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 39	  
Abstract 40	  

 41	  
This paper investigates the sensitivity of surface hydrology in the Los Angeles region to climate 42	  

change. Using dynamical downscaling, we produce 2-km resolution regional projections for the 43	  

mid-21st century (2041-2060) under the “business-as-usual” (RCP8.5) forcing scenario for five 44	  

global climate models in the Fifth Coupled Model Intercomparison Project. Future projections 45	  

are compared to a validated reanalysis-driven simulation of a baseline period (1981-2000) to 46	  

quantify surface hydrology changes. Precipitation changes are likely to be small and are within 47	  

the range of baseline interannual variability. Runoff changes are strongly controlled by 48	  

precipitation changes, suggesting temperature-driven changes in actual evapotranspiration are 49	  

small. A series of temperature sensitivity experiments are performed in which a land surface 50	  

model is forced by the meteorology of the baseline period, but with uniform near-surface air 51	  

temperature increases of 2º, 4º and 6º C. Results from these idealized experiments reveal annual 52	  

mean actual evapotranspiration and runoff are nearly insensitive to warming. This insensitivity is 53	  

an artifact of the region’s Mediterranean-type climate: Because the warm season receives almost 54	  

no precipitation, the strongest warming-induced potential evapotranspiration enhancement 55	  

coincides with dry soils, severely constraining actual evapotranspiration increases. Surface 56	  

hydrology in other Mediterranean climate regions may respond similarly. This result greatly 57	  

mitigates a potential vulnerability of water resources to a changing climate in an important semi-58	  

arid region of the world. It also reveals that a regional climate change adaptation strategy relying 59	  

on local water resources is a viable one. 60	  

  61	  
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1. Introduction  62	  

 63	  

Mediterranean-type climate zones (California, lands around the Mediterranean Sea, central 64	  

Chile, southwestern South Africa, and southwestern and southern Australia) are characterized by 65	  

warm, dry summers and cool, rainy winters (Myers et al. 2000; Cowling et al. 2005; Kottek et al. 66	  

2006). The florae of these regions are among the world’s richest, harboring almost 20% of all 67	  

known vascular plant species despite occupying less than 5% of the earth’s surface (Cowling et 68	  

al. 1996). Mediterranean-type climate regions have also been recognized as particularly 69	  

threatened by global climate change (IPCC 2014). 70	  

 71	  

A potentially unique surface hydrological response to climate change may arise from the 72	  

seasonality of Mediterranean-type hydrology. Projected temperature increases, along with 73	  

increased downward longwave radiation from greater concentrations of greenhouse gases, would 74	  

enhance potential evapotranspiration (PET). The enhancement is especially large in the warm 75	  

months, due to the non-linearity of the Clausius-Clayeron relationship. However, because rain 76	  

comes during the cool months, soil moisture levels are low during the warm months. As a result, 77	  

the time of the strongest PET enhancement may coincide with the driest soils. Thus it is unclear 78	  

whether actual evapotranspiration (AET) will respond strongly to warming. Surface runoff may 79	  

likewise be only weakly affected by warming. Therefore, it is important to investigate how 80	  

climate-change induced temperature and precipitation changes will impact surface hydrology in 81	  

Mediterranean-type climate regions.  82	  

 83	  
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This paper explores the hydrologic response of California’s Los Angeles region as a case study. 84	  

Previous studies have documented observed changes in California’s hydro-climate over the past 85	  

few decades, as well as potential impacts in hydrology and water resources in the western United 86	  

States (Roos 1991; Hamlet et al. 2005; Maurer 2007; Barnett et al. 2008; Bates et al. 2008; Adam 87	  

et al. 2009; Kapnick and Hall 2010). However, a high-resolution assessment of the response of 88	  

surface hydrology in the Los Angeles region to climate change has not been done before. 89	  

 90	  

This study is informative due to its implications for other Mediterranean-type climate zones, and 91	  

it is crucial for informed local water resources planning. The Greater Los Angeles region 92	  

depends on numerous sources of fresh water, both imported and local.	  Though the majority of 93	  

Los Angeles’ water is imported via the Los Angeles and Colorado River Aqueducts, local water 94	  

accounted for 11% of the Los Angeles Department of Water and Power’s water supply from 95	  

2005-2010 (Blanco et al. 2012). In some nearby cities within the Greater Los Angeles region, 96	  

local water sources contribute an even larger portion. For example, local water supplied about 97	  

40% of the overall water demand between 1995 and 2009 in the city of Camarillo (City of 98	  

Camarillo 2010) and 55% of the water demand in Long Beach for 2010 (Long Beach Water 99	  

Department 2010).  100	  

 101	  

Cities in Mediterranean-type climates outside of California also rely heavily on local water, 102	  

including Cape Town, South Africa, which chiefly depends on dams in the mountains of the 103	  

southwestern Cape for both industrial and domestic water supply (Ziervogel et al. 2010). 104	  

Adelaide, Australia sources water from neighboring catchments in the Mount Lofty Ranges and 105	  

approximately half of Adelaide’s demand has been supplied from the nearby Myponga, Mount 106	  
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Bold, and Happy Valley reservoirs (Paton et al. 2013).  In central Chile, snowpack accumulated 107	  

in the nearby central Andes represents a critical resource for local irrigation, consumption, 108	  

industries and hydroelectric generation (Masiokas et al. 2006). 109	  

 110	  

General circulation models (GCMs) provide insight into future climate trends, but their coarse 111	  

resolution fails to capture climatic variables at a scale necessary for regional-scale analysis 112	  

