1	An assessment of high-resolution gridded temperature datasets
2	
3	Daniel Walton*
4	Institute of the Environment and Sustainability, University of California, Los Angeles, Los
5	Angeles, CA
6	
7	Alex Hall
8	Department of Atmospheric and Ocean Studies, University of California, Los Angeles, Los
9	Angeles, CA
10	
11	*Corresponding author email address: <u>waltond@ucla.edu</u>
12	
13	Abstract
14	
15	High-resolution gridded datasets are in high demand because they are spatially complete and
16	include important fine-scale details. Here, eight high-resolution gridded temperature datasets are
17	assessed by comparing with Global Historical Climatology Network - Daily (GHCND) station
18	data. Previous assessments have focused on station-based datasets, which are generated by
19	interpolating station data to a regular grid. Another way to generate spatially complete historical
20	data is to downscaling reanalysis to higher resolution. This assessment includes six station-based
21	datasets, one interpolated reanalysis, and one dynamically downscaled reanalysis. California is
22	used as a test domain because of its complex terrain and coastlines, features known to
23	differentiate gridded datasets. Not surprisingly, at stations, station-based datasets are found to

24	agree closely with each other and with GHCND station data. However, away from the stations,
25	spread among station-based datasets can exceed 6 °C. Some of these datasets are very likely
26	biased away from stations, due to invalid assumptions about how temperatures vary with
27	elevation. Meanwhile, reanalysis-based datasets have more freedom to differ from observations,
28	and have systematic biases relative to station data. Dynamically downscaled reanalysis is less
29	biased than interpolated reanalysis, and has more realistic variability and trends. Many station-
30	based datasets have large unphysical trends and non-climatic variations because they do not
31	correct inhomogeneities in station data. Station-based datasets could be improved through better
32	quality control of station data and more realistic assumptions of how temperatures vary away
33	from the stations. Reanalysis-based datasets are likely to improve from ongoing progress in
34	global and regional climate modeling.
25	

36 1. Introduction

37

High-resolution gridded temperature datasets are widely used because they are spatially
complete and include fine-scale variations due to topography and other features. Such detail is
important for many modeling applications in fields like hydrology, ecology, and agriculture
(Thornton et al. 1997, Mote et al. 2005, Abatzoglou 2013, Stoklosa et al. 2015). Gridded
datasets are also used to compute historical trends (e.g. Hamlet and Lettenmaier 2005; Vose et al.
2014), evaluate regional climate models (e.g. Caldwell et al. 2009, Walton et al. 2015) and train
statistical models (e.g. Hidalgo et al. 2009, Pierce et a. 2014).

45

46 There are a variety of approaches for generating high-resolution gridded temperature data. One

47 approach is to interpolate data from irregularly spaced stations to a regular grid. Datasets

48	generated in this manner are termed station-based datasets. Some station-based datasets
49	incorporate knowledge of physical processes into the interpolation method, essentially creating a
50	simple model of temperature variations between station locations (e.g. Daly et al. 2008, Vose et
51	al., 2014, Oyler et al. 2015). A challenge with station data is that changes in station siting,
52	instrumentation, and time of observation add non-climatic artifacts to the data (Menne and
53	Williams, 2009). Some datasets correct for these inhomogeneities (e.g. Hamlet and Lettenmaier
54	2005, Vose et al. 2014, Oyler et al. 2015), which makes them better suited for long-term trend
55	analysis. Some datasets include uncertainty or facilitate calculations of uncertainty. For
56	instance, Newman et al. (2015) have generated an ensemble of possible historical sequences,
57	which can be used to determine uncertainty by calculating the ensemble variance.
58	
59	Differences in interpolation algorithms can lead to large differences in climatologies (Simpson et
60	al. 2005, Daly 2006, Stahl et al. 2006, Daly et al. 2008, Mizukami et al. 2014). For example,
61	Daly et al. (2008) compared their dataset, PRISM, to Daymet (Thornton et al. 1997, Thornton et
62	al. 2012) and WorldClim (Hijmans et al. 2005) over the continental United States. PRISM
63	determines temperatures on a local temperature-elevation relationship calibrated from nearby
64	stations. Stations are given higher weights if they are closer to the target grid cell, and if they
65	have similar coastal proximity or topographic position (among other factors). Daymet also uses
66	stations to determine a local temperature-elevation relationship, but stations are weighted using a
67	truncated Gaussian filter centered at the target grid cell. Meanwhile, WorldClim fits a thin-plate
68	spline to station data to generate a temperature surface. Differences in climatology were found
69	to be largest over complex terrain and coastal areas of the western United States. January
70	minimum temperatures (Tmin) in WorldClim and Daymet were found to be have cold biases of

3-4 °C in complex terrain, which Daly et al. concluded were due to failing to account for coldair pooling. Meanwhile, along the central California coast, WorldClim and Daymet have biases in maximum temperature (Tmax) that likely result from poorly capturing the onshore marine layer, which complicates the relationship between temperature and elevation (Johnstone and Dawson 2010, Iacobellis and Cayan 2013). In contrast, PRISM accounts for coastal proximity and topographic position, which could explain why it outperforms the others in complex terrain and along the coast.

78

79 Oyler et al. (2015) compared PRISM and Daymet to TopoWx. TopoWx is unique because it 80 uses remotely-sensed land skin temperature (LST) as an auxiliary predictor. Oyler et al. 81 compared the datasets over the complex terrain of Nevada, where cold air pooling causes the inversions in Tmin. TopoWx had the strongest inversions, PRISM had similar but slightly 82 83 weaker inversions, and Daymet has comparatively smooth temperature variations without 84 inversions. Oyler et al. found that elevation alone is weak predictor of Tmin, explaining only 6% 85 of the variance in this region, while LST explained 77%. This could explain why Daymet — 86 which does not include any auxiliary predictors or use advanced station weights — is relatively 87 smooth.

88

Previous comparisons have found potential biases in station-based gridded datasets that use fixed lapse rates when accounting for elevation (Mizukami et al. 2014, Newman et al. 2015). Newman et al. (2015) compared their ensemble gridded data to Maurer et al. (2002; henceforth "Maurer"), and noted that Maurer is consistently colder at high elevations. Newman et al. attribute this to

the use of a fixed 6.5 K km⁻¹ lapse rate in Maurer. Mizukami et al. (2014), also found Maurer to 93 94 be relatively cold at high elevations. 95 96 A second approach to creating a gridded temperature dataset is to run an atmospheric model that 97 assimilates historical observations. Datasets constructed in this way are referred to as reanalysis. 98 There are many global or continental-scale reanalysis products that assimilate observations, (e.g. 99 NARR, MERRA, NOAA-20CR, CERA-20C, ERA-20C; for details, see The Climate Data 100 Guide: Atmospheric Reanalysis: Overview & Comparison Tables, available from 101 https://climatedataguide.ucar.edu/climate-data/atmospheric-reanalysis-overview-comparison-102 <u>tables</u>). However, the resolutions of these datasets — ranging from 0.3 degrees to 5 degrees — 103 are too low for many applications. Thus, reanalysis is often downscaled to higher resolution 104 (Cosgrove et al. 2003, Kanamitsu and Kanamaru 2007, Rasmussen et al. 2011, Stefanova et al. 105 2012, Xia et al. 2012, Abatzoglou 2013, Walton et al. 2015, Walton et al. 2017). One 106 straightforward way to downscale reanalysis is with interpolation. For example, the temperature 107 forcings in the NLDAS-2 dataset (Xia et al. 2012) are derived by interpolating North American 108 Regional Reanalysis (NARR; Mesinger et al. 2006) to 1/8 degree resolution. Reanalysis can also 109 be downscaled with a regional climate model, a process referred to as dynamical downscaling. 110 Under this method, a regional climate model is forced at the lateral and ocean surface boundaries 111 by reanalysis. For example, Kanamitsu and Kanamaru (2007) downscaled 200 km resolution 112 NCEP-NCAR global reanalysis (Kalnay et al. 1996) to 10 km resolution over California with the 113 Regional Spectral Model (Juang and Kanamitsu 1994). Similarly, Walton et al. (2015) 114 downscaled 32 km resolution NARR to 2 km resolution over the Los Angeles region with the 115 Weather Research and Forecasting model (WRF, Skamarock et al. 2008), and used a similar

WRF setup to downscale NARR to 3 km resolution over the Sierra Nevada mountains (Walton etal. 2017).

