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Abstract 22	

Using hybrid dynamical/statistical downscaling, we project 3-km resolution end-of-21st-century 23	

runoff timing changes over California’s Sierra Nevada Mountains for all available global climate 24	

models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). All four 25	

Representative Concentration Pathways (RCPs) adopted by the Intergovernmental Panel on 26	

Climate Change’s Fifth Assessment Report are examined. These multi-model, multi-scenario 27	

projections allow for quantification of ensemble-mean runoff timing changes and associated range 28	

of possible outcomes due to both intermodel variability and choice of forcing scenario. Under a 29	

“business-as-usual” forcing scenario (RCP8.5), warming leads to a shift toward much earlier 30	

snowmelt-driven surface runoff in 2091–2100 compared to 1991–2000, with advances of as much 31	

as 80 days projected in the 35-model ensemble-mean. For a realistic “mitigation” scenario 32	

(RCP4.5), the ensemble-mean change is smaller but still large (up to 30 days).  For all plausible 33	

forcing scenarios and all GCMs, the simulated changes are statistically significant, so that a 34	

detectable change in runoff timing is inevitable. Even for the mitigation scenario, the ensemble-35	

mean change is approximately equivalent to one standard deviation of the natural variability at 36	

most elevations. Thus even when greenhouse gas emissions are curtailed, the runoff change is 37	

climatically significant. For the business-as-usual scenario, the ensemble-mean change is 38	

approximately two standard deviations of the natural variability at most elevations, portending a 39	

truly dramatic change in surface hydrology by the century’s end if greenhouse gas emissions 40	

continue unabated.  41	

 42	

 43	

 44	
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1. Introduction  45	

Over half of California’s developed water comes from small streams in the ecologically-46	

sensitive Sierra Nevada (SN; USDA Forest Service 2009). Understanding future streamflow 47	

changes in this region is therefore critical to ensuring enough freshwater resources for humans and 48	

ecosystems in the coming decades. Recent warming has already produced detectable changes in 49	

the timing, magnitude, and variability of SN streamflow (Aguado et al. 1992, Dettinger and Cayan 50	

1995, Cayan et al. 2001, Regonda et al. 2005, Stewart et al. 2005, McCabe and Clark 2005, 51	

Maurer et al. 2007, Hidalgo et al. 2009, Kim and Jain 2011). Stewart et al. (2005) found that from 52	

1948 to 2000, a majority of SN rivers exhibited earlier timing of roughly 10–30 days during the 53	

snowmelt season. McCabe and Clark (2005) found a similar result for 84 streamflow gauges in the 54	

Western U.S., with increased April–July temperatures largely accounting for the advancement of 55	

runoff timing at most sites. Finally, Cayan et al. (2001) found that the first major pulse of 56	

snowmelt at high-elevation stream gauges in the Western U.S. advanced by about 10 days between 57	

1948 and 1995. 58	

While observed shifts in SN runoff timing have been well documented, few studies have 59	

produced quantitative estimates of its future changes and associated uncertainty. One reason for 60	

this is that runoff timing in this region is influenced by a complex interplay of climatic and 61	

geographic factors that are poorly resolved in coarse-resolution (~100-km) global climate models 62	

(GCMs). GCMs lack important spatial structure in local climatic factors that are dominant controls 63	

on runoff timing and its spatial distribution, such as temperature (T) and snowpack. Additionally, 64	

GCM resolution is too low to adequately represent physical watershed characteristics (e.g. 65	

elevation, slope, and vegetation type and coverage) that can also profoundly influence runoff 66	

timing and its spatial distribution. 67	
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These limitations have motivated efforts to regionalize GCM climate change signals 68	

through a variety of downscaling methods (Giorgi et al. 1994, Snyder et al. 2002, Timbal et al. 69	

2003, Hayhoe et al. 2004, Leung et al. 2004, Tebaldi et al. 2005, Duffy et al. 2006, Cabré et al. 70	

2010, Salathé et al. 2010, Pierce et al. 2013a). In this study, we rely on dynamical downscaling to 71	

simulate SN hydroclimate. We use a high-resolution regional climate model (RCM) to explicitly 72	

simulate complex fine-scale physical processes (Caldwell et al. 2009, Salathé et al. 2008, Salathé 73	

et al. 2010, Arritt and Rummukainen 2011, Pierce et al. 2013a). Our RCM framework resolves 74	

much of SN’s fine-scale topography, the associated orographic precipitation (P), and demarcations 75	

between solid and liquid forms of P. These processes are crucial for accurate representations of 76	

accumulated wintertime snowpack and spring/summertime runoff. Moreover, the RCM more 77	

credibly simulates the strength of the snow albedo feedback (SAF) over high elevations, which has 78	

an intricate spatial structure and is also a critical influence on local warming and runoff timing.  79	

Previous studies have used RCMs to project future runoff timing changes in the SN. 80	

Rauscher et al. (2008) used the ICTP Regional Climate Model RegCM3 (Pal et al. 2007) to 81	

investigate future changes in snowmelt-driven runoff over the Western U.S. under the A2 82	

emissions scenario (as described in the Special Report on Emissions Scenarios; Nakicenovic et al. 83	

2000). They found that increases in January–March T of approximately 3–5° C could cause runoff 84	

to occur as much as two months earlier in the late 21st-century compared to a baseline period 85	

(1961–1989). Future runoff timing projections in Rauscher et al. (2008) are only for a small 86	

number of GCMs, yielding limited information about most-likely outcomes and the associated 87	

model spread. This study also relied on a single forcing scenario, making it impossible to evaluate 88	

the consequences of societal choices regarding future greenhouse gas emissions. 89	
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 Regionalizing a large number of GCM simulations is necessary to quantify ensemble-mean 90	

and uncertainty statistics for a single forcing scenario, let alone multiple forcing scenarios. 91	

However, this is impractical due to the high computational cost of RCMs. This shortcoming of 92	

RCMs highlights the need to develop a technique to project high-resolution future runoff timing in 93	

a way that fully samples the GCMs and forcing scenarios without a heavy computational burden. 94	

Stewart et al. (2004) provide an example of a more computationally feasible method using a 95	

statistically-based technique, i.e. relying on regression equations describing relationships among 96	

historical P, T, and runoff timing to project future runoff timing. However, they present results for 97	

only one climate model under one forcing scenario. Moreover, as with nearly all statistical 98	

techniques, their reliance on relationships derived from historical variability involves the so-called 99	

“stationarity” assumption, which may not be valid: It is possible those relationships may not hold 100	

in the future, especially for sustained changes in T that far exceed those observed during the 101	

historical period. 102	

The lack of a high-resolution multi-model, multi-scenario analysis of end-of-21st-century 103	

runoff timing changes over the SN serves as the primary motivation for this study. Here is a brief 104	

overview of our technique. First, we produce a historical or “baseline” simulation for the region by 105	

dynamically downscaling reanalysis data covering the final decade of the 20th century. Next, five 106	

GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5, Taylor et al. 2012) 107	

are dynamically downscaled under the Representative Concentration Pathway 8.5 (RCP8.5) 108	

forcing scenario (van Vuuren et al. 2011). Then, output from the dynamical simulations is used to 109	

build a simple statistical model of runoff timing that emulates the dynamical model behavior. This 110	

model takes advantage of dynamical downscaling’s physical credibility but is computationally 111	

efficient, allowing us to produce a large ensemble of runoff timing projections. Using the 112	
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statistical model, we project runoff timing changes for all available CMIP5 models and forcing 113	

scenarios associated with the IPCC Fifth Assessment Report (Van Vuuren et al. 2011). This 114	

allows for quantification of ensemble-mean future runoff timing changes in the SN and its 115	

associated uncertainty due to intermodel GCM spread, as well as the consequences associated with 116	

choice of forcing scenarios. Thus we can assess the degree to which runoff timing changes occur 117	

no matter which model or forcing scenario is chosen, and are therefore inevitable. Through 118	

comparison of the climate change signals with natural variability in the baseline simulation, we 119	

can also assess the statistical and climatic significance of the change signals. Because our 120	

technique involves both dynamical and statistical downscaling, we call it hybrid dynamical-121	

statistical downscaling, or simply hybrid downscaling. 122	

This paper is organized as follows: Section 2 describes the dynamical downscaling model 123	

configuration, and provides an observational evaluation of its performance. Section 2 also presents 124	

dynamically-downscaled end-of-21st-century changes to runoff timing. Section 3 describes the 125	

statistical runoff timing model and its evaluation. Section 4 describes statistically-based runoff 126	

timing projections for the full CMIP5 GCM ensemble under for all forcing scenarios. This section 127	

quantifies ensemble-mean runoff timing changes, ranges due to intermodel variability, and 128	

consequences stemming from choice of forcing scenario. Section 5 contains a discussion of the 129	

importance of SAF to the results, and compares the runoff timing changes projected in this study 130	

to those associated with other downscaled data products that do not include SAF. Finally, section 131	

6 summarizes the major findings of this study and their implications. 132	

 133	

2. Dynamical model set-up, evaluation and results 134	

2a. Dynamical model set-up 135	
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Dynamical downscaling is performed using the Weather Research and Forecasting (WRF) 136	

model version 3.5 (Skamarock et al. 2008). WRF is coupled to the community Noah land surface 137	

model with multi-parameterization options (Noah-MP, Niu et al. 2011). Three one-way nested 138	

domains are used to represent the complex topography of California and the SN as accurately as 139	

possible (Fig. 1a). The outermost domain spans the entire U.S. West Coast and adjacent Pacific 140	

Ocean at 27-km horizontal resolution. The middle domain, at 9-km resolution, covers all of 141	

California. The innermost domain, at 3-km resolution, spans the eastern edge of the Central Valley 142	

to the leeside of the California SN (Fig. 1b); this domain is the focus of this study.  143	

In each domain, all variables within five grid cells from the horizontal lateral boundary are 144	

relaxed toward the corresponding values at the boundaries. To provide a better representation of 145	

surface and boundary layer processes, the model’s vertical resolution is enhanced near the surface, 146	

with 30 out of 43 total sigma-levels below 3-km. WRF parameterization testing was done to 147	

optimize the model’s performance in hydroclimate simulations, with the aim of improving the 148	

realism of simulated SN snowpack and streamflow processes. The package of physical 149	

parameterizations consists of the New Thompson microphysics scheme (Thompson et al. 2008), 150	

