-
motion value. This formulation guarantees that Ty, is
between Toand To — 2( T — To), providing bounding
nonlinearity in the thermocline feedback. Here T is
the temperature at an offset —/, from the thermocline,
say the 20°C isotherm, where hy and H* control the
asymmetry of the thermocline depth dependence and
the maximum rate of change, respectively. Positive /1y
is appropriate, because it results in a greater dependence
of T, on & where the thermocline is relatively shallow;
H* = 25 m, hy = 30 m are chosen to give reasonable
sensitivity of temperature to thermocline depth anom-
aly in the eastern part of the basin. This simple param-
eterization may not give as good a fit for interannual
variability as the Zebiak and Cane (1987) parameter-
ization from which it was inspired. However, the an-
alytic dependence ensures nice properties for the system
and we are concerned with qualitative properties rather
than the exact amplitude of anomalies.

Following N91, vy is obtained by finite differencing
of the continuity equation:

Uy W 6u,

Ly H,

Thus, the equatorial SST change involves only the
equatorial values of u;, w, and 4. The ocean-dynamics
component consists of a modified shallow-water model
with an embedded, fixed-depth mixed layer, following
ZC. With subscript 1 for the surface mixed layer and
2 for the underlying shallow water layer, the equations
can be written as '

(3)
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] €sUs yvs_leH
€vs + Byu, =0 4)
and
r
80y, + €mltyy, — BYV,, + g0xh = —
oH
Byum + goh =0
0h + enh + H(dxtty, + 3y0) = 0, (5)
where

U = (Hyy + Hao)/H, us=(uy—wp)Hr/H

wy=us+u, w=w-+w,, H=H+H;, (6)
H, and H, are the mean height of the two layers, set
to 50 m and 100 m, respectively, and p is the oceanic
density. The reduced gravity parameter, g, is chosen
to give a Kelvin wave speed c§ = gH, about 2.7 m s™'.
In Egs. (4) and (5), the meridional component of the
wind stress is neglected because the wind perturbations
are predominantly zonal in the phenomenon of interest
and meridional wind stress has a smaller effect at large
zonal scales in the ocean. Advective nonlinearity in the
shallow-water component is neglected since the appli-
cability of shallow-water dynamics to the three-dimen-
sional ocean would fail before such terms could be im-
portant. The small effects of SST on the dynamics
component through density changes are neglected, as
in ZC.

To get magnitudes of w, and u, comparable with the
observations, a strong damping coefficient is required
for the transfer of momentum between the surface layer
and the remainder of the shallow water layer, e, = (2
days)™!, while for the two-layer vertical-mean motion
a weak damping rate e,, = (2.5 yr) "' is used. Equations
(4) are readily solved for the equatorial values of u;
and w,. Equations (5) are solved by conventional
methods for time-dependent equatorial wave dynamics
and u,,, w,,, and h are evaluated at the equator for use
in the SST equation. The usual boundary conditions
for the shallow-water equations in the long-wave ap-
proximation are used:

Un(X = xg,¥) =0, f_ Um(Xx = Xw, p)dy = 0. (7)

The wave equations are expanded in parabolic-cylinder
functions following Gill and Clark (1974). We use a
standard truncation that includes the Kelvin mode and
the first seven symmetric Rossby modes, with finite
differencing of the first-order wave equations in the x
direction on a 3-degree grid (48 points). This resolution
was verified to be sufficient for convergence of results
for the model basic state and leading coupled eigen-
modes over most of the parameter domain; the discre-
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tized scattering spectrum at low coupling is always res-
olution dependent.

A useful free parameter, 8, is introduced in (5) for
the purpose of discussing the importance of the oceanic
wave dynamics. As it appears here, it is similar to the
distorted physics experiments of N91; in Part II it is
motivated by more general scaling arguments. It mea-
sures the ratio of the time scale of adjustment by
oceanic dynamics to the net time scale of SST change
through various feedbacks acting through the SST
equation. An important special case of the model arises
when this ratio is small, and the fast-wave limit of N91
can be used. By dropping the time derivatives in (5),
that is, 6 = 0, and considering the fact that ,, is a very
weak damping, the shallow-water equations reduce to
Sverdrup balance along the equator,

r

g9xh oH
with negligible vertical mean currents. A proper
boundary condition is required for (8), as discussed
in Part HI and in Hao et al. (1992, hereafter HNJ),
both of which provide more detailed analysis of this
fast-wave limit case.

(8)

b. Atmospheric component

In the dynamics of the tropical lower troposphere,
mechanical balances are between pressure gradient,
Coriolis force, and boundary-layer friction, while the
thermodynamical balances are between diabatic heat-
ing and divergent flow acting in both moisture con-
vergence and adiabatic cooling to a zeroth-order ap-
proximation. Although simple models based on these
balances differ in physical interpretation (Lindzen and
Nigam 1987; Neelin 1988; Neelin and Held 1987; Ze-
biak 1986), all approximately give an equivalent Gill-
type model (Gill 1980) through proper scaling (Neelin
1989a). Thus, we follow the equations of Gill on an
equatorial 8 plane,

€xuy — Pyv, + dxb, = 0
Byu, + 8,6, =0

62‘¢a + Cczl(axua + ayva) = _Q: (9)

where €* is the inverse time scale of boundary-layer
friction and u,, v,, ¢, are boundary-layer winds and
geopotential; C, has the dimensions of gravity wave
speed, and Q is a forcing term proportional to SST
perturbation. In Gill (1980), Q was interpreted as a
diabatic heating, and C? as a dry gravity wave speed;
in more recent models, C?2 is reinterpreted and the bulk
of the diabatic heating is associated with the conver-
gence term.

In this coupled model, the SST meridional structure
is fixed and hence that of Q. Hao et al. find little sen-

. sitivity to this structure so, for simplicity, we adopt
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Q = A3 T'(x) exp(—y*/2L32), (10)

where L, = (C,/8)"/? is the atmospheric Rossby radius
and 7" is the SST anomaly. In this case, only the Kelvin
mode and first Rossby mode are included in the re-
sponse to the SST anomaly. Inclusion of more Rossby
modes for other meridional structures does not sub-
stantially affect the relation of equatorial SST anomaly
and wind stress. The wind stress on the surface of the
ocean is 7 = e*p H,u,, consistent with the friction
force on the atmosphere, where p,, H, are the atmo-
spheric boundary-layer density and height. The wind
stress along the equator is thus

7(x) = p.A(% exp(3e,x/L)
X fXE T'(x) exp(—3e,x/L)dx/L
- % exp(—e,x/L) i T'(x) exp(eax/L)dx/L) (11a)

A= Aoeg = (paHo/ Co) AT o (11b)
where ¢, = ¢*C' L is the inverse spatial damping scale
of the atmospheric response, nondimensionalized by
the ocean basin width, L. A typical value for reasonable
atmospheric damping is ¢, =~ 2.5. Considering that for
this ¢,, a constant 1 °C SST anomaly over one-third of
the basin yields maximum westerly stress of u4/5, 4
= 0.05 (Pa K™!) is a reasonable value (on the mod-
erately strong end of the coupling range) for the wind
stress response to SST anomalies estimated from ob-
servations. Thus, we take 4y = 0.02 Pa K™! as a stan-
dard value. The relative coupling coefficient u is a free
scalar parameter used to go between uncoupled and
strongly coupled cases.

In the Lindzen-Nigam interpretation, in which A
= (e.e¥)2(gH,) " *p,H,(2T,)~", where T}, is the sur-
face temperature, C2 = (e*/e.)gH,, and ¢, is a “cu-
mulus adjustment time” of around 30 minutes, similar
values are obtained.

¢. Basic state and coupling

To produce a reasonably realistic basic state for the
model, while maintaining consistency between the
ocean dynamics in the basic state and perturbations,
we use a “‘one-way flux correction” asin Neelin (1990)
to construct a known climatological state for the sys-
tem. The ocean model is spun up to a steady state
forced by a climatological wind stress and anomalies
are defined with respect to this climatological steady
state. The atmospheric model is used to obtain stress
anomalies in response to SST anomalies for coupling.

Noting that only near-equatorial stress is important
to this ocean model climatology, we use an idealized
wind stress that approximates the observed annual av-
erage zonal stress near the equator:
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r= 0.06{0.1 _ [(ﬁ) z]
' X0 — Xw 2

. X — X1 ™
- 0.5 Slnz[(m) ‘2‘]%()( - xl)]Sc(y)
(12)

in pascals, with xy, = 130°E, xg = 90°W, xp = 150°W,
x; = 130°W, and #(x — x,) the Heaviside function.
The last term of (12) departs from observed stress near
the eastern boundary to give a more realistic clima-
tology in this region, where processes not included in
the model are active; S.(y) decays slowly with latitude
with a Gaussian form. The resulted upwelling, w, ther-
mocline depth, #, and SST of this solution are shown
in Fig. 1. It gives a reasonably good simulation of the
observed fields near the equator. Changing the oceanic
parameters will alter this state slightly, but the general
features do not change. Because it is in a steady state
and the oceanic damping is very weak, the contribution
of the shallow water layer motion to the advection and
upwelling is small. The mean upwelling, thermocline
depth, and SST are largely controlled by the surface-
layer currents and the Sverdrup balance.

