
 1 

An objective statistical downscaling technique for emulating WRF 1 

 2 

George Shu Heng Pau1, Daniel B. Walton*2, Samir Touzani3 3 

 4 

1Lawrence Berkeley National Laboratory 5 

Climate and Ecosystem Sciences Division 6 

1 Cyclotron Road 7 

Berkeley, CA 94720. 8 

2University of California, Los Angeles 9 

Institute of the Environment and Sustainability 10 

La Kretz Hall, Suite 300 11 

Los Angeles, CA 90095-1496. 12 

3Lawrence Berkeley National Laboratory 13 

Building Technology and Urban Systems Division 14 

1 Cyclotron Road 15 

Berkeley, CA 94720. 16 

 17 

*Corresponding author email address: waltond@ucla.edu 18 

 19 

  20 



 2 

Abstract  21 

 22 

Accurate downscaling of global climate models (GCMs) is needed to quantify the local 23 

impacts of climate change. Dynamical downscaling with a regional climate model has 24 

been shown to capture important physical processes at fine scales, but it is too 25 

computationally expensive to be used to downscale a large ensemble of GCMs or 26 

multiple time periods and scenarios. Hybrid dynamical-statistical downscaling saves time 27 

by using a statistical method to mimic the output of dynamical downscaling. Previous 28 

applications of hybrid downscaling used a subjective statistical method to fit the region of 29 

interest. It is preferable to use an objective, automated statistical technique that is easily 30 

portable to any region. Here, Proper Orthogonal Decomposition Mapping (PODM) is 31 

presented as a potential candidate. As a case study, PODM is used to mimic output from 32 

the Weather Research and Forecasting (WRF) model used to project climate changes 33 

over California’s Sierra Nevada mountain range. The results show that PODM robustly 34 

predicts WRF temperatures from coarse GCM output, with similar errors across different 35 

GCM cases. PODM predictions have 15% lower error than the original hybrid model of 36 

Walton et al. (2016). More importantly, PODM can be implemented using automated 37 

procedures with limited manual tuning, allowing it to be deployed rapidly. PODM is also 38 

shown to compare favorably to state-of-the-art machine-learning algorithms in the 39 

context of hybrid downscaling. The use of an objective statistical technique like PODM 40 

has the potential to streamline the application of hybrid downscaling for other regions. 41 

 42 
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1   Introduction 43 

 44 

Predictions from global climate models (GCMs) are commonly used to study the impacts 45 

of climate change on various aspects of human activities (Gosling et al. 2011). However, 46 

existing climate models do not necessarily have the required resolution to accurately 47 

model relevant fine-scale features, such as complex topography in mountain ranges and 48 

urban heat island effects in cities (McCarthy et al. 2010). While ongoing efforts attempt 49 

to resolve these features directly within global climate models, downscaling procedures 50 

are practical approaches that allow us to obtain climate change predictions at the desired 51 

resolution of a particular impact study.  52 

 53 

Downscaling techniques have been widely used to downscale climatic variables, typically 54 

precipitation and temperature, from global to regional scales; these techniques have been 55 

well-documented, e.g., in  Benestad et al. (2008), Fowler et al. (2007), Gutmann et al. 56 

(2014), Maraun et al. (2010), and Wilby et al. (1998). There are two main approaches: 57 

dynamical downscaling and the statistical downscaling. Dynamical downscaling 58 

simulates the complex physical processes that underlie the local climate response using a 59 

regional climate model (RCM) forced at its boundaries by reanalysis or GCM output. 60 

Statistical downscaling uses a statistical model to map coarse GCM output to station 61 

observations or a gridded dataset. A wide variety of statistical downscaling methods are 62 

available. For example, Bias Correction with Spatial Disaggregation (Wood et al. 2004), 63 

has been particularly successful for downscaling of precipitation suitable as input to 64 

regional hydrological models.  More complex regression models (Hanssen-Bauer et al. 65 
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2003; von Storch et al. 1993) have been used to directly model the relationship between 66 

the predictors (e.g., sea level pressure) and climatic variables of interest. A similar 67 

approach called pattern scaling (Tebaldi and Arblaster 2014) has been used within 68 

integrated assessment models.  69 

 70 

More recently, hybrid dynamical-statistical downscaling techniques have been developed 71 

(referred to here as “hybrid downscaling”). Hybrid downscaling uses a statistical model 72 

to extend the results of dynamical downscaling to multiple GCMs. Under this approach, 73 

dynamical downscaling is applied to a small subset of GCMs. Then, a statistical model is 74 

trained to mimic the dynamically downscaled results, and is applied to the remaining 75 

GCMs.  This saves time when downscaling a large ensemble of GCMs, as applying a 76 

statistical models is typically much faster than performing dynamical downscaling.  77 

Hybrid downscaling may be valuable in situations where there are important features of 78 

the climate change pattern that can only be captured through dynamical downscaling 79 

(Berg et al. 2015; Sun et al. 2015a; Sun et al. 2015b). 80 

 81 

The statistical models used in previous hybrid downscaling by Walton et al. (2015) and 82 

Walton et al. (2016) require the user to manually investigate the dynamically downscaled 83 

data and parameterize salient processes affecting the climate change signal in the region 84 

of interest. An open question is whether an objective statistical method could be used 85 

instead to minimize manual tuning and streamline the process. Furthermore, previous 86 

statistical models were designed to downscale only changes in climatology, but it would 87 

be desirable to be able to downscale time series as well. Here we investigate whether 88 
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Proper Orthogonal Decomposition Mapping (PODM; Pau et al., 2014) — a method that 89 

was successfully used to downscale hydrological and biogeochemical quantities in Pau et 90 

al. (2016) — could be used in hybrid downscaling.  The aim of this paper is to determine 91 

whether PODM can accurately and robustly emulate dynamically downscaled 92 

temperatures when fed coarse GCM output. We also systematically investigate the effects 93 

of using different predictors and predictands.  94 

 95 

2   Problem Setup 96 

 97 

In Walton et al. (2016), the authors downscaled GCM climate change projections for 98 

California’s Sierra Nevada mountain range. To capture the effects of complex topography 99 

and snow albedo feedback (SAF) on the warming in the Sierra Nevada, high-resolution (3 100 

km) simulations were performed with the Weather Research and Forecasting model 101 

(WRF; Skamarock et al., 2008). Following a hybrid approach, five GCMs were 102 

dynamically downscaled with WRF. Then, the WRF climate change patterns were used 103 

to train a statistical model, called StatWRF, that was used to produce WRF-like climate 104 

change patterns for an entire ensemble of 35 GCMs. Here we follow a similar procedure, 105 

but using PODM and machine learning techniques instead of StatWRF to extend the 106 

