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ABSTRACT 1	  

 2	  

Sierra Nevada climate and snowpack is simulated during the period of extreme drought from 3	  

2011 to 2015 and compared to an identical simulation except for the removal of 20th century 4	  

anthropogenic warming. Anthropogenic warming reduced average snowpack levels by 25%, 5	  

with mid-to-low elevations experiencing reductions between 26-43%.  In terms of event 6	  

frequency, return periods associated with anomalies in 4-year April 1 SWE are estimated to have 7	  

doubled, and possibly quadrupled, due to past warming.  We also estimate effects of future 8	  

anthropogenic warmth on snowpack during a drought similar to that of 2011 – 2015.  Further 9	  

snowpack declines of 60-85% are expected, depending on emissions scenario. The return periods 10	  

associated with future snowpack levels are estimated to range from millennia to much longer. 11	  

Therefore, past human emissions of greenhouse gases are already negatively impacting statewide 12	  

water resources, and much more severe impacts are likely to be inevitable.  13	  

 14	  

1. Introduction 15	  

California recently experienced an epic 4-year (2011/12 – 2014/15) drought, with extremely 16	  

warm temperatures and low precipitation throughout the state (e.g. Swain et al. 2014, 17	  

AghaKouchak et al. 2014). The drought manifested itself in record-breaking dry soils (Griffin 18	  

and Anchukaitis 2014, Williams et al. 2015, Robeson 2015) and has led to significant 19	  

agricultural damage (Howitt et al. 2014) alongside rapid depletion of groundwater resources 20	  

(Famiglietti et al. 2014).  The precipitation deficit driving the drought can be primarily 21	  

understood through natural variability (Seager et al. 2015). While recent multi-year low 22	  

precipitation totals are extreme, there is no evidence that historical California precipitation 23	  
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exhibits any negative trend (Berg et al. 2015, Seager et al. 2015).  Future precipitation is also 24	  

expected to increase somewhat over California (e.g. Neelin et al. 2013), lending further support 25	  

to the notion that anthropogenic precipitation changes have likely not influenced the recent 26	  

drought.  Anthropogenic temperature changes, on the other hand, have repeatedly been invoked 27	  

to explain the severity of record dry soils across California (Griffin and Anchukaitis 2014, 28	  

Williams et al. 2015, Shukla et al. 2015, Cheng et al. 2016).   29	  

 30	  

Snow is another hydrologic variable influenced by warming. In 2015, April 1 snow water 31	  

equivalent (SWE) in the Sierra Nevada reached a low unprecedented within the past 500 years 32	  

(Belmecheri et al. 2015), coinciding with the warmest California winter on record 33	  

(http://www.ncdc.noaa.gov/sotc/national/201503).  This alarming statistic begs the question: how 34	  

have anthropogenic temperature changes influenced California snowpack during the 4-year 35	  

drought?  Addressing this question is a focus here, building on two prior studies. Shukla et al. 36	  

(2015) find that the ranking of the 2013/14 Sierra Nevada snowpack was below the 2nd percentile 37	  

for the 1916 – 2012 period.  They also show that if 2013/14 temperatures had resembled any 38	  

prior historical year, there is a 90% chance that 2013/14 SWE would have ranked above the 2nd 39	  

percentile.  So the unusual warmth of 2013/14 (the second warmest winter on record behind 40	  

2014/15, http://www.ncdc.noaa.gov/sotc/national/201403) likely contributed to the low 41	  

snowpack conditions of that year.  Mao et al. (2015) also analyze the role of anthropogenic 42	  

temperatures on 2012-2014 April 1 SWE over the Sierra Nevada by simulating snowpack 43	  

conditions when daily minimum temperature trends across the cold-season (November-March) 44	  

and warm-season (April-October) are removed from the forcing data.  Their results suggest that 45	  
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recent warming more than doubled the return period of the 3-year 2012-2014 average April 1 46	  

