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Observed Climate Change
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Figure TS.1. Variations of deuterium (BD) in antarctic ice, which is a proxy for locaf temperature, and the atmospheric concentrations of
the greenhouse gases carbon dioxide (CO,), methane (CH,), and nitrous oxide (N,O) in air trapped within the ice cores and from recent
atmospheric measurements. Data cover 650,000 years and the shaded bands indicate current and previous interglacial warm periods.
{fAdapted from Figure 6.3}



A key idea in climate change research is the concept

of

This allows us to quantify the importance of the
various factors that have potential to change climate.
It is defined as the radiation change in W/m? at the
tropopause due to the forcing agent (e.g. increase in
greenhouse gases)

A canonical forcing used to compare the response of
models to radiative forcing is a doubling of CO,, which
amounts to a radiative forcing of 4 W/m?,
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Figure TS.2. The concentrations and radiative forcing by (a) carbon dioxide (CO,), (b) methane (CH,), (c) nitrous oxide (N,O) and (d) the
rate of change in their combined radiative forcing over the fast 20,000 years reconstructed from antarctic and Greenland ice and firn
data (symbolis) and direct atmospheric measurements (panels a,b,c, red fines). The grey bars show the reconstructed ranges of naturaf
variability for the past 650,000 years. The rate of change in radiative forcing (panei d, biack line) has been computed from spline fits to the
concentration data. The width of the age spread in the ice data varies from about 20 years for sites with a high accumuiation of snow such
as Law Dome, Antarctica, to about 200 years for low-accumulation sites such as Dome C, Antarctica. The arrow shows the peak in the
rate of change in radiative forcing that would resuit if the anthropogenic signals of CO,, CH, and N,O had been smoothed corresponding
to conditions at the fow-accumuiation Dome C site. The negative rate of change in forcing around 1600 shown in the higher-resolution
inset in panel d results from a CO, decrease of about 10 ppm in the Law Dome record. {Figure 6.4}
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Figure TS.3. Annual changes in giobal mean CO, concentration
(grey bars) and their five-year means from two different
measurement networks (red and fower biack stepped lines).
The five-year means smooth out short-term perturbations
associated with strong ENSQO events in 1972, 1982, 1987 and
1997. Uncertainties in the five-year means are indicated by
the difference between the red and lower black lines and are
of order 0.15 ppm. The upper stepped fine shows the annual
increases that would occur if alf fossif fuef emissions stayed in the
atmosphere and there were no other emissions. {Figure 7.4}
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Figure TS.4. (Top) The total aerosol optical depth (due to natural plus anthropogenic
aerosols) at a mid-visible wavelength determined by satellite measurements for January to
March 2001 and (bottom) August to October 2001, illustrating seasonal changes in industrial
and biomass-burning aerosols. Data are from satellite measurements, complemented by
two different kinds of ground-based measurements at locations shown in the two panels
(see Section 2.4.2 for details). {Figure 2.11}
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Figure TS.5. (@) Global mean radiative forcings (RF) and their 90% confidence intervals in 2005 for various agents and mechanisms.
Columns on the right-hand side specify best estimates and confidence intervals (RF values); typical geographical extent of the forcing
(Spatial scale); and level of scientific understanding (LOSU) indicating the scientific confidence level as explained in Section 2.9. Errors for
CH, N,O and halocarbons have been combined. The net anthropogenic radiative forcing and its range are also shown. Best estimates
and uncertainty ranges can not be obtained by direct addition of individual terms due to the asymmetric uncertainty ranges for some
factors; the vaiues given here were obtained from a Monte Carlo technique as discussed in Section 2.9. Additional forcing factors not
inciuded here are considered to have a very low LOSU. Volcanic aerosols contribute an additional form of naturaf forcing but are not
inciuded due to their episodic nature. The range for linear contrails does not inciude other possible effects of aviation on cloudiness.
(b) Probability distribution of the giobal mean combined radiative forcing from alf anthropogenic agents shown in (a). The distribution is
calcufated by combining the best estimates and uncertainties of each component. The spread in the distribution is increased significantly
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by the negative forcing terms, which have farger uncertainties than the positive terms. {2.9.1, 2.9.2; Figure 2.20}
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Figure TS.5. (@) Global mean radiative forcings (RF) and their 90% confidence intervals in 2005 for various agents and mechanisms.
Columns on the right-hand side specify best estimates and confidence intervals (RF values); typical geographical extent of the forcing
(Spatial scale); and level of scientific understanding (LOSU) indicating the scientific confidence level as explained in Section 2.9. Errors for
CH, N,O and halocarbons have been combined. The net anthropogenic radiative forcing and its range are also shown. Best estimates
and uncertainty ranges can not be obtained by direct addition of individual terms due to the asymmetric uncertainty ranges for some
factors; the vaiues given here were obtained from a Monte Carlo technique as discussed in Section 2.9. Additional forcing factors not
inciuded here are considered to have a very low LOSU. Volcanic aerosols contribute an additional form of naturaf forcing but are not
inciuded due to their episodic nature. The range for linear contrails does not inciude other possible effects of aviation on cloudiness.
(b) Probability distribution of the giobal mean combined radiative forcing from alf anthropogenic agents shown in (a). The distribution is
calcufated by combining the best estimates and uncertainties of each component. The spread in the distribution is increased significantly
by the negative forcing terms, which have farger uncertainties than the positive terms. {2.9.1, 2.9.2; Figure 2.20}