(Giorgi and Mearns, 1991). The latest generation of GCMs in the World Climate Research 113	  

Programme’s Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2012) have 114	  

horizontal resolutions between 1° to 2.5° (~ 100 – 250 km). Los Angeles’ complex coastlines 115	  

and topographical features show variation on much smaller scales and play a dominant role in 116	  

shaping regional-scale processes, including orographic precipitation, land-sea breezes and valley 117	  

circulations. Additionally, local topography introduces large spatial gradients in surface and 118	  

near-surface air temperature, which influence PET. Such regional-scale processes have been 119	  

shown to be critical in understanding climate variability in California (Cayan, 1996; Conil and 120	  

Hall, 2006; Hughes et al. 2007). Thus, current GCM resolution is far too low to understand 121	  

surface hydrology and climate at scales relevant for adaptation and water resources planning.  122	  

 123	  

Dynamical-downscaling has been used to develop high-resolution regional climate data from 124	  

relatively coarse-resolution GCM output, including in California (Leung et al. 2003; Leung et al. 125	  

2004; Kanamitsu and Kanamaru 2007; Caldwell et al. 2009; Qian et al. 2010; Pan et al. 2011; 126	  

Pierce et al. 2012) and other Mediterranean-type climate regions (Flaounas et al. 2012; Barrera-127	  

Escoda et al. 2013; Ratnam et al. 2013). The dynamical downscaling studies over California, 128	  

along with a number of regional studies using hydrological models  (Dettinger et al. 2004; 129	  
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Vicuna et al. 2007; Young et al. 2009; Huang et al. 2012), have focused primarily on climate 130	  

change impacts to hydrology in Central and Northern California, rather than the Los Angeles 131	  

region. 132	  

 133	  

In this study, dynamical-downscaling simulations are performed to obtain high-resolution (2-km) 134	  

climate information for the Los Angeles region. These consist of a validated baseline (1981-135	  

2000) climate simulation, and downscaling of output from five CMIP5 GCMs under 136	  

Representative Concentration Pathway 8.5 (RCP8.5) for the mid-21st century period (2041-137	  

2060). Idealized temperature sensitivity experiments are also performed, in which the baseline 138	  

climate simulation is perturbed by uniform air temperature increases of 2º, 4º and 6º C. These 139	  

experiments reveal the hydrologic sensitivity to warming in the absence of precipitation change. 140	  

This is a relevant simplification because the projected annual precipitation changes turn out to be 141	  

quite small in this region (Berg et al. 2015). This study aims to assess changes to runoff and AET 142	  

that result from precipitation and temperature changes in both the Los Angeles region and other 143	  

Mediterranean-type climate regions. In the process, we will determine the degree to which 144	  

sensitivity of AET and runoff to warming is indeed suppressed by the unique seasonality of 145	  

Mediterranean-type climate. 146	  

 147	  

This study is part of a larger project that includes separate downscaling studies of the CMIP5 148	  

ensemble’s mid-21st century and end-of-21st century projections over the Los Angeles region for 149	  

temperature (Walton et al. 2015; Sun et al. 2015a), precipitation (Berg et al. 2015), and snowfall 150	  

and snowpack (Sun et al. 2015b). Together, these studies provide high-resolution information 151	  

regarding future regional climate trends crucial for developing effective adaptation strategies. 152	  
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 153	  

This paper is organized as follows: Section 2 describes the model configuration and 154	  

observational evaluation for the baseline simulation. Section 3 describes the future and idealized 155	  

climate simulations. Section 4 presents the results of both the dynamical-downscaling 156	  

simulations and the idealized temperature sensitivity experiments. This section is focused on the 157	  

sensitivity of annual mean AET and runoff to both precipitation and temperature changes, while 158	  

also placing changes within the context of internal interannual variability. Finally, section 5 159	  

presents a discussion of the results, as well as a summary of findings.  160	  

 161	  

2. Baseline Simulation 162	  

 163	  

a) Dynamical downscaling framework  164	  

 165	  

A dynamical downscaling simulation over the Los Angeles region is performed using the 166	  

Weather Research and Forecasting Model version 3.2 (WRF; Skamarock et al. 2008). We nest 167	  

higher resolution domains within one another (18-km, 6-km and 2-km) to reach a high enough 168	  

resolution to represent the most important features of the region’s complex topography and 169	  

coastlines. Fig. 1a shows the three nested domains, as well as the topography at the resolution of 170	  

the outermost domain. The outermost domain spans the entire state of California and the adjacent 171	  

Pacific Ocean at 18-km resolution. The middle domain, at 6-km resolution, covers roughly the 172	  

southern half of the state of California. Finally, the innermost domain, at 2-km resolution, 173	  

focuses on the Los Angeles region (Fig. 1b). In the downscaling simulations, the Noah Land 174	  

Surface Model (Chen and Dudhia 2001) is coupled to WRF to simulate land surface processes. 175	  
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For additional information on parameterization options and WRF configuration settings used in 176	  

the baseline simulation, the reader is directed to Walton et al. (2015). 177	  

 178	  

Using this model configuration, we perform a twenty-year reanalysis-driven “baseline” 179	  

simulation, which runs from September 1981 to August 2001. The baseline climate simulation is 180	  

a dynamical downscaling of the National Centers for Environmental Prediction’s North America 181	  

