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ABSTRACT 1	
  

 2	
  

Sierra Nevada climate and snowpack is simulated during the period of extreme drought from 3	
  

2011 to 2015 and compared to an identical simulation except for the removal of 20th century 4	
  

anthropogenic warming. Anthropogenic warming reduced average snowpack levels by 25%, 5	
  

with mid-to-low elevations experiencing reductions between 26-43%.  In terms of event 6	
  

frequency, return periods associated with anomalies in 4-year April 1 SWE are estimated to have 7	
  

doubled, and possibly quadrupled, due to past warming.  We also estimate effects of future 8	
  

anthropogenic warmth on snowpack during a drought similar to that of 2011 – 2015.  Further 9	
  

snowpack declines of 60-85% are expected, depending on emissions scenario. The return periods 10	
  

associated with future snowpack levels are estimated to range from millennia to much longer. 11	
  

Therefore, past human emissions of greenhouse gases are already negatively impacting statewide 12	
  

water resources, and much more severe impacts are likely to be inevitable.  13	
  

 14	
  

1. Introduction 15	
  

California recently experienced an epic 4-year (2011/12 – 2014/15) drought, with extremely 16	
  

warm temperatures and low precipitation throughout the state (e.g. Swain et al. 2014, 17	
  

AghaKouchak et al. 2014). The drought manifested itself in record-breaking dry soils (Griffin 18	
  

and Anchukaitis 2014, Williams et al. 2015, Robeson 2015) and has led to significant 19	
  

agricultural damage (Howitt et al. 2014) alongside rapid depletion of groundwater resources 20	
  

(Famiglietti et al. 2014).  The precipitation deficit driving the drought can be primarily 21	
  

understood through natural variability (Seager et al. 2015). While recent multi-year low 22	
  

precipitation totals are extreme, there is no evidence that historical California precipitation 23	
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exhibits any negative trend (Berg et al. 2015, Seager et al. 2015).  Future precipitation is also 24	
  

expected to increase somewhat over California (e.g. Neelin et al. 2013), lending further support 25	
  

to the notion that anthropogenic precipitation changes have likely not influenced the recent 26	
  

drought.  Anthropogenic temperature changes, on the other hand, have repeatedly been invoked 27	
  

to explain the severity of record dry soils across California (Griffin and Anchukaitis 2014, 28	
  

Williams et al. 2015, Shukla et al. 2015, Cheng et al. 2016).   29	
  

 30	
  

Snow is another hydrologic variable influenced by warming. In 2015, April 1 snow water 31	
  

equivalent (SWE) in the Sierra Nevada reached a low unprecedented within the past 500 years 32	
  

(Belmecheri et al. 2015), coinciding with the warmest California winter on record 33	
  

(http://www.ncdc.noaa.gov/sotc/national/201503).  This alarming statistic begs the question: how 34	
  

have anthropogenic temperature changes influenced California snowpack during the 4-year 35	
  

drought?  Addressing this question is a focus here, building on two prior studies. Shukla et al. 36	
  

(2015) find that the ranking of the 2013/14 Sierra Nevada snowpack was below the 2nd percentile 37	
  

for the 1916 – 2012 period.  They also show that if 2013/14 temperatures had resembled any 38	
  

prior historical year, there is a 90% chance that 2013/14 SWE would have ranked above the 2nd 39	
  

percentile.  So the unusual warmth of 2013/14 (the second warmest winter on record behind 40	
  

2014/15, http://www.ncdc.noaa.gov/sotc/national/201403) likely contributed to the low 41	
  

snowpack conditions of that year.  Mao et al. (2015) also analyze the role of anthropogenic 42	
  

temperatures on 2012-2014 April 1 SWE over the Sierra Nevada by simulating snowpack 43	
  

conditions when daily minimum temperature trends across the cold-season (November-March) 44	
  

and warm-season (April-October) are removed from the forcing data.  Their results suggest that 45	
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recent warming more than doubled the return period of the 3-year 2012-2014 average April 1 46	
  