Dudhia shortwave radiation scheme (Dudhia 1989), Rapid Radiative Transfer Model longwave 151	

(RRTM) longwave radiation scheme (Mlawer et al. 1997), MYNN Level 2.5 surface/boundary 152	

layer scheme (Nakanishi and Niino 2006), and Old Kain-Fritsch cumulus convection scheme 153	

(Kain and Fritsch 1990). Spectral nudging of temperature, zonal and meridional winds, and 154	

geopotential height is employed above the boundary layer (roughly 850 hPa) over the outermost 155	

27-km resolution domain.  156	

Climate changes signals are produced from a single baseline simulation and five future 157	

simulations. The baseline simulation spans October 1991 to September 2001 (water years 1992–158	
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2001; hereinafter “WY1992–2001”) and is a dynamical downscaling of the National Centers for 159	

Environmental Prediction’s 6-hourly North America Regional Reanalysis (NARR; Mesinger et al. 160	

2006). NARR is a relatively coarse-resolution (32-km) reanalysis dataset that provides lateral 161	

boundary forcings and initial conditions for the outermost WRF domain in Fig. 1a. The baseline 162	

simulation allows us to evaluate the model’s ability to simulate regional runoff timing through a 163	

comparison to observational data (section 2b) and serves as a climate state against which we can 164	

compare future climate simulations to measure change.  165	

Using the same model configuration as the baseline, we perform a five-member ensemble 166	

of dynamical downscaling experiments to simulate a future end-of-21st-century climate. The 167	

simulations go from October 2091 to September 2101 (water years 2092–2101, hereinafter 168	

“WY2092–2101”). We dynamically downscale GCM experiments forced by RCP8.5. Out of all 169	

available CMIP5 GCMs forced by RCP8.5, we select five (CNRM-CM5, GFDL-CM3, INM-170	

CM4, IPSL-CM5A-LR, and MPI-ESM-LR). These GCMs approximately sample the range of 171	

end-of-21st-century near-surface T and P changes over California (see Walton et al. 2016, Fig. 2).  172	

To produce boundary conditions for the future WRF simulations, we add a perturbation 173	

reflecting the mean change in GCM climatology to NARR data for WY1992–2001, following Schar et 174	

al. (1996), Hara et al. (2008), Kawase et al. (2009) and Rasmussen et al. (2011). To calculate these 175	

GCM climate changes, we first quantify the differences in GCM monthly climatology between the 176	

historical and RCP8.5 experiments (2081–2100 average minus 1981–2000 average). Differences 177	

are calculated for temperature, humidity, zonal and meridional winds, and geopotential height. 178	

Then, for each of the five dynamically-downscaled GCMs, we perturb the baseline 6-hourly 179	

NARR reanalysis data for each month by the corresponding monthly mean climatological change. 180	

The perturbed NARR fields then serve as WRF boundary conditions for five future climate 181	
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simulations. This method allows us to assess how WY1992–2001 would transpire if the mean climate 182	

were altered to reflect the climate changes projected by each of the five GCMs. It allows us to 183	

quantify how the climate change signals simulated in the GCMs are expressed at the regional 184	

scale, without the future simulations being subject to significant biases in mean state often found 185	

in GCMs. For additional information on model setup, parameterizations and design of future 186	

simulations, the reader is referred to Walton et al. (2016).  187	

 188	

2b. Baseline runoff timing climatology and model evaluation 189	

We first evaluate WRF’s ability to simulate surface runoff timing during the baseline 190	

period. As a measure of runoff timing, we consider the date in the water year (October 1 – 191	

September 30; hereinafter WY) by which 50% of the cumulative WY surface runoff has occurred 192	

(R50). R50 is widely used as a metric of snowmelt timing (Regonda et al. 2005, Moore et al. 2007, 193	

Rauscher et al. 2008, Hidalgo et al. 2009, Wenger et al. 2010, Ashfaq et al. 2013). R50 is similar to 194	

the center timing of streamflow used in Stewart et al. (2004), Stewart et al. (2005) and McCabe 195	

and Clark (2005), but is found to be less sensitive to outliers in streamflow (Moore et al. 2007). 196	

Moreover, Regonda et al. (2005) suggest that R50 is a more reliable indicator of snowmelt timing 197	

(in its relation to climatic variability and change) than the day of peak flow. In this paper, we use 198	

R50 both for model evaluation and as a metric to diagnose future changes to runoff timing. 199	

Fig. 2 presents the baseline (WY1992–2001) climatological date of R50 in the 3-km domain 200	

(seen in Fig. 1b). Climatological R50 generally occurs after March 1 throughout the SN and shifts 201	

to even later in the WY as both elevation and the fraction of precipitation falling as snow (S/P) 202	

increase. At lower elevations in the Northern SN where the annual S/P (not shown) ranges from 203	

0.6 to 0.8, climatological R50 generally occurs before the start of summer. However, mid to high 204	
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elevations over the Central and Southern SN have a higher S/P ratio (0.8 to 0.95), which leads to 205	

snowmelt-driven surface runoff throughout the summer months, pushing back climatological R50. 206	

For example, R50 in the mountains just southwest of Mono Lake typically occurs as late as the 207	

beginning of July. Throughout the Central Valley, Owens Valley and western Great Basin Desert 208	

along the California-Nevada border, annual P is low, and any P typically falls as rain (S/P < 0.2). 209	

So surface runoff timing matches P timing. 210	

For this study, we consider surface runoff timing changes at locations where surface runoff 211	

is mostly generated by snowmelt. The March 1 R50 cutoff date segregates snowfall-dominated grid 212	

points from rain-dominated regions or locations with minute climatological P. The black contour 213	

in Fig. 2 denotes locations with climatological baseline R50 occurring on or after March 1, 214	

indicating snowmelt-dominated runoff. The average baseline climatological S/P within the 215	

contoured region is 0.86, also indicative of a snowfall-dominated regime. Within the contoured 216	

region in Fig. 2, the median and mean climatological percentages of total water-year runoff 217	

occurring from April–July are 78% and 69%, respectively. This is consistent with other snowmelt-218	

dominated watersheds in western North America examined by Stewart et al. (2005). We consider 219	

only grid points with climatological baseline R50 on or after March 1 for the rest of the study. We 220	

also exclude inland water locations in our analyses. From here forward, the term “domain-221	

average” shall refer to an average over this restricted zone. 222	

The dynamical model’s ability to reproduce runoff timing variations during the baseline 223	

period can be assessed by comparing simulated R50 to observations obtained from the United 224	

States Geological Survey Hydro-Climatic Data Network-2009 (USGS HCDN-2009, 225	

http://waterdata/usgs.gov/nwis/). The USGS HCDN-2009 is a network of streamflow gauges 226	

having the following characteristics: (1) natural streamflow least affected by direct human 227	
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activities, (2) accurate measurement records, and (3) at least 20 years of complete and continuous 228	

records through WY 2009 (Slack et al. 1993; Lins 2012). We obtained daily, quality-controlled 229	

streamflow data from 11 stations for which data was available within our study domain for the 230	

baseline period. The station locations are indicated in Fig. 1b with blue circles, and information 231	

associated with each station is summarized in Table 1. The 11 stations represent a variety of 232	

elevations, drainage areas and USGS eight-digit Hydrologic Unit Codes across SN creeks and 233	

rivers. 234	

The scatter plot in Fig. 3 presents observed versus simulated climatological R50 for each of 235	

the 11 stations. Simulated climatological R50 is taken to be the average R50 of the grid points 236	

upstream of a gauge within that gauge’s USGS Hydrologic Unit. This is equivalent to assuming 237	

instantaneous transport of water from the grid cell to the stream gauge location. A portion of the 238	

biases in this evaluation is likely due to this admittedly primitive river routing scheme. Each 239	

gauge’s data point is also colored by the corresponding interannual correlation coefficient. For 240	

each gauge, simulated R50 is very well correlated with the observed R50, with temporal r ranging 241	

from 0.75 to 0.96. (The gauge-average is 0.87.) Fig. 3 also demonstrates that observed and 242	

simulated R50 dates are well-correlated spatially (r = 0.62) across all gauges. The root-mean-243	

square error between observed and simulated climatological R50 is 12.2 days. Overall, the degree 244	

of agreement between simulated and observed R50 dates indicates that the dynamical model is able 245	

to capture the main features of spatial and temporal R50 variability across the SN. In section 3, we 246	

also evaluate the realism of the dynamical model’s sensitivity of R50 to spring temperatures, a key 247	

parameter of the statistical model we develop to project future R50. 248	

 249	

2c. Dynamically-downscaled changes in runoff timing 250	
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Fig. 4 (row 1) presents the dynamically-downscaled WRF end-of-21st-century change 251	

(WY2092–2101 minus WY1992–2001) in R50 (ΔR50) under the RCP8.5 forcing scenario for the five 252	

GCMs. For all simulations, advances in R50 are projected at all locations with substantial 253	

climatological baseline snowmelt-driven surface runoff. GFDL-CM3 (Fig. 4b) and IPSL-CM5A-254	

LR (Fig. 4d) project the largest advances, with domain-average advances greater than 60 days. 255	

Advances in domain-average mean R50 for CNRM-CM5 (Fig. 4a) and INM-CM4 (Fig. 4c) are 256	

smaller, but are still nearly 6 weeks earlier. 257	

For all dynamically-downscaled GCMs, advances in mean R50 tend to be greater on 258	

western-facing mountain slopes. This spatial pattern can be explained by mean near-surface (2-259	

meter) springtime (March-May) warming projections (ΔTMAM). Fig. 5 (row 1) presents WRF 260	

dynamically-downscaled end-of-21st-century ΔTMAM under RCP8.5. For each of the five GCMs, 261	

somewhat stronger warming is projected on the western-facing mountain slopes near the 262	

springtime freezing line. These regions have the strongest SAF (Walton et al. 2016) and greatest 263	