118

119 Previous assessments of gridded datasets have been limited in a variety of ways. Some have 120 only considered station-based datasets and excluded downscaled reanalysis (Daly et al. 2008, 121 Newman et al. 2015, Oyler et al. 2015). Many have compared only two or three datasets (Daly 122 et al. 2008, Bishop and Beier 2013, Mizukami et al. 2014, Newman et al. 2015, Oyler et al. 123 2015). Behnke et al. (2016) performed one of the most comprehensive evaluations to date, 124 which considered eight datasets, including interpolated reanalysis, but datasets were only 125 evaluated at station locations. Station-based datasets are constrained to match station data, so 126 only evaluating them at station locations may give a misleading picture of their overall realism. 127 Previous assessments of gridded datasets have excluded dynamically downscaled reanalysis. 128 Dynamically downscaled reanalysis could have an advantage away from stations, to the extent 129 that it realistically simulates physical processes that cause important spatial variations, such as 130 onshore penetration of the marine layer in the coastal zone and cold-air pooling in complex 131 terrain. Station-based datasets either struggle to capture these processes (e.g. Daymet, 132 WorldClim, Maurer) or attempt to model their effects through auxiliary predictors or weights 133 (e.g. TopoWx, PRISM). Interpolated reanalysis may also struggle in these areas since the native 134 resolution of the original reanalysis is too low, and linear interpolation cannot recover these 135 effects. 136 137 One effect that hasn't been explored in previous assessments is snow albedo feedback (SAF).

138 Snow is highly reflective, and reductions in snow cover typically reveal surfaces that absorb

139	more solar radiation, leading to warmer temperatures and further reductions in snow cover
140	(Cubasch et al. 2001, Holland and Bitz 2003). Dynamically downscaling explicitly simulates
141	SAF (Salathé et al. 2008, Letcher and Minder 2015, Walton et al. 2017), but it is unknown
142	whether it is effects are captured by station-based datasets. Low station density at high elevations
143	could make it challenging to capture the narrow bands of amplified temperatures associated with
144	SAF (Walton et al. 2017).
145	
146	This study looks to answer the following questions about high-resolution temperature datasets:
147	1. How do temperature climatologies, variability, and trends in these datasets differ?
148	2. Can these differences be explained in terms of their methodological choices?
149	3. Which datasets are most realistic? While this question can be answered at station
150	locations by comparing with observed data, it is challenging to answer away from
151	stations where there are no observations to rely on. However, in some instances, there
152	are physical arguments as to why some datasets are more realistic.
153	4. Does dynamically-downscaled reanalysis — which explicitly simulates relevant
154	processes (however imperfectly) — corroborate the spatial and temporal variations in
155	station-based datasets? How convergent are these orthogonal approaches of creating
156	high-resolution spatially complete temperature data?
157	5. Are dynamical downscaled reanalysis and interpolated reanalysis equally realistic?
158	To answer these questions, this study compares eight high-resolution gridded datasets with
159	station observations. Station data come from the Global Historical Climatology Network - Daily
160	stations (GHCND, Menne et al. 2012a,b) as made available by Behnke et al. (2016b) via the
161	Dryad data package (<u>http://dx.doi.org/10.5061/dryad.7tv80</u>). The comparison is performed over

162	California, which has coastal areas with maritime influence, complex terrain experiencing cold-
163	air pooling, and high-elevation mountains with significant seasonal snow cover. The datasets
164	used here are:
165	 PRISM (Daly et al. 2008)
166	 TopoWx (Oyler et al. 2015)
167	 Daymet (Thornton et al. 1997)
168	• Livneh (Livneh et al. 2013, Maurer et al. 2002)
169	 Hamlet (an extension of Hamlet and Lettenmaier 2005)
170	 Metdata (Abatzoglou 2013)
171	 NLDAS-2 (Xia et al. 2012)
172	 NARR dynamically downscaled with WRF (Walton et al. 2017)
173	Together, these eight datasets represent the wide range of approaches to creating gridded
174	temperature data discussed above. For a summary of their important features, see Table 1.
175	
176	This paper is structured as follows. Section 2 provides detailed information about the eight
177	gridded datasets. Section 3 covers the methodology used to assess their climatologies,
178	variability, and trends. Results are given in Section 4. Major findings are summarized and
179	discussed in Section 5.
180	
181	
182	2. Gridded datasets
183	
184	a. WRF historical simulation

186	The first dataset is a dynamical downscaling of 32 km resolution NCEP North American
187	Regional Reanalysis (NARR; Mesinger et al. 2006) for the 1981–2015 period using the Weather
188	Research and Forecasting model v3 (WRF; Skamarock et al. 2008) performed by Walton et al.
189	(2017). Under this setup, WRF is forced at the lateral and ocean surface boundaries by NARR.
190	WRF is coupled to the NOAH-MP land surface model (Niu et al. 2011). WRF is arranged in a
191	one-way nested setup with a 27 km resolution domain covering the western U.S. and
192	northeastern Pacific Ocean, a 9 km domain covering California, and 3 km domain covering the
193	Sierra Nevada. This study focuses on the 9 km domain covering California (Fig. 1a). A cubic
194	spline fit to WRF 3-hourly output is used to calculate daily Tmax and Tmin.
195	
196	b. PRISM
197	
198	The Parameter-elevation Relationships on Independent Slopes Model (PRISM; Daly et al., 1994,
199	Daly et al., 2008) is a modeling system used to derive gridded temperature and precipitation data
200	for the conterminous United States. At each grid cell, an elevation regression function is fit to
201	station data using a moving window. Stations are weighted depending on multiple physical
202	factors that reflect their similarity to the target grid cell. These factors include distance, cluster,
203	elevation, coastal proximity, topographic facet, vertical layer, topographic position, and effective
204	terrain height. Multiple PRISM datasets are available, differing in temporal frequency (monthly
205	or daily), resolution (2.5 min or 30 sec), and other factors. Here we use the monthly dataset
206	AN81m with 2.5 min (~4 km) resolution (PRISM Climate Group, Oregon State University,

207 available from <u>http://prism.oregonstate.edu</u>, data created between 2013-6-9 and 2014-6-9). This

208	dataset uses stations from multiple networks to give the best estimate at any given time.
209	Although station data are subjected to quality control procedures, no adjustments are made to
210	ensure temporal homogeneity. PRISM incorporates data from ~10,000 stations spanning multiple
211	networks, including COOP, RAWS, CDEC, Agrimet, NCRS, CIMIS and more. For complete
212	details about the station networks included in these datasets, see the PRISM Climate Group
213	webpage (<u>http://prism.oregonstate.edu)</u> .
214	
215	c.TopoWx
216	
217	TopoWx or "Topography Weather" is gridded dataset of daily Tmin and Tmax based on station
218	data and remotely-sensed land skin temperature (Oyler et al. 2015; data was downloaded from
219	http://www.scrimhub.org/resources/topowx/). TopoWx covers the conterminous United States at
220	30 arcsec (~800 m resolution) for the period 1980–2015. TopoWx uses station data (Fig. 1b)
221	from GCHND stations, National Resource Conservation Service (NRCS) snow telemetry
222	(SNOTEL) and snow course sites, and US Forest Service and Bureau of Land Management
223	(BLM) Remote Automatic Weather Stations (RAWS). The homogenization algorithm of Menne
224	and Williams (2009) is used to correct for inhomogeneities caused by changes in observation
225	practices, siting, and instrumentation. Missing values are filled by comparing with non-missing
226	neighboring observations and applying spatial regression (Durre et al. 2010). Daily gridded
227	Tmax and Tmin are created in a two-step process. The first step is to create gridded Tmax and
228	Tmin climate normals for the 1981–2010 period using a regression-kriging framework.
229	Predictors for the climate normals include latitude, longitude, and elevation, as well as 8-day
230	average remotely-sensed land skin temperature (LST) from the Moderate Resolution Imaging

231	Spectroradiometer (MODIS) aboard the Aqua satellite (product MYD11A2; Dozier 1996, Wan
232	2008). The second step is to interpolate daily temperature anomalies. This step is performed
233	with a combination of moving-window geographically weighted regression and inverse distance
234	weighting. The interpolated daily anomalies for the 1948–2015 period are then added to the
235	1980–2010 normals to produce daily values.
236	
237	d. Daymet
238	
239	Daymet (Thornton et al. 1997) is a dataset of daily meteorological variables on a 1 km \times 1 km
240	grid covering North America for the period 1980–2016. Version 3 (Thornton et al. 2016) is used
241	here. Monthly summaries of daily Tmax and Tmin were downloaded from the THREDDS
242	server
243	(http://thredds.daac.ornl.gov/thredds/catalogs/ornldaac/Regional_and_Global_Data/DAYMET_
244	COLLECTIONS/DAYMET_COLLECTIONS.html) on January 9, 2017. Daymet interpolates
245	data from GHCND stations to a 1 km \times 1 km grid using a weighted average of nearby stations.
246	Weights are determined by a truncated Gaussian filter centered at the target grid cell. The radius
247	of the Gaussian filter varies continuously throughout the domain to adjust for varying station
248	density. Tmax and Tmin values are adjusted for elevation using a linear temperature-elevation
249	relationship.
250	
251	e. Livneh
252	
253	The Livneh et al. (2013) dataset (henceforth "Livneh") contains station-based meteorological