SWE over the Sierra Nevada.    47	
  

 48	
  

This study advances these prior results in two respects.  First, we include observed and simulated 49	
  

2014/15 snowpack totals in our analyses, providing for a more comprehensive assessment of the 50	
  

role of past anthropogenic temperature change in the low Sierra Nevada snowpack during the 51	
  

entire 4-year drought. Second, we also examine effects on snowpack if the drought had unfolded 52	
  

under the much more severe warming occurring at the end of the 21st century under enhanced 53	
  

anthropogenic forcing. This is accomplished by performing a series of experiments simulating 54	
  

2011/12 – 2014/15 snowpack levels when subjected to future conditions derived from 55	
  

downscaled regional climate projections.  We explore the full range of plausible greenhouse gas 56	
  

forcing scenarios, allowing for an assessment of the inevitability of snowpack change during 57	
  

future drought conditions. 58	
  

 59	
  

2. Data and Methods 60	
  

2a. Coupled WRF-NoahMP simulation 61	
  

To quantify the role of anthropogenic warming in the record-setting low 2011/12 – 2014/15 62	
  

California snowpack, we perform regional climate simulations using version 3.5 of the Weather 63	
  

Research and Forecast model (WRF, Skamarock et al. 2008) and the Noah land surface model 64	
  

with multiparameterization options (NoahMP, Niu et al. 2011) in both coupled and uncoupled 65	
  

(or offline) frameworks.  A January 1980 – June 2015 baseline climatology is first simulated in 66	
  

coupled mode.  The coupled baseline simulation is also used to drive offline simulations 67	
  

described in Section 2b.  The coupled simulation uses two domains (Fig. 1a), D01 (27 km) and 68	
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D02 (9 km), to resolve California’s Sierra Nevada topography and relevant fine-scale climatic 69	
  

features (e.g. snow albedo feedback, land-sea breeze).  Boundary conditions for the coupled 70	
  

baseline simulation are supplied by 6-hourly North American Regional Reanalysis output 71	
  

(Mesinger et al. 2006).  Multiple parameterization packages were tested and the optimal 72	
  

configuration was shown to accurately simulate spatial and temporal patterns of observed Sierra 73	
  

Nevada SWE (c.f. Fig. S2 in Sun et al. 2016).  Additional information on the coupled model 74	
  

configuration can be found in Section S1. Its performance in simulating California hydrology is 75	
  

further detailed in Walton et al. 2016, Sun et al. 2016, and Schwartz et al. 2016.   76	
  

 77	
  

2b. Uncoupled WRF-NoahMP simulations 78	
  

We next create an uncoupled version of the January 1980 – June 2015 baseline land surface 79	
  

conditions. This is achieved by forcing the offline NoahMP model with 3-hourly outputs of 2 m 80	
  

air temperature, surface pressure, shortwave and longwave radiation, 10 m wind speed, 10 m 81	
  

wind direction, precipitation, and relative humidity from the aforementioned 9 km (D02) coupled 82	
  

baseline simulation.  For computational efficiency, only grid cells in D02 that experience over 10 83	
  

mm of 1980 – 2015 annual-mean SWE are simulated (Fig. 1b). Evaluation of simulated SWE 84	
  

from this offline “reference” experiment is found in Section 2c.  85	
  

 86	
  

Following the reference experiment, five additional experiments, each spanning June 2011 – 87	
  

June 2015, are executed where temperature inputs to the offline model are perturbed by various 88	
  

amounts.  First, a “natural” experiment is performed where the monthly warming that has arisen 89	
  

over the past century is removed at each time step in a given month. This experiment estimates 90	
  

how 2011/12 – 2014/15 snowpack totals would have evolved in the absence of past warming. 91	
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Warming is computed from two observational products, the 2°x2° GISS Surface Temperature 92	
  