SWE over the Sierra Nevada.    47	  

 48	  

This study advances these prior results in two respects.  First, we include observed and simulated 49	  

2014/15 snowpack totals in our analyses, providing for a more comprehensive assessment of the 50	  

role of past anthropogenic temperature change in the low Sierra Nevada snowpack during the 51	  

entire 4-year drought. Second, we also examine effects on snowpack if the drought had unfolded 52	  

under the much more severe warming occurring at the end of the 21st century under enhanced 53	  

anthropogenic forcing. This is accomplished by performing a series of experiments simulating 54	  

2011/12 – 2014/15 snowpack levels when subjected to future conditions derived from 55	  

downscaled regional climate projections.  We explore the full range of plausible greenhouse gas 56	  

forcing scenarios, allowing for an assessment of the inevitability of snowpack change during 57	  

future drought conditions. 58	  

 59	  

2. Data and Methods 60	  

2a. Coupled WRF-NoahMP simulation 61	  

To quantify the role of anthropogenic warming in the record-setting low 2011/12 – 2014/15 62	  

California snowpack, we perform regional climate simulations using version 3.5 of the Weather 63	  

Research and Forecast model (WRF, Skamarock et al. 2008) and the Noah land surface model 64	  

with multiparameterization options (NoahMP, Niu et al. 2011) in both coupled and uncoupled 65	  

(or offline) frameworks.  A January 1980 – June 2015 baseline climatology is first simulated in 66	  

coupled mode.  The coupled baseline simulation is also used to drive offline simulations 67	  

described in Section 2b.  The coupled simulation uses two domains (Fig. 1a), D01 (27 km) and 68	  
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D02 (9 km), to resolve California’s Sierra Nevada topography and relevant fine-scale climatic 69	  

features (e.g. snow albedo feedback, land-sea breeze).  Boundary conditions for the coupled 70	  

baseline simulation are supplied by 6-hourly North American Regional Reanalysis output 71	  

(Mesinger et al. 2006).  Multiple parameterization packages were tested and the optimal 72	  

configuration was shown to accurately simulate spatial and temporal patterns of observed Sierra 73	  

Nevada SWE (c.f. Fig. S2 in Sun et al. 2016).  Additional information on the coupled model 74	  

configuration can be found in Section S1. Its performance in simulating California hydrology is 75	  

further detailed in Walton et al. 2016, Sun et al. 2016, and Schwartz et al. 2016.   76	  

 77	  

2b. Uncoupled WRF-NoahMP simulations 78	  

We next create an uncoupled version of the January 1980 – June 2015 baseline land surface 79	  

conditions. This is achieved by forcing the offline NoahMP model with 3-hourly outputs of 2 m 80	  

air temperature, surface pressure, shortwave and longwave radiation, 10 m wind speed, 10 m 81	  

wind direction, precipitation, and relative humidity from the aforementioned 9 km (D02) coupled 82	  

baseline simulation.  For computational efficiency, only grid cells in D02 that experience over 10 83	  

mm of 1980 – 2015 annual-mean SWE are simulated (Fig. 1b). Evaluation of simulated SWE 84	  

from this offline “reference” experiment is found in Section 2c.  85	  

 86	  

Following the reference experiment, five additional experiments, each spanning June 2011 – 87	  

June 2015, are executed where temperature inputs to the offline model are perturbed by various 88	  

amounts.  First, a “natural” experiment is performed where the monthly warming that has arisen 89	  

over the past century is removed at each time step in a given month. This experiment estimates 90	  

how 2011/12 – 2014/15 snowpack totals would have evolved in the absence of past warming. 91	  
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Warming is computed from two observational products, the 2°x2° GISS Surface Temperature 92	  