To couple the atmospheric component with the
oceanic model, we take

(13)

where 7'(x) is the anomalous wind stress along the
equator produced by the atmospheric model response
to SST perturbations and S(y) is a prescribed merid-
ional structure. Because atmospheric meridional scales
tend to be much larger than the oceanic Rossby radius,
L, we expect meridional structure not to be of crucial
importance. It has been shown by CMZ, however, that
it can have some impact on the destabilization of cou-
pled modes in some regimes. To test such effects, we
use S(y) = exp(—ayp?/2L}), where « is related to the
ratio of the oceanic Rossby radius to atmospheric me-
ridional scales. The same form is used for S.(y). A
value of a = 0.1 is reasonable and is used throughout
this study. Even for a = 0, similar results are obtained
in terms of the connections of eigensurfaces. The effect
on destabilization of oscillatory modes noted by CMZ
does hold here when thermocline feedbacks dominate.

The anomaly wind stress 7' is obtained by using (11)
and defining SST anomalies as

T'=T-T, (14)

where T is SST of the model climatological state driven
by 7.. For sufficiently small u, the climatological state
is unique and the coupled system always decays to it.

The only aspect in which the ocean model as used
for climatology and perturbation differs is that, for
convenience, we introduce another free parameter o;
that controls the anomalous surface-layer currents due
to coupling. This parameter can be reduced from unity

T =1.+7(x)S(¥),
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FiG. 1. Basic-state quantities at the equator: (a) SST, (b) ther-
mocline departure from no-motion value (note negative values cor-
respond to shallower thermocline), (c) upwelling.

to zero without affecting the climatology. Because (4)
is linear, this can be done by setting

Wy = W + OW5

(15)

U = g + OUs.

d. Linearization and parameter space

In this coupled model, only the SST equation is
nonlinear. To avoid the discontinuity arising from dif-
ferentiating the Heaviside function, we use an analytic
version

#(w) =3 (1 + tanh(w/w*)) (16)
that approaches the true Heaviside function for small
w*. This simplifies linearization near regions with w

= 0 and makes the nonlinear model everywhere infi-
nitely differentiable. We use a simple numerical dif-
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ferencing method to obtain the linearized system about
the climatological state and examine eigenmodes with
temporal dependence e®. Spatial dependence is given
by the eigenvector associated with each eigenvalue, o.

For consistency, the oceanic parameters that deter-
mine the basic-state solution of Fig. 1 are not subject
to further change once the basic state is obtained. The
free parameters, which do not affect the basic state, are
the relative coupling coefficient, u, the atmospheric
spatial damping scale, ¢,, and the two parameters, &
and 4, in the ocean model as introduced above. In the
following sections we will discuss how the various cou-
pled modes are related in this parameter space. We
note that u, §, and &; are purposefully chosen to con-
dense the most important effects of a number of phys-
ical processes into a few scalar parameters. To sum-
marize: the range u from 0 to 1 represents going from
the uncoupled system to coupling which is at the strong
side of the realistic range. Similarly, §; from 0 to 1
represents surface-layer feedbacks having no effect to
having very strong effects, where we use the terminol-
ogy surface-layer feedbacks to denote coupled feedback
mechanisms involving the component of surface cur-
rents and upwelling produced by the embedded surface
layer. The range 6 from 0 to oo represents time scales
for oceanic dynamical adjustment being much faster
to much slower than the net time scale arising from
the SST equation.

3. SST modes in the fast-wave limit

The physical interpretation of coupled modes is
complicated by the presence of several processes par-
ticipating in both the instability and oscillation mech-
anisms (Hirst 1988; BH; N91). Before considering the
most realistic—and most complicated—part of pa-
rameter space, it is useful to consider a specialized limit
in which the time scales of wave dynamics are, by def-
inition, unimportant. This fast-wave limit case will
prove particularly tractable in the analytical work of
Parts II and III. Here we present the numerical fast-
wave limit eigenmodes corresponding to the more re-
alistic parameter range considered in the next section.
A nonlinear version of a fast-wave limit model is out-
lined at greater length in HNJ.

a. Relation of westward-propagating and stationary
modes

Figure 2 shows the growth rate and frequency of the
leading eigenvalue as a function of relative coupling
coefficient for a case where the surface-layer feedback
is quite strong. This coupled SST mode becomes un-
stable when the coupling is strong enough, with both
growth rate and frequency depending almost linearly
on the coupling. An e-folding time of a few months
and a period of 11/ to 2 years occurs for moderate
coupling around u = 0.7 and §; = 0.6. The correspond-
ing anomalous SST, upwelling, and thermocline fields
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FIG. 2. Eigenvalue (in units of yr™') of the leading mode in the
fast-wave limit (8 = 0) vs relative coupling coefficient u with ¢, = 2.0,
5, = 0.6. (a) Growth rate, Re( ), (b) frequency, Im( o). For frequency,
the convention of plotting only the negative root of the complex pair
is used in all figures.

along the equator for the unstable mode are shown in
Fig. 3. These time-longitude plots are constructed from
the linear solution using the eigenvector and frequency
but with the growth rate suppressed, that is, (X (x)
exp[i Im(o)t] + c.c.), where X ( x) is the complex ei-
genvector, which contains spatial structure, and c.c.
denotes the complex conjugate. We note that it is the
combination of the eigenvector with the frequency,
Im( o), that determines propagation characteristics; €i-
genvectors and eigenvalues occur in conjugate pairs
but both contain the same information. Near the bi-
furcation, such plots will correspond closely to the
weakly nonlinear solution. SST and upwelling anom-
alies propagate westward in a coherent pattern, with
relative upwelling/downwelling slightly to the west of
cold/warm anomalies. The thermocline anomalies ex-
hibit a slightly more complicated pattern, but in the
central and eastern part of the basin thermocline
anomalies propagate westward in association with SST;
deep/shallow thermocline anomalies occur slightly to
the east of warm/cold SST anomalies. The zonal phase
shifts of upwelling and thermocline perturbations are
due to a combination of atmospheric and (steady)
ocean dynamics and behave much as in the zonally
periodic case of N91. Both contribute to growth of the
mode but compete in terms of the direction of prop-
agation: the thermocline feedback tends to create east-
ward propagation, the upwelling feedback westward
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F1G. 3. Time-longitude plot of a westward-propagating SST mode
in the fast-wave limit: (a) SST, (b) thermocline depth, (c) upwelling
anomalies along the equator constructed from the eigenvector with
growth tendency suppressed for ¢ = 0.7 and other parameters as in
Fig. 2 (units: °C, m, and m day !, respectively, up to a normalization
factor).

propagation; and in this case the latter wins. An ana-
lytical treatment of these respective mechanisms in a
finite basin may be found in Part III and a more detailed
parameter dependence in the fast-wave limit for non-
linear cases is given in HNJ.

The features of this oscillation including the period
and growth rate, eastern-basin trapping, and slightly
westward propagation qualitatively resemble some as-
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pects of the interannual variability simulated in GCMs
and also to some extent the features of El Nifio events
(e.g., Rasmusson and Carpenter 1982). Although in
reality ENSO events are much more complicated with
occurrence of both westward propagation and station-
ary growth of SST anomalies (and arguably even east-
ward propagation in 1982-83), it is plausible to suggest
that the above mechanism is one of the candidates op-
erating in the ENSO phenomenon.

Given that processes with eastward and westward
propagation tendencies compete in this mode and are
modified by finite-basin effects, it is not surprising to
find that as the surface-layer feedback is weakened,
westward propagation slows and eventually the mode
becomes stationary. Figure 4 shows this behavior. As
o, is reduced to about 0.5, the frequency decreases to
zero; the complex conjugate pair of oscillatory eigen-
values are reduced to an algebraically degenerate pair
at this value of §,, that is, a 2-degeneracy with a single
eigenvector (see Appendix ). For lower values of §,, the
two degrees of freedom previously associated with the
conjugate pair appear as two stationary modes, with
increased /decreased growth rates, respectively. Thus,
the most unstable westward-propagating mode and the
most unstable stationary mode in the two regimes on
either side of ; ~ 0.5 are part of a continuously con-
nected surface of eigenvalues in parameter space. It
can be convenient to think of them as, loosely speaking,
the same mode in two regimes of behavior. Because
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FIG. 4. Eigenvalue (yr™') of the leading SST mode(s) in the fast-
wave limit vs surface-layer feedback parameter é;, for x = 0.7 and
e, = 2.0. (a) Growth rate, (b) frequency ( negative root). Oscillatory
values (open symbols) are westward propagating.
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this 2-degeneracy is pure real, it extends as a continuous
surface of dimension (k — 1) in a k-dimensional pa-
rameter space (see Appendix); this same surface,
forming the boundary between stationary and west-
ward-propagating modes, can therefore be encountered
by varying parameters other than §;, or by replacing
o, with related but more complex parameters. In qual-
itative terms, it is thus possible to take &, as a surrogate
for any of these situations. Although not shown here,
other westward-propagating modes can sometimes co-
exist with the stationary mode for the same parameter
values (see HNJ).

b. Stationary SST mode without surface-layer
Sfeedback

The stationary, most unstable mode that occurs for
d; < 0.5 in Fig. 4 has properties that change relatively
little as 6; — 0, that is, as the feedback associated with
anomalous surface-layer currents is turned off. It is thus
useful to consider the simple case §; = 0 to examine
the behavior of the leading mode, beginning from this
stationary case in the fast-wave limit. Stationary, that
is, nonoscillatory, instabilities of the linear system are
associated with multiple stationary states in the non-
linear system (e.g., see HNJ). In this case, a physically
more important application can be guessed in advance
based on physical intuition: if an unstable mode is sta-
tionary in the fast-wave limit, then it may become os-
cillatory as time scales due to ocean wave dynamics
are introduced, away from the fast-wave limit. How
this happens will be the subject of section 4.