Analysis spanning January 1880 – May 2015 (Hansen et al. 2010, available at 93	
  

http://data.giss.nasa.gov/gistemp/) and the 5°x5° Climatic Research Unit temperature database 94	
  

spanning January 1850 – May 2015 (Jones et al. 2012, available at 95	
  

http://www.cru.uea.ac.uk/cru/data/temperature/#sciref).  For each month, 1880 – 2015 (or 2014 96	
  

for months June – December) time series of temperature anomalies with respect to 1880 – 1919 97	
  

are averaged across California grid cells within each data set.  Warming for a given month is 98	
  

then calculated as the difference between two 35-year averages, a recent climate of 1981 – 2015 99	
  

(or 1980 – 2014 for months June through December) minus a past climate of 1880 – 1914. 100	
  

Averaged across the two data sets, this yields monthly warming (units °C) of 1.33 (January), 101	
  

1.30 (February), 1.24 (March), 0.73 (April), 1.11 (May), 1.11 (June), 1.0 (July), 0.95 (August), 102	
  

1.46 (September), 1.12 (October), 0.37 (November), and 0.27 (December).  Very similar values 103	
  

are obtained with different averaging periods and through trend analysis (Section S2, Table S1).  104	
  

Also note that global climate models (GCMs) on average estimate that anthropogenic forcings 105	
  

have contributed to around 1°C annual warming by the start of the 21st century over North 106	
  

America (c.f. Fig. 10.7, Bindoff et al. 2013), reasonably consistent with the above values. Thus 107	
  

we interpret the “natural” experiment as representing a regional climate state that is identical to 108	
  

that of 2011/12 – 2014/15, but without anthropogenic forcing. 109	
  

 110	
  

Finally, we analyze how 2011/12 – 2014/15 snowpack responds to end-of-21st century projected 111	
  

temperature increases with four future experiments corresponding to the Representative 112	
  

Concentration Pathway (RCP) emissions scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) 113	
  

used in the IPCC Fifth Assessment Report (Van Vuuren et al. 2011). In these future experiments, 114	
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we rely on a hybrid downscaling framework to generate end-of-century monthly warming values 115	
  

at 3 km resolution for all available GCMs and emissions scenarios over the Sierra Nevada 116	
  

(Walton et al. 2016).  The GCM-mean downscaled projection is computed for each scenario and 117	
  

then coarsened to 9 km to match the resolution of the offline grid dimensions used in this study 118	
  

(Fig. 1). For each grid cell in the offline simulations, we increase temperatures by month 119	
  

according to its ensemble-mean change at the nearest grid cell in the 9 km downscaled projection.  120	
  

 121	
  

2c. Uncoupled model evaluation of SWE  122	
  

Here we evaluate simulated Sierra Nevada SWE from the reference experiment based on a 123	
  

collection of 93 in-situ stations (red dots Fig. 1b) that recorded April 1 SWE from 1930 – 2015. 124	
  

Data is provided by the California Department of Water Resources (CDWR, available at 125	
  

http://cdec.water.ca.gov/snow/current/snow/index.html) and the National Resources 126	
  

Conversation Service (NRCS, available at http://www.wcc.nrcs.usda.gov/snow/).  Figure 2 127	
  

compares time series of the observed station-average April 1 SWE and simulated values 128	
  

averaged across grid cells nearest to the 93 station locations for the overlapping period of 1980 – 129	
  

2015. Simulated output in this comparison has already been adjusted for the grid-to-point 130	
  

elevation mismatch (Section S3, Figures S1, S2). Simulated climatological April 1 SWE is 696.6 131	
  

mm, nearly equal to the average observed value of 690.4 mm.  Standard deviations for the 132	
  

simulated and observed time series are 333.6 and 324.0 mm, respectively. These very small 133	
  

biases, indicates that WRF-NoahMP quite accurately simulates Sierra Nevada SWE compared to 134	
  

observed data.     135	
  

 136	
  

3. Past and future anthropogenic warming impacts 137	
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3a. Elevational dependency 138	
  