WRF results.  107 

 108 

As we use the Walton et al. (2016) WRF simulations, it is necessary to briefly describe 109 

them. WRF version 3.5 (Skamarock et al. 2008) is used in a configuration with three one-110 

way nested domains of 27, 9, and 3 km resolution, going from the outermost to innermost 111 
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domain (Figure 1). WRF was coupled to the community Noah land surface model with 112 

multi-parameterization options (Noah-MP) (Niu et al. 2011). First, a historical simulation 113 

was performed, with WRF forced by North American Regional Reanalysis (NARR; 114 

(Mesinger et al. 2006) spanning the period 1991-2000.  (NARR data was provided by the 115 

NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at 116 

https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html.)  Next, five “future” 117 

simulations were performed, each representing how the 1991-2000 period would have 118 

transpired if the mean climate were altered by changes between the 2081-2100 and 1981-119 

2000 periods in a different CMIP5 GCM (Taylor et al. 2012) run under the RCP 8.5 120 

scenario (Riahi et al. 2011). The five GCMs used are CNRM-CM5, GFDL-CM3, 121 

INMCM4, IPSL-CM5A-LR, and MPI-ESM-LR (see acronym details at 122 

http://www.ametsoc.org/PubsAcronymList). Each future simulation is forced with 123 

boundary conditions created by adding the difference in GCM monthly climatology 124 

(2081–2100 minus 1981–2000) to the 1991–2000 NARR data. This process was applied 125 

to temperature, humidity, zonal and meridional winds, and geopotential height. Readers 126 

should refer to Walton et al. (2016) for a full description of the WRF model and the 127 

dynamical downscaling step.  WRF temperature data used in this study is available from 128 

http://research.atmos.ucla.edu/csrl/pub.html.   129 

 130 

In the statistical downscaling step, we employ PODM and machine learning techniques to 131 

determine the high-resolution WRF monthly 2m air temperature (T) for the innermost 132 

domain (D3) from low-resolution GCM output. Our predictand is   
TWRF,fut , the sequences 133 

of monthly T values in the “future” simulations. This is a more difficult task than using 134 
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the change in climatology,    
ΔTWRF = TWRF,fut−TWRF,hist , as the predictand, as is considered 135 

in Walton et al. (2016) because the statistical model must be able to explain inter-annual 136 

variability, not just mean changes. In above,   
TWRF,fut  and   

TWRF,hist  are the 10-year average 137 

of the monthly temperature in the 2091-2100 and 1991-2000 periods, respectively. 138 

 139 

Four predictors are considered as input: the monthly NARR 2m air temperature from 140 

1991-2000 (  TNARR ), the monthly NARR surface temperature from the same period (141 

  
TS,NARR ), the difference in GCM monthly 2m air temperature climatology between the 142 

2081-2100 and 1981-2000 periods (   ΔTGCM ), and the difference in GCM monthly surface 143 

temperature climatology between the 2081-2100 and 1981-2000 periods (   
ΔTS,GCM ). 144 

[Note that the differences in monthly climatology have length 12, while the time series 145 

for 1991-2000 has length 120 (10 years  × 12 months/year). So, the sequence of 146 

differences in monthly climatology are repeated 10 times when serving as a predictor.] 147 

Since the resolutions between NARR and GCM are different,    ΔTGCM  and    
ΔTS,GCM  are 148 

interpolated to the resolution of NARR data.  149 

 150 

We also consider an alternative way of preparing the predictors that is more similar to the 151 

way the future WRF boundary conditions are constructed. Under this alternate 152 

preparation,   TNARR  and    ΔTGCM are combined into a single predictor 153 

    
TBC,fut= TNARR+ΔTGCM . (1) 154 



 8 

Similarly, we define   
TS,BC,fut  =  

TS,NARR +   
ΔTS,GCM . As part of the statistical model setup, we 155 

determine which set of predictors (and which way of preparing them) minimizes the 156 

error. The goal is to see whether surface temperature should be included along with 2m 157 

air temperature T, and whether it is advantageous to use the combined predictors such as 158 

  
TBC,fut  that mimics the future WRF boundary conditions. 159 

 160 

In addition, we consider direct and indirect approaches to obtaining   
TWRF,fut from the 161 

above predictors. The direct approach is to use   
TWRF,fut  as the predictand. The indirect 162 

approach is to use the temperature change    
ΔTWRF = TWRF,fut−TWRF,hist  as the predictand 163 

and then add the result to the historical sequence of temperatures   
TWRF,hist  to determine 164 

  
TWRF,fut . The indirect approach could be useful since it matches the way the boundary 165 

conditions are constructed, i.e. by adding the climate change signal to historical sequence. 166 

 167 

To compare our results with StatWRF (which was designed to downscale climatological 168 

changes), we also test PODM’s skill in mimicking    ΔTWRF . We are interested to see if 169 

PODM can improve on the accuracy of StatWRF while still capturing the temperature 170 

sequences.  171 

 172 

3   Methods 173 

 174 
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3.1   Proper orthogonal decomposition mapping (PODM)  175 

 176 

We give a summary of the PODM method, as formulated in Pau et al. (2016). This 177 

method was first proposed by Robinson et al. (2006) and is derived from the Gappy 178 

proper orthogonal decomposition (POD) method (Everson and Sirovich 1995). We first 179 

consider a single multivariate predictor  p  (e.g.   
TBC,fut  over the region D1) and a single 180 

multivariate predictand  f  (e.g.    ΔTWRF  over the region D3). The training dataset consists 181 

of N snapshots of  p  and  f , taken monthly over the 10-year simulation period using 182 

different GCM outputs. For example, N is 600 if output from the the five future 183 

simulations is used (each simulation yields 120 monthly snapshots). Given N 184 

corresponding sets of these  p  and  f snapshots, we determine a set of POD bases that are 185 

found through a singular value decomposition of the following data matrix:  186 

 

    

WPODM =
p1−p … pN −p
f1− f … fN − f

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
  (2) 187 

 where 
    
p = 1

N pii=1

N∑   and 
    
f = 1

N fii=1

N∑ . We determine M right singular vectors, 188 

    V ={v1,…,v M }  corresponding to the M largest singular values for the above data matrix. 189 

The POD bases are then given by      ζi = WPODMv i ,i =1,…, M , and represent dominant 190 

modes of variability in the snapshots within the data matrix   W
PODM . By decomposing   ζi  191 

into 192 

 

    

ζi =
ζi

p

ζi
f

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
  (3) 193 
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where    ζi
p  and    ζi

f  are components of the POD basis vector associated with the predictor 194 

and the predictand. A linear approximation of f in the vector space spanned by   ζi  is then 195 

given by 196 

 
     
f ≈ fPODM = f + γi

i=1

M

∑ ζi
f  . (4) 197 

The PODM method determines     γ={γ1,…,γM } that solves the following the least square 198 

problem: 199 

 
      