Figure 5 shows the pure real eigenvalue of this sta-
tionary SST mode as a function of relative coupling
coefficient. The stationary mode exists for the whole
range of the coupling coefficient and becomes unstable
for sufficiently strong coupling, with growth rate in-
creasing quickly on the strong coupling side. Physically,
the dominant instability process is the thermocline
feedback in the SST equation. Typical SST and # fields
of this eigenmode are shown in Fig. 6. The SST pattern
is essentially of single sign (chosen positive here) with
a broad maximum in the eastern part of the basin. It

0.0 0.2

FIG. 5. Growth rate (yr~') of the leading stationary SST mode in
the fast-wave limit vs relative coupling coefficient, u, for é; = 0 and
e = 2.0.
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FIG. 6. Eigenfunction for the stationary SST mode for u = 0.8
and other parameters as in Fig. 5: (a) SST, (b) thermocline depth
anomalies (units: °C and m, respectively, up to a normalization fac-
tor).

resembles the SST pattern of a warm (or, with sign
reversed, cold) phase of the ENSO cycle, particularly
as simulated in models such as CZ or Battisti (1988).
The trapping of the SST response in the eastern half
of the basin is influenced by the zonal dependence of
the basic-state upwelling and subsurface temperature.
Further east-basin trapping results from the east-west
asymmetry due to the effect of 8 on ocean dynamics,
expressed through the thermocline feedback, as ex-
amined at length in Part III (section 4).

¢. Relationship of stationary and eastward-
propagating modes

The existence of this stationary SST mode through
a significant range of parameters (e.g., in Fig. 4) is the
result of zonal symmetry breaking relative to the pe-
riodic-basin case considered in N91. In a zonally ho-
mogeneous ocean, stationary growth occurs only for
particular parameter values that yield an exact balance
of eastward and westward propagation tendencies. In
the finite-basin case, zonal variations in the basic state
and, especially, boundary conditions on ocean dynam-
ics lead to purely growing modes occurring across a
finite range of parameters. The thermocline feedback
acting alone gives eastward propagation in the periodic-
basin case. In the finite basin it can also do so, but only
if the phase relation of wind stress and SST anomalies
favors this tendency sufficiently strongly compared to
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the effects of basin boundary .conditions. We provide
a numerical example here for comparison to analytical
versions in Part II1.

Figure 7 shows the eigenvalues of the two leading
modes as a function of the inverse atmospheric damp-
ing length, ¢,, which affects the phase relation between
SST and wind, as well as the spatial correlation scale
due to atmospheric effects. As ¢, becomes larger (i.e.,
the atmospheric spatial damping scale becomes
smaller), the most unstable stationary mode merges
with the least rapidly decaying stationary mode at an-
other 2-degeneracy to yield an unstable eastward-
propagating mode, whose period decreases rapidly from
infinity to about 2 to 3 years. A typical eigenfunction
for this mode is shown in Fig. 8. Both the SST and
thermocline patterns are very similar to those of the
stationary mode and it has a striking stationary oscil-
lation component; the SST and thermocline anomalies
are trapped to the east coast for related reasons. Up-
welling anomalies are unimportant, as in the stationary
case. Thus, this eastward miode can usefully be thought
of as a modification of the stationary SST mode, per-
turbed by propagation tendencies that are qualitatively
the same as the periodic-basin case. That is, the ther-
mocline feedback can yield eastward propagation
through phase lags between 7' and 7/, and between 7'
and #’, such that thermocline shallowing and deepening
are slightly to the east of warm and cool SST anomalies,
respectively.
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FIG. 7. Eigenvalue (yr~') of the leading SST mode(s) in the fast-
wave limit vs atmospheric damping coefficient ¢, for 6, = 0 and u =
1.0. (a) Growth rate, (b) frequency (negative root). Oscillatory values
(open symbols) are eastward propagating.
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FIG. 8. Time-longitude plot of an eastward-propagating SST mode
in the fast-wave limit: (a) SST, (b) thermocline depth anomalies
along the equator constructed from the eigenvector for p = 0.9, &,
=0, and ¢, = 4.0 (units: °C and m, respectively, up to a normalization
factor).

The relation of the most unstable westward- and
eastward-propagating modes to the stationary mode in
their respective parameter regimes provides further
motivation for beginning our explorations from this
stationary mode when considering cases away from the
fast-wave limit. Because the propagating modes possess
oscillation mechanisms that do not depend on wave
time scales in the fast-wave limit, the stationary mode
will prove a much simpler case for unraveling how
oscillation can arise from effects of oceanic adjustment.

4. Mixed SST /oceanic dynamics modes

The role of ocean wave dynamics in modes of cou-
pled variability has long been discussed, usually in
terms of the uncoupled Rossby and Kelvin modes of
a longitudinally periodic ocean. Instability analysis in
periodic basins shows that coupled versions of these
waves may indeed be destabilized (Philander et al.
1984; Yamagata 1985; Hirst 1986; N91). In a finite
basin, however,. coupled modes closely related to in-
dividual Rossby and Kelvin waves occur mainly in sit-
uations of high frequency (e.g., Kelvin wave secondary
instability of Neelin 1990) or large effective damping
(Hirst 1988). In a zonally bounded ocean basin,
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boundary reflections imply that even the uncoupled
modes of the system will consist of sums of Kelvin and
Rossby waves, which can be quite different from the
x-periodic case, especially at low frequency and basin
scale. The modes of the uncoupled shallow-water
equations (in the long-wave approximation ) consist of
two classes: the ocean basin modes of Cane and Moore
(1981) (which would be “leaky” solutions in the full
shallow-water equations) and an overlooked class of
decaying “‘scattering modes,” which we derive in ap-
pendix A of Part II. By scattering modes we simply
mean free modes for which energy must be incident
into the system, for example, equatorward along the
western boundary, since leakage occurs poleward along
the eastern boundary. Under the long-wave approxi-
mation in conventional series representation, the con-
tinuum spectrum is discretized. For truncation N in
the meridional and with K degrees of freedom in the
zonal direction, there are K ocean basin modes and (N
— 1)K scattering modes. The scattering spectrum is
needed for completeness (in terms of representing ini-
tial conditions). Because of energy leakage, these modes
damp faster than the local physical decay rate in the
uncoupled problem. However, because some of the
scattering modes have low frequencies, they can enter
into the coupled problem. In the uncoupled case for
our model, there will also be a decaying set of SST
modes.

In this section, we examine the relation of modes in
the most realistic part of parameter space to those in
the relatively simple cases of the fast-wave limit and
the uncoupled ocean. One may anticipate that the
modes will have a mixed character, and it is of interest
to know just how they are constructed.

a. Relation of stationary SST mode and standing
oscillation due to wave dynamics

For simplicity, we focus on the case without mixed-
layer feedback, that is, setting o, = 0. We examine the
behavior of the few leading (fastest growing or slowest
decaying) eigenmodes as a function of u and é. Figure
9 provides an orientation to the slices that will be pre-
sented in the u-6é plane; we begin with the relatively
simple situations that occur near the fast-wave limit
(slice 1) and at moderately strong coupling (slice 2),
then proceed to the case closer to the fast-SST limit
(slice 3) before showing the more complex cases in
between (slices 4 and 5).

Figure 10 shows slice 1 (6 = 0.5) in two formats.
Figures 10a and 10b give the growth rate and frequency
as a function of u for the two leading modes; the other
modes are decaying relatively quickly. As in the fast-
wave limit, only a single mode (solid dots) becomes
unstable at strong coupling, which is a stationary,
purely growing mode. The second mode is oscillatory
(open circles), with frequency shown in Fig. 10b. It is
destabilized by coupling relative to the zero-coupling
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FIG. 9. Schematic of the u—6 plane (coupling coefficient and relative
time-scale coefficient) showing the slices for which eigenvalues will
be presented in Figs. 10, 11, 13, 15, and 16. Slices are labeled in
order of presentation.

end, but never becomes unstable. It remains distinct
from the leading stationary mode throughout the range
of coupling shown. At zero coupling, it turns out to be
the lowest-frequency mode of the discretized scattering
spectrum.

Figure 10c provides a more complete view along
this same slice, condensed by plotting the eigenvalues
of the five leading modes on the complex plane, for
the coupling values in the range ¢ = O to 0.8. The
eigenvalues trace out a continuous path as a function
of u. For this value of 8, these paths remain distinct
for all modes. The left-right symmetry about Im(q)
= 0 is because oscillatory modes always exist as com-
plex conjugate pairs. There are four pairs of curves of
the oscillatory modes, with very different frequencies
at all values of coupling. The origin of these modes is
thus conveniently stated in terms of their identities at
u = 0, namely, the scattering modes, and a smaller
number of ocean basin modes. The pair of modes with
the highest frequency shown are the gravest ocean basin
modes, and the other three pairs are the gravest scat-
tering modes with considerably lower frequency. Al-
though all oscillatory modes in this case are stable, the
pair of scattering modes with lowest frequency is most
nearly destabilized and tends to approach the stationary
mode for intermediate coupling values (u ~ 0.6, see
also Fig. 10a,b) an indication of the increasing mixing
of properties between ocean modes and SST modes
away from the fast-wave limit as é increases.