Regional Reanalysis (NARR; Mesinger et al. 2006). NARR is a coarse-resolution (32-km) 182	  

reanalysis dataset that provides the lateral boundary conditions for the outermost nested WRF 183	  

domain seen in Fig. 1a. This simulation reconstructs weather and climate and serves two 184	  

purposes. First, it allows us to evaluate the model’s ability to simulate regional climate based on 185	  

a comparison to observational data. Second, it serves as a climate state against which we can 186	  

compare future climate simulations to measure climate change.  187	  

 188	  

WRF is reinitialized each year in August, allowing us to run twenty one-year runs from 189	  

September to August in parallel. This parallelization significantly reduces computational time. 190	  

However, the annual model re-initialization prevents perfect water budget closure. To ensure the 191	  

water budget is precisely closed, WRF data from the innermost (2-km) domain of the twenty 192	  

one-year baseline simulations is used as forcing for a continuous twenty-year simulation using 193	  

the offline 1-dimensional Noah Land Surface Model version 3.3 (Noah-LSM; Ek et al. 2003). 194	  

The baseline Noah-LSM simulation is forced by WRF meteorological data, including near-195	  

surface air temperature, surface pressure, near-surface wind speed and direction, near-surface 196	  

relative humidity, precipitation, and downward longwave and shortwave radiative fluxes at the 197	  

surface. WRF output includes snapshots of 2-dimensional variables every 3 hours and 3-198	  



	   9	  

dimensional variables every 6 hours for each grid point. Output from the offline Noah-LSM 199	  

simulation forced by WRF output (hereinafter called Noah-LSM/WRF) precisely satisfies the 200	  

surface water balance equation, solving the water budget closure issue presented by model re-201	  

initialization. As the focus of our study is terrestrial surface hydrology, we exclude ocean, lake, 202	  

reservoir and urban grid points in our analysis. 203	  

 204	  

b) Baseline surface hydro-climate   205	  

 206	  

Fig. 2 shows spatial patterns of climatological precipitation, runoff and AET for the baseline 207	  

period as simulated by Noah-LSM/WRF. The average annual precipitation received at non-urban 208	  

land points during the baseline period (Fig. 2a) is 341 mm/yr, with 91% of the study domain’s 209	  

annual precipitation falling between the months of October and April. The coastal side of 210	  

mountain areas above 1000m receive nearly 3 times the annual precipitation of low-elevation 211	  

coastal areas due to orographic precipitation effects. The coastal areas experience greater than 212	  

200mm more precipitation than the inland desert region, as moisture is wrung out of air passing 213	  

over the mountain ranges toward the inland desert. 214	  

 215	  

Figs. 2b and 2c present the partitioning of precipitation for the baseline Noah-LSM/WRF 216	  

simulation into runoff and AET, respectively. In this semi-arid domain, 81% of annual 217	  

precipitation falling on non-urban land surfaces is returned to the atmosphere through AET, on 218	  

average. The ratio of runoff to precipitation is highest in coastal areas above 1000m, where 219	  

runoff accounts for 41% of average incoming annual precipitation. 220	  

 221	  
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The annual cycle of the water balance for the baseline period is shown in Fig. 3 for two 222	  

representative points in our study domain: a high-elevation mountain location (Fig. 3a) and an 223	  

inland desert location (Fig. 3b). These two locations are shown in Fig. 1b by blue and red circles. 224	  

The region’s climate is characterized by drastic seasonal precipitation variations (especially at 225	  

the high elevations) and modest seasonal transitions in temperature. In the case of the mountain 226	  

location, precipitation (blue) peaks in February, and early spring snowmelt leads to maxima in 227	  

both soil moisture (red) and runoff (cyan) in March. Increasing PET (black) in the late spring and 228	  

early summer coincides with moist springtime soils (red), so AET (green) increases in the 229	  

summer months until the soil moisture is depleted. This creates a July peak in AET.  The out-of-230	  

phase relationship in the annual cycles of precipitation and PET sets up a unique response to 231	  

temperature changes that will be explored later in this paper. At the desert location, annual 232	  

precipitation is low, and AET is roughly equal to precipitation, accounting for over 98% of 233	  

annual mean precipitation.  234	  

 235	  

c) Model evaluation 236	  

 237	  

Prior to analyzing surface hydrology changes, we evaluate the skill of the 2-km resolution 238	  

baseline (1981-2000) simulation by comparing Noah-LSM/WRF model output to available 239	  

observations.  240	  

 241	  

We first briefly recapitulate an evaluation of WRF’s precipitation by Berg et al. (2015). This 242	  

downscaling study of precipitation changes over the Los Angeles region uses the same baseline 243	  

dynamical downscaling framework as this study. Berg et al. (2015) demonstrate that this 244	  
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modeling framework realistically simulates wet-season (December – March) precipitation in the 245	  

study domain using precipitation gauges from the California Department of Water Resources’ 246	  

California Irrigation Management Information System (CIMIS, http://wwwcimis.water.ca.gov/), 247	  

and two gridded observational products, NOAA Climate Prediction Center Daily US UNIFIED 248	  

Precipitation (CPC, http://www.esrl.noaa.gov/psd/data/gridded/data.unified.html) and the 249	  

University of Delaware Precipitation product (Udel, 250	  

http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html). They find a high 251	  

domain-average correlation coefficient (r =0.82) between wet-season (December – March) 252	  

precipitation observed at CPC grid cells and that simulated at the nearest corresponding WRF 253	  

grid cell. Overall, they find that WRF simulates monthly precipitation variations at thirteen 254	  