γ= argminα‖p−p− αi

i=1

M

∑ ζi
p‖2   (5) 200 

where    ‖⋅‖2  is the discrete L2 measure. We expect the PODM model to be good if    ζi
p  is 201 

strongly correlated to    ζi
f . We can augment the above procedure to consider multiple 202 

predictors by stacking multiple predictors into a single vector, i.e.   203 

 204 

 

     

p =

p1

p2


pn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

 , (6) 205 

assuming we have n different predictors. In this study, n = 4. 206 

 207 

A key parameter of PODM model is the number of POD bases (M) used in the 208 

approximation. Determining an appropriate M is a balance of accuracy and stability. If M 209 

is too large, the PODM approximation becomes unstable due to over-fitting (Everson and 210 

Sirovich 1995; Pau et al. 2014). If M is too small, then PODM will not capture all modes 211 
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of variability and accuracy will be diminished. To determine an appropriate M, we will 212 

utilize a leave-one-out cross validation (LOOCV) procedure. There are six total cases that 213 

we can use for training: results from the five future simulations and the historical case, 214 

which represents the zero change scenario (i.e.    ΔTGCM = 0  and    
ΔTS,GCM = 0 ). Under 215 

LOOCV, we train different a PODM model using the historical case and four out of the 216 

five GCM cases, with each of the five GCM cases taking a turn being left out. Each 217 

PODM model is then used to predict the   TWRF  for the case not included in the training 218 

dataset. For each case, we determine the mean absolute error (MAE) for a range of M. An 219 

“optimal” M, 
  
Mopt , is given by one that leads to the lowest MAE, summed over the five 220 

GCM cases. This procedure avoids over-fitting 
  
Mopt  for to any particular GCM case. 221 

Since there is seasonal variation in   TWRF , we determine a different 
  
Mopt  for each month 222 

of the year, resulting in 12 different values of 
  
Mopt . 223 

 224 

Before applying the PODM method, it is a good practice to examine whether the POD 225 

basis vectors generated from GCMs in the training dataset can be used to closely 226 

approximate a new GCM. If a new GCM cannot be closely approximated by the POD 227 

bases from the training dataset, then it’s unlikely that PODM will be an effective method 228 

for downscaling that GCM. The approximation accuracy can be quantified by 229 

determining the projection error defined as  230 

 
     
εproj(p) = p +

i=1

M

∑((ζi
p )T p)ζi

p−p ,  (7) 231 
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where  p  and   ζ
p  are obtained based on the POD procedure applied to snapshots of p in 232 

the training dataset. For     p =ΔTGCM  of a GCM not in the training dataset, a large 
   
εproj(p)  233 

implies there are insufficient similarities between the solutions of that GCM and GCMs 234 

used in the training data set. It is unlikely in that case that the predictand can be 235 

accurately downscaled through the PODM method. In Section 4.1, we use this LOOCV 236 

procedure to determine whether    ΔTGCM  within the D1 region can be used as a predictor.  237 

 238 

3.2   Machine learning based regression approach 239 

 240 

In this study, we also consider machine learning (ML) based regression approaches in the 241 

statistical downscaling step. State-of-the-art machine learning approaches have been used 242 

in ecology (Elith et al. 2008; Maloney et al. 2012; Pittman and Brown 2011) and 243 

hydrology (Erdal and Karakurt 2013; Nolan et al. 2015). They are also used to downscale 244 

satellite images of land surface temperature (Keramitsoglou et al. 2013). Similar to 245 

PODM method, machine-learning algorithms could be advantageous as they are typically 246 

automatable and require limited manual tuning. We refer these models as ML-based 247 

regression models. 248 

 249 

In this paper, different ML methods are used to identify the relationship between the 250 

predictors and the predictand. The predictors are defined to be the latitude, longitude, 251 

elevation,   TNARR ,   
TS,NARR ,   ΔTGCM , and    

ΔTS,GCM .    ΔTWRF  is used as the predictand. This 252 

amounts to solving the standard regression problem of relating the predictand to a 253 

function of predictors: 254 
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 255 

   
ΔTWRF = f (latitude,longitude,elevation,TNARR ,TS,NARR ,ΔTS,GCM ,ΔTS,GCM )  256 

 257 

where     f :n→ , with n = 7. Three different machine learning algorithm are used to 258 

estimate the function f: gradient boosting machines (Freund and Schapire 1997; Friedman 259 

et al. 2000; Friedman 2001), extremely randomized trees (Geurts et al. 2006) and elastic 260 

net regression method (Zou and Hastie 2005). For further description of these algorithms, 261 

see the appendix. Getting the GCM and NARR variables to the WRF resolution is done 262 

in two steps. First, the GCM data were interpolated onto NARR grid using bivariate 263 

spline approximation on a sphere. Then the GCM and NARR data were interpolated to 264 

WRF grid with Gaussian process regression. This combination of preprocessing steps, 265 

schematically shown in Figure 2, produced slightly better results than directly 266 

interpolating GCM results onto the WRF grid using Gaussian process regression, but the 267 

difference is small; our tests showed that the performance of the ML-based regression 268 

models only depends weakly on the interpolation scheme. 269 

 270 

3.3   Evaluation procedure 271 

 272 

To evaluate how well our statistical downscaling methods (SDMs) emulate WRF, we 273 

define an approximation error  274 

     
εSDM= TSDM−TWRF,fut ,  275 
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where SDM can be any of the SDMs used in this study. We will primarily be looking at 276 

the mean absolute error (MAE),   
eMAE,SDM  defined as the average absolute value of   εSDM . 277 

Unless otherwise noted,   
eMAE,SDM  is assumed to be the average over a 10-year simulation 278 

while the monthly average   
eMAE,SDM  is evaluated for a particular month over a 10-year 279 

simulation. The error   
eMAE,SDM  is used to cross-validate the SDMs based on the LOOCV 280 

procedure described in Section 3.1.  281 

 282 

3.4   Data availability 283 

 284 

Temperature output generated by hybrid downscaling with StatWRF (Walton et al. 2016) 285 

and with above PODM  and ML methods is available from the UCLA Climate Sensitivity 286 

Research Lounge website (http://research.atmos.ucla.edu/csrl/pub.html).   287 

 288 

4   Results 289 

 290 

4.1   Initial analysis of the GCM results  291 

 292 

Here do a preliminary check to see if the GCM patterns are similar enough that any 293 

pattern can be approximated by POD bases generated from the remaining four GCMs. 294 