Figure 3 compares September 2011 – June 2015 time series of daily SWE from the six offline 139	
  

experiments averaged across grid cells in various elevation categories: all elevations (Fig. 3a), 140	
  

high elevations (>2500 m, Fig. 3b), mid elevations (1500-2500 m, Fig. 3c), and low elevations 141	
  

(<1500 m, Fig. 3d).  Results are further summarized in Table 1.  Focusing on the 4-snow year 142	
  

(November – June) average, anthropogenic warming reduced 2011/12 – 2014/15 average annual 143	
  

snowpack levels by 17.2 mm (25%) across all elevations and by 9.2 mm (10%), 19.7 mm (26%), 144	
  

and 16.4 mm (43%) for the high, mid, and low elevations, respectively.  Hence, snowpack at 145	
  

mid-to-low elevations is much more affected by recent warming trends than snowpack at the 146	
  

highest elevations.  147	
  

 148	
  

Strong impacts to the mid elevations (also discussed in Sun et al. 2016) are particularly 149	
  

noteworthy given that the mid-elevations encompass over 60% of the entire domain. In terms of 150	
  

volumetric SWE (i.e. SWE multiplied by area), mid-elevations also dominate. The reference 4-151	
  

snow year average equals 0.357 km3 over all elevations and 0.230 km3 in just the mid elevations 152	
  

(Fig. 3a,c).  In the natural experiment, the corresponding values are 0.473 km3 over all elevations 153	
  

and 0.313 km3 for the mid elevations (Fig. 3a,c).  Thus, 0.116 km3 (94 kAf) of additional total 154	
  

snowpack would have resulted if anthropogenic warming had not occurred, 71% of which would 155	
  

be found in mid-elevations. For perspective, 94 kAf of water is roughly twice the current annual 156	
  

residential water demands for the city of San Francisco (~46 kAf, SFPUC 2014)    157	
  

 158	
  

Projected 21st century warming applied to this recent period would diminish snowpack levels 159	
  

even further. Under the least aggressive emission scenario of RCP2.6 (dark blue line, Fig. 3), 4-160	
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year average snowpack levels are significantly reduced from the levels of the reference 161	
  

experiment by 24.6 mm (47%) across the entire domain.  However, estimates of recent global 162	
  

greenhouse gas emissions (Le Quéré et al. 2015) show that RCP2.6 involves emissions 163	
  

reductions that have not occurred since the RCP forcing scenarios were created in 2005. The 164	
  

significant reductions associated with RCP2.6 in the coming decades are likewise unlikely to 165	
  

occur. Thus we only consider RCP4.5, RCP6.0, and RCP8.5 to be the plausible forcing scenarios. 166	
  

RCP4.5, which also involves emissions reductions over the coming decades, may be the most 167	
  

realistic “mitigation” scenario. Under this scenario (light blue line, Fig. 3), total snowpack is 168	
  

reduced by 31.9 mm or 60%. RCP8.5 is the scenario emissions have been tracking over the past 169	
  

10 years, and will continue to track if emissions keep increasing at the same pace, and can be 170	
  

considered a “business-as-usual” scenario. Under RCP8.5 (red line, Fig. 3), total snowpack is 171	
  

reduced by 45.2 mm or 85%, and even high elevations become susceptible to large declines of 172	
  

55.3 mm (67%).  Nearly all snowpack is lost at mid and low elevations, with reductions 173	
  

exceeding 90% for each category.  Volumetric SWE declines by 0.305 km3 (over 247 kAf) 174	
  

between the reference and RCP8.5 simulations, over five times the annual residential usage in 175	
  

San Francisco.      176	
  

 177	
  

3b. Event frequency  178	
  

We next quantify how return periods of simulated 4-year average (2012-2015) April 1 snowpack 179	
  

levels change under current and future anthropogenic warming in Figure 4.   Observed April 1 180	
  

return periods of 4-year events are first computed using the 93 CDWR/NRCS station-average 181	
  

data set.  To minimize possible biases due to anthropogenic trends in the station data, we only 182	
  

consider the first half of the observed time series, 1930-1970, when computing observed return 183	
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periods. These return periods are simply equal to the observed length of the sample size plus one 184	
  