The similarity of the unstable stationary mode to
the SST mode of Fig. 5 suggests that the transition
from the fast-wave limit to this case is smooth. This is
true except for one subtlety. At very low u and 4, there
is a merger that is best described as the SST mode ab-
sorbing a degree of freedom associated with mean ther-
mocline displacements. Specifically, the 2 = const so-
lution of the uncoupled ocean is not a solution for
finite coupling due to its effects through the SST equa-
tion. Its structure, and that of the uncoupled SST
modes, is rapidly modified by even very small coupling
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FIG. 10. Eigenvalues of the leading modes vs relative coupling coefficient, g, for 6 = 0.5, §; = 0, and ¢, = 2.0 (slice 1 of Fig. 9). (a)
Growth rates of the two leading modes, (b) frequencies (negative or zero roots) of the two leading modes. In (a) and (b) solid or open
symbols are used for pure-real or oscillatory eigenvalues, respectively. (c¢) Collective plot of the five leading modes on the complex plane
for coupling values at equal intervals in the range ¢ = 0 (smallest dots) to 0.8 (progressively larger dots denote correspondingly larger ).
Paths of continuous connection are indicated by interpolated lines wherever clarification is needed for the p-spacing shown. Eigenvalues
are in yr~' as redimensionalized by the SST time scale; to get values redimensionalized by the ocean-dynamics time scale, multiply by o.

(see Part 11, section 4). At moderate and high coupling
the mode shown in Fig. 5 is virtually identical to the
dominant SST mode in the fast-wave limit, but at low
coupling this merger results in a reduced decay rate. It
may be recalled from Fig. 6 that this SST mode does
indeed have a strong mean thermocline depth com-
ponent.

Before presenting a number of more important
mergers that occur at low and intermediate coupling,
it is helpful to note that these complications disappear
as coupling becomes slightly stronger, roughly for u
> 0.6. For strong coupling, the strongly growing sta-
tionary mode of Figs. 5 and 10 stands out from all
other modes and can easily be traced as a function of
5. Figure 11 shows the (pure real!) eigenvalue of this
mode along slice 2 of Fig. 9. The crucial feature of this
figure is that the eigenvalue encounters no degeneracies
and no qualitative changes between 6 = 0 and large o.
Thus, the eigenvalue surface of the leading unstable
mode toward the strong coupling side smoothly spans
the whole range of the parameter domain for the rel-
ative time scale ratio, from the fast-wave limit to the

fast-SST limit. Figure 12 shows the SST component of
the corresponding eigenvector for two well-separated
values of 6, one near the fast-wave limit and one toward
the fast-SST limit; the structure changes little through-
out the range. The reason for the robustness of this
mode at stronger coupling is that the feedback processes
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FI1G. 11. Growth rate (yr~! by SST time scale) of the (pure real)
leading mode vs relative time-scale coefficient, 8, for u = 0.8, 6, =0,
and ¢, = 2.0 (slice 2 of Fig. 9).
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FIG. 12. SST component of the eigenfunction for the stationary
SST mode at 6 = 1.0 and & = 3.0, for other parameters as in Fig. 11.

are so strong that local growth dominates over wave
propagation processes, as elaborated in Part ITI. As dis-
cussed in section 3, the physics of the SST mode at the
fast-wave limit is relatively simple and easily under-
stood. The continuity shown here demonstrates that
the fast-wave limit is an ideal special case to understand
the underlying dynamics of this strongly growing sta-
tionary mode.

Away from the fast-wave limit, the strongly growing
stationary mode contains ocean dynamical time scales;
one may anticipate that this must connect somehow
to the uncoupled case where these occur in oscillatory
oceanic dynamics modes. The parameter regime near
the fast-SST limit is more complicated than near the
fast-wave limit but still simpler than for intermediate
0. An example with § = 3.0 (slice 3) is shown in Fig.
13. Comparing Fig. 13a with Fig. 10a, an obvious sim-
ilarity is found for the strongly growing mode at strong
coupling, 4 > 0.6, due to the continuous connection
from the fast-wave limit discussed above. However,
the connection between this branch and low coupling
is now complicated by the presence of a number of
degeneracies at which different eigensurfaces join. In
this case, each 2-degeneracy joins a complex branch
with two degrees of freedom (open symbols) to two
pure-real branches (solid symbols) in a locally qua-
dratic dependence (see Appendix). The pure real
branch at low coupling (solid squares in Fig. 13a,b)
no longer connects continuously to the pure real branch
at strong coupling as it did in Fig. 10a. Rather, an os-
cillatory branch (open circles), that begins as an ocean
basin mode at u = 0, is strongly modified by the cou-
pling; as coupling increases, the growth tendency in-
creases, frequency decreases, and the eigenstructure
changes to more resemble that of the strongly growing
branch, eventually becoming identical as the frequency
drops to zero at the 2-degeneracy. Slightly to the strong
coupling side of the 2-degeneracy, there is a region
where all three eigensolutions are real, until the lower
growth-rate branch emerging from the first 2-degen-
eracy merges in a second 2-degeneracy with the decay-
ing stationary mode to form a decaying oscillatory
mode (the feature at higher coupling where this again
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breaks into two decaying real modes is of little signif-
icance).

To see how the other modes behave, a plot of the
top five eigenmodes is shown in Fig. 13c, similar to
Fig. 10b except with coupling from O to 1. The three
branches of oscillatory, decaying modes related to
scattering modes, which correspond to the three dis-
cussed in Fig. 10b, are well separated from the more
unstable branches. The branch that begins at the un-
coupled, decaying ocean basin mode (smallest dot at
largest frequency) is attached to the stationary mode
(on the real axis for all values of coupling—note that
there is some overlap of dots for decaying real modes
at high and low coupling), forming a set of connected
surfaces. This contrasts to the situation near the fast-
wave limit (Fig. 10c) where all modes remain distinct
for all values of coupling. Figure 13 characterizes the
fast-SST limit, since these features continue out to large
6 without qualitative change. The fact that it is the two
furthest separated modes in Fig. 13c that are connected
hints at other mergers that must occur between these
limits, as discussed below.

The merger of the strongly growing stationary mode
with oscillatory modes from the ocean spectrum is of
considerable consequence. Because the strongly grow-
ing stationary mode is smoothly connected with an
SST mode at the fast-wave limit (as seen in Fig. 11),
this merger represents the mixing of the two very dif-
ferent kinds of mode through coupling. In a broad
neighborhood of the parameter space around such
mergers, the behavior of the leading mode is of entirely
mixed character, with features taken from the two in-
gredients, namely, an SST mode (the gravest in all cases
shown here) and ocean-dynamics modes. We refer to
these generically as “mixed SST/ocean-dynamics
modes.” Of course, all modes in the center part of pa-
rameter space, away from the specialized limits, have
a mixed character to greater or lesser extent. For in-
stance, while the stationary unstable mode on the
strong coupling side of the degeneracy closely resembles
the SST mode at the fast-wave limit, the dependence
of growth rate on coupling has a more quadratic de-
pendence in Fig. 13a rather than the near-linear de-
pendence of Fig. 10 and Fig. 5. It will be shown in Part
HI that this is because the time scales of oceanic dy-
namics participate in the dominant physical balances
of this mode as & becomes large.

On the weak coupling side of the degeneracy for the
leading mode in Fig. 13, the eigenstructure evolves sig-
nificantly as a function of coupling but retains features
consistent with a combination of the uncoupled and
strongly coupled behavior. Figure 14 shows an example
of the eigenstructure typical of the “mixed” range where
the oscillation is relatively slow and the mode tends to
be destabilized. The exact point in parameter space is
labeled A in Fig. 13. Time is given dimensionally ac-
cording to the SST equation time scale for standard
parameters but could be rescaled according to one’s
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FIG. 13. As in Fig. 10 except for § = 3.0 (slice 3 of Fig. 9). (a) Growth rates of the two leading modes, (b) frequencies (negative or zero
roots) of the two leading modes, (¢) collective plot of the five leading modes. The label A marks the point for which the eigenstructure is

shown in Fig. 14.

interpretation of & = 3 as faster SST time scales or
slower wave time scales. The SST evolves in a standing
oscillation, with a spatial structure that closely resem-
bles the stationary mode of Fig. 12. The east-basin
trapping can thus be understood from the fast-wave limit
as discussed in section 3b and in Part III (section 4).
The thermocline depth in Fig. 14b has the charac-
teristic pattern found, for instance, in the CZ coupled
model or in the Chao and Philander (1993) diagnosis

of an OGCM driven by observed winds: deep ther-
mocline in the western Pacific leads deep thermocline
and warm SST in the eastern Pacific by between one-
half and one-quarter oscillation period. A slow eastward
“propagation” in midbasin is associated with this tran-
sition, but at phase speeds far too slow to be associated
with pure Kelvin wave propagation. This type of feature
occurs quite generally for finite-basin ocean dynamics
driven by large-scale wind patterns at frequencies lower
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F1G. 14. Time-longitude plot of a mixed SST/ocean-dynamics
mode for (a) SST, (b) thermocline depth anomalies along the equator,
constructed from the eigenvector for the point labeled A in Fig. 13
(u =0.5,8 = 3.0). Units are °C and m, respectively, up to a nor-
malization factor. Time dimensionalized by SST time scale.

than that of the gravest ocean basin mode (Cane and
Sarachik 1981). In this case, the oceanic wave adjust-
ment process associated with this feature is providing
the memory for the coupled oscillation. As the degen-
eracy is approached and the period becomes very long,
the form of the mode changes little except that the lag
between east and west approaches half a period. As
one tracks this mixed mode to low coupling, more sub-
stantial changes occur: the lag approaches one-quarter
period, and the phase of the thermocline perturbation
changes abruptly at exactly midbasin as is characteristic
of the Cane and Moore (1981) ocean basin modes.
Interestingly, the coupled case is much better behaved
and more robust than the near-singular structure of
the uncoupled case. The oscillation for the parameter
values shown here (without surface-layer feedbacks) is
dominated by the thermocline feedback. Upwelling is
very small and zonal advection by mean currents con-
tributes only modestly.