We determine the MAE of the projection error, 
  
eMAE,proj  of    ΔTGCM , for each of the five 295 

GCMs, when it is left out of the training dataset. We also examine how the projection 296 

error depends on the number of POD bases. Figure 3 shows that the 
  
eMAE,proj  decreases 297 
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monotonically with the number of POD basis vectors, M. The GFDL-CM3 case has the 298 

highest averaged 
  
eMAE,proj , indicating that the GFDL-CM3’s    ΔTGCM  patterns are least well 299 

approximated from the other GCMs. However, for M = 40, the mean, and the standard 300 

deviation of 
  
eMAE,proj  are 0.2 °C and 0.03 °C respectively. This indicates that for a large 301 

number of POD bases, PODM can reasonably approximate the left-out GCM pattern, 302 

regardless of which GCM is left out. This gives us confidence that PODM is suitable for 303 

application for hybrid downscaling, where are the results of a small set of GCMs are 304 

extended to a full ensemble. 305 

 306 

4.2   Dependence of model accuracy on the predictors and predictand 307 

 308 

The accuracy of a statistical model varies based on which combinations of predictors and 309 

predictands are used. The two options for predictands are considered: predicting the 310 

absolute future temperatures,   
TWRF,fut , or the difference in temperatures between the future 311 

and historical simulations,    ΔTWRF . For the predictors there are multiple options: whether 312 

to use    ΔTGCM  or   
TBC,fut , whether to include surface temperature  TS  along with 2m air 313 

temperature T, and which domain over which the predictor is sampled. The domain 314 

options are the innermost WRF domain (D3) covering the Sierra Nevada, the 315 

intermediate WRF domain covering all of California (D2), and the largest WRF domain 316 

covering the entire U.S. West Coast and part of the Pacific Ocean (D1; see Figure 1). In 317 

each case, only NARR grid cells within the boundaries of the WRF domain are used as 318 

the predictor. The GCM data is interpolated onto these NARR grid cells using a bivariate 319 
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spline interpolation method. PODM is applied to each different combination of 320 

predictors, predictand, and domain to determine how each choice affects the resulting 321 

statistical model error,   
eMAE, PODM . 322 

 323 

Table 1 shows   
eMAE, PODM  averaged over all five GCM cases for each combination of 324 

choices identified above. In the first three columns, the values in parentheses represent 325 

the average   
eMAE,PODM  over a restricted set of factors. For example, when the predictors 326 

are sampled over D1 and    ΔTWRF  is the predictand, the average   
eMAE,PODM  over different 327 

combinations of remaining factors is 0.45 °C. Table 1 clearly shows that PODM can 328 

more accurately predict    ΔTWRF  than   
TWRF,fut : the average   

eMAE,PODM  for    ΔTWRF  is 0.53 °C, 329 

while the average   
eMAE,PODM  for   

TWRF,fut  is 0.99 °C. This makes sense as we would expect 330 

  
TWRF,fut  to be a more difficult predictand to approximate using any method, because the 331 

time series   
TWRF,fut  has larger variability due to inclusion of the seasonal cycle, which is 332 

not present in    ΔTWRF .  333 

 334 

Using the largest domain (D1) results in universally greater accuracy compared with the 335 

other domains. With    ΔTWRF  as the predictand, D1 leads to an average   
eMAE,PODM  that is 336 

12%, and 30% lower than D2, and D3 respectively. This result shows that predictor 337 

values outside the predictand domain contain valuable predictive information. However, 338 

the predictive value decreases with increasing distance from the predictand domain: the 339 

average   
eMAE,PODM  improves 20% between D3 and D2, and only 12% between D2 and D1.  340 
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 341 

The inclusion of surface temperature as an auxiliary predictor (i.e.  
TS ,NARR  and    

ΔTS ,GCM ) 342 

also universally improves the accuracy of the models. When   
TWRF,fut  is the predictand, 343 

this inclusion reduces the error by 11-17%, depending on the domain size of the 344 

predictor. However, when    ΔTWRF  is the predictand, the improvement is smaller: the error 345 

is only reduced by 6.5% when the predictor domain is D1 and no reduction is observed 346 

for the predictor domain of D2 and D3. Finally, the alternative formulation of the 347 

predictors to mimic boundary conditions (  
TBC,fut ) improves accuracy when   

TWRF,fut  is the 348 

predictand, and decreases accuracy when    ΔTWRF  is the predictand (  
eMAE,PODM  is larger by 349 

up to 6%). This makes sense, as one would generally expect best results when the form of 350 

the predictor matches the form of the predictand.  351 

 352 

The above analysis guides our formulation of PODM and other SDMs in the following 353 

sections. First, results clearly indicate that the statistical model should be trained to 354 

predict    ΔTWRF , as opposed to predicting   
TWRF,fut , regardless of whether the goal is to 355 

predict    ΔTWRF  or   
TWRF,fut . So, we formulate PODM and the SDMs with    ΔTWRF  as the 356 

predictand. We use domain D1, as it leads to a higher accuracy model when compared to 357 

the alternatives.   
TS ,NARR  and    

ΔTS ,GCM  are included as predictors since they slightly 358 

improve PODM accuracy and the additional computational cost is minimal. Finally, we 359 

use   ΔTGCM  instead of   
TBC,fut  as predictor, since it better matches the form of our 360 

predictand    ΔTWRF . 361 
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 362 

 363 

4.3   Comparison of statistical methods in approximating WRF 364 

 365 

The   
eMAE,SDM  of the different SDMs for all the GCM cases are shown in Table 2. The 366 

average error for PODM,   
eMAE,PODM , over the five GCMs is 0.44 °C. The monthly average 367 

  
eMAE,PODM  varies with month, and the variation is different for each of the GCM cases 368 

(Figure 4). However, when averaged over the five GCM cases, the monthly average 369 

  
eMAE,PODM  varies more smoothly, with higher errors in the summer months (reaching a 370 

maximum in July) and lower errors in the winter months (reaching a minimum in 371 

December). ML-based regression models are universally less accurate than the PODM 372 

model (Table 2). The average   
eMAE,SDM  of the different ML-based regression models are 373 

50%–110% larger than for PODM model.  374 

 375 

PODM also more accurately captures changes in climatology,    ΔTWRF (Table 3). The 376 

MAEs for the 10-year monthly temperature climatology (
   
eMAE,SDM
ΔT )  of the ML-based 377 

regression models are larger than that of PODM model by 45%–130% (Table 3). 378 

StatWRF errors are 21% larger than PODM. PODM, like StatWRF, has much lower 379 

errors compared to traditional statistical downscaling methods as well, including Bias 380 

Correction and Constructed Analogs (BCCA; Maurer and Hidalgo 2008) and Bias 381 

Correction with Spatial Disaggregation (BCSD; Wood et al. 2004).  (Downscaled CMIP5 382 
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climate projections using BCCA and BCSD were obtained from http://gdo-383 

dcp.ucllnl.org/downscaled_cmip_projections/, Reclamation 2013.) Interestingly, ML-384 

based regression models do not perform any better than these well-established 385 

downscaling techniques despite having higher degrees of complexity. Given the poor 386 

performance of ML-based regression models, we focus only on PODM models in 387 

subsequent sections. 388 

 389 

4.4   Comparing spatial distributions of the predictions 390 

 391 

Here, we compare the spatial patterns of    ΔTPODM ,    ΔTWRF , and    ΔTGCM . Figure 5 shows 392 