(i.e. 42 years) divided by the rank of the sorted running 4-year 1930-1970 SWE averages from 185	
  

lowest to highest (grey triangles, Fig. 4).  A normal distribution is then fitted to the set of 186	
  

observed 4-year averages and corresponding fitted return periods are computed (black line).  187	
  

Several distribution types were tested and the normal distribution proved to be the best fit.  95% 188	
  

confidence intervals are obtained via a bootstrap-resampling technique (black dashed lines, 189	
  

details in Section S4). 4-year average SWE from the six offline simulations are placed on the 190	
  

fitted curve to estimate their return periods (colored dots, Fig. 4).  Finally, the observed 2012-191	
  

2015 average is noted by a magenta dash-dot line.  192	
  

 193	
  

The observed 2012 – 2015 station-average of 270.4 mm (magenta dash-dot line in Fig. 4) is by 194	
  

far the lowest 4-year average on record (including 1971-2015, not shown). This very low 4-year 195	
  

snowpack is matched by the “reference” WRF-NoahMP experiment, when model and 196	
  

observational uncertainty are considered. (See Section S3 and Fig. S2 for details on the 197	
  

calculation of these error bars.) For the longer return periods, the associated 95% confidence 198	
  

level uncertainty is large, making it difficult to make precise statements about the return periods 199	
  

of any individual SWE value when that value is very low. However, relative values may be 200	
  

meaningful. For example, comparing the natural to the reference experiment, the return period is 201	
  

roughly two to four times longer with anthropogenic warming than without.  202	
  

 203	
  

Using output from the future warming experiments, we also provide estimates of the event 204	
  

frequency of 2012 – 2015 snowpack levels when subjected to end-of-century warming. The 205	
  

results are shown as dark blue (RCP2.6), light blue (RCP4.5), orange (RCP6.0), and red 206	
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(RCP8.5) dots in Fig. 4.  Examining the plausible forcing scenarios (RCP4.5, RCP6.0 and 207	
  

RCP8.5), it is evident that any additional warming applied to the already thin 2012 – 2015 208	
  

snowpack yields almost incalculable return periods, from millennial time scales to much longer.  209	
  

While future snowpack will likely be shaped by factors beyond just warming, our idealized 210	
  

experiments suggest that a future 4-year period with precipitation characteristics like 2012 – 211	
  

2015 would yield snowpack levels that cannot be reconciled with the snowpack statistics of the 212	
  

historical record, no matter which plausible forcing scenario is chosen. 213	
  

 214	
  

4. Summary and Discussion 215	
  

Offline simulations reveal that observed century-scale warming exacerbated Sierra Nevada 216	
  

snowpack loss significantly during 2011/12 – 2014/15.  Across the region, warming reduced 4-217	
  

year average snowpack levels by 25%, with even greater relative losses concentrated in the mid 218	
  

and low elevations.  In terms of event frequency, warming has at least doubled, and perhaps 219	
  

quadrupled, estimated return periods of the 2011/12 – 2014/15 4-year average April 1 snowpack. 220	
  

While absolute values of the return periods are different, Mao et al. (2015) also found over a 221	
  

doubling of return periods for 3-year (2012-2014) April 1 SWE events due to anthropogenic 222	
  

warming.  And while a period exactly like 2011/12 – 2014/15 will obviously not recur, droughts 223	
  

like it surely will, and end-of-century anthropogenic warming applied to this time span results in 224	
  

snowpack declines of 60-85% and estimated 4-year return periods range from millennial to much 225	
  

longer time scales, no matter which realistic forcing scenario is chosen. In other words, when it 226	
  

comes to snowpack, future drought will have no analog in the historical record. 227	
  