April 1st snow water equivalent (SWE) loss (Sun et al. 2016). This warming leads to decreases in 264	

annual-mean S/P and earlier snowmelt, which together result in large advances in mean R50 in 265	

those areas. Another feature of the spatial patterns of R50 advances is relatively small changes at 266	

the highest elevations in the Southern SN. Despite significant future warming (Walton et al. 2016), 267	

these areas remain well above the freezing line during the accumulation season. As a result, 268	

changes to S/P and snow accumulation are small at the highest elevations, and the weak advances 269	

in R50 (10-20 days) at those locations are primarily due to earlier snowmelt.  270	

Intermodel differences in ΔR50 can largely be explained by differences in ΔTMAM, as ΔR50 271	

appears to be strongly negatively related to ΔTMAM. GFDL-CM3 and IPSL-CM5A-LR project 272	

large ΔTMAM. Domain-average spring warmings are 6.0 °C and 6.9 °C, respectively, and some 273	
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locations warm more than 7 °C. This strong warming explains the sizable advances in mean R50 274	

for GFDL-CM3 and IPSL-CM5A-LR. Weaker ΔTMAM in INM-CM4 and CNRM-CM5 (domain-275	

average 3.6 °C and 3.7 °C, respectively) corresponds to smaller mean R50 advances. (MPI-ESM-276	

LR is moderate in both ΔTMAM and ΔR50.) This link suggests ΔTMAM might be a reasonable 277	

predictor for ΔR50, a hypothesis that will be explored in the description of the statistical ΔR50 278	

model in section 3. In section 3, we also consider mean P changes as a predictor for ΔR50. 279	

However, P timing hardly changes in the downscaled WRF simulations, so intermodel differences 280	

in R50 advances are likely not attributable to P changes, as we will show. 281	

 282	

3. ΔR50 Statistical model description and evaluation 283	

The previous section focused on projections of changes to mean R50 for only a single time 284	

slice, a single forcing scenario, and for only five GCMs. This information is insufficient to fully 285	

quantify the range of possible outcomes due to intermodel spread and choice of forcing scenario. 286	

To project ΔR50 for all available CMIP5 GCMs and all forcing scenarios, we adopt a hybrid 287	

downscaling approach, developing a computationally efficient statistical ΔR50 model that is 288	

designed to emulate the dynamical model. In this section, we describe and evaluate this statistical 289	

model. 290	

As noted above, there is a negative relationship between WRF ΔR50 (Fig. 4, row 1) and 291	

ΔTMAM (Fig. 5, row 1). To quantify this relationship, Fig. 6a shows the correlation coefficient for 292	

each grid point between dynamical ΔR50 and ΔTMAM. The correlation values reflect a blend of 293	

intermodel and interannual variability, as they are calculated from annually-averaged ΔR50 and 294	

ΔTMAM values from all five models. This produces a sample size of 50 for each grid point (5 295	

models × 10 water years). There is a very strong anti-correlation between ΔR50 and ΔTMAM, with a 296	
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spatially-averaged value of r = -0.82. That ΔTMAM would be a predictor for ΔR50 is physically 297	

sensible, as climatological baseline R50 for many mountainous locations falls in March–May (Fig. 298	

2), and March–May runoff accounts for a significant portion of annual runoff throughout much of 299	

the SN. Thus we aim to build a statistical modeling framework that projects ΔR50 given ΔTMAM. 300	

Below we discuss our choice of ΔTMAM as a predictor further, and other predictors we considered. 301	

The first step is to linearly regress dynamically-downscaled ΔR50 onto dynamically-302	

downscaled ΔTMAM for each pair of coordinates (i,j) in the 3-km resolution domain with 303	

climatological baseline R50 on or after March 1. As with the corresponding correlation coefficient 304	

shown in Fig. 6a, the slope (α) of this linear regression is determined by intermodel and 305	

interannual variability, i.e. 50 data points (10 water years × 5 models) for each (i,j) pair. Fig. 6b 306	

presents the spatial pattern of α, the average expected advance in mean R50 timing per degree 307	

March–May near-surface warming. In calculating α, we force the linear relationship to go through 308	

(0,0), i.e. it has no intercept. This is an expression of the physical constraint that one would not 309	

expect a change in R50 timing without a change in TMAM. The domain-average α is -10.2 days/°C, 310	

but Northern SN and mid-elevation western slopes are much more sensitive, with projected R50 311	

changes of more than -19 days/°C. The strong sensitivity at these mid-elevation locations is due to 312	

both warming-driven S/P decreases and earlier snowmelt, which conspire to advance R50. The 313	

sensitivity at higher elevations is lower because the TMAM increases lead mostly just to earlier 314	

snowmelt. Moreover, these more sensitive regions correspond well to regions of greatest projected 315	

April 1st SWE decreases (Sun et al. 2016) and greatest SAF-enhanced warming and snow cover 316	

loss (Walton et al. 2016). After determining α, we then predict ΔR50 with following equation: 317	

ΔR50,GCM,i,j ≅ αi,j * ΔTMAM,GCM,i,j              (1) 318	

 319	
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 It is possible to evaluate the realism of α as simulated by the dynamical model. The 320	

relationship between purely interannual R50 and TMAM anomalies is linear to a very good 321	

approximation in both observations and the WRF simulation. Fig. 7 presents a scatter plot of 322	

observed annual TMAM anomalies vs. R50 anomalies over WY1916–2014. Observed interannual R50 323	

and TMAM variations in California are very anti-correlated (r = -0.67). The observed linear 324	

sensitivity of WY1916–2014 R50 to TMAM is -9.46 days/°C. In WRF, the domain-average slope of the 325	

linear regression of WY1992–2001 R50 onto TMAM is -11.4 days/°C (close to the domain-average α of -326	

10.2 days/°C). The approximate agreement between observations and the WRF simulation 327	

provides crucial support for the realism of the WRF simulation of streamflow timing and a 328	

statistical model based on the linear relationships between ΔR50 and ΔTMAM. This form of model 329	

evaluation, focusing on sensitivity parameters key to climate change response, is likely more 330	

relevant than the general model evaluation of temporal and spatial variability in streamflow 331	

presented in section 2b. 332	

One source of error in the statistical ΔR50 model (Eq. 1) arises from approximating ΔR50 as 333	

linear function of ΔTMAM. Though this error source must be small because the linear correlation 334	

coefficients between the two variables are very high (Fig. 6a), we can evaluate it by statistically 335	

projecting ΔR50 with the dynamically-downscaled ΔTMAM under RCP8.5 (Fig. 5, row 1) as input. 336	

Row 2 of Fig. 4 presents this statistical ΔR50 projection, which can be compared to dynamically-337	

downscaled ΔR50 (Fig. 4, row 1). Overall, the approximated values of ΔR50 (Fig. 4, row 2) almost 338	

perfectly mirror the dynamically-downscaled values (Fig. 4, row 1). The approximated spatial 339	

patterns are highly correlated with their dynamical counterparts (r > 0.84 for all GCMs). The mean 340	

absolute errors (MAE, calculated by averaging the absolute value of the errors over the region of 341	

interest) are less than 11 days for all models, small compared to domain-average advances in R50 342	
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that range between 39 and 66 days. This comparison lends further credibility to the choice to 343	

model ΔR50 as a linear function of ΔTMAM. 344	

To apply the statistical ΔR50 model to all GCMs and forcing scenarios, we rely on 345	

projections of ΔTMAM from Walton et al. (2016, hereinafter “W2016”). W2016 produced 3-km 346	

horizontal resolution monthly near-surface warming projections for our study domain for all 347	

available CMIP5 GCMs under forcing scenarios RCP8.5, 6.0, 4.5 and 2.6. W2016 also used a 348	

hybrid dynamical-statistical technique to downscaling warming that relies on two large-scale 349	

GCM predictors (regional-mean warming and east-west warming contrast) and a representation of 350	

SAF’s significant contribution to elevational variations in warming. Fig. 5 (row 2) presents end-351	

of-21st-century hybrid downscaled ΔTMAM under RCP8.5 from W2016. As discussed in detail in 352	

W2016, this method captures the spatial pattern and approximate magnitude of ΔTMAM for each of 353	

the 5 dynamically-downscaled GCMs (Fig. 5, row 1), including the warming enhancement due to 354	

SAF at mid-elevations and in the Northern SN.  355	

To assess the error associated with the use of W2016’s hybrid downscaled ΔTMAM as input 356	

to our statistical ΔR50 model, we compare the dynamically-downscaled ΔR50 projections under 357	

RCP8.5 (Fig. 4, row 1) to those calculated by the statistical ΔR50 model (Eq. 1), now with the 358	

hybrid downscaled ΔTMAM projections of W2016 as input (Fig. 4, row 3). Overall, the spatial 359	

correlations between these ΔR50 patterns and WRF’s dynamically downscaled patterns are very 360	

high (r > 0.83) and the MAE values are low compared to the magnitude of ΔR50, indicating that 361	

the use of hybrid downscaled ΔTMAM input reproduces dynamically-downscaled ΔR50 projections 362	

reasonably well. Still, we note some minor discrepancies. For GFDL-CM3, INM-CM4 and IPSL-363	

CM5A-LR, hybrid projections of ΔTMAM by W2016 (Fig. 5, row 2) underestimate the dynamically-364	

downscaled ΔTMAM somewhat (Fig. 5, row 1). As a result, using hybrid downscaled ΔTMAM leads 365	
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to an underestimate of the magnitude of the dynamically-downscaled ΔR50. Similarly, W2016 366	

slightly overestimates ΔTMAM for CNRM-CM5 and MPI-ESM-LR, which results in a small 367	

overestimation of mean R50 advances for those GCMs. 368	

Precipitation (P) changes (especially its seasonality) may also affect future runoff timing, 369	

suggesting it ought to be included in our statistical model as a co-predictor. Previous studies have 370	

found only modest projected changes in mean P, which are also small compared to natural 371	

variability (Pierce et al. 2013b, Cayan et al. 2008, Duffy et al. 2006). Nevertheless, testing was 372	

done to include mean wet-season P (December-March) changes as a co-predictor along with 373	

ΔTMAM in the statistical ΔR50 model. Less than 4% improvement was seen in the model-average 374	