January and July as examples of months where    ΔTPODM poorly and closely matches 393 

   ΔTWRF , respectively. In January, there is a large disparity between the GCM temperature 394 

changes and the WRF-downscaled temperature changes. Importantly, these biases are not 395 

in the same direction for CNRM-CM5 and GFDL-CM3.  WRF-downscaled CNRM-CM5 396 

has much less warming than CNRM-CM5 (about 1–2 °C).  Meanwhile, WRF-397 

downscaled GFDL-CM3 has much more warming than GFDL-CM3 (about 1–2 °C).  398 

When relationship between the WRF-downscaled warming and GCM warming is 399 

inconsistent between the cases, it is challenging for any statistical model to accurately 400 

model it. Thus, PODM struggles to predict WRF-downscaled temperatures in January.  401 

PODM better predicts WRF in July, when the relationship between the GCM warming 402 

and the WRF-downscaled warming is more consistent.  403 

 404 
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We now compare changes in temperature climatology averaged over the five GCM cases, 405 

denoted as    ΔTPODM ,    ΔTGCM , and    ΔTWRF . Figure 6 shows that differences between 406 

   ΔTPODM  and    ΔTWRF  are typically small (< 0.5 °C) except for the month of June. 407 

PODM is able to capture the fine-scale details present in    ΔTWRF , such as snow albedo 408 

feedback (Walton et al. 2016). This demonstrates that an automated, objective statistical 409 

model can capture important features that had to be parameterized in previous hybrid 410 

downscaling attempts.  411 

 412 

4.5   Downscaling 35 CMIP5 GCMs  413 

 414 

The purpose of hybrid downscaling is to enable rapid, high-quality downscaling of output 415 

from a large number of GCMs. Here we demonstrate this capability by applying PODM 416 

to 35 CMIP5 GCMs run under the RCP8.5 forcing scenario. Before applying PODM, we 417 

check whether the original five GCMs are good representatives of the full ensemble of 418 

GCMs. If so, then we can have more confidence that the PODM will have similar 419 

accuracy in downscaling the new GCMs as it does in downscaling the original five. To do 420 

this, we approximate the full ensemble of GCM warming patterns using POD bases 421 

constructed from the five original GCM warming patterns, similar to the analysis in 422 

Section 4.1. For the full ensemble, the mean and standard deviation of the approximation 423 

errors 
  
eMAE,proj  for are 0.24 °C and 0.07 °C, respectively. In comparison, the mean and 424 

standard deviation are 0.2 °C and 0.03 °C for the LOOCV errors obtained with the 425 

original five GCMs. Since these values are of similar magnitudes, we expect PODM to 426 
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emulate WRF to a similar degree of accuracy as was found in Section 4.3 when 427 

downscaling the entire ensemble. 428 

 429 

To downscale the full ensemble, PODM is trained on data from all six WRF simulations 430 

(1 historical + 5 future) as described in Section 2. For some GCMs, surface temperature 431 

output is not available in the CMIP5 database. For these GCMs, surface temperature 432 

changes are not included as a predictor. This should not significantly alter the accuracy as 433 

including surface temperature resulted in only minimal gains (6.5% improvement). 434 

Figure 7 shows that PODM captures spatial variations due to snow albedo feedback and 435 

the complex topography of the Sierra Nevada that are visible in the WRF solution, but 436 

not in the original GCM data.  437 

 438 

5   Discussion 439 

 440 

Our results show that PODM can emulate WRF in downscaling temperature changes with 441 

errors less than 0.44 °C. This is slightly higher accuracy than the original StatWRF model 442 

proposed by Walton et al. (2016). Additionally, PODM is objective and the training steps 443 

can be automated. In contrast, StatWRF requires that the user parameterizes salient 444 

physical processes affecting the climate change signal in the region of interest and to 445 

manually determine the appropriate large-scale predictors. Thus PODM can be applied 446 

quickly to any region, without the user needing expert knowledge about the region’s 447 

climate. We note that the skill of any statistical model — including  PODM — in  448 

emulating WRF is likely to be region dependent, so hybrid downscaling users need to 449 
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verify PODM’s skill when applying it elsewhere. It is also important to acknowledge that 450 

while the PODM model can be valuable tool for making downscaled projections, it may 451 

not enhance our understanding of the climate processes at play. For instance, the way 452 

PODM model accounts for the additional warming in the Sierra Nevada due to snow 453 

albedo feedback is part of PODM’s internal workings that is opaque to the user.   454 

 455 

The skill of PODM could be improved if more dynamically downscaled GCM 456 

simulations are included in the training data. Indeed, the PODM model described in this 457 

paper could achieve even higher accuracy if the dynamically downscaled GCMs are 458 

chosen to best represent the full set of GCMs. The five GCM cases currently used in this 459 

paper were chosen to represent the range of temperature and precipitation changes 460 

predicted by the GCMs (Walton et al. 2016). However, if just temperature projections are 461 

desired, a more representative set of GCMs could be selected by identifying the five 462 

GCMs that minimize 
  
eMAE,proj  when their POD bases are used to approximate the rest of 463 

the ensemble of GCMs. We will study these training procedures in our future work. 464 

 465 

It’s important to acknowledge that accuracy results and optimal predictor/predictand 466 

combinations for PODM might change in downscaling studies that do not use the pseudo-467 

global warming methodology (PGW).  In our study, each future WRF simulation is 468 

downscaling of historical NARR plus a change in GCM climatology.  Thus, interannual 469 

variability of each future simulation is nearly identical to the historical simulation.  So, 470 

when subtracting the future and historical sequences to determine    ΔTWRF , the interannual 471 

variability mostly cancels.  In contrast, if raw GCM output were downscaled for the 472 
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future and historical simulations, as is often the case, then interannual variability between 473 

the historical and future simulations will be unrelated.  In this case,    ΔTWRF  could have 474 

considerably more variability that PODM needs to capture, and accuracy could be lower. 475 

Furthermore, different formulation of the predictors will be needed.  The historical and 476 

future GCM sequences   
TGCM,hist  and   

TGCM,fut  will probably need to be included, not just 477 

the GCM difference in climatology,    ΔTGCM .  478 

 479 

 480 

6   Conclusions 481 

 482 

In this study, we have demonstrated that an objective statistical downscaling method, 483 

PODM, can approximate WRF temperatures changes with similar or better accuracy than 484 

previous statistical methods in California’s Sierra Nevada mountain range. ML-based 485 

regression methods were also tested, but were found to be much less accurate than 486 