CIMIS gauges in the study domain reasonably well, and that the WRF framework realistically 255	  

simulates interannual variability in wet-season precipitation. 256	  

 257	  

Next, we evaluate Noah-LSM/WRF’s simulation of streamflow, relying on the United States 258	  

Geological Survey Hydro-Climatic Data Network-2009 (USGS HCDN-2009, 259	  

http://waterdata/usgs.gov/nwis/) observational dataset. The USGS HCDN-2009 is a network of 260	  

streamflow gauges across the United States identified as having: (1) natural streamflow least 261	  

affected by direct human activities, (2) accurate measurement records, and (3) at least 20 years of 262	  

complete and continuous discharge record through water year 2009 (Slack et al. 1993; Lins 263	  

2012). We obtained daily, quality-controlled streamflow data from 3 stations for which data was 264	  

available within our study domain for the baseline period. The locations of these streamflow 265	  

gauges is shown in Fig. 1b by black circles.  There is no runoff routing scheme in the Noah-266	  

LSM/WRF framework. To account for this, we compare the observed streamflow measurement 267	  
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at a USGS gauge to the sum of simulated surface runoff from all grid points within a watershed 268	  

upstream of the gauge. This rather primitive form of runoff routing does not account for 269	  

groundwater dynamics or interactions between groundwater and surface runoff. 270	  

 271	  

Fig. 4a compares monthly climatological average streamflow for USGS gauges with that 272	  

simulated by Noah-LSM/WRF. Noah-LSM/WRF’s simulation of the annual streamflow cycle is 273	  

consistent with observations for each of the three gauges, with a correlation averaged across the 274	  

gauges of r = 0.88. In addition, the points fall along the one-to-one line on the plot. Noah-275	  

LSM/WRF correctly simulates the magnitude and phasing of heightened streamflows in the 276	  

months of February through May (late in the wet season), with relatively low flows the rest of 277	  

the year. The root mean squared error of all data points in Fig. 4a is 0.28 cubic meters per 278	  

second. These minor differences may be due to observational error or a lack of groundwater 279	  

dynamics in Noah-LSM/WRF. Fig. 4b compares the annual average streamflow between each 280	  

USGS gauge and the Noah-LSM/WRF simulation of runoff within the watershed for all twenty 281	  

water years (September – August) of the baseline period. Correlations above r = 0.69 are found 282	  

at all gauges, and the gauge-average correlation is r = 0.77. Again, the points fall approximately 283	  

on the one-to-one line. Overall, Figs. 4a and 4b demonstrate Noah-LSM/WRF reproduces the 284	  

spatial, seasonal and interannual variations in surface runoff reasonably well.  285	  

 286	  

Unfortunately, observational data networks, including FLUXNET (Balhocchi et al. 2001) and 287	  

CIMIS stations, do not provide observations of AET (e.g. through measurement methods such as 288	  

eddy covariance techniques, a scintillometer or lysimeter) in the study domain during the 289	  

baseline period. This prevents us from comparing simulated AET to observations directly. 290	  
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However, assuming no mean change in terrestrial water storage on annual time scales, annual 291	  

mean AET must equal annual mean precipitation minus mean runoff. Because of the skill of 292	  

Noah-LSM/WRF in realistically simulating interannual variability in both precipitation (Berg et 293	  

al. 2015) and runoff (Fig. 4b), we can infer the model probably also realistically simulates the 294	  

interannual variability in AET. Moreover, Noah-LSM/WRF’s ability to accurately reproduce 295	  

seasonal variations in precipitation (Berg et al. 2015) and runoff (Fig. 4a) gives us confidence in 296	  

the modeling framework’s ability to simulate seasonal and spatial variations in AET.  297	  

 298	  

Overall, Fig. 4 and Berg et al. (2015) show that the Noah-LSM/WRF framework simulates the 299	  

temporal and spatial variations of surface hydrology during the baseline period with reasonable 300	  

accuracy where reliable observational data are available. Previous research also demonstrates 301	  

that the WRF framework used in this study provides realistic simulations of both spatial and 302	  

temporal patterns of temperature (Walton et al. 2015) and snowfall (Sun et al. 2015b). Based on 303	  

this evidence, it seems likely that the model is able to realistically reproduce the temporal and 304	  

spatial variations in AET and runoff across the domain, at locations where observations are not 305	  

available. 306	  

 307	  

3. Future Simulation 308	  

Using the same WRF configuration as the baseline climate simulation, we perform a second 309	  

group of climate simulations designed to simulate a range of future regional climate states 310	  

corresponding to the mid-21st century. By looking at differences between the future and baseline 311	  

periods, mid-century changes to surface hydrology relative to the late 20th century can be 312	  

quantified and evaluated. To produce boundary conditions for future simulations, we employ a 313	  
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previously used method (Schar et al. 1996; Hara et al. 2008; Kawase et al. 2009; Rasmussen et 314	  

al. 2011), in which future climate is estimated by adding a perturbation reflective of the mean 315	  

climate change to reanalysis data. We apply this technique to output from five CMIP5 global 316	  

climate models (CCSM4, CNRM-CM5, GFDL-CM3, MIROC-ESM-CHEM and MPI-ESM-LR) 317	  

under the RCP8.5 emissions scenario for the mid-21st century period. More specifically, we 318	  

perturb the NARR baseline boundary conditions (September 1981 - August 2001) by monthly-319	  

averaged differences between the future and baseline (2041-2060 minus 1981-2000) climate for 320	  

each GCM. This perturbation method assumes no change in synoptic and interannual variability 321	  