254	variables and modelled hydrologic variables that covers the conterminous United States at 1/16°
255	(~6 km) resolution for the period 1915–2011. Linveh data was downloaded from
256	ftp.hydro.washington.edu/pub/bLivneh/CONUS/. Livneh is an extension and upgrade to the
257	Maurer et al. (2002) dataset, which used a similar methodology but spanned the shorter 1950-
258	2000 period at a lower resolution of 1/8° (~12 km). Livneh temperatures are created by gridding
259	station data from National Weather Service (NWS) Cooperative Observer Program (COOP)
260	weather stations over the conterminous United States. COOP station locations used by Livneh
261	are shown in Fig. 1b. Only stations with at least 20 years of valid data were used. Gridding is
262	performed on station temperature data via the synergraphic mapping system (SYMAP, Shepard,
263	1984). Under SYMAP, for a grid point, the temperature is calculated as a weighted average of
264	the temperature at the four nearest stations. The weights are determined by a combination of
265	inverse distance weighting and down-weighting stations that are close to other stations. For a full
266	description of the gridding procedure, the reader is referred to Livneh et al. (2013) and Maurer et
267	al. (2002).
268	
269	f. Hamlet

271 The original Hamlet and Lettenmaier (2005) dataset spans 1915–2003 at 1/8° (~12 km)

- 272 resolution (data available from
- 273 <u>http://www.hydro.washington.edu/Lettenmaier/Data/gridded/index_hamlet.html</u>). It has now
- been extended to cover 1915–2015, its resolution has been increased to $1/16^{\circ}$ (~6 km), and
- temperatures are now adjusted so that 1971–2000 climate normals match PRISM. This
- 276 extension, henceforth "Hamlet", was provided by Mu Xiao of UCLA. Hamlet generally follows

the Maurer methodology of interpolating daily COOP station data using the SYMAP algorithm.
The two major differences are that Hamlet temperatures are adjusted so 1971–2000 monthly
normals match PRISM and low-frequency variability matches the quality controlled United
States Historical Climatology Network (USHCN; Menne et al. 2009) stations. The use of quality
controlled stations to determine low-frequency variability is intended to make the Hamlet dataset
suitable for trend analysis and long-term hydrologic simulations. This extension appears to be
similar to the extension created by Hamlet et al. (2010).

284

285 g. NLDAS-2

286

287 The retrospective forcing dataset for the North American Land Data Assimilation System 288 (NLDAS; Cosgrove et al. 2003, Mitchell et al. 2004) includes temperature data with 1-hour 289 temporal resolution and $1/8^{\circ}$ spatial resolution. It is intended to be used as forcing to the 290 NLDAS project which runs land surface simulations using multiple land surface models. The 291 most recent version of the project, NLDAS-2 (Xia et al. 2012), constructs its temperature forcing 292 data by linearly interpolating 32 km, 3-hourly NARR in space and time to achieve 1/8°, 1-hourly 293 data, for the period 1979–2016. So, like the WRF simulation, NLDAS-2 is a downscaling of 294 NARR (a reanalysis product), but using linear interpolation instead of a regional climate model. 295 Where interpolated NARR elevation differs with elevation of the 1/8° NLDAS-2 grid, 296 temperatures are adjusted using a fixed lapse rate of 6.5 °C km⁻¹. Data was downloaded using the 297 NASA Earthdata Simple Subset Wizard (https://disc.gsfc.nasa.gov/SSW/). 298

299 h. Metdata

301	Metdata (Abatzoglou 2013) is a hybrid dataset of meteorological forcings that combines the high
302	temporal resolution (sub-daily) of NLDAS-2, with the spatial climatologies and monthly
303	variability of PRISM. Metdata is available for the 1979–2016 period at 4 km horizontal
304	resolution and daily (and sub-daily) temporal resolution from
305	http://metdata.northwestknowledge.net. To create Metdata, first NLDAS-2 is linearly
306	interpolated to 4 km resolution. Next, interpolated NDLAS-2 sub-daily anomalies are calculated
307	relative to monthly means. The final step is to add the sub-daily anomalies from NLDAS-2 onto
308	PRISM monthly means. Thus, Metdata has the daily (and sub-daily) variability of NLDAS-2, but
309	the climatologies and monthly variability of PRISM. Metdata is technically a hybrid dataset, but
310	because monthly means are used in this assessment, and Metdata monthly climatologies and
311	variability are derived from station-based PRISM, here it is grouped with the station-based
312	datasets.
313	
314	
315	3. Methods
316	
317	a. Regridding to the WRF 9 km grid
318	
319	To facilitate comparisons among the datasets, each dataset is regridded to the 9 km WRF grid.
320	For TopoWx and Daymet, which have substantially higher resolution than WRF, regridding is
321	performed using a moving window approach: averages are taken over all grid cells whose centers
322	reside within the nearest WRF grid cell. For all other datasets, regridding is performed bilinear

interpolation. Only land areas are considered as some datasets don't have data over oceans or
lakes. All analysis is performed over the 1981–2010 period. For comparisons with GHCND
station data, the nearest grid cell in the regridded dataset is used. To adjust for elevation
differences between GHCND station locations and the nearest WRF grid cell, a lapse rate of 6.5
°C km⁻¹ is used. This adjustment is only made for Tmax. No adjustment is made for Tmin,
because Tmin differences were found to be only weakly correlated with elevation differences.

330 b. Climatologies

331

332 Annual climatologies are computed for each gridded dataset. Climatologies are displayed two 333 ways: as differences relative to the GHCND station data, and as differences relative to the 334 average of the station-based gridded datasets. Stations data are not without error, but collectively 335 they represent one of our best sources of temperature observations. Thus, if a gridded dataset has 336 large differences with many GHCND stations, then the gridded dataset is probably biased. 337 Meanwhile, differences with the average of the station-based gridded datasets do not necessarily 338 indicate biases, but they do show how the gridded datasets compare to each other. Importantly, 339 these differences are spatially complete - unlike the differences with GHCND stations data -340 so they reveal how the datasets compare to each other away from the stations. 341 342 To quantify range in climatologies among the datasets, inter-dataset spread is calculated at each 343 grid cell. Spread is calculated for different subgroups of datasets. This allows us to see how

including different datasets changes the spread. The first subgroup is the PRISM relatives:

345 PRISM, Hamlet, and Metdata. This group is expected to have a small spread since Hamlet is

346	adjusted to match PRISM's climatology, and Metdata is constructed using PRISM's monthly
347	mean values. The second subgroup is all station-based datasets. The third is all station-based
348	datasets and WRF. The final group is all datasets (station-based, WRF, and NLDAS-2).
349	
350	c. Linear trends
351	
352	Linear trends are computed at each grid cell using least-squares linear regression on the full
353	sequence of monthly anomalies (all 360 months in the 1981–2010 period). This is too short a
354	period to draw inferences about overall historical trends in temperatures. Instead, this analysis is
355	intended to highlight differences in trends between the datasets. Important differences are
356	expected as some datasets perform adjustments for inhomogeneities in the data, while others do
357	not. Linear trends are also computed for the GHCND station data, using all non-missing
358	monthly anomalies.

360 *d. Variability*

361

To compare temperature variability, the standard deviation of the full sequence of monthly temperature anomalies is computed for the period 1981–2010 at each grid cell. Variability is also computed for GCHND station data, using all non-missing monthly anomalies. For a deeper investigation into spatial covariability, empirical orthogonal function (EOF) analysis is performed on the full sequence of monthly anomalies. EOFs (spatial patterns) represent the primary modes of spatial covariability within the domain. The corresponding principal

368	components (PCs) are time series that represent how these patterns are scaled up and down in
369	time. The three leading EOFs are compared, along with their principal components.
370	
371	e. Snow albedo feedback
372	
373	To test for SAF, April temperature differences are computed between 2007, a warm year with
374	low snow cover, and 2010, a cold year with high snow cover. April snow cover differences
375	between these years are also computed, but for WRF and remotely sensed data from the
376	Moderate-resolution Imaging Spectroradiometer aboard the Terra satellite (MODIS/Terra Snow
377	Cover Monthly L3 Global 0.05 CMG, Hall et al. 2006, data available from
378	http://nsidc.org/data/MOD10CM). Comparing temperature and snow cover differences will
379	allows us to determine whether WRF and the other datasets have similarly amplified temperature
380	differences due to SAF in narrow bands where snow cover is lost.
381	
382	f. Local lapse rates
383	
384	Coastal areas and complex terrain in California may be subject to inverted temperature profiles
385	from penetration of the marine layer and cold-air pooling (Lundquist et al. 2008, Daly et al.
386	2010). If interpolation algorithms do not account for these complicated relationships between
387	temperature and elevation, then they may produce errant temperature patterns. For instance,
388	some datasets use fixed positive lapse rates throughout the domain, which could be problematic
389	in areas experiencing inverted temperatures. To diagnose the local relationship between
390	temperature and elevation throughout the domain, we use TopoWx at its native 30 arcsec (800

m) resolution. TopoWx has the highest native resolution of the datasets considered here and uses satellite LST as an auxiliary predictor for climate normals. So, it is likely to provide the most accurate and detailed information for determining the relationship between temperature and elevation. A local lapse rate is inferred at each grid cell by applying linear regression to temperature and elevation data from surrounding grid cells (defined as grid cells within two grid lengths (~1600 m) in the *x* or *y* direction). Calculation of the local lapse rate should aid us in determining where fixed positive lapse rate assumptions are valid.