PODM in emulating WRF. Our analysis shows that use of a large predictor domain 487 

encompassing the entire U.S. West Coast yielded the highest accuracy, even though our 488 

predictand domain is limited to the Sierra Nevada mountain range. The inclusion of 489 

surface temperature as an additional predictor was found to moderately improve 490 

accuracy. Our results also show that if the goal is to predict future temperatures, then 491 

statistical models should be designed to predict them as anomalies from the current 492 

climate (as opposed to directly predicting the future values).  493 

 494 

 495 
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Appendix 509 

 510 

In this appendix, gradient boosting machine, Extra-Tree and Elastic Net are reviewed. 511 

The first two are so-called ensemble machine learning algorithms based on regression 512 

trees and the latter is a linear regression method using a combination of L1 and L2 513 

penalties.  Hybrid downscaled output using these methods are available from the UCLA 514 

Climate Sensitivity Research Lounge website 515 

http://research.atmos.ucla.edu/csrl/pub.html. 516 

 517 

A.1 Gradient boosting machine (GBM) 518 
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 519 

The gradient boosting machine (GBM) algorithm (Freund and Schapire 1997; Friedman 520 

et al. 2000; Friedman 2001) combines iteratively several simple models, called “weak 521 

learners”, in order to obtain a “strong learner” with improved prediction accuracy. GBM 522 

starts by initializing the model by a first guess of a regression tree model (Breiman et al. 523 

1984) that maximally reduces the loss function (i.e. least squares). Then at each step a 524 

new regression tree model is fitted to the current residual and added to the previous 525 

model in order to update the residual, until the number of iteration K is reached. By 526 

fitting the regression tree model to the residuals the global model is improved in the 527 

regions where it is not accurate.  528 

 529 

GBM expresses the relationship between the scalar predictand (corresponding to    ΔTWRF ) 530 

and the n scalar predictors (    p ={p1,…, pn}, corresponding to the latitude, longitude, 531 

elevation,   TNARR ,   
TS,NARR ,   ΔTGCM , and   

ΔTS,GCM ) as an ensemble of K additive functions: 532 

 
     
fGBM( p) = φk

k=1

K

∑ ( p),   (8) 533 

where     φk ( p)  is a regression tree model. Note that K is the number of GBM iteration 534 

steps and p  represents m different scalar predictors at a particular grid block while p 535 

represents a multivariate predictor. 536 

 537 

As for any predictive machine learning algorithm, GBM has several parameters that need 538 

to be tuned. These parameters are: 1) the complexity of the regression tree, which is 539 

represented by the maximum number of split points of the decision tree; 2) K the number 540 
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of the algorithm iterations; 3) the learning rate, which is a relatively small positive value 541 

between 0 and 1, and inversely proportional to K; and 4) the fraction of training data that 542 

is used as a training subsample at each iterative step. To choose the combination of these 543 

parameters that produce the best predictive GBM model the LOOCV procedure 544 

(described in Section 3.1) combined with the so-called search grid method have been 545 

used in this study. This method is based on predefining a grid of GBM parameters 546 

combinations, then for each combination a GBM model is estimated. The best 547 

combination is selected as the one that produce the most accurate model using the 548 

LOOCV procedure. We used the minimization of the MAE as the accuracy criteria to 549 

select the best combination. 550 

 551 

The XGBoost python library (https://github.com/dmlc/xgboost), which is a relatively new 552 

efficient implementation of GBM method, is used here. The performance of XGBoost has 553 

been demonstrated in multiple data mining and machine learning challenges (Chen and 554 

Guestrin 2016). We refer readers to Chen and Guestrin (2016) for details of the XGBoost 555 

algorithm, especially the advanced features that have been implemented in it. 556 

 557 

A.2 Extremely Randomized Trees (Extra-Trees) 558 

 559 

Similar to GBM the Extra-Tree algorithm (Geurts et al. 2006) is based on a simple 560 

averaging of the weak learner while the boosting algorithm of GBM is built upon a 561 

constructive iterative strategy.  It builds a set of regression trees, which are trained by 562 

selecting the decision trees splits points at random. In other words, instead of selecting 563 
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the splits points that are locally optimal, these splits points are selected randomly.  The 564 

predictions of each regression trees are simply averaged to create the final prediction.  565 

 566 

The Extra-Tree procedure has two main parameters that need to be tuned. These 567 

parameters are the maximum number of splits points of each regression tree and K the 568 

number of regression trees of the ensemble. As for the GBM model the best combination 569 

is selected using a search grid and the previously described LOOCV procedure. In this 570 

work, we have used the Extra-Trees implementation of the scikit-learn python library 571 

(Pedregosa et al. 2011). 572 

  573 

 574 

A.3 Elastic net linear regression 575 

 576 

We consider the standard linear regression model, which is defined for the given n scalar 577 

predictors     p ={p1,…, pn} (corresponding to the latitude, longitude, elevation,   TNARR , 578 

  
TS,NARR ,   ΔTGCM , and   

ΔTS,GCM ) and the scalar predictand  f  (corresponding to   ΔTWRF ) by: 579 

     
flinear( p) = βi p

i

i=1

n

∑ ,  580 

The standard approach to estimate the regression coefficients     β={β1,…,βn} is to use the 581 

ordinary least squares algorithm (OLS). However it is well known that the OLS often 582 

underperforms in term of prediction accuracy compared to other linear techniques such as 583 

ridge regression (Hoerl and Kennard 2000) and LASSO (Tibshirani 1996). The first one 584 

applies an L2 penalty on the coefficients and the second one applies an L1 penalty. 585 
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Elastic Net regression method (Elastic Net, Zou and Hastie 2005) applies a convex 586 

combination of L1 and L2 penalties on the regression coefficients. There are two 587 

parameters to optimize: the ratio of L1 penalty to L2 penalty, and the magnitude of the 588 

total penalty. These two parameters are tuned using the same methodology as for GBM 589 

and Extra-Tree algorithms. The scikit-learn python library (Pedregosa et al. 2011) 590 

implementation of the Elastic Net has been used in this work. 591 

 592 

Reference 593 

 594 

Benestad, R. E., I. Hanssen-Bauer, and D. Chen, 2008: Empirical-statistical downscaling.  595 

World Scientific. 596 

Berg, N., A. Hall, F. Sun, S. Capps, D. Walton, B. Langenbrunner, and D. Neelin, 2015: 597 