MAE, compared to using ΔTMAM alone. Additional testing was done to determine if ΔT or ΔP 375	

averaged over other months produced a more skillful model than one that relies on only ΔTMAM, 376	

but again, no value was gained. Including changes to April 1st SWE as a co-predictor also added 377	

no value. Overall, this indicates that advances in ΔR50 are nearly entirely driven by spring 378	

warming, consistent with previous studies of observed and projected runoff timing changes over 379	

the SN and Western U.S. (e.g. Stewart et al. 2004).  380	

We also note that the dynamical downscaling framework imposes identical interannual 381	

variability levels between the baseline and future time slices. Possible changes to interannual 382	

variability modes in the 21st-century, for example the El Niño-Southern Oscillation phenomenon 383	

(Cai et al. 2014), could impact overall P levels and timing through atmospheric teleconnections, a 384	

factor not fully accounted for in GCMs or in this study. However, given the very large magnitude 385	

of changes in mean runoff timing driven by warming alone, it is difficult to see how our main 386	

conclusions would be significantly different if El Niño-driven changes in P do occur.  387	

 388	
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4. Results for the full GCM ensemble and all forcing scenarios  389	

Using the statistical ΔR50 model (Eq. 1) with the W2016 hybrid downscaled ΔTMAM as 390	

input, we now generate projections of mean changes in end-of-century R50 for all available CMIP5 391	

GCMs under four forcing scenarios: RCPs 2.6, 4.5, 6.0 and 8.5. Fig. 8 (row 1) presents ensemble-392	

mean changes in R50 for RCPs 2.6, 4.5, 6.0, and 8.5. The spatial patterns of ΔR50 are qualitatively 393	

similar for each forcing scenario, with the magnitudes increasing with forcing scenario strength. 394	

While all locations show some advance, the largest are found at elevations between 2000–2750m 395	

and are generally on the western slope of the SN. In some locations, ensemble-mean R50 is 396	

projected to advance by more than 80 days under RCP8.5. For RCP8.5, the ensemble-mean 397	

domain-average ΔR50 is -49.7 days (Fig. 8d), which is very close to that of the five-model 398	

dynamically downscaled ensemble (-51.7 days). This supports the idea that the five GCMs we 399	

select for dynamical downscaling approximately represent the GCM ensemble. 400	

Ensemble-mean R50 changes are substantial when compared with the interannual 401	

variability of the baseline period. To provide a more statistically stable estimate of baseline 402	

interannual variability, we extend the baseline simulation to span WY1982–2001. This 20-year 403	

simulation uses the same modeling framework described in section 2a. Fig. 8 (row 2) presents z-404	

scores associated with the ensemble-mean changes in R50 in Fig. 8 (row 1). The z-score is 405	

calculated by dividing the mean R50 change by the standard deviation of R50 for the extended 406	

baseline period (WY1982–2001), and therefore represents how far outside the baseline WY1992–2001 407	

R50 distribution an average future R50 is. For all scenarios, the z-score indicates a significant shift. 408	

Under RCP2.6 and 4.5 (Fig. 8e–f), for example, the domain-average ensemble-mean z-scores are -409	

0.60 and -0.93, respectively. Under RCP6.0 (Fig. 8g), the domain-average ensemble-mean z-score 410	

(-1.18) translates to a future mean R50 equivalent to the 12th percentile of baseline R50 distribution. 411	
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Ensemble-mean R50 changes compared to the baseline’s interannual variability are dramatic for 412	

RCP8.5 (Fig. 8h), as the domain-average z-score is -1.84, approximately the 3rd percentile of the 413	

baseline R50 distribution. In fact, under RCP8.5, the ensemble-mean domain-average R50 is 414	

projected to be earlier than that of any baseline year of the extended baseline simulation. For 415	

RCP4.5, RCP6.0, and RCP8.5 especially, the ensemble-mean R50 changes correspond to a 416	

substantial change in the runoff climatology.  417	

Figure 9 shows the elevational profile of ΔR50 for the ensemble-mean (thick solid line) 418	

under the four RCPs. Elevations are binned every 100m, and ΔR50 for a given elevation bin is the 419	

spatial average across grid cells within the bin. Light gray shading represents the standard 420	

deviation of R50 over WY1982–2001 at each elevation, a measure of interannual variability. Under 421	

RCP8.5 (Fig. 9d), ensemble-mean ΔR50 has a greater than one standard deviation advance for all 422	

elevations above 1500m. Ensemble-mean ΔR50 is outside of one standard deviation in the 2000–423	

3100m elevation band under RCP6.0 (Fig. 9c), and is near or less than one standard deviation for 424	

RCP4.5 and RCP2.6 (Fig. 9a-b).  425	

Ensemble projections also allow for the quantification of uncertainty in R50 projections due 426	

to GCM spread. Thick dashed lines in Fig. 9 represent the 10th and 90th percentiles of the GCM 427	

spread in ΔR50 when calculated with hybrid downscaled ΔTMAM. For all forcing scenarios, GCM 428	

spread is greatest in the 2000–3000m elevation band, which reflects the larger spread in ΔTMAM 429	

projections at those elevations (Walton et al. 2016). Under RCP8.5 however, despite an intermodel 430	

ΔR50 range of more than 30 days at some elevations, the advance in R50 is well outside one 431	

standard deviation of interannual variability for all models in the 2000–3200m elevation band. 432	

To shed light on the statistical significance of these changes, we perform a one-tailed t-test 433	

that assesses the likelihood that a 10-year sample with a given mean shift in R50 could be drawn 434	
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from the same population as the baseline WY1982–2001 R50 distribution. To do this, we assume the 435	

future period is a 20-year sample. The sample size is n = 20, so nineteen degrees of freedom are 436	

used. The region outside of the dark gray shading in Fig. 9 represents changes in mean R50 timing 437	

that are significant at the 5% level for each elevation. RCP2.6 ensemble-mean changes are 438	

significant at the 5% level in the 1800–3300m elevation bin, but the changes are not significant for 439	

all GCMs. As we discuss in Section 6, RCP2.6 is not likely to be a plausible forcing scenario. 440	

Under RCP4.5, 6.0 and 8.5 (Fig. 9b-d), ΔR50 is significantly different at the 5% level from the 441	

baseline mean for all elevations and all GCMs. (A minor exception can be found under RCP4.5 at 442	

the lowest elevations for the GCMs giving the least warming.) Under RCP8.5, ΔR50 is 443	

significantly different at the 1% level from the baseline mean for all elevations and all GCMs (not 444	

shown). Estimates of recent global greenhouse gas emissions indicate they are closely approaching 445	

and possibly exceeding the RCP8.5 pathway (Le Quéré et al. 2015). Should emissions continue to 446	

follow RCP8.5, it is therefore very likely that future advances in runoff timing will be dramatically 447	

different from internal climate variability at all elevations. 448	

The spatial structure of runoff timing advances also leads to an increase in the spatial 449	

homogeneity of R50 across the SN. Fig. 10 presents the distribution of R50 dates for (a) the end-of-450	

20th-century and (b) end-of-21st-century under RCP8.5, binned by 5-day intervals. A striking 451	

change in the shape of the distribution is seen. In the baseline (Fig. 10a), R50 dates are fairly 452	

evenly distributed between the months of March to June, with roughly one quarter of R50 dates 453	

occurring in each of those four months (25.9% in March, 21.0% in April, 26.5% in May and 454	

25.9% in June). However, there is significantly less diversity in projected end-of-21st-century R50 455	

spatial patterns, with over half the gridpoints having projected R50 dates in February (Fig. 10b). 456	

Clearly, warming produces a strong tendency for the center of runoff timing to more closely match 457	
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the center of precipitation timing. We are not aware of any assessment of increasing homogeneity 458	

of runoff timing across the SN or other regions with snowmelt-dominated runoff. This important 459	

consequence of warming must be considered in water resources planning and flood protection. 460	

 461	

5. Importance of snow albedo feedback to ΔR50 projections  462	

Both WRF dynamically-downscaled and hybrid-downscaled ΔTMAM projections explicitly 463	

include warming enhancement due to SAF and its intricate spatial structure (Fig. 5). This 464	

mechanism has the largest effect at mid-elevations, which is likely also linked to larger runoff 465	

timing changes there. Here we quantify the importance of using warming patterns that include 466	

SAF to ΔR50 outcomes. For this exercise, we consider three methods of projecting ΔTMAM that do 467	

not consider SAF effects in the SN, at least not explicitly: linear interpolation of GCM output, 468	

Bias Correction and Constructed Analogs (BCCA; Hidalgo et al. 2008; Maurer and Hidalgo, 469	

2008) and Bias Correction with Spatial Disaggregation (BCSD; Wood et al. 2002; Wood et al. 470	

2004; Maurer, 2007). BCCA and BCSD are two commonly used statistical downscaling 471	

techniques. Linear interpolation is a simple and naïve method of downscaling GCM output that 472	

represents a baseline measure of downscaling skill against which the other methods can be 473	

compared. BCCA and BCSD T projections were obtained online from the archive of Downscaled 474	

CMIP3 and CMIP5 Climate and Hydrology Projections [Reclamation, 2013]. BCCA T projections 475	

are available as daily maximum and minimum T at 1/8 degree resolution; we average these 476	

together to produce monthly average T. Similar processing was applied to BCSD maximum and 477	

minimum T, which are available as monthly averages.  478	

Fig. 11 presents the end-of-21st-century ΔTMAM under RCP8.5 averaged over five GCMs 479	

(CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-CM5A-LR, and MPI-ESM-LR) downscaled using 480	
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5 methods: (a) WRF dynamical downscaling, (b) hybrid downscaling, (c) linear interpolation, (d) 481	

BCCA and (e) BCSD. Both dynamical downscaling (Fig. 11a and Fig 5a-e) and hybrid 482	

downscaling (Fig. 11b and Fig. 5f-j) reveal warming amplification due to snow cover loss and 483	