398

In addition, the topographic dissection index (TDI; Holden et al. 2011) is used to determine
where stations are located relative to local topographic minima and maxima. TDI is calculated as
follows:

402
$$TDI(x, y) = \sum_{i=1}^{n} \frac{z(x, y) - z_{\min}(i)}{z_{\max}(i) - z_{\min}(i)}$$

403 where z(x, y) is the elevation at the grid cell or station of interest, and $z_{max}(i)$ and $z_{min}(i)$ are the 404 maximum and minimum elevation within the *i*th spatial window. Here we use the TDI computed 405 by Oyler et al. (2015) on the 800 m TopoWx grid, which uses five spatial windows (n = 5) with 406 sizes 3, 6, 9, 12, and 15 km. With this setup, TDI values range from 0 to 5, with 0 being a multi-407 scale local minima and 5 being a multi-scale local maxima. A station's TDI is taken to be the 408 TDI at the grid cell closest to that station. Knowing a station's TDI tells us whether a station's 409 nearby grid cells are generally above or below it, which is useful for understanding how lapse 410 rates are applied.

411

412

413 **4. Results**

415 *a. Climatologies*

416

417 For Tmax, the station-based datasets are within 1 °C of station data at nearly all GHCND stations 418 (Fig. 2). The station-based datasets are also within 1 °C of the station-based gridded dataset 419 average (henceforth, the average) for most of the domain. As expected, PRISM, Metdata, and 420 Hamlet have nearly identical climatologies. This is no surprise because Metdata is built on 421 PRISM monthly data, and Hamlet is adjusted to match PRISM normals for 1971–2000. These 422 three datasets tend to have warmer than average Tmax values along the coast by up to 3 °C. 423 Comparing with GHCND data, it appears that they may be slightly too warm in some locations 424 along the coast. Meanwhile, Livneh Tmax is colder than average in parts of the coastal 425 mountains by up to 4 °C. Interestingly, comparing at the station locations, there is little 426 indication that Livneh diverges from the other datasets; it is only revealed through a spatially 427 complete comparison. This highlights the importance of comparing station-based datasets 428 everywhere, not just at station locations. The reanalysis-based datasets are substantially cooler 429 throughout the domain. On average, NLDAS-2 and WRF differ from the station-based gridded average by -1.4 °C and -1.1 °C, respectively. They are also consistently colder than GHCND 430 431 data, so it's likely that they have a cold bias. Differences between WRF and the station-based 432 dataset average are correlated with elevation (r = -0.67) and become increasingly negative by approximately 1.0 °C km⁻¹ (based on least squares linear regression). NLDAS-2 shows dramatic 433 434 differences with the other datasets along the edges of topographic features and along the coast, 435 exceeding 6 °C in some cases. Although both WRF and NLDAS-2 are derived by downscaling

NARR, they have large differences in their climatologies, indicating that the choice ofdownscaling technique is important.

438

439 For Tmin, the station-based datasets agree closely with GHCND data (within 1 °C) at most 440 stations (Fig. 3). Differences are larger near strong terrain gradients, such as those along the 441 western side of the Sierra Nevada. These discrepancies could be due to elevation mismatches 442 between the stations and the WRF grid, as no elevation adjustments were made to Tmin 443 (adjustments were made only for Tmax). TopoWx and Livneh are the station-based datasets the 444 differ most from the average. Unlike the others, TopoWx uses satellite LST as a predictor for 445 Tmin, which could explain why it differs. Livneh is clearly the most different and is colder than 446 average by 2–6 °C in areas of complex topography, such as the coastal mountains of Northern 447 California. This likely is due to Livneh's use of a fixed lapse rate, which is examined in more 448 detail in Section 4e. WRF agrees closely with the station-based dataset average over most of the 449 domain (domain-average difference of ± 0.3 °C). It does differ in a few areas: e.g. along the 450 eastern California border with Arizona, where it is 3-4 °C colder; and on the lee sides of the 451 several mountain complexes, where it is 2–5 °C warmer. In contrast, NLDAS-2 has a strong 452 warm bias throughout the domain when compared with GHCND data and is much warmer than 453 the average (domain-average difference of +2.9 °C). Thus, WRF is more realistic than NLDAS-454 2 for Tmin.

455

456 Inter-dataset spread varies dramatically based on which datasets are considered (Fig. 4). The

- 457 spread in Tmax among PRISM relatives (PRISM, Hamlet, and Metdata) is small (domain
- 458 average of 0.5 °C). It becomes larger, especially in the coastal mountains, when all station-based

459	datasets are included (domain average of 1.3 °C). When WRF is included, the domain-average
460	spread increases to 2.3 °C, with greater spreads at high elevations. When NLDAS-2 is included
461	spreads increase further, to 3.5 °C. A similar progression happens for Tmin: 0.8 °C for PRISM
462	relatives, 2.5 °C for all station-based, 3.0 °C for station-based and WRF, and 4.8 °C for all
463	datasets. When all datasets are included, certain locations have extreme spreads (up to 12 °C),
464	especially along strong topographic gradients, where NLDAS-2 differs sharply from the others.
465	
466	b. Trends

468 Linear trends in Tmax and Tmin over the 1981–2010 period differ substantially among the 469 datasets (Fig. 5). There are clear differences in trends between those station-based datasets that 470 do not correct for inhomogeneities and those that do. Daymet, Livneh, PRISM, and Metdata do not correct inhomogeneities and have large trends, exceeding 1 °C decade⁻¹ in some locations. A 471 472 comparison of time series at selected grid cells shows that these large trends are generally due to 473 sudden jumps or shifts in temperature by up to 10 °C (Fig. 6). It is likely that these irregularities 474 are inhomogeneities due to changes in station location, measurement techniques or other factors, 475 and are not representative of actual conditions. Daymet and Livneh are the most strongly 476 affected by inhomogeneities (Fig. 5). PRISM and Metdata are also affected, but to a lesser 477 extent. In contrast, TopoWx and Hamlet correct for inhomogeneities and have smooth trends 478 fields. However, they may be too smooth. For instance, along the coast, Tmax trends at 479 GHCND stations are consistently negative. It is unlikely that they so many stations would agree 480 on a modest negative trend if it were not actually the case. Yet, TopoWx and Hamlet have

universally positive Tmax trends along the coast and throughout California. Thus, it is probablythe case that TopoWx and Hamlet miss real trends in some locations.

483

484 *c*. *Variability*

485

486 All datasets have greater temperature variability at higher elevations (Fig. 7). In most datasets,

487 Tmax variability peaks in the high elevations of Sierra Nevada, in the range of 2–3 °C. At lower

488 elevations, Tmax variability is in the range of 1–2 °C. NLDAS-2 has much lower Tmax

489 variability (0.5–1 °C) along a wider coastal strip than GHCND or any of the other gridded

490 datasets. Because NLDAS-2 differs so consistently from GHCND along the coast, it is almost

491 definitely biased there. Grid cells in this coastal strip likely reside between land and ocean grid

492 cells in NARR. Thus, when linear interpolation is applied, grid cells in this strip have

493 temperatures with intermediate properties that are mixture between land and ocean. Since

494 temperature variability is reduced over the ocean, these grid cells are likely to have lower

495 variability relative to their inland counterparts.

496

497 Tmin variability is lower than Tmax variability in all datasets. For most datasets, Tmin

498 variability is generally in the 1–1.5 °C range at low elevations and in the 1.5–2 °C at higher

499 elevations. TopoWx and Hamlet have the least Tmin variability. NLDAS-2 has lower Tmin

500 variability along a wider coastal strip than the other datasets, just like it does for Tmax.