at the lateral boundaries. As a result, the frequency of future weather events is very similar to 322	  

that of the baseline simulation (though we cannot exclude the possibility that regional climate 323	  

dynamics might alter local weather events). Thus our analysis focuses on time scales of months 324	  

to years. 325	  

 326	  

Because it would be prohibitively expensive to perform full twenty-year future dynamical-327	  

downscaling simulations for each of the five GCMs, we first perform a future twenty-year 328	  

simulation (September 2041 to August 2061) using climate change signals in CCSM4. Then we 329	  

examine this experiment to assess whether short simulations can provide statistics robust enough 330	  

to characterize the regional climate change signal of the full twenty-year simulation. Similar to 331	  

the baseline simulation, this future simulation is reinitialized every August and run in parallel as 332	  

twenty one-year simulations. Using Noah-LSM, we also perform a separate continuous twenty-333	  

year simulation of the dynamically downscaled output associated with CCSM4.  334	  

 335	  



	   15	  

We find that we are able to capture to a high degree of accuracy the full 20-year runoff and AET 336	  

signals by simulating only three future years of CCSM4. (We happened to choose September 337	  

2058 to August 2061.) For example, averaged over non-urban land points, the 20-year and 3-year 338	  

runoff signals associated with CCSM4 are -17.6 and -16.3 mm/yr, respectively. Previous 339	  

analyses of this output found that the 20-year precipitation and temperature signals could also be 340	  

captured with a high degree of precision by only dynamically-downscaling three future years 341	  

(Berg et al. 2015; Walton et al. 2015). Thus, to conserve computational resources, we only 342	  

dynamically downscale the remaining four GCMs (CNRM-CM5, GFDL-CM3, MIROC-ESM-343	  

CHEM and MPI-ESM-LR) for three years. For each of these four future simulations, WRF 344	  

boundary conditions are created by adding the 20-year GCM climate change signal (2041–2060 345	  

minus 1981–2000) to NARR data corresponding to September 1998 to August 2001. Though the 346	  

future simulations of CNRM-CM5, GFDL-CM3, MIROC-ESM-CHEM and MPI-ESM-LR are 347	  

only three years long, the climate change forcings therefore reflect that of a 20-year averaging 348	  

period.  349	  

 350	  

Similar to the twenty-year baseline and twenty-year CCSM4 simulations, the three-year mid-21st 351	  

century simulations associated with CNRM-CM5, GFDL-CM3, MIROC-ESM-CHEM and MPI-352	  

ESM-LR are run as three one-year simulations re-initialized every August. The WRF output is 353	  

then used to force a continuous three-year future climate simulation using Noah-LSM.  354	  

 355	  

Given projections for little to no ensemble-mean precipitation change in our study domain 356	  

(discussed in section 4a and Berg et al. 2015), it is useful and relevant to study the hydrologic 357	  

response to warming in isolation from precipitation changes. Thus, we perform three idealized 358	  



	   16	  

twenty-year simulations with Noah-LSM designed to isolate the imprint of warming on runoff 359	  

and AET. The idealized simulations are identical to the twenty-year Noah-LSM baseline (1981-360	  

2000) simulation forced by WRF data, except with a spatially uniform 2-meter air temperature 361	  

increase of 2 °C, 4 °C and 6 °C at every time step. All other climatic variables are unchanged 362	  

from baseline values. The idealized simulations allow us to examine the sensitivity of surface 363	  

hydrology in the Los Angeles region to a range of likely temperature changes (Walton et al. 364	  

2015). Increases in near-surface air temperature can affect runoff characteristics by altering the 365	  

form of precipitation, AET rate and snowmelt timing. We label the results from the idealized 366	  

simulations as baseline, T2, T4 and T6.  367	  

 368	  

4. Results 369	  

 370	  

In this section, we present results from both Noah-LSM/WRF dynamical-downscaling of GCM 371	  

output and the idealized simulations.  372	  

 373	  

a) Small precipitation changes 374	  

 375	  

Fig. 5 (first row) shows annual mean precipitation changes for five GCMs as simulated by Noah-376	  

LSM/WRF. The precipitation projections show some intermodel spread, particularly with regard 377	  

to the sign of the change. The ensemble-mean precipitation change for non-urban land surfaces 378	  

across the five GCMs is -6.6 mm/yr, a minute change reflective of a cancellation between 379	  

moistening (CNRM-CM5 and MPI-ESM-LR) and drying (CCSM4, GFDL-CM3 and MIROC-380	  
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ESM-CHEM) models. CNRM-CM5 and GFDL-CM3 project the largest precipitation changes, 381	  

with changes of +51 and –39 mm/yr averaged over non-urban land surfaces, respectively.  382	  

 383	  

These signals in precipitation changes are modest compared to the region’s interannual 384	  

variability. The standard deviation of baseline (1981-2000) precipitation averaged over non-385	  

urban land surfaces as simulated by Noah-LSM/WRF is 153 mm/yr, roughly 40% of the 386	  

climatological mean and reflective of the region’s significant interannual hydroclimate 387	  

variability. Thus the downscaled change in average precipitation over non-urban land surfaces as 388	  

projected by even the most extreme model (CNRM-CM5) is only about a third of the baseline 389	  

interannual variability. Berg et al. (2015) further explore the region’s precipitation changes, and 390	  

conclude that the most likely result is a small change in mean precipitation compared to natural 391	  

variability, with the sign of the change being uncertain. Berg et al. (2015) also extend the 392	  

analysis to include the full CMIP5 GCM ensemble through statistical techniques. However, their 393	  

results are very similar to those obtained from dynamically downscaling only these five GCMs.  394	  