SAF at mid-elevations and in the Southern SN. However, warming patterns produced through 484	

linear interpolation (Fig. 11c), BCCA (Fig. 11d) and BCSD (Fig. 11e) do not feature such a 485	

warming enhancement. We note that warming signals produced through BCSD downscaling are 486	

nearly identical to those produced using linear interpolation. This similarity arises because BCSD 487	

applies the same bias correction to both the baseline and future time periods. For a comprehensive 488	

analysis of the difference in warming patterns that arise through these downscaling methods, the 489	

reader is referred to W2016. 490	

Next, we analyze patterns of runoff timing that arise from the ΔR50 statistical model (Eq. 1) 491	

calculated with the five methods of downscaled ΔTMAM in Fig. 11 as input. Fig. 12a presents ΔR50 492	

estimated based on WRF dynamically-downscaled ΔTMAM averaged over the five GCMs, while 493	

Fig. 12b-e show the differences between outcomes in Fig. 12a and those produced with ΔTMAM 494	

from the other four downscaling methods. Using W2016’s hybrid downscaled ΔTMAM model as 495	

input to the ΔR50 statistical model produces outcomes (Fig. 12b) very similar to those produced 496	

with WRF dynamically downscaled ΔTMAM as input (domain-average MAE is only 3.03 days). 497	

However, ΔR50 outcomes produced using linearly interpolated, BCCA and BCSD (Fig. 12c-e) 498	

ΔTMAM systematically underestimate the magnitude of ΔR50 in WRF (Fig. 12a), with domain-499	

average differences of 7.67, 13.97 and 8.41 days, respectively. The differences are greatest in the 500	

Northern SN and at mid-elevations on the western slopes, where linear interpolation, BCCA and 501	

BCSD systematically underestimate warming because they do not include warming amplification 502	

due to SAF. For example, ΔR50 outcomes produced using BCCA ΔTMAM are 20–30 days less than 503	
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those produced using WRF’s ΔTMAM at these locations. At the highest elevations (>3000 m), 504	

WRF’s ΔTMAM (Fig. 11a) roughly agrees with that of linear interpolation (Fig. 11c) and BCSD 505	

(Fig. 11e). This approximate agreement in ΔTMAM, together with a weaker linear sensitivity of 506	

ΔR50 to ΔTMAM at the highest elevations (Fig. 6b), are the main reasons ΔR50 calculations based on 507	

the various data sets of ΔTMAM are within 10 days of one another at the highest elevations. 508	

The impact of downscaling technique is also seen in Fig. 9, where thin black (green) lines 509	

show the elevational profile of ensemble-mean ΔR50 calculated with BCSD-downscaled (BCCA-510	

downscaled) spring warming as input. As mentioned before, the elevational profile of ΔR50 511	

calculated with BCSD-downscaled spring warming is nearly identical to that produced using 512	

linearly interpolated GCM spring warming. For each RCP, using BCSD or BCCA downscaled 513	

ΔTMAM as input significantly underestimates the magnitude of the R50 advance at elevations below 514	

2700m compared to that calculated using W2016’s hybrid downscaled ΔTMAM (solid colored 515	

lines). This is partly due to an underestimation of mid-elevation (2000–2700m) warming that 516	

stems from the inability of BCCA and BCSD to incorporate SAF effects.  517	

Several regional climate adaptation planning agencies and tools rely on BCCA or BCSD 518	

downscaled projections. For example, Cal-Adapt (http://cal-adapt.org/), which was developed 519	

based on the 2009 California Climate Adaptation Strategy and provides access to climate data 520	

produced by California’s scientific community, employs BCSD to downscale T, P and SWE to 1/8 521	

degree spatial resolution. Though BCCA and BCSD do not directly simulate runoff timing, their 522	

T, P and SWE projections can serve as input to a hydrologic or land surface model (such as Noah-523	

MP) to simulate runoff and estimate the sensitivity of runoff timing to spring temperature. 524	

Because SAF is very likely a key feature of future warming in the SN, hydroclimate projections 525	
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based on BCSD/BCCA are associated with an underestimation of future runoff timing advances, 526	

especially at mid-elevations. 527	

 528	

6. Summary and implications 529	

We develop a statistical model for the date in the water year by which 50% of the 530	

cumulative surface runoff has occurred (R50), and create multi-model, multi-scenario projections 531	

of high-resolution changes to Sierra Nevada runoff timing for the end-of-the-21st-century. 532	

Projections are based on linear relationships between end-of-21st-century springtime warming and 533	

runoff timing changes according to five dynamically downscaled GCMs. These linear 534	

relationships are very similar to those found in observations. Hybrid downscaled T that explicitly 535	

accounts for SAF (Walton et al. 2016) is then used to project runoff timing changes for all GCMs 536	

under forcing scenarios RCP2.6, 4.5, 6.0, and 8.5. Evaluation of the statistical model for runoff 537	

timing projections shows that it is able to successfully reproduce dynamical solutions and can 538	

credibly produce outcomes for any GCM given only its regionalized spring warming.  539	

Projections reveal that future warming in the Sierra Nevada leads to strong shifts toward 540	

more liquid precipitation and earlier snowmelt. Together, these hydroclimatic changes 541	

significantly advance surface runoff, particularly at mid-elevations (2000–2750m). R50 advances 542	

of over 80 days are projected at some mid-elevation locations in the 35-model ensemble-mean 543	

under RCP8.5. Strong R50 advances are projected at mid-elevations even for a forcing scenario 544	

associated with curtailed greenhouse gas emissions (RCP4.5), where ensemble-mean R50 advances 545	

in the 2000–2750m elevation band are nearly 40 days. The larger changes at mid-elevations are 546	

driven in part by SAF. The absence of this mechanism in other downscaled data products implies a 547	

significant underestimate of runoff timing changes at these elevations.  548	
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Given estimates of recent global greenhouse gas emissions (Le Quéré et al. 2015), RCP2.6 549	

involves greenhouse gas reductions that have not occurred since the RCP forcing scenarios were 550	

created in 2005. The reductions associated with RCP2.6 in the coming decades are likewise 551	

unlikely to occur. Thus we only consider RCP4.5, RCP6.0, and RCP8.5 to be the plausible forcing 552	

scenarios. With the minor exception of a few GCMs at elevations below 1800m under RCP4.5, 553	

R50 advances are significant at the 5% level for all elevations for all GCMs and all three of these 554	

forcing scenarios (Fig. 9). Therefore, detectable changes in runoff timing in the SN are inevitable.  555	

In addition to testing the statistical significance of R50 advances, we compare the 556	

magnitude of R50 changes to the standard deviation of interannual variations in R50 in the baseline 557	

period to assess their climatic significance. Under RCP4.5, ensemble-mean R50 advances in the 558	

2000–2750m elevation band are greater than one standard deviation of baseline interannual 559	

variability at mid-elevations, and are nearly one standard deviation elsewhere (Fig. 9b). Thus even 560	

when greenhouse gas emissions are curtailed, the runoff change is climatically significant. For 561	

RCP8.5, ensemble-mean R50 advances are roughly two standard deviations of baseline interannual 562	

variability at mid-elevations and greater than one standard deviation elsewhere (Fig 9d). Thus if 563	

greenhouse gas emissions continue unabated, a truly dramatic change in surface hydrology is 564	

anticipated by century’s end. It is important to keep in mind that the dramatic advances in R50 565	

timing examined here are at the level of individual grid points in the regional model, and that 566	

information about R50 changes at streamflow gauges or the watershed-level is beyond the scope of 567	

this study. 568	

Another important finding of this study is that our projected R50 advances are much larger 569	

(especially at elevations below 2700m) than those implied by other commonly-used downscaled 570	

data warming products (e.g. BCCA and BCSD), because these other downscaling methods miss 571	
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crucial warming amplification due to SAF. Additionally, we find one new consequence of 572	

warming-driven advances in runoff timing—an increase in the homogeneity of runoff timing dates 573	

across the SN.  574	

Significant and inevitable runoff timing advances have major implications for California’s 575	

water resource infrastructure. The current infrastructure assumes SN snowpack melts gradually 576	

throughout the dry season, and it is unclear whether it can accommodate such drastic changes to 577	

runoff timing. Reservoir operational rule curves specify the monthly target water level for each 578	

reservoir and are crucial for both flood control/protection and storage. The rule curves were 579	

developed in the mid-1900s when most of California’s dams were built, and the historical data 580	

used to inform them generally reflects the hydroclimate of the first half of the 20th-century (Willis 581	

et al. 2011). Given significant changes to snowmelt runoff timing found in this study, at a 582	

minimum it will be necessary to revise rule curves to avoid detrimental and wasteful water 583	

releases. It may also be necessary to find alternative storage, such as in groundwater reservoirs. 584	

Changes to runoff timing will also have important consequences for water rights tied to specific 585	

seasons or months. Lastly, shifts in runoff timing have implications beyond California’s water 586	

resources, including for aquatic ecosystem vitality, soil moisture change in riparian areas and 587	

recreational activities throughout the SN. Long-term climate and streamflow observations 588	

throughout the Sierra Nevada will continue to be crucial for detection and attribution of 589	

anthropogenic runoff timing changes.   590	

 591	

Acknowledgments 592	

Funding for this work was provided by the Metabolic Studio in partnership with the Annenberg 593	

Foundation (Grant #12-469: Climate Change Projections in the Sierra Nevada) and the US 594	



	 27	

Department of Energy (Grant #DE-SC0014061: Developing Metrics to Evaluate the Skill and 595	

Credibility of Downscaling). 596	

 597	

6 References 598	

Aguado, E., D. Cayan, L. Riddle, and M. Roos, 1992: Climatic fluctuations and the timing of West 599	

Coast streamflow, J. Clim., 5, 1468–1483. 600	

Arritt, R. W., and M. Rummukainen, 2011: Challenges in regional-scale climate modeling, Bull. 601	

Amer. Meteor. Soc., 92, 365–368, doi:10.1175/2010BAMS2971.1. 602	

Ashfaq, M., S. Ghosh, S.C. Kao, L. C. Bowling, P. Mote,D. Touma, S. A. Rauscher, and N. S. 603	

Diffenbaugh, 2013: Near-term acceleration of hydroclimatic change in the western U.S., J. 604	

Geophys. Res. Atmos., 118,676–10,693, doi:10.1002/jgrd.50816. 605	

Cabré, M., S. A. Solman, and M. N. Nuñez, 2010: Creating regional climate change scenarios over 606	

southern South America for the 2020’s and 2050’s using the pattern scaling technique: 607	

validity and limitations, Clim. Change, 98, 449–469. doi:10.1007/s10584-009-9737-5. 608	

Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse 609	

warming. Nature Clim. Change, 4, 111–116, doi:10.1038/nclimate2100. 610	

Caldwell, P. M., H.-N. S. Chin, D. C. Bader, and G. Bala, 2009: Evaluation of a WRF based 611	

dynamical downscaling simulation over California. Clim. Change, 95, 499–521, 612	

doi:10.1007/s10584-009-9583-5. 613	

Cayan, D. R., S. A. Kammerdiener, M. D. Dettinger, J. M. Caprio, and D. H. Peterson, 614	

2001: Changes in the onset of spring in the western United States, Bull. Am. Meteorol. 615	

Soc., 82, 399–416. 616	



	 28	

Cayan, D. R., E. P. Maurer, M. D. Dettinger, M. Tyree, and K. Hayhoe, 2008: Climate change 617	

scenarios for the California region. Climatic Change, 87, 21–42, doi:10.1007/s10584-007-618	

9377-6. 619	

Dettinger, M. D., and D. R. Cayan, 1995: Large-scale atmospheric forcing of recent trends toward 620	

early snowmelt runoff in California, J. Clim., 8, 606–623. 621	

Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment 622	

using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107. 623	

Duffy, P. B., and Coauthors, 2006: Simulations of present and future climates in the western 624	

United States with four nested regional climate models, J. Clim., 19, 873–895. 625	

Giorgi, F., C. S. Brodeur, and G. T. Bates, 1994: Regional climate change scenarios over the 626	

United States produced with a nested regional climate model, J. Clim., 7, 375–399, 627	

doi:10.1175/1520-0442(1994)007<0375:RCCSOT>2.0.CO;2 628	

Hara, M., T. Yoshikane, H. Kawase, and F. Kimura, 2008: Estimation of the Impact of Global 629	

Warming on Snow Depth in Japan by the Pseudo-Global-Warming Method. Hydrol. Res. 630	

Lett., 2, 61–64, doi:10.3178/hrl.2.61. 631	

Hayhoe, K. and Coauthors, 2004: Emissions pathways, climate change, and impacts on California. 632	

Proc. Natl. Acad. Sci. U. S. A., 101, 12422–12427, doi:10.1073/pnas.0404500101. 633	

Hidalgo H. G., M. D. Dettinger, D. R. Cayan, 2008: Downscaling with constructed analogues: 634	

daily precipitation and temperature fields over the Unites States, California Energy 635	

Commission technical report CEC-500-2007-123, 48 pp. 636	

Hidalgo HG, Das T, Dettinger MD, Cayan DR, Pierce DW, Barnett TP, Bala G, Mirin A, Wood 637	

AW, Bonfils C, Santer BD, Nozawa T, 2009: Detection and attribution of streamflow timing 638	

changes to climate change in the Western United States. Journal of Climate 22:3838–3855. 639	



	 29	

IPCC [Intergovernmental Panel on Climate Change]. 2014. Climate Change 2014: Impacts, 640	

adaptation and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working 641	

Group II to the Fifth Assessment Report of the Intergovernment Panel on Climate 642	

Change. Field C. B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. 643	

Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. 644	

MacCracken, P.R. Mastrandrea, and L.L. White (eds.) Cambridge University Press, 645	

Cambridge, United Kingdom and New York, NY, USA, 1132 pp. 646	

Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its 647	

application in convective parameterization, J. Atm. Sci, 47(23), 2784–2802, 648	

doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2. 649	

Kawase, H., T. Yoshikane, M. Hara, F. Kimura, T. Yasunari, B. Ailikun, H. Ueda, and T. Inoue, 650	

2009: Intermodel variability of future changes in the Baiu rainband estimated by the pseudo 651	

global warming downscaling method. J. Geophys. Res., 114, D24110, 652	

doi:10.1029/2009JD011803. 653	

Kim, J., and S. Jain, 2010: High-resolution streamflow trend analysis applicable to annual decision 654	

calendars: A western United States case study, Clim. Change, 102, 699–707, 655	

doi:10.1007/s10584-010-9933-3. 656	

Le Quéré, C., R. Moriarty, R. M. Andrew and others, 2015: Global Carbon Budget 2014. Earth 657	

System Science Data, 7: 47–85. doi:10.5194/essd-7-47-2015. 658	

Leung, L. R., Y. Qian, X. Bian, W. M., Washington, J. Han, and J. O. Roads, 2004: Mid-century 659	

ensemble regional climate change scenarios for the western United States, Clim. Change, 660	

62(1-3), 75–113, doi:10.1023/B:CLIM.0000013692.50640.55. 661	



	 30	

Lins, H.F, 2012: USGS Hydro-Climatic Data Network 2009 (HCDN-2009). U.S. Geological 662	

Survey Fact Sheet. 2012-3047. http://pubs.usgs.gov/fs/2012/3047. 663	

Maurer, E. P. (2007), Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, 664	

California, under two emissions scenarios, Clim. Change, 82, 309–325, doi:10.1007/s10584-665	

006-9180-9. 666	

Maurer, E. P., and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: an 667	

intercomparison of two statistical downscaling methods, Hydrol. Earth Syst. Sci., 12, 551–668	

563, doi:10.5194/hess-12-551-2008. 669	

McCabe, G. and M. Clark, 2005: Trends and variability in snowmelt runoff in the western United 670	

States, J. Hydrometeorol., 6, 476–482. 671	

Mesinger, F., and Coauthors, 2006: North American regional reanalysis, Bull. Amer. Meteor. 672	

Soc., 87(3), 343–360, doi:10.1175/BAMS-87-3-343. 673	

Mlawer, E. J., S. J., Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough (1997), Radiative 674	

transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the 675	

longwave, J. Geophys. Res., 102(D14), 16663–16682, doi:10.1029/97JD00237. 676	

Moore, J. N., J. T. Harper, and M. C. Greenwood, 2007:Significance of trends toward earlier 677	

snowmelt turnoff, Columbia and Missouri Basin headwaters, western United States. Geophys. 678	

Res. Lett.,34, L16402. doi:10.1029/2007GL031022. 679	

Nakanishi, M., and H. Niino (2006), An improved Mellor-Yamada Level-3 model: Its numerical 680	

stability and application to a regional prediction of advection fog, Boundary-Layer Meteor., 681	

119, 397–407, doi:10.1007/s10546-005-9030-8. 682	



	 31	

Niu, G.-Y., and Coauthors (2011), The community Noah land surface model with 683	

multiparameterization options (Noah-MP): 1. Model description and evaluation with local-684	

scale measurements, J. Geophys. Res., 116(D12109), doi:10.1029/2010JD015139. 685	

Pal J.S., Giorgi F, Bi X.Q., Elguindi N and coauthors, 2007: Regional climate modeling for the 686	

developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 1395–687	

1409, doi:10.1175/BAMS-88-9-1395. 688	

Pierce, D. W., T. Das, D. R. Cayan, E. P. Maurer, N. Miller, Y. Bao, and M. Tyree, 2013a: 689	

Probabilistic estimates of future changes in California temperature and precipitation using 690	

statistical and dynamical downscaling, Clim. Dyn., 40(3-4), 839–856, doi:10.1007/s00382-691	

012-1337-9. 692	

Pierce, D. W., and Coauthors, 2013b: Probabilistic estimates of future changes in California 693	

temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 694	

839– 856, doi:10.1007/s00382-012-1337-9. 695	

Qu, X. and A. Hall, 2014: On the persistent spread of snow-albedo feedback, Clim. Dyn., 42(1–2), 696	

69–81, doi:10.1007/s00382-013-1945-z. 697	

Rasmussen, R., C. Liu, K. Ikeda, D. Gochis, D. Yates, F. Chen, and E. Gutmann, 2011: High-698	

resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process 699	

study of current and warmer climate, J. Clim., 24(12), 3015–3048, 700	

doi:10.1175/2010JCLI3985.1. 701	

Rauscher, S. A., J. S. Pal, N. S. Diffenbaugh, and M. M. Benedetti, 2008: Future changes in 702	

snowmelt-driven runoff timing over the western US, Geophys. Res. Lett., 35, L16703, 703	

doi:10.1029/2008GL034424. 704	



	 32	

Reclamation, 2013: Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release 705	

of Downscaled CMIP5 Climate Projections, Comparison with preceding Information, and 706	

Summary of User Needs. Prepared by the U.S. Department of the Interior, Bureau of 707	

Reclamation, Technical Services Center, Denver, Colorado. 47 pp. 708	

Regonda, S. K., B. Rajagopalan, M. Clark, and J. Pitlick, 2005: Seasonal cycle shifts in 709	

hydroclimatology over the western United States, J. Clim., 18, 372–384. 710	

Salathé Jr, E. P., L. R. Leung, Y. Qian, and Y. Zhang, 2010: Regional climate model projections 711	

for the State of Washington, Clim. Change, 102(1-2), 51–75, doi:10.1007/s10584-010-9849-712	

y. 713	

Salathé Jr., E. P., R. Steed, C. F. Mass, P. H. Zahn, 2008: A High-Resolution Climate Model for 714	

the U.S. Pacific Northwest: Mesoscale Feedbacks and Local Responses to Climate Change, J. 715	

Clim., 21, 5708–5726, doi:10.1175/2008JCLI2090.1. 716	

Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for 717	

regional climate models. Geophys. Res. Lett., 23(6), 669–672. doi:10.1029/96GL00265. 718	

Skamarock, W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X-Y, Wang 719	

W., Powers J.G., 2008: A Description of the Advanced Research WRF Version 3. NCAR 720	

Technical Note, NCAR/TN-475+STR. 721	

Slack, J. R., A. M. Lumb, and J. M. Landwehr, 1993: Hydroclimatic data network (HCDN): A 722	

U.S. Geological Survey streamflow data set for the United States for the study of climate 723	

variation, 1874–1988, U.S. Geol. Surv. Water Resour. Invest. Rep. [CD-ROM], 93-4076. 724	

Snyder, M. A., J. L. Bell, L. C. Sloan, P. B. Duffy, and B. Govindasamy, 2002: Climate responses 725	

to a doubling of atmospheric carbon dioxide for a climatically vulnerable region, Geophys. 726	