The overall behavior of the eigenmodes as a function
of coupling shown in Fig. 13 and the eigenstructure of
the leading mode shown in Fig. 14 remain essentially
the same for 6 > 2. Thus, near the fast-SST limit, the
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presence of a mixed mode connecting the gravest ocean
basin mode with a strongly growing stationary mode
is a coherent feature, at least for some range of small
;. This is consistent with the results of the CMZ fast-
SST-limit model- (coupled through the thermocline
feedback at a single point). Our results show that there
is indeed a significant range of parameters for which
their model provides an excellent analog to the leading
mode of the fuller system (as long as propagation ten-
dency does not need to be taken into account). It is
even possible to extend their system to permit a simple
analog to the stationary SST mode, with similar con-
nections to the fast-wave limit. It would therefore be
convenient if the story could end here. Unfortunately,
an additional complication arises in the most realistic
part of parameter space, for slightly smaller 6.

For § < 2, the branch connected to the ocean basin
mode does not become unstable and does not join the
strongly growing stationary mode at stronger coupling.
Instead, the strongly growing stationary mode is joined
to oceanic dynamics modes from the scattering spec-
trum. In Fig. 15, we show a case with 6 = 1.5 (slice 4
of Fig. 9). The branch connected to the ocean basin
mode at zero coupling (open circles in Fig, 15a,b) is
destabilized a bit as coupling increases but it decays
before becoming unstable and does not connect to the
other branches. The other two oscillatory modes (open
diamonds and open squares) are identified at low cou-
pling as the two lowest-frequency scattering modes. The
one with smaller frequency (open diamonds) has a
sudden increase in growth rate and decrease in fre-
quency above u =~ 0.5. It is then connected at another
2-degeneracy to the strongly growing stationary mode
(solid circles) plus a decaying stationary branch (solid
triangles), which in turn joins the decaying stationary
mode from low coupling (solid squares). Thus except
for the fact that it is a scattering mode that joins the
strongly growing stationary mode, the picture is very
similar to that of Fig. 13a,b. The second branch that
begins as a scattering mode at low coupling (open
squares) does not merge with the other branches for
this value of §, but there is a region (around u = 0.54)
where both its growth rate and frequency closely ap-
proach that of the first scattering mode branch. This
is a signature of further mergers at neighboring param-
eter values.

The joining of the first scattering mode with the
strongly growing stationary mode is more vividly il-
lustrated in Fig. 15¢. The 2-degeneracy that connects
the growing stationary mode to the oscillatory part of
the spectrum in the center of the diagram is comparable
to Fig. 13c, but the mixed oscillatory branch that arises
from this connects to the nearest (i.c., lowest frequency)
scattering mode at low coupling, in contrast to Fig. 13¢
where it connects all the way across to the ocean basin
mode. It is easy to see how this diagram is closely related
to that of Fig. 10b, near the fast-wave limit, where the
modes all remain distinct, but where the branch as-
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FIG. 15. As in Fig. 10 except & = 1.5 (slice 4 of Fig. 9) and (a) growth rates of the four leading modes, (b) frequencies (negative or zero
roots) of the four leading modes; symbols denoting the same branch between (a) and (b) change at the 2-degeneracies for clarity (to
distinguish from branches that cross without degeneracy) but mode properties are continuous. (c) Collective plot of the five leading modes.
The label B marks the point for which the eigenstructure is shown in Fig. 17.

sociated with the lowest-frequency scattering mode
closely approaches the stationary SST mode.

To better understand this connection, consider what
happens as ¢ is reduced from 1.5. The qualitative be-
havior of Fig. 15 holds down to 6 ~ 1, except that the
small range of coupling around g = 0.6 that has three
real roots is reduced in size. The two 2-degeneracies at
either end of the small branch denoted by solid triangles
approach each other and merge into a 3-degeneracy,
where all modes associated with these three degrees of
freedom have the same structure. Below this § value,
the behavior is qualitatively like that of Fig. 10. This
3-degeneracy thus serves as a central point in the con-
nection of the eigensurfaces. In Part 111, we will argue
that its existence is implied by the physical linkage of
the SST modes to the strongly growing mode at strong
coupling.

Now consider the connection between Fig. 15 and
Fig. 13. In Fig. 15a, we pointed out a near merger of
the branches associated with the first and second scat-
tering modes. As § is increased from 1.5, a degeneracy
does occur that connects these two eigensurfaces. This
is another 2-degeneracy, but because it has nonzero
frequency it occurs only for a specific value of (u, )
as explained in the Appendix. For slightly larger 8, the
mixed mode branch attached to the strongly growing
stationary mode connects to the second scattering
mode. As § is increased further, another such degen-
eracy occurs, connecting this branch instead to the third
scattering mode. Figure 16 shows this latter case for 6
= 2 (slice 5 of Fig. 9). The joining of the third scat-
tering-mode branch with the stationary mode is clearly
seen in Fig. 16c. The first two scattering-mode branches
are decaying and detached. The branch arising from
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roots) of the three leading modes, ( ¢) collective plot of the five leading modes. The labels C and D mark the points for which the eigenstructure

is shown in Figs. 18 and 19.

the ocean basin mode is still stable, but is close to the
point of merging with the branch connecting the sta-
tionary mode to the third scattering mode. This merger
occurs for 6 slightly larger than 2 in a final 2-degeneracy,
which leads to the behavior of Fig. 13.

A more detailed view of how this type of merger
occurs may be obtained from Fig. 16a,b, in which the
eigenvalues of the three leading modes are plotted. The
strongly growing stationary mode branch (solid circles)
and the 2-degeneracy that connects it to an oscillatory
mixed mode (open squares) are essentially the same
asin Figs. 13a,band 15a,b. As one traces this oscillatory

mixed-mode branch back toward low coupling (where
it connects to the third scattering mode), it comes very
close to merging at about u = 0.5 with the branch aris-
ing from the ocean basin mode (open circles). Note
that the growth rate curves cross, but that the frequen-
cies are not identical, although they approach each
other at this point. There is a slightly larger value of §
at which a 2-degeneracy occurs where the frequency
curves cross at the same time as the growth rate curves.
The modes associated with the two branches are iden-
tical at this point. For ¢ values larger than that of the
degeneracy, the frequencies cross but the growth rate



3494

a) SST(C)

Time (years)
wn

N
0 iy

b) h(m)

10.

Time (years)
wn

Longitude

FI1G. 17. As in Fig. 14 except for the point labeled B
in Fig. 15 (¢ = 0.55, 6 = 1.5).

curves do not, although they dip toward one another.
The behavior in the region of such a degeneracy is
outlined in the Appendix.

This succession of three transitions between 6 values
of about 1 and just over 2 may create some concern
in the reader who wishes to conceptualize the coupled
modes in terms of the modes of the uncoupled ocean.
This worry is multiplied if one recalls that the number
of scattering modes in a numerical model is resolution
dependent. Adding resolution in such a way as to in-
crease the number of low-frequency, large spatial-scale
scattering modes will simply increase the number of
transitions required to get from the behavior of Fig.
15¢ to that of Fig. 13c. Thus, there appears to be noth-
ing fundamental about which oceanic degree of free-
dom goes into the mixed SST/ocean-dynamics mode
when it is destabilized.

Although this has important implications for how
we view the system, it is inconsequential to the behavior
of the mixed modes themselves. The eigenstructure of
the oscillatory mode is robust through a substantial
parameter range, from u around 0.5, where the growth
rate picks up sharply, to the merger with the stationary
mode, and for  from less than 1 to very large values,
no matter which ocean branch is connected to it. Fig-
ures 17 and 18 show two eigenstructures for the cases
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of Figs. 15 and 16 (for the points labeled B and C on
these figures, respectively). Although different oceanic
modes are connected to the mixed branch at these two
points, they have virtually the same structure. The pe-
riod is sensitive to the coupling due to the fact that this
mode is close to the merger with the stationary branch,
but SST and thermocline perturbation patterns are co-
herent and very similar to that shown in Fig. 14. Fur-
thermore, there is a dramatic change in the eigenstruc-
tures between low u values where they are identified
as scattering modes and the range of u where the in-
crease in growth rate signals the transition to mixed-
mode behavior. The change in structure and growth
rate is even greater than in the case of the connection
to the ocean basin mode of Fig. 13. Figure 19 shows
an example for a mode at lower coupling along the
branch connected to the case of Fig. 18, at the point
labeled D in Fig. 16. This decaying mode has very dif-
ferent 4 and SST (not shown) patterns. It is worth
pointing out that this fundamental change in the phys-
ics of the mode is not directly associated with crossing
any degeneracy surface; it may be contrasted to the
relatively minor change in any properties except fre-
quency at the transition to the stationary mode. Thus,
the degeneracies should not be relied on completely to
define boundaries between physical flow regimes.
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FiG. 18. As in Fig. 14 except for the point labeled C
in Fig. 16 (u = 0.55, 6 = 2.0).
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FIG. 19. As in Fig. 18 except for the point labeled D
in Fig. 16 (¢ = 0.45, § = 2.0) and only # field shown.