Twenty-First-Century Precipitation Changes over the Los Angeles Region. 598 

Journal of Climate, 28, 401-421. 599 

Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen, 1984: Classification and 600 

regression trees.  CRC press. 601 

Chen, T., and C. Guestrin, 2016: XGBoost: A scalable tree boosting system. arXiv 602 

preprint arXiv:1603.02754. 603 

Elith, J., J. R. Leathwick, and T. Hastie, 2008: A working guide to boosted regression 604 

trees. Journal of Animal Ecology, 77, 802-813. 605 

Erdal, H. I., and O. Karakurt, 2013: Advancing monthly streamflow prediction accuracy 606 

of CART models using ensemble learning paradigms. J Hydrol, 477, 119-128. 607 



 29 

Everson, R., and L. Sirovich, 1995: Karhunen–Loeve procedure for gappy data. Journal 608 

of the Optical Society of America A, 12, 1657-1664. 609 

Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to 610 

impacts studies: recent advances in downscaling techniques for hydrological 611 

modelling. International Journal of Climatology, 27, 1547-1578. 612 

Freund, Y., and R. E. Schapire, 1997: A Decision-Theoretic Generalization of On-Line 613 

Learning and an Application to Boosting. Journal of Computer and System 614 

Sciences, 55, 119-139. 615 

Friedman, J., T. Hastie, and R. Tibshirani, 2000: Additive logistic regression: a statistical 616 

view of boosting (With discussion and a rejoinder by the authors). The Annals of 617 

Statistics, 28, 337-407. 618 

Friedman, J. H., 2001: Greedy function approximation: A gradient boosting machine. 619 

Annals of Statistics, 29, 1189-1232. 620 

Geurts, P., D. Ernst, and L. Wehenkel, 2006: Extremely randomized trees. Mach Learn, 621 

63, 3-42. 622 

Gosling, S. N., and Coauthors, 2011: A review of recent developments in climate change 623 

science. Part II: The global-scale impacts of climate change. Progress in Physical 624 

Geography, 35, 443-464. 625 

Gutmann, E., T. Pruitt, M. P. Clark, L. Brekke, J. R. Arnold, D. A. Raff, and R. M. 626 

Rasmussen, 2014: An intercomparison of statistical downscaling methods used 627 

for water resource assessments in the United States. Water Resour Res, 50, 7167-628 

7186. 629 



 30 

Hanssen-Bauer, I., E. J. Forland, J. E. Haugen, and O. E. Tveito, 2003: Temperature and 630 

precipitation scenarios for Norway: comparison of results from dynamical and 631 

empirical downscaling. Climate Research, 25, 15-27. 632 

Hoerl, A. E., and R. W. Kennard, 2000: Ridge regression: Biased estimation for 633 

nonorthogonal problems. Technometrics, 42, 80-86. 634 

Keramitsoglou, I., C. T. Kiranoudis, and Q. Weng, 2013: Downscaling Geostationary 635 

Land Surface Temperature Imagery for Urban Analysis. IEEE Geoscience and 636 

Remote Sensing Letters, 10, 1253-1257. 637 

Maloney, K. O., M. Schmid, and D. E. Weller, 2012: Applying additive modelling and 638 

gradient boosting to assess the effects of watershed and reach characteristics on 639 

riverine assemblages. Methods in Ecology and Evolution, 3, 116-128. 640 

Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: 641 

Recent developments to bridge the gap between dynamical models and the end 642 

user. Reviews of Geophysics, 48. 643 

Maurer, E. P., and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate 644 

data: an intercomparison of two statistical downscaling methods. Hydrol. Earth 645 

Syst. Sci., 12, 551-563. 646 

McCarthy, M. P., M. J. Best, and R. A. Betts, 2010: Climate change in cities due to 647 

global warming and urban effects. Geophys Res Lett, 37, n/a-n/a. 648 

Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bulletin of the 649 

American Meteorological Society, 87, 343-360. 650 



 31 

Niu, G. Y., and Coauthors, 2011: The community Noah land surface model with 651 

multiparameterization options (Noah-MP): 1. Model description and evaluation 652 

with local-scale measurements. J Geophys Res-Atmos, 116. 653 

Nolan, B. T., M. N. Fienen, and D. L. Lorenz, 2015: A statistical learning framework for 654 

groundwater nitrate models of the Central Valley, California, USA. J Hydrol, 531, 655 

Part 3, 902-911. 656 

Pau, G. S. H., G. Bisht, and W. J. Riley, 2014: A reduced-order modeling approach to 657 

represent subgrid-scale hydrological dynamics for land-surface simulations: 658 

application in a polygonal tundra landscape. Geosci. Model Dev., 7, 2091-2105. 659 

Pau, G. S. H., C. Shen, W. J. Riley, and Y. Liu, 2016: Accurate and efficient prediction 660 

of fine-resolution hydrologic and carbon dynamic simulations from coarse-661 

resolution models. Water Resour Res, 52, 791-812. 662 

Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine Learning in Python. Journal 663 

of Machine Learning Research, 12, 2825-2830. 664 

Pittman, S. J., and K. A. Brown, 2011: Multi-scale approach for predicting fish species 665 

distributions across coral reef seascapes. Plos One, 6, e20583. 666 

Reclamation, 2013: 'Downscaled CMIP3 and CMIP5 Climate and Hydrology 667 

Projections: Release of Downscaled CMIP5 Climate Projections, Comparison 668 

with preceding Information, and Summary of User Needs', prepared by the U.S. 669 

Department of the Interior, Bureau of Reclamation, Technical Services Center, 670 

Denver, Colorado. 47pp. 671 

Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse 672 

gas emissions. Climatic Change, 109, 33. 673 



 32 

Robinson, T., M. Eldred, K. Willcox, and R. Haimes, 2006: Strategies for Multifidelity 674 

Optimization with Variable Dimensional Hierarchical Models. 47th 675 

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 676 

Conference, American Institute of Aeronautics and Astronautics. 677 

Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF 678 

Ver. 30. NCAR Technical Note. 679 

Sun, A. Y., R. M. Miranda, and X. L. Xu, 2015a: Development of multi-metamodels to 680 

support surface water quality management and decision making. Environ Earth 681 

Sci, 73, 423-434. 682 

Sun, F., D. B. Walton, and A. Hall, 2015b: A Hybrid Dynamical–Statistical Downscaling 683 

Technique. Part II: End-of-Century Warming Projections Predict a New Climate 684 

State in the Los Angeles Region. Journal of Climate, 28, 4618-4636. 685 

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An Overview of CMIP5 and the 686 

Experiment Design. Bulletin of the American Meteorological Society, 93, 485-687 

498. 688 

Tebaldi, C., and J. Arblaster, 2014: Pattern scaling: Its strengths and limitations, and an 689 

update on the latest model simulations. Climatic Change, 122, 459-471. 690 

Tibshirani, R., 1996: Regression shrinkage and selection via the Lasso. J Roy Stat Soc B 691 

Met, 58, 267-288. 692 

von Storch, H., E. Zorita, and U. Cubasch, 1993: Downscaling of Global Climate Change 693 

Estimates to Regional Scales: An Application to Iberian Rainfall in Wintertime. 694 