 228	
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These results corroborate recent findings of a clear link between anthropogenic warming and the 229	
  

ongoing drought’s severity (e.g. Griffin and Anchukaitis 2014, Williams et al. 2015).  While 230	
  

consecutive years of low precipitation lie at the origin of recently depleted snowpack levels (Mao 231	
  

et al. 2015), this study suggests that California’s water situation (Brown 2015) would not have 232	
  

been so dire had anthropogenic warming not occurred.  Moreover, we find that even with 233	
  

significant emissions reductions, such as those of the RCP4.5 forcing scenario, future Sierra 234	
  

Nevada-based water resources are expected to further diminish due to additional warmth.  Going 235	
  

forward, it is likely to become more difficult to satisfy municipal, agricultural, and ecological 236	
  

water needs within a warmer climate, and clearly water will have to be managed very differently 237	
  

during periods of extreme drought.  238	
  

 239	
  

 240	
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 391	
  
 392	
  

 393	
  
FIG 1. (a) Location of nested WRF-NoahMP coupled domains: D01 (27 km resolution) – D02 (9 394	
  
km resolution). (b) 9 km resolution grid cells (750 total) selected for WRF-NoahMP offline 395	
  
simulations, as they experience over 10 mm of annual SWE averaged across 1980 – 2015.  Grid 396	
  
cell elevation (unit m) is shaded according to the legend on the right.  Locations of 93 397	
  
CDWR/NRCS snowpack observations are overlaid as red dots.  398	
  
 399	
  
 400	
  
 401	
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a) WRF-NoahMP coupled domains b) WRF-NoahMP offline simulated grid cells
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 408	
  
 409	
  
FIG 2.  April 1 SWE (unit mm) according to the 93 station-averaged observations (dashed) and 410	
  
the average of the nearest grid cells to the 93 stations in the WRF-NoahMP reference simulation 411	
  
(solid) for the overlapping period of 1980 – 2015.  Simulated output is corrected for grid-to-412	
  
station elevation mismatch. 413	
  
   414	
  
 415	
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 417	
  
FIG 3. September 2011 – June 2015 daily SWE (unit mm) according to the reference (black 418	
  
dashed), natural (green), RCP2.6 (dark blue), RCP4.5 (light blue), RCP6.0 (orange), RCP8.5 419	
  
(red) simulations averaged over (a) all grid cells, (b) grid cells with elevations greater than 2500 420	
  
m, (c) grid cells with elevations between 1500-2500 m, and (d) grid cells with elevations lower 421	
  
than 1500 m.  The area of each elevation category is noted in the brackets.   422	
  
 423	
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 438	
  
 439	
  
FIG 4. Observed (1930-1970) return periods of 4-year averaged 93 CDWR/NRCS station-440	
  
averaged April 1 SWE (grey triangles) and estimated return periods of corresponding simulated 441	
  
values (colored dots) using a normal fitted distribution (black line, 95% confidence intervals in 442	
  
black dashes).  The observed 2012-2015 average April 1 SWE amount is shown in magenta 443	
  
dash-dot line.  Error bars on the 2012-2015 simulated “reference” experiment (solid magenta 444	
  
line) are based on results in Figure S2a.  445	
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 Reference Natural RCP2.6 RCP4.5 RCP6.0 RCP8.5 
All elevations  52.9 70.1 28.3 21.0 15.8 7.7 

High elevations 82.0 91.2 65.0 56.3 46.9 26.7 
Mid elevations 55.3 75.0 24.4 16.1 11.0 4.7 
Low elevations  21.7 38.1 9.6 6.5 4.2 1.1 

 458	
  
TABLE 1. Simulated 2011/12 – 2014/15 snow-year (November – June) average SWE (unit mm) 459	
  
across all elevations, high elevations (> 2500 m), mid elevations (1500-2500 m), and low 460	
  
elevations (< 1500 m) for each experiment.  Data corresponds to time series in Figure 3.    461	
  
 462	
  