 395	  

b) Runoff, AET and PET changes 396	  

 397	  

Annual mean runoff changes for the five GCMs are shown in Fig. 5 (second row). For each 398	  

GCM, the runoff change mirrors the precipitation change in both sign and magnitude. Fig. 6 399	  

corroborates this. The spatial patterns of precipitation change and runoff change are tightly 400	  

correlated for all models, with a model-average spatial correlation coefficient of r = 0.88. For all 401	  

five future simulations, the sign of the change in annual runoff is the same as the sign of the 402	  

change in annual precipitation for over 98% of non-urban land grid points in the study domain. 403	  
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Discrepancies are greatest over the desert, where a positive precipitation change may lead to a 404	  

slightly negative runoff change due to enhanced AET (e.g. MIROC-ESM-CHEM).  Overall, any 405	  

precipitation change appears to control the runoff change. Because the precipitation changes are 406	  

modest, so are the runoff change signals. For CNRM-CM5, the model with the strongest 407	  

moistening, the average runoff signal over non-urban land surfaces is 34 mm/yr. The average 408	  

runoff signal over non-urban land surfaces for the driest model, GFDL-CM3, is -21 mm/yr. Both 409	  

values are small compared to the standard deviation of runoff in the baseline period (103 mm/yr). 410	  

 411	  

We now turn to changes in PET and AET. As expected from the relationship between 412	  

temperature and saturation vapor pressure, each future simulation projects a domain-wide 413	  

increase in PET for all non-urban land surfaces (not shown), with an ensemble-mean change of 414	  

186 mm/yr averaged over non-urban land areas. PET increases are highest above 1000m, where 415	  

decreases in future snow cover and albedo during winter lead to increased absorption of 416	  

downward radiation, providing more energy for PET. Annual mean AET changes are shown in 417	  

Fig. 5 (third row). Despite domain-wide PET increases, AET rates are severely limited by 418	  

surface water availability. In fact, for the 5 dynamically downscaled GCMs, the sign of model’s 419	  

precipitation change is the main determinant of the model’s AET change. The partitioning of the 420	  

precipitation change into a runoff change or AET change is largely determined by baseline 421	  

partitioning of precipitation into runoff and AET (Fig. 2.). However, the relationship between the 422	  

precipitation change and AET change is not as strong as the relationship between the 423	  

precipitation change and runoff change (model-average spatial correlation coefficient of r = 0.61 424	  

vs. r = 0.88).  425	  

 426	  
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c) Idealized simulations: Limited influence of warming on AET 427	  

 428	  

It is noteworthy that the annual mean change in AET for each of the five dynamically-429	  

downscaled GCMs is small and precipitation-determined, even though there is significant near-430	  

surface warming. One would expect warmer surface air temperatures and increased downward 431	  

longwave radiation to enhance AET throughout the domain at least somewhat. We turn to the 432	  

idealized simulations to quantify the sensitivity of runoff and AET to warming in the absence of 433	  

a precipitation change. By looking at differences between the idealized simulations and the 434	  

baseline (1981-2000) simulation, we examine the direct influence of changing temperatures on 435	  

annual mean AET and runoff. 436	  

 437	  

Fig. 7. shows the change in annual 2-meter air temperature (first row) and annual AET (second 438	  

row) for each of the idealized simulations: T2, T4 and T6. Due to a nearly negligible change in 439	  

infiltration, the surface water balance equation constrains the runoff change for each simulation 440	  

to be almost identical in magnitude to the AET change, with an opposite sign. For even the most 441	  

extreme warming case (T6), the domain-average AET change over non-urban land surfaces (5.01 442	  

mm/yr) pales in comparison to both the baseline mean (232 mm/yr) and interannual variability 443	  

(56 mm/yr). Runoff changes are similarly miniscule. The absolute change in domain-average 444	  

evaporative fraction of precipitation (E/P) increases by 0.6% from the baseline simulation to T6 445	  

scenario, a tiny amount. The AET changes (second row) appear to have some spatial structure, in 446	  

that the strongest AET increases are at high elevations (see topography in Fig. 1b) as well as at 447	  

locations with high AET in the baseline (Fig. 2c). However, even for a mountain location where 448	  

the AET signal is stronger (like the location referenced in Fig. 3a), annual AET in the T6 449	  
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scenario increases by 11 mm/yr, a mere 2% relative increase. Without a precipitation change, 450	  

surface air temperatures would have to increase significantly more than 6º C to have a substantial 451	  

impact on annual AET and runoff. 452	  

 453	  

The insensitivity of surface hydrology to warming is explored further in Fig. 8, which shows the 454	  

average annual cycles of PET and AET over non-urban land surfaces for the baseline (1981-455	  

2000) simulation (blue), T2 (yellow), T4 (red) and T6 (black). In Fig. 8a, PET increases 456	  

significantly in all idealized simulations following the monthly temperature distribution. 457	  

Domain-average annual PET increases by 5%, 10% and 15% for T2, T4 and T6, respectively.  458	  

  459	  

In contrast, AET (Fig. 8b) remains largely unchanged in all three idealized cases. This is an 460	  

artifact of Southern California’s Mediterranean climate (discussed in section 1), in which the 461	  

annual cycles of precipitation and soil moisture are out of phase with that of PET. In the case of 462	  