Res. Lett., 29(11), doi:10.1029/2001GL014431. 727	



	 33	

Stewart, I. T., D. R. Cayan, and M. D. Dettinger, 2004: Changes in snowmelt runoff timing in 728	

western North America under a ‘Business as Usual’ climate change scenario, Clim. 729	

Change, 63, 217–332. 730	

Stewart, I. T., D. R. Cayan, and M. D. Dettinger, 2005: Changes toward earlier streamflow timing 731	

across western North America, J. Clim., 18, 1136–1155. 732	

Sun, F., A. Hall, M. Schwartz, N. Berg and D. Walton, 2016: Inevitable end-of-century loss of 733	

spring snowpack over California’s Sierra Nevada. In preparation. 734	

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment 735	

design, Bull. Amer. Meteor. Soc., 93(4), 485–498, doi:10.1175/BAMS-D-11-00094.1. 736	

Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in 737	

projections of regional climate change: A Bayesian approach to the analysis of multimodel 738	

ensembles, J. Clim., 18(10), 1524–1540, doi:10.1175/JCLI3363.1. 739	

Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit Forecasts of Winter 740	

Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a 741	

New Snow Parameterization, Mon. Wea. Rev., 136, 5095–5115, 742	

doi:10.1175/2008MWR2387.1. 743	

Timbal, B., A. Dufour, and B. McAvaney, 2003: An estimate of future climate change for western 744	

France using a statistical downscaling technique, Clim. Dyn., 20(7-8), 807–823, 745	

doi:10.1007/s00382-002-0298-9. 746	

USDA Forest Service, 2009: The importance of streamflow in California’s southern Sierra Nevada 747	

mountains: Kings River Experimental Watersheds. Albany, CA: U.S. Department of 748	

Agriculture, Forest Service, Pacific Southwest Research Station. 2 p 749	



	 34	

http://www.fs.fed.us/psw/topics/water/kingsriver/documents/brochures_handouts/Stream_Dis750	

charge_PUBLIC.pdf  751	

van Vuuren, D.P., J. Edmonds, and Coauthors, 2011: The representative concentration pathways: 752	

an overview. Climatic Change, 109(1–2): 5–31. doi: 10.1007/s10584-011-0148-z. 753	

Walton, D.W., A. Hall, N. Berg, M. Schwartz and F. Sun, 2016: Incorporating snow albedo 754	

feedback into downscaled temperature and snow cover projections for California’s Sierra 755	

Nevada. Journal of Climate, in press. 756	

  http://research.atmos.ucla.edu/csrl/publications/Hall/Walton_JCLI-D-16-0168_R2.pdf 757	

Washington, W. M., J.W. Weatherly, G.A. Meehl, A.J. Semtner, T.W. Bettge, A.P. Craig, W.G. 758	

Strand, J.M. Arblaster, Wayland, V. B., James, R., and Zhang, Y., 2000: ‘Parallel Climate 759	

Model (PCM) Control and Transient Simulations, Clim. Dyn. 16, 755–774. 760	

Wenger, S. J., C. H. Luce, A. F. Hamlet, D. J. Isaak, andH. M. Neville, 2010: Macroscale 761	

hydrologic modeling of ecologically relevant flow metrics,Water Resour.Res., 46,W09513, 762	

doi:10.1029/2009WR008839. 763	

Willis, A.D., J. R. Lund, E.S. Townsley, and B. A. Faber, 2011: Climate change and flood 764	

operations in he Sacramento Basin, California. San Francisco Estuary Watershed Science, 9 765	

(2), 1-17. 766	

Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental 767	

hydrologic forecasting for the eastern United States, J. Geophys. Res., 107(D20), 4429, 768	

doi:10.1029/2001JD000659. 769	

Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of 770	

dynamical and statistical approaches to downscaling climate model outputs, Clim. Change 771	

62,189–216, doi:10.1023/B:CLIM.0000013685.99609.9e. 772	



	 35	

Table 1: Summary of information associated with observational streamflow gauges from the 773	

United States Geological Survey Hydro-Climatic Data Network-2009 used to evaluate the baseline 774	

simulation. 775	

USGS 
HCDN-
2009 ID 

Station  
Name 

Hydrologic 
Unit Code 

Latitude Longitude Drainage 
area (sq. 
km) 

10308200 East Fork Carson River  
below Markleeville Creek 
 

16050201 38.714 -119.764 716.4 

10336645 General Creek near  
Meeks Bay, CA 
 

16050101 39.051 -120.118 19.6 

10336660 Blackwood Creek  
near Tahoe City, CA 
 

16050101 39.107 -120.162 29.8 

10336676 Ward Creek at State Highway 89, 
near Tahoe Pines, CA 
 

16050101 39.132 -120.157 24.7 

10336740 Logan House Creek  
near Glenbrook, NV 
 

16050101 39.066 -119.935 5.5 

11230500 Bear Creek near Lake  
Thomas A. Edison, CA 
 

18040006 37.339 -118.973 135.5 

11237500 Pitman Creek  
below Tamarack Creek, CA 
 

18040006 37.198 -119.213 59.8 

11264500 Merced River at Happy Isles 
Bridge, near Yosemite, CA 
 

18040008 37.731 -119.558 468.0 

11266500 Merced River at Pohono  
Bridge, near Yosemite, CA 
 

18040008 37.716 -119.666 833.1 

11315000 Cole Creek near  
Salt Springs Dam, CA 
 

18040012 38.519 -120.212 54.0 

11427700 Duncan Canyon Creek near 
French Meadows, CA 

18020128 39.135 -120.478 25.5 

 776	

 777	

 778	
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Figure Captions 779	

Fig. 1: a) Model setup, with three nested WRF domains at resolutions of 27, 9, and 3 km (from the 780	

outermost to innermost domain). Topography (m) is shown at the resolution of the 27km 781	

domain in color and black lines show boundaries for US states. (b) Topography (m) of the 782	

innermost domain (3-km resolution) of the regional simulation, with the state borders of 783	

California and Nevada in black. Blue circles show the locations of 11 USGS-HCDN 2009 784	

streamflow gauges used for model evaluation. 785	

Fig. 2: Baseline (October 1991–September 2001) climatological date of R50, which represents the 786	

date in the water year (October 1–September 30) by which 50% of the cumulative surface 787	

runoff has occurred. The black contour outlines grid points with climatological R50 occurring 788	

on or after March 1st.  789	

Fig. 3: Observed versus WRF-simulated climatological R50 at 11 USGS streamflow gauges (water 790	

years 1992–2001). Simulated R50 is estimated as the average R50 of grid points upstream of a 791	

gauge within its watershed. Colors indicate the correlation coefficient between the time series 792	

of WRF-simulated and observed values of R50. The line y = x is shown in black. 793	

Fig. 4: End-of-21st-century change (WY2092–2101 average minus WY1992–2001 average) in R50 (unit: 794	

days) under the RCP8.5 emissions scenario for CNRM-CM5, GFDL-CM3, inmcm4, IPSL-795	

CM5A-LR, and MPI-ESM-LR produced from three methods. Row 1: Dynamically-796	

downscaled WRF output. Row 2: Statistical projection using dynamically-downscaled WRF 797	

spring near-surface warming (ΔTMAM) as input. Row 3: Statistical projection using Walton et 798	

al. (2016)’s hybrid dynamical-statistical downscaled ΔTMAM as input. Results are shown for 799	

locations with climatological baseline R50 on or after March 1st, and green through blue shades 800	

represent advances in R50. Black text shows domain-average in R50. Blue text in rows 2–3 801	
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denotes the mean absolute error compared to row 1. Green text in rows 2–3 denotes the spatial 802	

correlation with row 1 for each GCM. 803	

Fig. 5: End-of-21st-century change in near-surface temperature averaged over March–May 804	

(ΔTMAM, unit: °C) under the RCP8.5 forcing scenario for CNRM-CM5, GFDL-CM3, INM-805	

CM4, IPSL-CM5A-LR, and MPI-ESM-LR. Row 1: WRF dynamically-downscaled output. 806	

Row 2: Hybrid dynamical-statistical downscaled output from Walton et al. (2016). Black text 807	

shows domain-average ΔTMAM. 808	

Fig. 6: (a) Correlation coefficient between the 5-model dynamically-downscaled end-of-21st-809	

century change in R50 timing (ΔR50) and near-surface March–May warming (ΔTMAM). (b) Slope 810	

of the linear regression of the 5-model dynamically-downscaled ΔR50 onto the 5-model 811	

dynamically-downscaled ΔTMAM. Unit: days/°C. Black text denotes the domain average value. 812	

Fig. 7: Scatter plot of observed near-surface temperature anomalies (unit: °C) averaged over 813	

March–May (TMAM) and observed R50 anomalies (unit: days) over water years 1916–2014. The 814	

blue line is the linear regression of WY1916–2014 R50 onto TMAM. Blue text denotes the slope of 815	

this linear regression as well as the correlation coefficient. MAM 2-m temperature anomalies 816	

are calculated from the National Oceanic and Atmospheric Administration's National Climatic 817	

Data Center’s nClimDiv statewide temperature database 818	

(ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/state-readme.txt), which includes monthly-mean 819	

maximum and minimum temperature aggregated at statewide levels for the United States for 820	

January 1895 to the present. Monthly maximum and minimum temperatures are averaged 821	

together to calculate monthly mean temperature. MAM temperature anomalies presented here 822	

are calculated from the detrended MAM temperature time series for California. R50 anomalies 823	
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are calculated from the detrended gauge-averaged R50 time series from available observations 824	

at the 11 USGS-HCDN streamflow gauges in Table 1 (described in section 2b).  825	

Fig. 8: Row 1: Ensemble-mean statistical projections of end-of-21st-century change in R50 (unit: 826	

days) under emissions scenarios (a) RCP2.6, (b) RCP4.5, (c) RCP6.0 and (d) RCP8.5. Row 2 827	

(e-h): The associated z-score for the ensemble-mean change in R50, which is calculated by 828	

dividing the mean R50 change by the standard deviation of R50 of a 20-year baseline (water 829	

years 1982–2001). Black text denotes the domain average value. The number of GCMs 830	

included in the ensemble-mean is denoted in the title. 831	

Fig. 9: Statistical projections of end-of-21st-century change in R50 as a function of elevation 832	