The conclusion we are led to is that the coupled
modes in the most important parameter range are best
understood when approached from the strong coupling
side. The eigenvalue and eigenstructure are coherent
in a substantial neighborhood around the joining of
the oscillatory mixed-mode branch to the vigorous sta-
tionary mode. Although this neighborhood may be
limited to a relatively narrow range of coupling coef-
ficient, as in Fig. 15 and Fig. 16, it is the range in which
these modes can first go unstable. Furthermore, the
structure of these modes is very closely related to that
of the strongly growing stationary mode, aside from
the small phase lags in the ocean dynamics that produce
the period. The simplicity and continuity among these
branches, which are strongly affected and significantly
destabilized by the coupling, contrast to the compli-
cated and distant relation to the modes at low coupling.
Additional simplification results from the fact that the
strongly growing stationary mode is so closely related
to the most strongly growing stationary SST mode in
the fast-wave limit, which can be relatively easily un-
derstood (see Part III). A powerful clarity thus results
from viewing the oscillatory mixed-mode branch as an
extension of the strongly growing stationary mode to-
ward lower coupling where ocean dynamics begins to
regain wavelike behavior.

In this interpretation, one begins by understanding
the spatial form and instability mechanisms of the
mode in the fast-wave limit at moderately strong cou-
pling. As one follows the stationary mode out to re-
alistic values of the relative time-scale parameter, the
stationary mode acquires significant oceanic time scale
dependence associated with “picking up” a degree of
freedom from among the low-frequency part of the
scattering spectrum on the low coupling side. This
amounts to giving a rigorous basis to the original in-
terpretation of the SS and BH delayed-oscillator model,
which was used to explain a coupled mode very similar
to that of Figs. 17 and 18 in the Schopf and Suarez
(1988) and BH intermediate models. We elaborate on
this in section 6.
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The fact that the standing oscillatory mixed modes
connect to the scattering spectrum at low coupling for
realistic values of & suggests that the original SS and
BH interpretation is actually a more faithful represen-
tation than the later models of CMZ and Schopf and
Suarez (1990). The latter provide exact, rather than
ad hoc, derivations but for the specialized case of cou-
pling at a single point, in the fast-SST limit; because
of the latter assumption, the low-coupling connection
is to an ocean basin mode as in Fig. 13 rather than to
the scattering spectrum. However, the apparent con-
tradictions disappear when the modes are interpreted
as mixed SST/ocean-dynamics modes: both ap-
proaches to the problem are just alternative approxi-
mations to the same eigensurface. This can occur be-
cause of the smooth connection of the strongly growing
stationary mode from the fast-wave limit to the fast-
SST limit (Fig. 11 and Fig. 13 of Part III). Both ap-
proaches are accurate (within their respective limita-
tions) provided that the low-coupling end is ignored.

One further remark on the lack of dependence on
which of the uncoupled modes goes into the mixed
SST/ocean-dynamics modes: in numerical models and
in the long-wave approximation, the scattering spec-
trum is discretized and the ocean basin modes are sep-
arated from it. For the full shallow-water equations in
a meridionally unbounded basin there is simply a con-
tinuum of scattering modes and the ocean basin modes
are just a less strongly scattering case (implicit in Moore
1968, chapter 4). We postulate that in this continuum
case, well-defined unstable coupled modes corre-
sponding very closely to the ones shown here will exist
as quantized modes at finite coupling, whereas no
quantized modes exist at zero coupling. Thus, where
the oscillatory mixed branch of Figs. 15 and 16 con-
nects to successive members of the discretized scattering
spectrum in this model, the only change in the contin-
uum case will be that the connection to the scattering
spectrum will be continuous, and that no quantized
modes will exist for coupling values lower than this
merger. If true, this would make our argument for
viewing coupled modes from the strong coupling side
rigorous, rather than merely practical.

b. Relation to propagating cases

We have shown in section 3 that there are eastward-
or westward-propagating SST modes in the fast-wave
limit, which become unstable at sufficiently large cou-
pling. Like the strongly growing stationary SST modes,
these undergo a similar mixing with the ocean-dynam-
ics-related modes away from the fast wave limit. Map-
ping out the details of the transition between a regime
that oscillates purely due to propagation and one that
is dominated by wave dynamics is more difficult for
several reasons than mapping the transition of the pre-
vious section between a stationary SST mode and a
mixed mode oscillating by wave dynamics. While 2-
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degeneracies are again likely to be implicated in the
connection of the eigensolution branches, if these have
nonzero frequency they will be localized at isolated
points somewhere in the u-6 plane (see Appendix).
For a given path between regimes, one is thus less likely
to directly encounter these signposts of the transition,
unlike the stationary-to-oscillation transition, for which
the 2-degeneracies form curves in the u—6 plane. There
can thus be many paths in parameter space where the
transition from one oscillation mechanism to another
is quite smooth. Furthermore, a third parameter must
be explicitly introduced into the problem, say either d;
or ¢,, to move from the stationary SST mode case to
the propagating case. The boundaries of the region
where the leading mode is stationary form a somewhat
irregular surface in this parameter space, and when
tracing an eigensurface from one oscillatory regime to
another, one may pass through this stationary regime
or not, depending on the choice of path. In some cases
the stationary regime apparently does play a funda-
mental role in connecting oscillatory regimes: two sur-
faces of oscillatory eigenvalues, which are not directly
connected to each other, can each be connected to the
stationary branch at separate curves of 2-degeneracy.
In such cases, often the two oscillatory modes will
dominate (in the sense of leading growth rate) in dif-
ferent domains of the parameter space, with a region
of comparable growth rates in between. This raises the
possibility of mode interactions (Golubitsky and
Schaeffer 1985), which we are unable to pursue here
(but see HNJ for a fast-wave limit case).
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F1G. 20. Transition of an eastward-propagating SST mode to sta-
tionary modes at relatively strong coupling, for g = 1.0, 6, = 0, and
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We confine ourselves to two examples. Figures 20
and 21 show two cases where the SST mode at the fast-
wave limit is eastward propagating, for 6, = 0 and a
value of ¢, which is slightly larger than standard. For
the stronger coupling case (Fig. 20), tracing along a
path u = constant one quickly encounters the station-
ary regime and the eastward-propagating mode breaks
into two real modes. The upper branch is the strongly
growing stationary branch, which connects to the wave
oscillation regime as before. For slightly weaker cou-
pling, oscillation persists out to larger §;, but the mode
smoothly loses its eastward-propagating character and
takes on the form of a standing oscillation. Figure 21
shows the structure of this mode for an intermediate
case, where it still retains some eastward-propagation
tendency but where wave dynamics has taken on a
crucial role in theoscillation.

A similar mixed mode can be also found starting
from a westward-propagating SST mode as shown in
Fig. 22. The transition from a pure SST mode to a
mixed mode is reflected by the turning of the depen-
dence of the eigenvalue on 6. Both growth rate and
frequency decrease as § increases away from the tran-
sition, which indicates the dependence of this oscilla-
tory mode on the oceanic wave dynamics. The mixed
nature of the mode, with westward-propagation fea-
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tures inherited from the SST mode at the fast-wave
limit and the standing oscillation appearance taken
from the ocean basin modes, is demonstrated in the
eigenstructure shown in Fig. 23. We note also that the
transition to a stationary mode occurs at higher u when
the surface-layer feedbacks are included. While this has
no effect on the qualitative relation of the flow regimes,
it could be important in practical applications.

5. Nonlinear solutions

Here we do not undertake an extensive examination
of nonlinear time-dependent solutions but simply show
that the linear analysis is a very good indication of the
finite amplitude nonlinear solutions, at least near the
Hopf bifurcation. Figure 24 gives a nonlinear solution
(with basic state subtracted ) corresponding to the linear
solution of Fig. 14. The overall structure resembles the
eigenstructure with a period still around 4 years. Here
the solution is far enough from the bifurcation that the
amplitudes of positive and negative SST anomalies be-
come slightly asymmetric and their positions are
slightly shifted in the nonlinear solution. For the mixed
mode with westward propagation of Fig. 23, a similar
agreement up to small differences is found between the
nonlinear solution at reasonable amplitude and the
linear eigensolution shown in Fig. 25.

The parameterization of subsurface temperature in
the model should be better tuned before undertaking
a quantitative examination of strongly nonlinear re-
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gimes, but preliminary explorations with no surface-
layer feedback are worth a brief comment. As coupling
is increased, the oscillations tend to become distorted
in a manner qualitatively reminiscent of the relaxation
oscillations noted in HNJ, but sometimes exhibiting
complicated behavior with several maxima and min-
ima within each periodic cycle. Period-doubling be-
havior qualitatively like Miinnich et al. (1991) is noted
but appears less significant. Small regions of apparently
chaotic behavior can be found but the degree of irreg-
ularity is far less than, for instance, the ZC model or
observed time series. A number of additional mecha-
nisms including seasonal cycle could potentially change
this situation but have not yet been explored.