Analysis spanning January 1880 – May 2015 (Hansen et al. 2010, available at 93	  

http://data.giss.nasa.gov/gistemp/) and the 5°x5° Climatic Research Unit temperature database 94	  

spanning January 1850 – May 2015 (Jones et al. 2012, available at 95	  

http://www.cru.uea.ac.uk/cru/data/temperature/#sciref).  For each month, 1880 – 2015 (or 2014 96	  

for months June – December) time series of temperature anomalies with respect to 1880 – 1919 97	  

are averaged across California grid cells within each data set.  Warming for a given month is 98	  

then calculated as the difference between two 35-year averages, a recent climate of 1981 – 2015 99	  

(or 1980 – 2014 for months June through December) minus a past climate of 1880 – 1914. 100	  

Averaged across the two data sets, this yields monthly warming (units °C) of 1.33 (January), 101	  

1.30 (February), 1.24 (March), 0.73 (April), 1.11 (May), 1.11 (June), 1.0 (July), 0.95 (August), 102	  

1.46 (September), 1.12 (October), 0.37 (November), and 0.27 (December).  Very similar values 103	  

are obtained with different averaging periods and through trend analysis (Section S2, Table S1).  104	  

Also note that global climate models (GCMs) on average estimate that anthropogenic forcings 105	  

have contributed to around 1°C annual warming by the start of the 21st century over North 106	  

America (c.f. Fig. 10.7, Bindoff et al. 2013), reasonably consistent with the above values. Thus 107	  

we interpret the “natural” experiment as representing a regional climate state that is identical to 108	  

that of 2011/12 – 2014/15, but without anthropogenic forcing. 109	  

 110	  

Finally, we analyze how 2011/12 – 2014/15 snowpack responds to end-of-21st century projected 111	  

temperature increases with four future experiments corresponding to the Representative 112	  

Concentration Pathway (RCP) emissions scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) 113	  

used in the IPCC Fifth Assessment Report (Van Vuuren et al. 2011). In these future experiments, 114	  
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we rely on a hybrid downscaling framework to generate end-of-century monthly warming values 115	  

at 3 km resolution for all available GCMs and emissions scenarios over the Sierra Nevada 116	  

(Walton et al. 2016).  The GCM-mean downscaled projection is computed for each scenario and 117	  

then coarsened to 9 km to match the resolution of the offline grid dimensions used in this study 118	  

(Fig. 1). For each grid cell in the offline simulations, we increase temperatures by month 119	  

according to its ensemble-mean change at the nearest grid cell in the 9 km downscaled projection.  120	  

 121	  

2c. Uncoupled model evaluation of SWE  122	  

Here we evaluate simulated Sierra Nevada SWE from the reference experiment based on a 123	  

collection of 93 in-situ stations (red dots Fig. 1b) that recorded April 1 SWE from 1930 – 2015. 124	  

Data is provided by the California Department of Water Resources (CDWR, available at 125	  

http://cdec.water.ca.gov/snow/current/snow/index.html) and the National Resources 126	  

Conversation Service (NRCS, available at http://www.wcc.nrcs.usda.gov/snow/).  Figure 2 127	  

compares time series of the observed station-average April 1 SWE and simulated values 128	  

averaged across grid cells nearest to the 93 station locations for the overlapping period of 1980 – 129	  

2015. Simulated output in this comparison has already been adjusted for the grid-to-point 130	  

elevation mismatch (Section S3, Figures S1, S2). Simulated climatological April 1 SWE is 696.6 131	  

mm, nearly equal to the average observed value of 690.4 mm.  Standard deviations for the 132	  

simulated and observed time series are 333.6 and 324.0 mm, respectively. These very small 133	  

biases, indicates that WRF-NoahMP quite accurately simulates Sierra Nevada SWE compared to 134	  

observed data.     135	  

 136	  

3. Past and future anthropogenic warming impacts 137	  
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3a. Elevational dependency 138	  

Figure 3 compares September 2011 – June 2015 time series of daily SWE from the six offline 139	  

experiments averaged across grid cells in various elevation categories: all elevations (Fig. 3a), 140	  

high elevations (>2500 m, Fig. 3b), mid elevations (1500-2500 m, Fig. 3c), and low elevations 141	  