501 Meanwhile, Daymet and Livneh have isolated regions with Tmin variability as high as 3 °C,

which are likely due to the same uncorrected inhomogeneities that lead to large trends at theselocations.

505	Generally, the datasets have very similar spatial patterns (EOFs) and nearly identical time series
506	(PCs) for the major modes of variability. For Tmax, EOF 1 explains between 78% and 86% of
507	the variance, depending on the dataset (Fig. 8). EOF 1 is characterized by positive loadings over
508	all of California, with larger loadings at high elevations. PC 1 (the time series representing how
509	EOF 1 is scaled up or down each month) is nearly identical for each dataset. One notable
510	difference is that Livneh, Hamlet, and NLDAS-2 have EOFs that do not follow topographic
511	contours as closely as the other datasets. NLDAS-2 is also has much weaker loadings along the
512	coast, consistent with smaller variability found there (cf. Fig. 7). EOF 2 explains 6-8% of the
513	variance and has a very consistent dipole pattern with positive loadings in Northern California
514	and negative loadings in Southern California. Agreement among PC 2 time series is also high,
515	although not as high as for PC 1. EOF 3 is another dipole mode, this time representing variability
516	that is oppositely phased between coastal and inland locations (2–4% of the variance). The
517	corresponding PC 3s agree less than PCs 1 or 2. Daymet's EOF 3 stands out for its irregular
518	loading pattern, which could be related to uncorrected inhomogeneities. However, PC 3 explains
519	only a small fraction of the variability.
520	
521	For Tmin, EOFs and PCs differ somewhat more than Tmax (Fig. 9). EOF 1, characterized by all
522	positive loadings, explains 63-81% of the variance, a wider range than for Tmax (77-86%).
522	Description EQE anotical notiforms differ considerably from the others. They have much higher

523 Daymet's EOF spatial patterns differ considerably from the others. They have much higher

524 loadings in the same regions that have large, unphysical trends. Daymet's PC 1 and PC 2 time

- series show shifts from lower values in the 1980s to higher values in the 2000s that are not
- 526 present in the other datasets, and are consistent with the inhomogeneities discussed earlier.

527 Inhomogeneities are also likely responsible for the unusual spatial pattern of Livneh's EOF 3.

528 These results suggest that uncorrected station inhomogeneities can contribute non-negligible

529 artifacts to a station-based dataset's variability.

530

531 PRISM, Metdata, and TopoWx appear to have the most plausible variability. Their main EOFs 532 are free from artifacts and their PCs series don't have noticeable jumps or trends. Hamlet also 533 has these qualities, but its EOFs are much smoother in space and appear to miss topographic 534 effects. Hamlet's overly-smooth EOFs are a side-effect of the way it avoids inhomogeneities. 535 Low-frequency variability is adjusted to match interpolated values from stations in the U.S. 536 Historical Climatology Network, a small network of long-running stations with continuous 537 temperature records (Menne et al. 2015). While excluding other short term stations may help 538 produce more realistic long-term trends, it has the side effect of lowering the effective resolution 539 for low-frequency variability, resulting in overly-smooth EOFs. Meanwhile, WRF does not rely 540 directly on station data and is free of inhomogeneity-related artifacts, which is an advantage. 541 Overall, WRF EOF spatial patterns are broadly similar to PRISM, TopoWx, and Metdata, but the 542 smaller-scale details are different. WRF also has somewhat smoother Tmin spatial patterns, and 543 does not have fine-scale variations (< 10 km) in complex terrain that the others do, likely 544 because of its lower resolution.

545

546 d. Effect of snow cover

547

548 WRF disagrees considerably with the other datasets over the influence of snow albedo feedback

549 (SAF) on temperature anomalies (Fig. 10). WRF simulates large differences in snow cover

550 between April 2007 and April 2010, which are supported by the MODIS/Terra satellite data. 551 WRF temperature differences between these years can reach 7 °C at grid cells where snow cover 552 is lost, versus 1–4 °C in the rest of the domain. Meanwhile, the other datasets do not show 553 substantially enhanced temperature differences at grid cells where MODIS/Terra indicates snow 554 cover loss. This disparity could be due to low station density at high elevations or overly 555 simplistic relationships between temperature and elevation. An alternative possibility is that 556 WRF's SAF strength is unrealistically high and actual temperature differences are not amplified 557 as much as WRF suggests.

558

559 *e. Local lapse rates*

560

Tmax lapse rates are positive throughout the domain (Fig. 11a). They are 4-8 °C km⁻¹ inland, 561 but 2–4 °C km⁻¹ for large portions of the coastal mountains. Thus, Livenh's use of a fixed 6.5 °C 562 km⁻¹ lapse rate could be suitable for Tmax inland, but not for portions of the coastal mountains. 563 Meanwhile, a fixed 6.5 °C km⁻¹ lapse rate is much less suitable for Tmin. Tmin lapse rates are 564 565 generally near zero or even negative for most of California (Fig. 11b). Using a fixed lapse rate 566 would have little effect if station density were high everywhere and all elevations were 567 adequately sampled. However, this is not the case: station density is low in many parts of the 568 domain and stations are often located near topographic minima (Fig. 12). Thus, many grid cells 569 are far away from and at higher elevations than their nearest stations. At these grid cells, 570 temperatures are determined by extrapolating up from the stations, and using a suitable lapse rate 571 is most important. For example, in the coastal mountains of Northern California, station density 572 is low and almost all stations are located near topographic minima (Fig. 13a). Tmin lapse rates

in this area are typically near zero (Fig. 11b), which is substantially different from the fixed lapse
rate of 6.5 °C km⁻¹ used in Livneh. This explains why Livneh is cold relative to the stationbased gridded datasets average here (Fig. 13b), and differences become increasingly negative
with height by 2.9 °C km⁻¹ (Fig. 13c).

577

578 5. Summary and Discussion

579

580 This study assesses temperature climatologies, trends, and variability in eight high-resolution 581 gridded datasets over California. Each dataset gives a different spatially-complete picture of 582 historical temperatures. Five are station-based datasets created by interpolating station data to a 583 regular grid (PRISM, TopoWx, Daymet, Livneh, and Hamlet). Two are created by downscaling 584 reanalysis (NLDAS-2 and WRF). Finally, one dataset, Metdata, combines monthly means from 585 station-based PRISM with daily variability from reanalysis-based NLDAS-2. This study seeks to 586 identify differences in these datasets, trace these differences back to the datasets' methodologies, 587 and determine which are the most realistic by comparing with station data. In our analysis, 588 particular attention is paid to how the WRF simulation compares with the others, as dynamically 589 downscaled reanalysis has not been included in previous assessments of gridded datasets. 590 591 As expected, when evaluated at station locations, station-based datasets all have similar 592 climatologies that closely match GHCND station data. Differences in station-based datasets are 593 more pronounced away from stations, where interpolation algorithms have greater impact. For 594 Tmax, the largest differences (up to $6 \,^{\circ}$ C) occur in isolated parts of the coastal mountains. For 595 Tmin, differences are large (2–6 °C) in complex terrain throughout the domain. The existence of

603

604 There are clearly large differences in climatology between these datasets, but away from the 605 station locations, it is difficult to know definitively which dataset is most realistic. It is possible, 606 in some cases, to demonstrate that a dataset relies on a problematic assumption. For example, 607 Livneh uses a fixed lapse rate of $6.5 \, {}^{\circ}\text{C} \, \text{km}^{-1}$ to adjust for elevation. In contrast, the other 608 datasets allow for the relationship between temperature and elevation to vary throughout the 609 domain. Tmin lapse rates were found to be negative or near zero for much of the domain (inverted or neutral conditions). Thus, a fixed positive lapse rate of 6.5 °C km⁻¹ is not suitable for 610 611 Tmin and explains why Livneh is so cold at high elevations. This finding is consistent with 612 Mizukami et al. (2014) and Newman et al. (2015), who found that datasets with fixed positive 613 lapse rates have cold biases at high elevations. Based on these results, using a gridded dataset 614 that accurately captures variable lapse rates is a necessity when studying daily minimum 615 temperatures. 616

617 Differences in trends are the result of choices made about which stations to include and whether
618 to perform station homogenization. Daymet, Livneh, PRISM, and Metdata do not correct station

619	data for inhomogeneities and subsequently have large non-climatic trends near affected stations.
620	In contrast, TopoWx, Hamlet, NLDAS-2, and WRF have smoother trend fields. TopoWx applies
621	a homogenization algorithm that removes inhomogeneities by comparing a station with its
622	neighbors. This removes the obvious jumps in temperature due to non-climatic factors.
623	However, our findings also suggest it may smooth out true, local trends, forcing the regional
624	trend on each grid cell, a known side effect of homogenization algorithms (Pielke et al. 2007).
625	Hamlet also accounts for inhomogeneities, but in a different way: by adjusting the low-frequency
626	variability at all stations to match the small set of USHCN stations. This leads to overly
627	smoothed variability in Hamlet. WRF and NLDAS-2 appear to have realistic trends. However, it
628	is possible for reanalysis to suffer from non-climatic trends if inhomogeneities in the assimilated
629	station data or changes in data coverage are not accounted for. Interpolated reanalysis, such as
630	NLDAS-2, will directly inherit any problems. Dynamically downscaled reanalysis may be less
631	affected since it generally receives input only at the lateral and ocean boundaries. Overall, users
632	should be aware that certain gridded datasets have unphysical jumps or trends, while others may
633	have overly smooth trends.
634	

635 Most datasets have broad agreement in the spatial patterns and the timing of the leading modes.

636 Daymet and Livneh are the main exceptions. Inhomogeneities strongly affect these datasets,

causing prominent non-climatic artifacts in the spatial patterns and jumps in the associated time 637

638 series. These datasets also have unrealistically high variability in some locations. NLDAS-2 is

639 unusual because it has significantly reduced variability very near the coast.