T2, T4 and T6, PET increases are strongest during the months of April to October (Fig. 8a), yet 463	  

soil moisture is relatively low from July to January (in both the baseline and idealized 464	  

simulations) due to the seasonality of precipitation. As a result, only the months of April through 465	  

June in the idealized scenarios have both significantly enhanced PET and relatively moist soils. 466	  

For the most extreme warming scenario (T6), this overlap of enhanced PET and soil moisture 467	  

availability leads to monthly AET increases of 7.8%, 6.5% and 5% for April, May and June, 468	  

respectively (Fig. 8b). The April to June AET change then accelerates the soil moisture decrease 469	  

that occurs in the baseline simulation from May to July. This exhausts nearly the same amount of 470	  

soil moisture as in the baseline, but earlier in the season, with little effect on annual mean runoff. 471	  

The remaining months of July through March have either limited soil moisture or relatively low 472	  
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PET, prohibiting increases in annual total AET. Thus annual mean runoff and AET are largely 473	  

insensitive to warming. One could imagine a very different situation if the study domain received 474	  

significant summer rainfall, which would cause elevated soil moisture values at the same time as 475	  

the peak in the annual PET cycle. In this case, warming could lead to enhanced AET and 476	  

decreased annual mean runoff. 477	  

 478	  

This insensitivity of annual mean runoff and AET to future temperature changes in Southern 479	  

California is consistent with other studies over Northern California. Risbey and Entekhabi (1996) 480	  

found annual mean streamflow in the Sacramento River to be nearly insensitive to temperature 481	  

changes, but very sensitive to precipitation changes. Dettinger et al. (2004) found similar results 482	  

in the Merced, Carson and American river basins of California. Together, the dynamically-483	  

downscaled GCMs and idealized simulations suggest both annual mean runoff and AET in the 484	  

Los Angeles region are almost insensitive to warming, but highly sensitive to changes in annual 485	  

mean precipitation. 486	  

 487	  

5. Summary and conclusions 488	  

 489	  

Although it has been well documented that climate change is likely to have profound impacts on 490	  

the hydrology of the Western United States, few studies have examined the sensitivity of surface 491	  

hydrology in the Los Angeles region to climate change. Without such analysis, the scientific 492	  

foundation for informed adaptation strategies at the local and regional scale is missing. This 493	  

study aims to close this knowledge gap by exploring sensitivities of both annual runoff and AET 494	  

to regional precipitation and temperature changes.  495	  
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 496	  

This study uses dynamical-downscaling techniques to examine mid-21st century changes to 497	  

surface hydrology over the Los Angeles region under RCP8.5 for five CMIP5 GCMs: CCSM4, 498	  

CNRM-CM5, GFDL-CM3, MIROC-ESM-CHEM and MPI-ESM-LR. Any change in annual 499	  

precipitation is mirrored by a similar, though weaker, change in runoff. However, the average 500	  

annual precipitation change over non-urban land surfaces for each GCM is small compared to 501	  

their range of baseline interannual variability. Despite the warming projected by the 502	  

dynamically-downscaled GCMs in this study, annual mean runoff and AET signals are also 503	  

found to be well within their range of baseline interannual variability. 504	  

 505	  

Given the small precipitation change, this study includes a series temperature sensitivity 506	  

experiments to shed light on the hydrologic insensitivity to warming. Three idealized simulations 507	  

are performed in which the baseline climate is perturbed by uniform near-surface air temperature 508	  

increases of 2º, 4º and 6º C. Significant increases in annual mean PET occur with increasing 509	  

temperatures, with strongest increases in the warm months. Despite significantly enhanced April 510	  

to October PET in the idealized warming scenarios, available soil moisture confines AET 511	  

increases to the months of April through June. Small springtime AET increases accelerate soil 512	  

moisture drying, but exhaust nearly the same amount of moisture, leading to miniscule changes 513	  

in annual mean runoff and AET for all idealized scenarios. This is an artifact of the out-of-phase 514	  

relationship between the annual precipitation and soil moisture cycles and annual PET cycle in 515	  

Mediterranean-type climate zones like the Los Angeles region. 516	  

 517	  
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The finding that annual mean runoff is nearly insensitive to temperature increases in the Los 518	  

Angeles region may have implications for other Mediterranean climate regions. Surface 519	  

hydrology in other Mediterranean climate zones, including most lands around the Mediterranean 520	  

Sea, Western and Southern Australia, and Chile, is similar to that of the Los Angeles region, and 521	  

would likely respond in a similar manner to warming. Previous studies of warming impacts to 522	  

surface hydrology in Mediterranean-type climates outside California have indeed shown similar 523	  

results. Chiew et al. (1995) applied a range of plausible temperature and precipitation changes to 524	  

a rainfall-runoff model to study the sensitivity of runoff and soil moisture in Australian 525	  

catchments to potential changes in climate. They found that compared to precipitation, 526	  

temperature increases alone have negligible impacts on runoff and soil moisture. New (2002) 527	  

examined the sensitivity of runoff in four mountainous catchments in the southwestern Cape of 528	  

South Africa to a range of possible future climate changes, and found that streamflow in all 529	  

catchments is more responsive to precipitation changes than PET changes.  530	  

 531	  

One potential limitation of this study is that the modeling framework does not take into 532	  

consideration the physiological effects of increased atmospheric carbon dioxide concentrations 533	  

on plant stomatal resistance (i.e. CO! fertilization). Increases in atmospheric carbon dioxide 534	  

concentrations enhance the leaf’s internal carbon dioxide absorption rate. This gives plants the 535	  

flexibility to increase their stomatal resistance to conserve water. CO! fertilization generally 536	  

results in a decrease of canopy transpiration and therefore affects the water balance (Betts et al. 537	  