The climate of the past 1000 years
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GLoBaL TEMPERATURE TRENDS
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Figure TS.6. (Top) Patterns of linear global temperature trends over the period 1979 to 2005 estimated at the surface (left), and for the
troposphere from satelfite records (right). Grey indicates areas with incomplete data. (Bottom) Annual global mean temperatures (black
dots) with finear fits to the data. The left hand axis shows temperature anomalies refative to the 1961 to 1990 average and the right hand
axis shows estimated actual temperatures, both in °C. Linear trends are shown for the last 25 (yeliow), 50 (orange), 100 (purpie) and 150
years (red). The smooth biue curve shows decadal variations (see Appendix 3.A), with the decadal 90% error range shown as a pale biue
band about that fine. The total temperature increase from the period 1850 to 1899 to the period 2007 to 2005 is 0.76°C + 0.19°C. {FAQ
3.1, Figure 1.}



OBseRVED AIR TEMPERATURES
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Figure TS.8. (a) Linear trends in precipitable water (total column
water vapour) over the period 1988 to 2004 (% per decade) and
(b) the monthiy time series of anomalies, refative to the period
shown, over the global ocean with linear trend. (¢) The global
mean (B0°N to 80°S) radiative signature of upper-tropospheric
moistening is given by monthly time series of combinations of
satelfite brightness temperature anomalies (°C), relative to the
period 1982 to 2004, with the dashed line showing the linear
trend of the key brightness temperature in °C per decade. {3.4,
Figures 3.20 and 3.21}
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Trend % per decade 1951 - 2003 contribution from very wet days
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Figure TS.10. (Top) Observed trends (% per decade) over the period 1951 to 2003 in the contribution to total annual precipitation from
very wet days (i.e., corresponding to the 95th percentile and above). White land areas have insufficient data for trend determination.
(Bottom) Anomalies (%) of the global (regions with data shown in top panel) annual time series of very wet days (with respect to 1967-
1990) defined as the percentage change from the base period average (22.5%). The smooth orange curve shows decadal variations (see
Appendix 3.A). {Figure 3.39}
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CHANGES IN Snow COVER
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Figure TS.12. (Top) Northern Hemisphere March-April snow-
covered area from a station-derived snow cover index (prior
to 1972) and from satellite data (during and after 1972). The
smooth curve shows decadal variations (see Appendix 3.A) with
the 5 to 95% data range shaded in yellow. (Bottom) Differences
in the distribution of March-April snow cover between earlier
(1967-1987) and later (1988-2004) portions of the satellite era
(expressed in percent coverage). Tan colours show areas where
snow cover has declined. Red curves show the 0°C and 5°C
isotherms averaged for March-April 1967 to 2004, from the
Climatic Research Unit (CRU) gridded land surface temperature
version 2 (CRUTEMZ2v) data. The greatest decline generally
tracks the 0°C and 5°C isotherms, reflecting the strong feedback
between snow and temperature. {Figures 4.2, 4.3}