640

641 While the WRF simulation has important disagreements with station-based datasets, it still 642 broadly similar in most aspects considered here. WRF's most glaring issue is a cold bias in 643 Tmax at high elevations. But, for Tmin, it is within the range of station-based datasets. WRF's 644 temporal variability is highly correlated with the most plausible station-based datasets. Its spatial 645 patterns of the leading modes are qualitatively similar to the most plausible station-based 646 datasets. WRF's variability is clearly more realistic than some station-based datasets, such as 647 Daymet, which is strongly affected by inhomogeneities. Its trends are most similar to TopoWx 648 and Hamlet, the two datasets that correct for inhomogeneities. These results suggest that 649 dynamical downscaled reanalysis can produce a spatially complete picture of the historical 650 temperatures on par with the station-based datasets in many aspects. In fact, it could potentially 651 be a valuable, complementary perspective to station-based dataset in snow covered areas, as it 652 explicitly simulates the of snow cover anomalies on temperature. However, further research is 653 needed to determine if WRF's snow-albedo feedback strength is realistic.

654

Although WRF and NLDAS-2 are both downscalings of NARR, NLDAS-2 is less realistic in
most aspects considered here. NLDAS-2 has large biases in both Tmax *and* Tmin. NLDAS-2
has less realistic variability especially very near the coast, which could be due to interpolation
between grid cells across the land-sea interface. Thus, at least in this case, dynamical
downscaling is found to add value over linear interpolation in downscaling historical reanalysis.

661 Large differences between gridded datasets indicate gridded dataset choice is a considerable
 662 source of uncertainty. Uncertainty in station-based datasets could be reduced with

straightforward fixes, like making variable lapse rates and station homogenization standard

practice. Further reductions could come from identifying best-performing interpolation
algorithms. This could be done by running cross-validation tests on a standardized set of
stations. Improving realism in downscaled reanalysis is less straightforward. Improvements are
likely to come from ongoing progress in improving atmospheric models and regional climate
models used to generate and downscale reanalysis.

It is important that users of gridded datasets are aware of their limitations. Often station-based gridded datasets are treated as ground truth, without acknowledging either the problems with station data or the assumptions needed to generate a spatial complete temperature field from point measurements. This often plays out in the context of climate model evaluation, where models are compared against a station-based gridded dataset, and any differences are attributed to model deficiencies. In fact, a model may not be wrong just because it differs from a single station-based dataset, especially if the station-based dataset has known problems. More generally, it is recommended that users employ two or more independent gridded datasets to test the sensitivity of their results to dataset choice. Note that selecting closely related datasets, like PRISM and Metdata, could dramatically underestimate this important source of uncertainty.

687	

688	Acknowledgments
-----	-----------------

690	The authors thank David Pierce for generating WRF Tmax and Tmin from 3-hourly output. The
691	authors thank Mu Xiao for providing the extension of the Hamlet dataset. For information about
692	obtaining this extension, direct inquiries to muxiao@ucla.edu. Funding for this work was
693	provided by the U.S. Department of Energy (Grant DE-SC0014061; "Developing Metrics to
694	Evaluate the Skill and Credibility of Downscaling"). The authors are not aware of any conflicts
695	of interest.

702	Abatzoglou, J. T., 2013: Development of gridded surface meteorological data for ecological
703	applications and modelling. Int. J. Clim., 33, 121-131, doi:10.1002/joc.3413.

705	Behnke. R., S.	. Vavrus, A. Allstadt,	T. Albright,	W. Thogmartin,	and V. Radeloff, 2016a
-----	----------------	------------------------	--------------	----------------	------------------------

706	Evaluation of downscaled, gridded climate data for the conterminous United States.
707	Ecological Applications, 26(5), 1338–1351. http://dx.doi.org/10.1002/15-1061

709 Behnke. R., S. Vavrus, A. Allstadt, T.	Albright, W. Thogmartin,	and V. Radeloff, 2016b: Data
--	--------------------------	------------------------------

710	from: Evaluation of downscaled, gridded climate data for the conterminous United
711	States. Dryad Digital Repository, doi: <u>http://dx.doi.org/10.5061/dryad.7tv80</u> .
712	
713	Bishop, D. A., and C. M. Beier, 2013: Assessing Uncertainty in High-Resolution Spatial Climate
714	Data across the US Northeast. PLoS ONE 8(8): e70260.
715	doi:10.1371/journal.pone.0070260.
716	
717	Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North
718	American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108(D22),
719	8842, doi: <u>10.1029/2002JD003118</u> .
720	
721	Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001:
722	The Scientific Basis, J. W. Kimand J. Stone, Eds., Cambridge University Press, 525–582.
723	
724	Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping
725	climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140-158,
726	doi:10.1175/1520-0450(1994)033,0140:ASTMFM.2.0.CO;2.
727	
728	Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J.
729	<i>Climatol.</i> , 26 , 707–721, doi:10.1002/joc.1322.
730	
731	Daly C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, P. P.
732	Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and

733	precipitation across the conterminous United States. Int. J. Climatol., 28, 2031-2064, doi:
734	10.1002/joc.1688.
735	
736	Daly C, D. R. Conklin, M. H. Unsworth, 2010: Local atmospheric decoupling in complex
737	topography alters climate change impacts. Int. J. Climatol., 30, 1857–1864,
738	doi:10.1002/joc.2007.
739	
740	Dozier, J., 1996: A generalized split-window algorithm for retrieving land-surface temperature
741	from space. IEEE Trans. Geosci. Remote Sens., 34, 892-905, doi:10.1109/36.508406.
742	
743	Durre I., M. J. Menne, B. E. Gleason, T. G. Houston, R. S. Vose, 2010: Comprehensive
744	automated quality assurance of daily surface observations. J. Appl. Meteorol. Climatol.,
745	49 , 1615–1633, doi:10.1175/2010JAMC2375.1.
746	
747	Hall, D. K., V. V. Salomonson, and G. A.Riggs, 2006: MODIS/Terra snow cover monthly L3
748	global 0.05 deg CMG, version 5 (April 2000-December 2006 subset). National Snow and
749	Ice Data Center, accessed 31 July 2015, doi:10.5067/IPPLURB6RPCN.
750	
751	Hamlet A.F. and Lettenmaier D.P., 2005: Production of temporally consistent gridded
752	precipitation and temperature fields for the continental U.S., 2005: J.
753	<i>Hydrometeorology</i> 6 (3), 330-336, doi: <u>http://dx.doi.org/10.1175/JHM420.1</u> .
754	

755	Hamlet, A., and Coauthors, 2010: Chapter 3, "Historical Meteorological Driving Data". From
756	Final project report for the Columbia basin climate change scenarios project. Report,
757	University of Washington, Seattle, WA. Accessed 2017-1-18. Available online at:
758	http://www.hydro.washington.edu/2860/report/.
759	
760	Hidalgo, H. G., and Coauthors, 2009: Detection and Attribution of Streamflow Timing Changes
761	to Climate Change in the Western United States, J. Climate, 22, 3838-3855, doi:
762	10.1175/2009JCLI2470.1.
763	
764	Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, A. Jarvis, 2005: Very high resolution
765	interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 1965–1978,
766	doi:10.1002/joc.1276.
767	
768	Holden, Z. A., J. T. Abatzoglou, C. H. Luce, L. S. Baggett, 2011: Empirical downscaling of daily
769	minimum air temperature at very fine resolutions in complex terrain. Agric. For.
770	Meteorol., 151, 1066–1073, doi:10.1016/j.agrformet.2011.03.011.
771	
772	Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models.
773	<i>Clim. Dyn.</i> , 21 , 221–232.
774	
775	Iacobellis, S. F., and D. R. Cayan, 2013: The variability of California summertime marine
776	stratus: Impacts on surface air temperatures, J. Geophys. Res. Atmos., 118, 9105-9122,
777	doi:10.1002/jgrd.50652.