6. Discussion and conclusions

Using a stripped-down intermediate model, we ex-
amine the behavior across different parameter regimes
for the leading modes of the tropical ocean-atmosphere
system linearized about a climatological basic state.
We undertake to show that, despite the apparent dif-
ferences, there is a relatively straightforward relation-
ship among regimes in which zonal propagation of SST,
wind, current, and thermocline anomalies along the
equator determine the period of the interannual oscil-
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lation, regimes in which the most unstable mode is
purely stationary, and an important regime in which
warm and cold SST anomalies alternate in the eastern
basin in a standing oscillation, with subsurface ocean
dynamics serving as the memory of the system. We
attempt to build on and bring together previous work
by several authors, by indicating how some important
simple models relate to each other and to the modes
of this fuller system. At the same time, we aim to show
how the modes in realistic parts of parameter space are
related to those in simplifying limits.

These limits and the regions of validity surrounding
them are detailed in Part II and exploited to produce
analytic results in Parts II and III. Here we refer to the
uncoupled case, and to the fast-wave limit and the fast-
SST limit, which obtain, respectively, when the time
scales of wave adjustment are much faster than the
time scales of SST change and vice versa. In terms of
the scalar parameter, 9, defined to measure the ratio
of these time scales, the fast-wave and fast-SST limits
occur at small and large 8, respectively. The scalar pa-
rameter defined for coupling, u, measures the amount
of wind-stress feedback from the atmosphere per degree
of SST anomaly, with u = 0 being uncoupled and u
= O( 1) for moderately strong coupling. The fast-SST
limit produces no real simplifications but is useful for
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reference to the models of CMZ and Schopf and Suarez
(1990). In the fast-wave limit, the stow modes are re-
ferred to as SST modes because they are associated
with the time derivative of the SST equation. These
SST modes are very robust at moderate and strong
coupling; they can be thought of as fundamentally
coupled modes in the sense that even a modest amount
of coupling alters them strongly relative to their trivially
decaying uncoupled counterparts, as indicated here and
examined in Part II. In the uncoupled case, the eigen-
modes associated with the time derivatives of the sub-
surface ocean dynamics (ocean-dynamics modes) in a
zonally bounded basin are of two types: the ocean basin
modes of Cane and Moore (1981) and a previously
overlooked class of scattering modes. At low frequen-
cies and basin scales these are very different from the
Rossby and Kelvin modes of the infinite-basin case.
As one moves trom uncoupled to realistically cou-
pled cases and from the fast-wave limit to realistic rel-
ative time-scale ratios, these ingredients will become
mixed; we use the descriptive term mixed SST /ocean-
dynamics modes to refer to modes in regimes where
they are significantly modified relative to these simple
limits. To show how this mixing occurs, we trace sur-
faces of eigenvalues that are continuously connected
in parameter space. Eigensurfaces corresponding to dif-
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ferent modes that are distinct in some regions can
merge through degeneracies at which the eigenvalue
and eigenstructure become identical for two or more
modes. Degeneracies of multiplicity two (2-degenera-
cies) involving the transition between a complex con-
jugate pair of modes and two pure real modes are the
most commonly encountered in this system. These oc-
cur as surfaces of dimension (k — 1) in a parameter
space of dimension k, forming boundaries between a
stationary regime and various oscillatory regimes in
which different physical mechanisms dominate.

The relationship between flow regimes is most easily
narrated by beginning from the fast-wave limit where
ocean time scales are, by definition, not important and
where the picture is relatively simple. Oscillation can
occur by zonal propagation of anomalies: westward-
or eastward-propagating regimes occur when the pa-
rameters favor different mechanisms that give these
tendencies: for example, westward for large surface-
layer feedbacks, eastward when surface-layer feedbacks
are small and the atmospheric model damping length
is short (we use “surface-layer feedbacks™” to denote
mechanisms due to the component of surface currents
and upwelling produced by the embedded surface
layer). The mechanisms are essentially those of the
periodic-basin case and are discussed in the context
of finite-basin effects such as quantization in Part III
and HNJ.

Between these propagating regimes lies a stationary
regime where the leading SST mode is purely growing
and leads to multiple stationary states in the nonlinear
case (see HNJ). The SST patterns resemble those that
occur at the mature warm or cold phases of ENSO,
extending across most of the central and eastern basin.
This east basin trapping results partly from the zonal
dependence of the upwelling and thermocline slope in
the climatology, but has an important contribution
from the 8 effect in atmospheric and oceanic steady-
state dynamics, as analyzed in Part III. Because these
features carry over into neighboring oscillatory regimes,
this stationary regime in the fast-wave limit provides
an excellent starting point for understanding ENSO
dynamics. For the leading mode, this stationary regime
extends without qualitative change for a range of sur-
face-layer feedback strength from intermediate to zero,
5o we use the case without surface-layer feedbacks for
much of the exploration into the role of wave dynamics.

Following the eigensurface associated with this sta-
tionary mode to larger 6, away from the fast-wave limit,
one finds that for coupling values stronger than a cer-
tain threshold, where this stationary mode stands out
as more strongly growing than other modes, the eigen-
surface extends without substantial change from the
fast-wave limit all the way to the fast-SST limit. An
analysis of why this must occur at strong coupling is
given in Part III; essentially, coupling time scales be-
come faster than those associated with ocean dynamics,
SO ocean wave propagation in the conventional sense
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becomes secondary. This is pivotal in understanding
the coupled system because 1) it allows the spatial form
and growth mechanisms of important coupled regimes
to be understood from the fast-wave limit and 2) it
implies that modes associated with ocean dynamics
must connect somehow to this strongly growing mode.

At lower coupling, this indeed happens as the
strongly growing stationary mode connects, via a curve
of 2-degeneracy in the u-4 parameter plane, to an os-
cillatory eigensurface. The oscillatory regime just to
the lower coupling side of this 2-degeneracy is an im-
portant one for models such as the ZC model and the -
SS intermediate model, and presumably for the ob-
served system. It has a standing oscillation in SST, with
a spatial form extremely similar to the stationary SST
mode, and is destabilized by the same coupling mech-
anisms. The memory for the oscillation is provided by
subsurface oceanic dynamics, characterized by deep-
ening of the thermocline in the western basin prior to
the deepening in the east. This regime extends across
a considerable range of 8, from the fast-SST limit to 6
= O(1). It terminates in a 3-degeneracy where the 2-
degeneracy curve just mentioned meets another such
curve, completing the connection to the low-coupling
stationary branch of the SST mode.

The description becomes temporarily complicated
when one attempts to describe the connection of this
standing oscillation regime to the uncoupled case. At
lower p, this oscillatory eigensurface connects not to a
single mode from the uncoupled oceanic dynamics
spectrum but to a series of them: beginning from ¢
= O( 1) where the standing oscillation first arises, the
low-coupling end of the branch attaches first to the
lowest-frequency mode of the scattering spectrum, then
to sequentially higher-frequency scattering modes, and
finally to the gravest ocean basin mode in the region
approaching the fast-SST limit. These successive con-
nections are accomplished by a sequence of 2-dege-
neracies, each of which has complex eigenvalue and
thus occurs at a point in the u—48 plane (see Appendix),
that interlink the branches arising from the uncoupled
ocean as they become destabilized relative to their un-
coupled decay rate. In each case, there is a dramatic
structural change between the uncoupled modes and
the standing oscillation regime, while the latter is almost
completely insensitive to what happens at low coupling.

A fair summary of this situation is that the standing
oscillation does not care which uncoupled ocean mode
it is attached to; its properties are fundamentally de-
termined by the coupling, and it is best approached
conceptually from the strong coupling side. It is much
simpler to view the standing-oscillation regime as an
extension of the strongly growing stationary mode to-
ward lower coupling, where ocean dynamics begins to
regain some aspects of wavelike behavior. In this in~
terpretation, one begins by understanding the spatial
form and instability mechanisms of the mode in the
fast-wave limit at moderately strong coupling. As one
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follows the stationary mode out to realistic values of
the relative time-scale parameter, the stationary mode
acquires significant oceanic time-scale dependence as-
sociated with “picking up” a degree of freedom from
among the low-frequency part of the scattering spec-
trum on the low coupling side.

This view is remarkably consistent, in terms of
physical content, with the original interpretation of the
SS and BH delayed-oscillator “toy” model, since this
is based on the SST equation for a small eastern basin
box, with a delay term representing the time scales of
ocean adjustment. Both SS and BH used the delayed-
oscillator model to explain a mode found in their re-
spective intermediate models that is essentially the
same as the standing-oscillation regime discussed here.
The toy model SST equation gives pure growth (by
assumption) in the fast-wave limit, and a surface of 2-
degeneracy gives the transition to oscillation as wave
time scales become important. As long as the oscillatory
regime is approached from the high-coupling side, and
provided the wave delay term is interpreted as a per-
turbation by wave dynamics in the broader sense rather
than in terms of a single Rossby and Kelvin wave, there
is a very good qualitative match to the leading mode
of the fuller coupled system examined here.

Because the standing-oscillatory mixed modes con-
nect to the scattering spectrum at low coupling (for
realistic values of the relative time scale coefhicient),
our results suggest that the original SS and BH inter-
pretation is, in fact, a slightly more faithful represen-
tation than the later models of CMZ and Schopf and
Suarez (1990). The latter are derived more rigorously
but are formulated in the fast-SST limit where the low-
coupling connection is to an ocean basin mode. How-
ever, because of the smooth connection of the strongly
growing stationary mode from the fast-wave limit to
the fast-SST limit and the resulting smooth connection
of the standing-oscillatory regime across a large range
of parameters, these seemingly contradictory ap-
proaches to the problem are just alternative approxi-
mations to the same eigensurface. Both are accurate
provided that the low-coupling end is ignored. In other
words, coupling plays such a decisive role in deter-
mining period, stability, and spatial structure that con-
ventional uncoupled ocean wave dynamics is largely
irrelevant, and the apparent contradictions between
these models disappear when interpreted as mixed
SST/ocean-dynamics modes.