2007). In our simulations, the CO! fertilization effect would reduce AET sensitivity to 538	  

temperature increases still further by reducing AET. Therefore, if this study had included CO! 539	  
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fertilization effects, the result that annual mean AET and runoff are nearly insensitive to 540	  

temperature increases would hardly change. 541	  

 542	  

This study diagnoses the sensitivity of the Los Angeles region’s surface hydrology to both 543	  

precipitation and temperature changes. Together, the dynamically-downscaled GCMs and 544	  

idealized simulations suggest both annual mean runoff and actual evapotranspiration in the Los 545	  

Angeles region are almost insensitive to warming, but are instead controlled by possible changes 546	  

in annual mean precipitation. Surface hydrology in other Mediterranean climate regions will 547	  

likely behave similarly. This result greatly mitigates a potential vulnerability of water resources 548	  

to a changing climate in an important semi-arid region of the world. It also reveals that a regional 549	  

climate change adaptation strategy relying on local water resources is a viable one. 550	  

 551	  

 552	  

 553	  

 554	  

 555	  

 556	  

 557	  
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 783	  

FIG. 1: a) Model setup, with three nested WRF domains at resolutions of 18, 6, and 2 km. 784	  
Topography (m) is shown at the resolution of the 18km domain in color and black lines show 785	  
boundaries for US states. (b) Topography of the innermost domain (2- km resolution) of the 786	  
regional simulation, with the border of Los Angeles County in black. In (b), black circles 787	  
indicate locations of the 3 gauges used for streamflow validation. The blue and red circles in (b) 788	  
indicate the mountain location and desert location, respectively, referenced in Fig. 3 and section 789	  
2b.  790	  
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 791	  

FIG. 2: Noah-LSM/WRF simulation of annual a) accumulated precipitation, b) runoff and c) 792	  
actual evapotranspiration for the baseline (1981-2000) period. Unit is mm/yr. The 1000m 793	  
topography contour is highlighted in black. Grid cells with missing values are urban or over 794	  
water surfaces. 795	  
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 797	  

FIG. 3: Noah-LSM/WRF simulation of the mean annual cycle of the water balance at a point 798	  
representative of (a) mountain locations and (b) the inland desert. Monthly accumulated values 799	  
(unit: mm/month) of precipitation (blue), runoff (cyan), actual evapotranspiration (green) and 800	  
potential evapotranspiration (black) are shown with respect to the left y-axis. The climatological 801	  
monthly soil moisture (unit: m3/m3) of the top 2m of the soil column is also shown (red) with 802	  
respect to the right y-axis. 803	  
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 805	  
 806	  
FIG. 4: Evaluation of Noah-LSM/WRF dynamical downscaling of runoff during the baseline 807	  
period for three streamflow gauges. a) Observed vs. simulated monthly mean streamflow. b) 808	  
Observed vs. simulated annual mean streamflow. Observed streamflow data is compared to 809	  
simulated surface runoff aggregated upstream of the gauge within a watershed. Correlation 810	  
coefficients for each gauge are also presented. The line y = x is shown in black. 811	  
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 813	  
 814	  
FIG. 5: Noah-LSM/WRF simulation of the mid-21st century change (mm/yr) in precipitation 815	  
(row 1), runoff (row 2) and actual evapotranspiration (row 3) relative to the baseline period for 816	  
five GCMs under RCP8.5: CCSM4, CNRM-CM3, GFDL-CM3, MIROC-ESM-CHEM and MPI-817	  
ESM-LR. Blue shading indicates moistening, while yellow/red shading indicates drying. The 818	  
1000m topography contour is highlighted. 819	  
  820	  
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 821	  
 822	  
FIG. 6: Scatter plot of mid-21st century change in annual precipitation (mm/yr) vs. annual runoff 823	  
(mm/yr) at all non-urban land surface in the study domain when five GCMs under RCP8.5 are 824	  
downscaled: CCSM4, CNRM-CM3, GFDL-CM3, MIROC-ESM-CHEM and MPI-ESM-LR. 825	  
Correlation coefficients are shown in the bottom corner for each plot. The line y = x is shown in 826	  
blue. 827	  
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 829	  
FIG. 7: Results from three idealized simulations in which Noah-LSM/WRF dynamically-830	  
downscaled output for the baseline (1981-2000) period is perturbed by a uniform increase in 831	  
near-surface air temperature of 2° C (left column, T2 scenario), 4° C (center column, T4 832	  
scenario),  and 6° C (right column, T6 scenario). Changes in annual near-surface air temperature 833	  
(first row, unit: °C) and actual evapotranspiration (second row, unit: mm/yr) are shown for each 834	  
idealized scenario. Precipitation is not perturbed. The 1000m topography contour is shown. 835	  
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 837	  
FIG. 8: Noah-LSM simulation of the domain-average annual cycle of (a) potential 838	  
evapotranspiration and (b) actual evapotranspiration over non-urban land surfaces for the 839	  
baseline (1981-2000) simulation (blue) and three idealized simulations in which the baseline 840	  
simulation is perturbed by a uniform increase in near-surface air temperature of 2° C (yellow, T2 841	  
scenario), 4° C (red, T4 scenario), and 6° C (black, T6 scenario). Unit: mm/month. 842	  
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