(<1500 m, Fig. 3d).  Results are further summarized in Table 1.  Focusing on the 4-snow year 142	  

(November – June) average, anthropogenic warming reduced 2011/12 – 2014/15 average annual 143	  

snowpack levels by 17.2 mm (25%) across all elevations and by 9.2 mm (10%), 19.7 mm (26%), 144	  

and 16.4 mm (43%) for the high, mid, and low elevations, respectively.  Hence, snowpack at 145	  

mid-to-low elevations is much more affected by recent warming trends than snowpack at the 146	  

highest elevations.  147	  

 148	  

Strong impacts to the mid elevations (also discussed in Sun et al. 2016) are particularly 149	  

noteworthy given that the mid-elevations encompass over 60% of the entire domain. In terms of 150	  

volumetric SWE (i.e. SWE multiplied by area), mid-elevations also dominate. The reference 4-151	  

snow year average equals 0.357 km3 over all elevations and 0.230 km3 in just the mid elevations 152	  

(Fig. 3a,c).  In the natural experiment, the corresponding values are 0.473 km3 over all elevations 153	  

and 0.313 km3 for the mid elevations (Fig. 3a,c).  Thus, 0.116 km3 (94 kAf) of additional total 154	  

snowpack would have resulted if anthropogenic warming had not occurred, 71% of which would 155	  

be found in mid-elevations. For perspective, 94 kAf of water is roughly twice the current annual 156	  

residential water demands for the city of San Francisco (~46 kAf, SFPUC 2014)    157	  

 158	  

Projected 21st century warming applied to this recent period would diminish snowpack levels 159	  

even further. Under the least aggressive emission scenario of RCP2.6 (dark blue line, Fig. 3), 4-160	  
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year average snowpack levels are significantly reduced from the levels of the reference 161	  

experiment by 24.6 mm (47%) across the entire domain.  However, estimates of recent global 162	  

greenhouse gas emissions (Le Quéré et al. 2015) show that RCP2.6 involves emissions 163	  

reductions that have not occurred since the RCP forcing scenarios were created in 2005. The 164	  

significant reductions associated with RCP2.6 in the coming decades are likewise unlikely to 165	  

occur. Thus we only consider RCP4.5, RCP6.0, and RCP8.5 to be the plausible forcing scenarios. 166	  

RCP4.5, which also involves emissions reductions over the coming decades, may be the most 167	  

realistic “mitigation” scenario. Under this scenario (light blue line, Fig. 3), total snowpack is 168	  

reduced by 31.9 mm or 60%. RCP8.5 is the scenario emissions have been tracking over the past 169	  

10 years, and will continue to track if emissions keep increasing at the same pace, and can be 170	  

considered a “business-as-usual” scenario. Under RCP8.5 (red line, Fig. 3), total snowpack is 171	  

reduced by 45.2 mm or 85%, and even high elevations become susceptible to large declines of 172	  

55.3 mm (67%).  Nearly all snowpack is lost at mid and low elevations, with reductions 173	  

exceeding 90% for each category.  Volumetric SWE declines by 0.305 km3 (over 247 kAf) 174	  

between the reference and RCP8.5 simulations, over five times the annual residential usage in 175	  

San Francisco.      176	  

 177	  

3b. Event frequency  178	  

We next quantify how return periods of simulated 4-year average (2012-2015) April 1 snowpack 179	  

levels change under current and future anthropogenic warming in Figure 4.   Observed April 1 180	  

return periods of 4-year events are first computed using the 93 CDWR/NRCS station-average 181	  

data set.  To minimize possible biases due to anthropogenic trends in the station data, we only 182	  

consider the first half of the observed time series, 1930-1970, when computing observed return 183	  
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periods. These return periods are simply equal to the observed length of the sample size plus one 184	  