CHANGES IN SEA ICE EXTENT
a)  Arctic Minimum Sea Ice Extent Anomalies (1979 - 2005)

8.0
7.5
7.0

6.5

108 km?2

Figure TS.13. (a) Arctic minimum sea ice extent; (b} arctic sea ice
extent anomalies; and (c) antarctic sea ice extent anomalies all for
o " e " - ol the period 1979 to 2005. Symbols indicate annual values while

the smooth blue curves show decadal variations (see Appendix
b) Arctic Sea Ice Extent Anomalies (1979 - 2005) 3.A). The dashed lines indicate the linear trends. (a) Results
show a linear trend of =60 + 20 x 108 km? yr-', or approximately
-7.4% per decade. (b} The linear trend is =33 + 7.4 x 103 km? yr-'
(equivalent to approximately -2.7% per decade} and is significant
at the 95% confidence level. (c) Antarctic results show a small
positive trend of 5.6 + 9.2 x 103 km? yr-1, which is not statistically
significant. {Figures 4.8 and 4.9}
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Northern Hemlsphere Extent Anomalies Oct 2007
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From space, we can monitor the melting areas of the
worlds major ice sheets. The melting of Greenland is
accelerating...
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Figure TS.18. Annual averages of the global mean sea fevel based on
reconstructed sea fevef fields since 1870 (red) tide gauge measurements
since 1950 (blue) and satelffite altimetry since 1992 (black). Units are in mm
refative to the average for 1961 to 1990. Error bars are 90% confidence
intervals. {Figure 5.13}



Table TS.3. Contributions to sea level rise based upon observations (left columns) compared to models used in this assessment (right
columns; see Section 9.5 and Appendix 10.A for details). Values are presented for 1993 to 2003 and for the last four decades, including
observed totals. {Adapted from Tables 5.3 and 9.2}

Sea Level Rise (mm yr1)

1961-2003 1993-2003
Sources of Sea Level Rise Observed Modelled Observed Modelled
Thermal expansion 0.42 +0.12 0.5+02 1.6+0.5 1.5+£0.7
Glaciers and ice caps 0.50 + 0.18 0.5+02 0.77 £ 0.22 0.7+03
Greenland Ice Sheet 0.05 +0.12a 0.21 £ 0.072
Antarctic Ice Sheet 0.14 £+ 0.41=2 0.21 £ 0.352
Sum of individual climate contributions to
sea level rise 1.1+05 1.2+05 28+ 0.7 26 +0.8
Observed total sea level rise 1.8+0.5 3107
(tide gauges) (satellite altimeter)

Difference (Observed total minus the sum

0.7 +0.7 03+1.0

of observed climate contributions)

Notes:
a prescribed based upon observations (see Section 9.5)
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Figure TS.19. (Top) Monthly mean sea level (mm) curve for 1950
to 2000 at Kwajalein (8°44’N, 167°44°E). The observed sea level
(from tide gauge measurements) is in blue, the reconstructed sea
level in red and the satellite altimetry record in green. Annual and
semiannual sighals have been removed from each time series and
the tide gauge data have been smoothed. (Bottom) Geographic
distribution of short-term linear trends in mean sea level for 1993
to 2003 (mm yr-') based on TOPEX/Poseidon satellite altimetry.
{Figures 5.15 and 5.18}
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Figure TS.20. (Top) Records of Northem Hemisphere temperature variation during the fast 1300 years with 12 reconstructions using
muitiple climate proxy records shown in colour and instrumental records shown in black. (Middle and Bottom) Locations of temperature-
sensitive proxy records with data back to AD 1000 and AD 1500 (tree rings: brown triangles; boreholes: black circles; ice corefice
boreholes: biue stars; other records including fow-resolution records: purple squares). Data sources are given in Table 6.1, Figure 6.10
and are discussed in Chapter 6. {Figures 6.10 and 6.71}