779	Johnstone, J. A., and T. E. Dawson, 2010: Climatic context and ecological implications of
780	summer fog decline in the coast redwood region. Proc. Nat. Acad. Sci., 107(10), 4533-
781	4538, doi:10.1073/pnas.0915062107.
782	
783	Juang, HM. H., and M. Kanamitsu, 1994: The NMC Nested Regional Spectral Model. Mon.
784	Weath. Rev., 122(1), 3-26, doi:10.1175/1520-
785	0493(1994)122<0003:TNNRSM>2.0.CO;2.
786	
787	Kanamitsu, M., and H. Kanamaru, 2007a: Fifty-seven-year California Reanalysis Downscaling
788	at 10 km (CaRD10). Part I: System detail and validation with observations. J. Climate,
789	20, 5553–5571.
790	
791	Kalnay, E. and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer.
792	Meteor. Soc., 77(3), 437-471, doi:10.1175/1520-
793	0477(1996)077<0437:TNYRP>2.0.CO;2.
794	
795	Letcher, T. W., and J. R. Minder, 2015: Characterization of the Simulated Regional Snow
796	Albedo Feedback Using a Regional Climate Model over Complex Terrain. J. Climate,
797	28 (19), 7576–7595, doi:10.1175/JCLI-D-15-0166.1.
798	
799	Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and
800	D. P. Lettenmaier, 2013: A long- term hydrologically based dataset of land surface fluxes

801	and states for the conterminous United States: Update and extensions. J. Climate, 26,
802	9384–9392, doi:10.1175/JCLI-D-12-00508.1.
803	
804	Lundquist JD, Pepin N, Rochford C. 2008. Automated algorithm for mapping regions of cold-air
805	pooling in complex terrain. J. Geophys. Res., 113, D22107, doi:10.1029/2008JD009879.
806	
807	Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term
808	hydrologically based dataset of land surface fluxes and states for the conterminous United
809	States. J. Climate, 15, 3237-3251, doi:10.1175/1520-
810	0442(2002)015,3237:ALTHBD.2.0.CO;2.
811	
812	Menne, M. J., C. N. Williams, and R. S. Vose, 2009: The United States Historical Climatology
813	Network Monthly Temperature Data - Version 2. Bull. Amer. Meteor. Soc., 90, 993-1007,
814	doi: 10.1175/2008BAMS2613.1.
815	
816	Menne, M. J., and C. N. Williams, 2009: Homogenization of temperature series via pairwise
817	comparisons. J. Climate, 22, 1700–1717, doi:10.1175/2008JCLI2263.1.
818	
819	Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, T. G. Houston, 2012a: An overview of the
820	Global Historical Climatology Network-Daily Database. J. Atmos. Oceanic Technol., 29:
821	897–910, doi:10.1175/JTECH-D-11-00103.1.
822	

823	Menne, M. J., and Coauthors, 2012b: Global Historical Climatology Network - Daily (GHCN-
824	Daily), Version 3. NOAA National Climatic Data Center. doi:10.7289/V5D21VHZ.
825	
826	Menne, M. J., C. N. Williams, Jr., and R. S. Vose, 2015. United States Historical Climatology
827	Network Daily Temperature, Precipitation, and Snow Data. Carbon Dioxide Information
828	Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
829	
830	Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor.
831	Soc., 87, 343–360, doi:10.1175/BAMS-87-3-343.
832	
833	Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data
834	Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a
835	continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90,
836	doi:10.1029/2003JD003823.
837	
838	Mizukami, N., M. P. Clark, A. G. Slater, L. D. Brekke, M. M. Elsner, J. R. Arnold, and S.
839	Gangopadhyay, 2014: Hydrologic Implications of Different Large-Scale Meteorological
840	Model Forcing Datasets in Mountainous Regions. J. Hydrometeorol., 15, 474–488, doi:
841	http://dx.doi.org/10.1175/JHM-D-13-036.1.
842	
843	Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining Mountain
844	Snowpack in Western North America. Bull. Amer. Meteor. Soc., 86(1), 39-49,
845	doi:10.1175/BAMS-86-1-39.

847	Newman, A.J., and Coauthors 2015: Gridded ensemble precipitation and temperature estimates
848	for the contiguous United States. J. Hydrometeorol., 16(6), 2481–2500,
849	doi:10.1175/JHM-D-15-0026.1.
850	
851	Niu, GY., et al. (2011), The community Noah land surface model with multiparameterization
852	options (Noah-MP): 1. Model description and evaluation with local-scale
853	measurements. J. Geophys. Res., 116, D12109, doi: 10.1029/2010JD015139.
854	
855	Oyler, J. W., A. Ballantyne, K. Jencso, M. Sweet, and S. W. Running, 2015: Creating a
856	topoclimatic daily air temperature dataset for the conterminous United States using
857	homogenized station data and remotely sensed land skin temperature. Int. J. Climatol.,
858	35 , 2258–2279, doi:10.1002/joc.4127.
859	
860	Pierce, D.W., D. R. Cayan, B. L. Thrasher, 2014: Statistical Downscaling Using Localized
861	Constructed Analogs (LOCA). J. Hydrometeorol., 22, 2558:2585, doi:10.1175/JHM-D-
862	14-0082.1.
863	
864	Pielke, R., and Coauthors, 2007: Unresolved issues with the assessment of multidecadal global
865	land surface temperature trends. J. Geophys. Res., 112, D24S08,
866	doi:10.1029/2006JD008229.

868	Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of
869	seasonal snowfall over Colorado: A process study of current and warmer climate. J.
870	<i>Climate</i> , 24 , 3015–3048, doi:10.1175/2010JCLI3985.1.
871	
872	Salathé, E. P., R. Steed, C. F. Mass, P. H. Zahn, 2008: A High-Resolution Climate Model for the
873	U.S. Pacific Northwest: Mesoscale Feedbacks and Local Responses to Climate Change.
874	J. Climate, 21, 5708-5726, doi:10.1175/2008JCLI2090.1.
875	
876	Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial
877	Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., D. Reidel, 133-145.
878	
879	Simpson, J. J., G. L. Hufford, C. Daly, J. S. Berg, and M.D. Fleming, 2005: Comparing maps of
880	mean monthly surface temperature and precipitation for Alaska and adjacent areas of
881	Canada produced by two different methods. Arctic, 58(2), 137-161,
882	doi:10.14430/arctic407.
883	
884	Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version
885	3. NCAR Technical Note, NCAR/TN-4751+STR.
886	
887	Stahl, K., R. D. Moore, J. A. Floyer, M. G. Asplin, and I. G. McKendry, 2006: Comparison of
888	approaches for spatial interpolation interpolation of daily air temperature in a large region
889	with complex topography and highly variable station density. Agric. For. Meteor., 139,
890	224-236, doi:10.1016/j.agrformet.2006.07.004.

892	Stefanova, L., V. Misra, S. Chan, M. Griffin, J. J. O'Brien, and T. J. Smith III, 2012: A proxy for
893	high-resolution regional reanalysis for the Southeast United States: assessment of
894	precipitation variability in dynamically downscaled reanalyses. Clim. Dyn., 38(11-12),
895	2449-2466, doi:10.1007/s00382-011-1230-y.
896	
897	Stoklosa, J., C. Daly, S. Foster, M. Ashcroft, and D. Warton, 2015: A climate of uncertainty:
898	accounting for error and spatial variability in climate variables for species distribution
899	models. <i>Methods in Ecology and Evolution</i> , 6 , 412–423, doi:10.1111/2041-210X.12217.
900	
901	Thornton, P. E., S. W. Running, and M. A. White, 1997: Generating surfaces of daily
902	meteorological variables over large regions of complex terrain. J. Hydrology. 190, 214-
903	251, doi: 10.1016/S0022-1694(96)03128-9.
904	
905	Thornton, P. E., M. M. Thornton, B. W. Mayer, Y. Wei, R. Devarakonda, R. S. Vose, and R. B.
906	Cook, 2016: Daymet: Daily Surface Weather Data on a 1-km Grid for North America,
907	Version 3, 1980–2012. ORNL DAAC, Oak Ridge, Tennessee, USA.
908	http://dx.doi.org/10.3334/ORNLDAAC/1328 (accessed 19 November 2016).
909	
910	Vose, R. S., S. Applequist, M. Squires, I. Durre, M. Menne, C. N. Williams Jr., C. Fenimore, K.
911	Gleason, and D. Arndt, 2014: Improved Historical Temperature and Precipitation Time
912	Series for U.S. Climate Divisions. J. Appl. Meteor. Climatol., 53(5), 1232–1251,
913	doi:10.1175/JAMC-D-13-0248.1.