(i.e. 42 years) divided by the rank of the sorted running 4-year 1930-1970 SWE averages from 185	  

lowest to highest (grey triangles, Fig. 4).  A normal distribution is then fitted to the set of 186	  

observed 4-year averages and corresponding fitted return periods are computed (black line).  187	  

Several distribution types were tested and the normal distribution proved to be the best fit.  95% 188	  

confidence intervals are obtained via a bootstrap-resampling technique (black dashed lines, 189	  

details in Section S4). 4-year average SWE from the six offline simulations are placed on the 190	  

fitted curve to estimate their return periods (colored dots, Fig. 4).  Finally, the observed 2012-191	  

2015 average is noted by a magenta dash-dot line.  192	  

 193	  

The observed 2012 – 2015 station-average of 270.4 mm (magenta dash-dot line in Fig. 4) is by 194	  

far the lowest 4-year average on record (including 1971-2015, not shown). This very low 4-year 195	  

snowpack is matched by the “reference” WRF-NoahMP experiment, when model and 196	  

observational uncertainty are considered. (See Section S3 and Fig. S2 for details on the 197	  

calculation of these error bars.) For the longer return periods, the associated 95% confidence 198	  

level uncertainty is large, making it difficult to make precise statements about the return periods 199	  

of any individual SWE value when that value is very low. However, relative values may be 200	  

meaningful. For example, comparing the natural to the reference experiment, the return period is 201	  

roughly two to four times longer with anthropogenic warming than without.  202	  

 203	  

Using output from the future warming experiments, we also provide estimates of the event 204	  

frequency of 2012 – 2015 snowpack levels when subjected to end-of-century warming. The 205	  

results are shown as dark blue (RCP2.6), light blue (RCP4.5), orange (RCP6.0), and red 206	  
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(RCP8.5) dots in Fig. 4.  Examining the plausible forcing scenarios (RCP4.5, RCP6.0 and 207	  

RCP8.5), it is evident that any additional warming applied to the already thin 2012 – 2015 208	  

snowpack yields almost incalculable return periods, from millennial time scales to much longer.  209	  

While future snowpack will likely be shaped by factors beyond just warming, our idealized 210	  

experiments suggest that a future 4-year period with precipitation characteristics like 2012 – 211	  

2015 would yield snowpack levels that cannot be reconciled with the snowpack statistics of the 212	  

historical record, no matter which plausible forcing scenario is chosen. 213	  

 214	  

4. Summary and Discussion 215	  

Offline simulations reveal that observed century-scale warming exacerbated Sierra Nevada 216	  

snowpack loss significantly during 2011/12 – 2014/15.  Across the region, warming reduced 4-217	  

year average snowpack levels by 25%, with even greater relative losses concentrated in the mid 218	  

and low elevations.  In terms of event frequency, warming has at least doubled, and perhaps 219	  

quadrupled, estimated return periods of the 2011/12 – 2014/15 4-year average April 1 snowpack. 220	  

While absolute values of the return periods are different, Mao et al. (2015) also found over a 221	  

doubling of return periods for 3-year (2012-2014) April 1 SWE events due to anthropogenic 222	  

warming.  And while a period exactly like 2011/12 – 2014/15 will obviously not recur, droughts 223	  

like it surely will, and end-of-century anthropogenic warming applied to this time span results in 224	  

snowpack declines of 60-85% and estimated 4-year return periods range from millennial to much 225	  

longer time scales, no matter which realistic forcing scenario is chosen. In other words, when it 226	  

comes to snowpack, future drought will have no analog in the historical record. 227	  

 228	  
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These results corroborate recent findings of a clear link between anthropogenic warming and the 229	  

ongoing drought’s severity (e.g. Griffin and Anchukaitis 2014, Williams et al. 2015).  While 230	  

consecutive years of low precipitation lie at the origin of recently depleted snowpack levels (Mao 231	  

et al. 2015), this study suggests that California’s water situation (Brown 2015) would not have 232	  

been so dire had anthropogenic warming not occurred.  Moreover, we find that even with 233	  

significant emissions reductions, such as those of the RCP4.5 forcing scenario, future Sierra 234	  