From the standing-oscillation regime, it is easy to
move smoothly and gradually to a regime of the mixed
SST/ocean-dynamics modes where propagation occurs
during parts of the cycle and contributes to the period
to some extent. Such a regime is probably the best an-
alog to the observed system. The details of how the
various surfaces of eigenvalues are connected over the
full range of parameters are more subtle to unravel in
this case than in the transition between the stationary
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and standing-oscillation regimes because at least a third
parameter is involved (e.g., the surface-layer coeffi-
cient). However, the basic point that these character-
istics can coexist within the same mixed mode is easily
understood. The standing-oscillation regime provides
one simple case that emphasizes the role of subsurface
dynamics in determining periodicity; the fast-wave-
limit propagating cases provide alternate simple cases
in which periodicity is provided by zonal phase lags.
Since these are all continuously connected, regimes
with some properties of each arise in between. There
is thus no contradiction between evidence for involve-
ment of subsurface dynamics in the ENSO cycle (e.g.,
Latif et al. 1993; Latif and Graham 1992; Graham and
White 1990) and indications of other contributing
mechanisms (¢.g., Barnett et al. 1991).

Integrations of the nonlinear model verify that, for
the Hopf bifurcations studied here, the linear eigen-
modes indeed provide a good approximation to the
spatial form and pertod of the nonlinear cycles out to
physically realistic amplitudes. Stationary bifurcations
will be identical to those found in the fast-wave limit
(since all time derivatives are zero), examples of which
are given in HNJ. ‘

While far from exhausting the study of the bifur-
cation diagram of the tropical coupled system, the as-
pects studied here cover the predominant range of be-
haviors noted in coupled models of intermediate, hy-
brid, and GCM classes in the hierarchy, at least for the
primary bifurcation from the climate state. It is of
course possible to choose many other parameters to
move between the same behavior regimes: for instance,
Wakata and Sarachik (1991) use width of the equa-
torial upwelling region as a parameter to move between
the standing-oscillation regime and the eastward-prop-
agating regime (in a version close to Hirst 1988);
Wakata and Sarachik, BH, and CMZ all encounter the
2-degeneracy separating the standing-oscillation regime
from the stationary growth regime. In Fig. 11 of BH,
for instance, this 2-degeneracy surface is crossed by
changing the SST damping rate, which is roughly
equivalent to a small change in coupling (accompanied
by a small change in §, in our terminology), that is, a
small section from the center of our Fig. 15 or 16.
While the BH intermediate model formulation and
parameters are very closely related to ours, small dif-
ferences—such as details of the thermocline feedback
formulation—make it difficult to calculate the exact
mapping of their parameter space onto ours. What is
important is the topological equivalence of the struc-
tures of the eigensurfaces. Adding or modifying feed-
back mechanisms will also shift the regime boundaries:
for example, inclusion of surface-layer feedbacks moves
the stationary-regime transition to higher coupling than
when thermocline feedback alone is active in our
model. While this can be important to guantitative
work, the qualitative aspects remain the same over
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substantial parameter ranges. The parameter set se-
lected here suffices to capture the essential connections
between behavior regimes in a concise manner.

Given that the most physically realistic part of pa-
rameter space is transected by a number of higher-co-
dimension bifurcations (including double-zero eigen-
value bifurcations corresponding to the main surfaces
of 2-degeneracy emphasized here) that separate it into
regions of qualitatively different behavior, it is not sur-
prising that the coupled system exhibits great sensitiv-
ity. In the coupled GCM intercomparison of Neelin et
al. (1992), interannual variability of both zonally
propagating and standing-oscillation types was noted
in the SST simulations of different models, while some
had climate drift that appeared to involve coupled
feedbacks of a similar nature and multiple stationary
states were noted in some hybrid models. Both prop-
agating and standing types of SST variability had as-
pects that resembled the ENSO phenomenon, although
criteria for sufficient resemblance to count as ENSO-
like did engender some lively discussion among the
respective modeling groups.

If one broadens the term “parameter space’ to more
loosely include the many differences in formulation of
parameterized processes, model resolution, etc., we
would argue that there are close parallels between the
GCM behavior and the parameter-space dependence
demonstrated here. In particular, that it is possible to
move continuously on the eigensurface for the most
unstable mode from a propagating regime to a station-
ary regime to a standing-oscillatory regime suggests that
the qualitative resemblance among some propagating
and standing oscillations in the GCMs is far from ac-
cidental. They can be thought of as, in some sense, the
same mode in different regimes of behavior (provided
that only the first bifurcation is involved). It is very
possible for them to share similar physical mechanisms
contributing to their growth and spatial structure, even
if the oscillation mechanisms differ. In creating coupled
GCMs from oceanic and atmospheric models tested as
components individual components, it is difficult to
know a priori into which regime the combination will
fall in the coupled parameter space. We hope that the
analysis presented here will at least provide a concep-
tual framework for discussing the results.
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APPENDIX
Degeneracies

To provide qualitative insight into the form of the
dispersion diagrams in the vicinity of degeneracies (as
seen in Figs. 13a,b; 15a,b; 16a,b), consider a dispersion
relation

F(o,p) =0, (A.1)

where ¢ is the eigenvalue, u a vector of parameters,
and F a smooth scalar function such that

(F(o))* = F(o*). (A.2)

In our case F is a polynomial of order N ~ 400, since
F = det[ol — Df(X, p)] for a system x = f(x, u),
x € RY, linearized about a fixed point x, with Df
= [8f;/x;], for a smooth vector function /" : RY - R".

Expanding F in a Taylor series about a solution
(o, n), where dF /30 # 0, leads to

, [9F\™' OF s
o'=— - +0(e", 7)),  (A3)

E u
where (o', ') denotes departures from (o, x ) and 0F/
du = [0F/du;17. Thus, the eigensurface has a unique
continuation in parameter space about such a point
[note: the form (A.1)-(A.3)is not the most useful for
numerical purposes and is used here for illustration
only].

The degeneracies of algebraic multiplicity two occur
where

dF/ds = 0, (A4)

but 32F/ds% # 0. We apparently encounter only the
generic behavior, which is algebraically double but
geometrically simple with only one eigenvector asso-
ciated with the double eigenvalue; in principle, we
could construct a generalized eigenvector to complete
the eigenspace (Iooss and Joseph 1990). In the vicinity
of a solution (o, u ) where an algebraically double de-
generacy occurs

o (aZF)-' oF

o2 =L

o) 5o K O k)

” (A.5)
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so two eigensurfaces merge in a manner that locally
has a square root dependence on u'. In the figures, a
single parameter y; is varied so

o' = xbul’?, (A.6)

where b = [(8%F/06%)'0F/du;1'/* is potentially
complex; occasional apparent departures in the figures
from the x!/? dependence are due to insufficient res-
olution in the plotting routine. For the case of a 2-
degeneracy with ¢ pure real (which implies 8% F/d¢?
and 0F/du pure real), ¢’ is thus pure real on one side
of the 2-degeneracy and pure imaginary on the other.

Why this is by far the most common case in the
figures becomes clear when considering, for example,
for polynomial F, that the dual constraints (A.1) and
(A.4)

N
F=>a,6"=0 (A7)
n=0
N
9F _ > na,e" =0 (A.8)
do

imply a relationship among the parameters that is a
surface of lower dimension in a k dimensional param-
eter space. Consider ¢ to be given by (A.8). For ¢ real
(A.7) can be solved for a relation among the coeflicients
{an(p) }, which (assuming suitably smooth dependence
on the control parameters) implicitly gives a surface
of dimension k — 1. For complex ¢, the additional
constraint that a,, are real leads to a surface of lower
dimension k — 2. For a two-parameter slice such as
presented in section 4, 2-degeneracies with o real occur
as curves, while those with complex ¢ occur at isolated
points. In the one-parameter slices as a function of
coupling in Figs. 13, 15, and 16, the 2-degeneracy sep-
arating the standing-oscillatory region from the sta-
tionary region is thus always encountered, while the
complex 2-degeneracies are not seen in a typical slice,
although they are essential to the connection to differ-
ent modes from the uncoupled ocean spectrum. The
3-degeneracy with o real in section 4, given by the ad-
ditional condition 8°F/d¢? = 0, also has dimension
k—2.

The leading eigensurfaces traced in sections 3 and 4
correspond to the primary bifurcation of the original
system for some set of parameter values wherever
Re (o) exceeds the physical damping times of the sys-
tem, since the damping parameters can shift a given
point on the surface to meet the condition Re(¢s) = 0.
The 2-degeneracy marking the transition from the sta-
tionary to standing-oscillatory mode is then a codi-
mension-two bifurcation (double-zero eigenvalue ) ac-
cording to the number of parameters required to obtain
the bifurcation in a persistent way (e.g., Guckenheimer
and Holmes 1983), while the 3-degeneracy is a codi-
mension-3 bifurcation. The complex 2-degeneracies
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involved in the transition between connections to the
ocean scattering spectrum do not meet this condition
and are unlikely to correspond to higher-codimension
bifurcations of the original system for any parameter
range. Indications of possible codimension-two bifur-
cations involving two modes (imaginary pair and a
zero eigenvalue, or two imaginary pairs) have been
noted but not pursued.
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