(binned every 100m) under emissions scenarios RCP2.6, 4.5, RCP6.0 and RCP8.5. Solid 833	

colored lines represent the ensemble-mean R50 change calculated with hybrid dynamical-834	

statistical spring warming as input, while dashed colored lines represent the 10th and 90th 835	

percentiles of this GCM distribution. Light gray shading denotes the standard deviation of R50 836	

for the extended baseline period (water years 1982–2001). The region outside of the dark gray 837	

shading denotes mean changes in R50 that are significant at the 5% level according to a one-838	

tailed t-test. Thin black (green) lines represent the ensemble-mean R50 change calculated with 839	

BCSD-downscaled (BCCA-downscaled) spring warming as input. Results are shown for 840	

locations with climatological baseline R50 on or after March 1st. The number of GCMs 841	

included in the hybrid-downscaled GCM ensemble is denoted in the title. 842	

Fig. 10: Distribution of R50 dates for (a) the end-of-20th-century baseline (water years 1992–2001) 843	

and (b) end-of-21st-century (water years 2092–2101) under RCP8.5. R50 dates are binned in 5-844	

day intervals. We consider gridpoints with snowmelt-dominated runoff in the baseline, so the 845	

distribution is calculated based on gridpoints within the contoured region in Fig. 2. The 846	
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distribution of R50 dates in (a) is based on the WRF dynamical downscaling simulation; the 847	

distribution of R50 dates in (b) is based on the 35-model ensemble-mean statistical R50 848	

projection. Text within each subplot denotes the percent of gridpoints with R50 dates falling in 849	

each of the months of February through June.  850	

Fig. 11: End-of-21st-century change (WY2092-2101 average minus WY1992-2001 average) in near-851	

surface March–May temperature (ΔTMAM, unit: °C) under the RCP8.5 forcing scenario 852	

averaged over five GCMs (CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-CM5A-LR, and 853	

MPI-ESM-LR) downscaled using 5 methods: (a) WRF dynamical downscaling, (b) Walton et 854	

al. (2016)’s statistical downscaling, (c) linear interpolation, (d) BCCA, and (e) BCSD. Black 855	

text denotes domain-average warming within black contoured region. Red text in b-e denotes 856	

the spatial correlation with (a) within the black contoured region.  857	

Fig. 12: Statistical projection of end-of-21st-century change in R50 (unit: days) under the RCP8.5 858	

forcing scenario calculated with spring warming from (a) WRF dynamical downscaling, (b) 859	

hybrid dynamical-statistical downscaling, (c) linear interpolation of GCM output, (d) BCCA 860	

statistical downscaling, and (e) BCSD statistical downscaling. Results are averaged over five 861	

GCMs (CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-CM5A-LR, and MPI-ESM-LR). In b-e, 862	

a is subtracted to highlight differences. Results are shown for locations with climatological 863	

baseline R50 on or after March 1st, and black text denotes domain-average value. 864	
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Fig. 1: a) Model setup, with three nested WRF domains at resolutions of 27, 9, and 3 km (from 

the outermost to innermost domain). Topography (m) is shown at the resolution of the 27km 

domain in color and black lines show boundaries for US states. (b) Topography (m) of the 

innermost domain (3-km resolution) of the regional simulation, with the state borders of 

California and Nevada in black. Blue circles show the locations of 11 USGS-HCDN 2009 

streamflow gauges used for model evaluation. 
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Fig. 2: Baseline (October 1991–September 2001) climatological date of R50, which represents 

the date in the water year (October 1–September 30) by which 50% of the cumulative surface 

runoff has occurred. The black contour outlines grid points with climatological R50 occurring on 

or after March 1st.  
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Fig. 3: Observed versus WRF-simulated climatological R50 at 11 USGS streamflow gauges 

(water years 1992–2001). Simulated R50 is estimated as the average R50 of grid points upstream 

of a gauge within its watershed. Colors indicate the correlation coefficient between the time 

series of WRF-simulated and observed values of R50. The line y = x is shown in black. 
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Fig. 4: End-of-21st-century change (WY2092–2101 average minus WY1992–2001 average) in R50 (unit: 

days) under the RCP8.5 emissions scenario for CNRM-CM5, GFDL-CM3, inmcm4, IPSL-

CM5A-LR, and MPI-ESM-LR produced from three methods. Row 1: Dynamically-downscaled 

WRF output. Row 2: Statistical projection using dynamically-downscaled WRF spring near-

surface warming (ΔTMAM) as input. Row 3: Statistical projection using Walton et al. (2016)’s 

hybrid dynamical-statistical downscaled ΔTMAM as input. Results are shown for locations with 

climatological baseline R50 on or after March 1st, and green through blue shades represent 

advances in R50. Black text shows domain-average in R50. Blue text in rows 2–3 denotes the 

mean absolute error compared to row 1. Green text in rows 2–3 denotes the spatial correlation 

with row 1 for each GCM. 
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Fig. 5: End-of-21st-century change in near-surface temperature averaged over March–May 

(ΔTMAM, unit: °C) under the RCP8.5 forcing scenario for CNRM-CM5, GFDL-CM3, INM-CM4, 

IPSL-CM5A-LR, and MPI-ESM-LR. Row 1: WRF dynamically-downscaled output. Row 2: 

Hybrid dynamical-statistical downscaled output from Walton et al. (2016). Black text shows 

domain-average ΔTMAM. 
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Fig. 6: (a) Correlation coefficient between the 5-model dynamically-downscaled end-of-21st-

century change in R50 timing (ΔR50) and near-surface March–May warming (ΔTMAM). (b) Slope 

of the linear regression of the 5-model dynamically-downscaled ΔR50 onto the 5-model 

dynamically-downscaled ΔTMAM. Unit: days/°C. Black text denotes the domain average value. 
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Fig. 7: Scatter plot of observed near-surface temperature anomalies (unit: °C) averaged over 

March–May (TMAM) and observed R50 anomalies (unit: days) over water years 1916–2014. The 

blue line is the linear regression of WY1916–2014 R50 onto TMAM. Blue text denotes the slope of this 

linear regression as well as the correlation coefficient. MAM 2-m temperature anomalies are 

calculated from the National Oceanic and Atmospheric Administration's National Climatic Data 

Center’s nClimDiv statewide temperature database 

(ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/state-readme.txt), which includes monthly-mean 

maximum and minimum temperature aggregated at statewide levels for the United States for 

January 1895 to the present. Monthly maximum and minimum temperatures are averaged 

together to calculate monthly mean temperature. MAM temperature anomalies presented here are 

calculated from the detrended MAM temperature time series for California. R50 anomalies are 

calculated from the detrended gauge-averaged R50 time series from available observations at the 

11 USGS-HCDN streamflow gauges in Table 1 (described in section 2b).  
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Fig. 8: Row 1: Ensemble-mean statistical projections of end-of-21st-century change in R50 (unit: 

days) under emissions scenarios (a) RCP2.6, (b) RCP4.5, (c) RCP6.0 and (d) RCP8.5. Row 2 (e-

h): The associated z-score for the ensemble-mean change in R50, which is calculated by dividing 

the mean R50 change by the standard deviation of R50 of a 20-year baseline (water years 1982–

2001). Black text denotes the domain average value. The number of GCMs included in the 

ensemble-mean is denoted in the title. 
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Fig. 9: Statistical projections of end-of-21st-century change in R50 as a function of elevation 

(binned every 100m) under emissions scenarios RCP2.6, 4.5, RCP6.0 and RCP8.5. Solid colored 

lines represent the ensemble-mean R50 change calculated with hybrid dynamical-statistical spring 

warming as input, while dashed colored lines represent the 10th and 90th percentiles of this GCM 

distribution. Light gray shading denotes the standard deviation of R50 for the extended baseline 

period (water years 1982–2001). The region outside of the dark gray shading denotes mean 

changes in R50 that are significant at the 5% level according to a one-tailed t-test. Thin black 

(green) lines represent the ensemble-mean R50 change calculated with BCSD-downscaled 

(BCCA-downscaled) spring warming as input. Results are shown for locations with 

climatological baseline R50 on or after March 1st. The number of GCMs included in the hybrid-

downscaled GCM ensemble is denoted in the title. 
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Fig. 10: Distribution of R50 dates for (a) the end-of-20th-century baseline (water years 1992–

2001) and (b) end-of-21st-century (water years 2092–2101) under RCP8.5. R50 dates are binned 

in 5-day intervals. We consider gridpoints with snowmelt-dominated runoff in the baseline, so 

the distribution is calculated based on gridpoints within the contoured region in Fig. 2. The 

distribution of R50 dates in (a) is based on the WRF dynamical downscaling simulation; the 

distribution of R50 dates in (b) is based on the 35-model ensemble-mean statistical R50 projection. 

Text within each subplot denotes the percent of gridpoints with R50 dates falling in each of the 

months of February through June.  
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Fig. 11: End-of-21st-century change (WY2092-2101 average minus WY1992-2001 average) in near-

surface March–May temperature (ΔTMAM, unit: °C) under the RCP8.5 forcing scenario averaged 

over five GCMs (CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-CM5A-LR, and MPI-ESM-LR) 

downscaled using 5 methods: (a) WRF dynamical downscaling, (b) Walton et al. (2016)’s 

statistical downscaling, (c) linear interpolation, (d) BCCA, and (e) BCSD. Black text denotes 

domain-average warming within black contoured region. Red text in b-e denotes the spatial 

correlation with (a) within the black contoured region.  
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Fig. 12: Statistical projection of end-of-21st-century change in R50 (unit: days) under the RCP8.5 

forcing scenario calculated with spring warming from (a) WRF dynamical downscaling, (b) 

hybrid dynamical-statistical downscaling, (c) linear interpolation of GCM output, (d) BCCA 

statistical downscaling, and (e) BCSD statistical downscaling. Results are averaged over five 

GCMs (CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-CM5A-LR, and MPI-ESM-LR). In b-e, a 

is subtracted to highlight differences. Results are shown for locations with climatological 

baseline R50 on or after March 1st, and black text denotes domain-average value. 

 

 

 

 

 

 

 

 

 