Nevada-based water resources are expected to further diminish due to additional warmth.  Going 235	  

forward, it is likely to become more difficult to satisfy municipal, agricultural, and ecological 236	  

water needs within a warmer climate, and clearly water will have to be managed very differently 237	  

during periods of extreme drought.  238	  

 239	  

 240	  
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 391	  
 392	  

 393	  
FIG 1. (a) Location of nested WRF-NoahMP coupled domains: D01 (27 km resolution) – D02 (9 394	  
km resolution). (b) 9 km resolution grid cells (750 total) selected for WRF-NoahMP offline 395	  
simulations, as they experience over 10 mm of annual SWE averaged across 1980 – 2015.  Grid 396	  
cell elevation (unit m) is shaded according to the legend on the right.  Locations of 93 397	  
CDWR/NRCS snowpack observations are overlaid as red dots.  398	  
 399	  
 400	  
 401	  
 402	  
 403	  
 404	  
 405	  
 406	  
 407	  

a) WRF-NoahMP coupled domains b) WRF-NoahMP offline simulated grid cells

D01
(27 km)

D02
(9 km)



	   20	  

 408	  
 409	  
FIG 2.  April 1 SWE (unit mm) according to the 93 station-averaged observations (dashed) and 410	  
the average of the nearest grid cells to the 93 stations in the WRF-NoahMP reference simulation 411	  
(solid) for the overlapping period of 1980 – 2015.  Simulated output is corrected for grid-to-412	  
station elevation mismatch. 413	  
   414	  
 415	  
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 416	  
 417	  
FIG 3. September 2011 – June 2015 daily SWE (unit mm) according to the reference (black 418	  
dashed), natural (green), RCP2.6 (dark blue), RCP4.5 (light blue), RCP6.0 (orange), RCP8.5 419	  
(red) simulations averaged over (a) all grid cells, (b) grid cells with elevations greater than 2500 420	  
m, (c) grid cells with elevations between 1500-2500 m, and (d) grid cells with elevations lower 421	  
than 1500 m.  The area of each elevation category is noted in the brackets.   422	  
 423	  
 424	  
 425	  
 426	  
 427	  
 428	  
 429	  
 430	  
 431	  
 432	  
 433	  
 434	  
 435	  
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 436	  
 437	  

 438	  
 439	  
FIG 4. Observed (1930-1970) return periods of 4-year averaged 93 CDWR/NRCS station-440	  
averaged April 1 SWE (grey triangles) and estimated return periods of corresponding simulated 441	  
values (colored dots) using a normal fitted distribution (black line, 95% confidence intervals in 442	  
black dashes).  The observed 2012-2015 average April 1 SWE amount is shown in magenta 443	  
dash-dot line.  Error bars on the 2012-2015 simulated “reference” experiment (solid magenta 444	  
line) are based on results in Figure S2a.  445	  
 446	  
 447	  
 448	  
 449	  
 450	  
 451	  
 452	  
 453	  
 454	  
 455	  
 456	  
 457	  
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 Reference Natural RCP2.6 RCP4.5 RCP6.0 RCP8.5 
All elevations  52.9 70.1 28.3 21.0 15.8 7.7 

High elevations 82.0 91.2 65.0 56.3 46.9 26.7 
Mid elevations 55.3 75.0 24.4 16.1 11.0 4.7 
Low elevations  21.7 38.1 9.6 6.5 4.2 1.1 

 458	  
TABLE 1. Simulated 2011/12 – 2014/15 snow-year (November – June) average SWE (unit mm) 459	  
across all elevations, high elevations (> 2500 m), mid elevations (1500-2500 m), and low 460	  
elevations (< 1500 m) for each experiment.  Data corresponds to time series in Figure 3.    461	  
 462	  