Journal of Climate, 6, 1161-1171. 695 



 33 

Walton, D., A. Hall, F. Sun, M. Schwartz, and N. Berg, 2016: Incorporating Snow 696 

Albedo Feedback into Downscaled Temperature and Snow Cover Projections for 697 

California's Sierra Nevada. Journal of Climate, 30, 1417-1438, doi: 698 

http://dx.doi.org/10.1175/JCLI-D-16-0168.1. 699 

Walton, D. B., F. Sun, A. Hall, and S. Capps, 2015: A Hybrid Dynamical–Statistical 700 

Downscaling Technique. Part I: Development and Validation of the Technique. 701 

Journal of Climate, 28, 4597-4617. 702 

Wilby, R. L., T. M. L. Wigley, D. Conway, P. D. Jones, B. C. Hewitson, J. Main, and D. 703 

S. Wilks, 1998: Statistical downscaling of general circulation model output: A 704 

comparison of methods. Water Resour Res, 34, 2995-3008. 705 

Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic 706 

Implications of Dynamical and Statistical Approaches to Downscaling Climate 707 

Model Outputs. Climatic Change, 62, 189-216. 708 

Zou, H., and T. Hastie, 2005: Regularization and variable selection via the elastic net. J 709 

Roy Stat Soc B, 67, 301-320. 710 

  711 



 34 

Table 1: Averaged   
eMAE,PODM  for different combinations predictors and predictands. The 712 

value in parenthesis is the averaged   
eMAE,PODM  over that particular parameter.  713 

Predictand  

(°C) 

Predictor 

  
eMAE,PODM , °C Domain 

(°C) 
  
TS ,NARR  and 

   
ΔTS ,GCM (°C) 

   ΔTGCM  or 

  
TBC,fut  

  TWRF  

(0.99) 

D01 

(0.68) 

False 

(0.73) 
   ΔTGCM  0.77 

  
TBC,fut  0.69 

True 

(0.62) 
   ΔTGCM  0.63 

  
TBC,fut  0.61 

D02 

(0.96) 

False 

(1.05) 
   ΔTGCM  1.04 

  
TBC,fut  1.05 

True 

(0.87) 
   ΔTGCM  0.90 

  
TBC,fut  0.84 

D03 

(1.34) 

False 

(1.42) 
   ΔTGCM  1.44 

  
TBC,fut  1.39 

True 

(1.26) 
   ΔTGCM  1.37 

  
TBC,fut  1.15 

   ΔTWRF  D01 False 
   ΔTGCM  0.45 



 35 

(0.53) (0.45) (0.46) 
  
TBC,fut  0.46 

True 

(0.43) 
   ΔTGCM  0.43 

  
TBC,fut  0.43 

D02 

(0.51) 

False 

(0.51) 
   ΔTGCM  0.49 

  
TBC,fut  0.52 

True 

(0.51) 
   ΔTGCM  0.50 

  
TBC,fut  0.52 

D03 

(0.64) 

False 

(0.64) 
   ΔTGCM  0.64 

  
TBC,fut  0.65 

True 

(0.64) 
   ΔTGCM  0.62 

  
TBC,fut  0.66 

 714 

 715 

Table 2: The MAEs (  
eMAE,SDM ) of    ΔTSDM  for the different SDMs, for each GCM cases, 716 

and the ensemble averages. 717 

GCM PODM 
Elastic 

Net 
GBM Extra-Tree 

CNRM-CM5 0.40 0.86 0.80 0.87 

GFDL-CM3 0.54 0.83 0.94 1.26 



 36 

INMCM4 0.38 0.46 0.97 0.90 

IPSL-CM5A-LR 0.48 0.72 1.14 1.15 

MPI-ESM-LR 0.38 0.44 0.50 0.51 

Average 0.44 0.66 0.87 0.94 

Table 3: The MAEs (
   
eMAE,SDM
ΔT ) of    ΔTSDM  for the different SDMs, for each GCM cases, 718 

and the ensemble averages. BCCA stands for Bias Correction and Constructed Analogs 719 

and BCSD stands for Bias Correction with Spatial Disaggregation. MAE data for 720 

StatWRF, BCCA, BCSD, and linter interpolation are from Walton et al. (2016). 721 

GCM PODM 
Elastic 

Net 
GBM 

Extra-

Tree 

Stat-

WRF 
BCCA BCSD 

Linear 

inter-

polation 

CNRM-

CM5 
0.34 0.76 0.66 0.76 0.52 0.49 0.89 0.85 

GFDL-

CM3 
0.47 0.66 0.80 1.25 0.61 1.18 1.08 0.75 

INMCM4 0.31 0.34 0. 88 0.84 0.47 0.91 0.94 0.48 

IPSL-

CM5A-

LR 

0.41 0.68 1.10 1.11 0.31 0.78 0.56 0.43 

MPI-

ESM-LR 
0.29 0.24 0. 28 0.30 0.35 0.63 0.43 0.44 
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Average 0.37 0.54 0. 74 0.85 0.45 0.80 0.78 0.59 

 722 

  723 
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 724 

Figure 1: (Taken from Walton et al., 2016)  (a) Elevation (meters) and model setup with 725 

three one-way nested WRF domains (D1, D2, and D3) at horizontal resolutions of 27, 9, 726 

and 3 km. (b) Innermost domain elevation (meters). 727 

 728 

 729 

Figure 2: Predictors data pre-processing steps for the downscaling approach based on 730 

ML-based regression models. 731 

 732 
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 733 

Figure 3: The projection error 
  
eMAE,proj  for approximating the left-out    ΔTGCM  pattern, 734 

when M bases are used. Here, 
  
eMAE,proj is an average over all 12 calendar months.    735 

 736 

 737 

Figure 4: Monthly averaged   
eMAE,PODM  versus month for different GCM cases. The values 738 

in the parentheses are the averages for each of the GCM cases. 739 

 740 



 40 

 741 

Figure 5:    ΔTGCM ,    ΔTWRF ,    ΔTPODM , and     εPODM
ΔT =ΔTPODM−ΔTWRF  in January and July. 742 

Only results from the CNRM-CM5 and GFDL-CM3 cases are shown. 743 

 744 



 41 

 745 

Figure 6: Changes in temperature climatology averaged over five GCM cases produced 746 

from three sources. (row 1) GCM changes   ΔTGCM . (row 2) WRF changes   ΔTWRF . 747 

(row 3) PODM changes produced via cross validation    ΔTPODM . (row 4) differences 748 

between WRF and PODM     εPODM
ΔT  for each of month, averaged over the five GCMs cases. 749 

 750 

 751 

 752 

 753 
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 754 

Figure 7: The mean and the standard deviation of the monthly    ΔTPODM  compared to 755 

   ΔTGCM .  756 

 757 