915	Wan Z. 2008. New refinements and validation of the MODIS land-surface
916	temperature/emissivity products. Remote Sens. Environ., 112, 59-74,
917	doi:10.1016/j.rse.2006.06.026.
918	
919	Walton, D. B., F. Sun, A. Hall, and S. Capps, 2015: A Hybrid Dynamical-Statistical
920	Downscaling Technique. Part I: Development and Validation of the Technique. J.
921	<i>Climate</i> , 28 (12), 4597–4617, doi:10.1175/JCLI-D-14-00196.1.
922	
923	Walton, D. B., A. Hall, N. Berg, M. Schwartz, and F. Sun, 2017: Incorporating Snow Albedo
924	Feedback into Downscaled Temperature and Snow Cover Projections for California's
925	Sierra Nevada. J. Climate, 30 (4), 1417-1438, doi:10.1175/JCLI-D-16-0168.1.
926	
927	Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation
928	for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1.
929	Intercomparison and application of model products. J. Geophys. Res., 117, D03109,
930	doi:10.1029/2011JD016048.

Dataset	PRISM	TopoWx	Daymet	Livneh	Hamlet	Metdata	NLDAS-2	WRF
name	(AN81m)							
Categor	station-	station-based	station-	station-	station-based	hybrid (uses	interpolated	dynamica
У	based		based	based		station-based	reanalysis	lly
						monthly data		downscal
						and reanalysis-		ed
						based sub-		reanalysi
						daily data)		S
Citation	Daly et al.	Oyler et al. 2015	Thornto	Livneh et	Hamlet and	Abatzoglou	Xia et al.	Walton
	2008		n et al.	al. 2013	Lettenmaier 2005	2013	2012	et al.
			1997					2017
Data	http://pris	http://www.scrim	https://d	ftp.hydro	Contact Mu Xiao	http://climate.n	https://disc.	http://res
availabl	m.oregons	hub.org/resources	aymet.or	washingt	muxiao@ucla.edu	kn.uidaho.edu/	gsfc.nasa.go	earch.at
e from	tate.edu	/topowx/	nl.gov	on.edu/p	for extension;	METDATA/	v/SSW	mos.ucla.
				ub/bLivn	original available			edu/csrl/

Table 1. Details of gridded datasets used in this study.

Resoluti(-4 km)(m)km)(-6 km)km)onTime18951948-201619801915-20161979-20161979-2016Period20161915-1915-20161979-20161979-20161979-20161979-2016Period201620162011 $1979-2016$ 1979-20161979-20161979-20161979-2016Period2016COOP,InterpreteInterpreteInterpreteInterpreteInterpreteInterpreteMuneKMSKMSKMSKallKMSKMSKMSKMSKMSKMSCDEC,CDEC,20122012KMSKmSKmSKmS	Native	2.5 min	30 arcsec (~800	1 km	eh/CON US/ 1/16° (~6	from http://www.hydro. washington.edu/L ettenmaier/Data/gr idded/index_haml et.html Extension: 1/16°	1/24° (~4 km)	1/8° (~12	data/ ded_] sets/ 9 km
1895-1948-20161980-1915-20161979-2016d2016201620111979-2016d2016201120162011COOP,GHCN-Daily,GHCN-COOP, Env.NLDAS-2 forforWBAN,SNOTEL, RAWSDailyCanada, USHCN,dailyerSNOTEL,MenneHCCDvariability,RAWS,et al.,et al.,FRISM forCDEC,20122012monthly means	ti	2.5 min (~4 km)	30 arcsec (~800 m)	1 km	1/16° (~6 km)	Extension: 1/16° (~6 km)	1/24° (~4 km)	1/8° (∼1 km)	2
1895- $1948-2016$ $1980 1915-2016$ $1915-2016$ $1979-2016$ d 2016 2016 2011 2016 2011 $1979-2016$ d $COOP$, $GHCN-Daily$, 2016 2011 $COOP$, Env. $NLDAS-2$ for n for $WBAN$, $SNOTEL$, RAWS $Daily$ $COOP$, Env. $NLDAS-2$ for $aily$ er $SNOTEL$, $MCTEL$, RAWS $Daily$ $Canada, USHCN$, $daily$ RAWS, MCD $HCCD$ $variability$, $PRISM$ for $PRISM$ forCDEC, 2012 $monthly means$	on								
I201620162011COOP,GHCN-Daily,GHCN-COOPCOOP, Env.NLDAS-2 fororWBAN,SNOTEL, RAWSDailyCanada, USHCN,dailyerSNOTEL,(MenneHCCDvariability,RAWS,et al.,HCCDPRISM forCDEC,2012monthly means		1895-	1948–2016	1980–	1915–	1915-2016	1979-2016	1979–2	016 1995-
COOP,GHCN-Daily,GHCN-COOPCOOP, Env.NLDAS-2 fororWBAN,SNOTEL, RAWSDailyCanada, USHCN,dailyerSNOTEL,(MenneHCCDvariability,RAWS,et al.,et al.,PRISM forCDEC,2012)monthly means		2016		2016	2011				
WBAN,SNOTEL, RAWSDailyCanada, USHCN,SNOTEL,(MenneHCCDRAWS,et al.,CDEC,2012)		COOP,	GHCN-Daily,	GHCN-	COOP	COOP, Env.		NARR	
SNOTEL,(MenneHCCDRAWS,et al.,CDEC,2012)		WBAN,		Daily		Canada, USHCN,	daily		
RAWS, et al., CDEC, 2012)		SNOTEL,		(Menne		HCCD	variability,		
2012)		RAWS,		et al.,			PRISM for		
		CDEC,		2012)			monthly means		

	Agrimet,							
	others							
Adjust	No	Yes, pairwise	No	No	Yes, low	No	No	No
ments		comparison			frequency			
for		algorithm of			variability			
tempora		Menne and			adjusted to match			
1		Williams (2009)			USHCN, HCCD			
inhomo					stations			
geneitie								
S								
Downsc	Elevation-	Regression	Truncat	SYMAP	SYMAP	Bi-linearly	Bi-linear	WRF
aling/	regression	kriging for	ed	algorithm	algorithm: inverse	interpolatied	interpolatio	coupled
Interpol	model	climate normals	Gaussia	: inverse	distance weighting	NLDAS-2	n of NARR	to Noah-
ation	with	with auxiliary	n filter	distance	with directional	daily	to 1/8°	MP
Method	stations	predictors	combine	weightin	adjustment; daily	anomalies	spatial	
	weighted	including lat, lon,	d with	g with	data adjusted so	from monthly	resolution	

	based on	elev, satellite	elevatio	direction	that monthly	means added to and hourly	and hourly	
	multiple	LST; moving-	n-	al	climate normals	PRISM	temporal	
	physical	window	regressi	adjustme	match PRISM for	monthly means	resolution	
	factors	geographically	on	nt	1971-2000			
		weighted						
		regression and						
		inverse distance						
		weighting for						
		anomalies						
Lapse	Determine	Determined based	Determi	6.5 °C	6.1 °C km ⁻¹ , but	Variable	Variable	Variable
Rate	d based on	on nearby stations	ned	km ⁻¹	climatologies			
	nearby		based on		adjusted to match			
	stations		nearby		PRISM			
			stations					

934	
935	Figure Captions
936	
937	Fig 1. (a) Setup of 27 km resolution and 9 km resolution nested WRF domains. (b) Locations of
938	COOP stations used by Livneh, and GHCND, RAWS, and SNOTEL stations used by TopoWx.
939	
940	Fig 2. (top left) 1981–2010 Tmax annual-mean climatology at GHCND stations and averaged
941	over the station-based datasets (units: °C). (others) Differences in 1981–2010 annual-mean
942	Tmax climatology with GCHND station data and with the station-based dataset average (units:
943	°C). To adjust for the elevation differences between the GCHND stations and the nearest grid
944	cell, a lapse rate of 6.5 °C km ⁻¹ was used.
945	
946	Fig 3. (top left) 1981–2010 Tmin annual-mean climatology at GHCND stations and averaged
947	over the station-based datasets (units: °C). (others) Differences in 1981–2010 annual-mean
948	Tmax climatology with GCHND station data and with the station-based dataset average (units:
949	°C). Note: no elevation-based adjustments are made for Tmin.
950	
951	Fig 4. Inter-dataset spread (°C) in climatological Tmax (top row) and Tmin (bottom row)
952	calculated for four different groups. Datasets included in each group are listed in the upper right
953	corner of each panel.

955	Fig 5. Trend (°C decade ⁻¹) in Tmax (top row) and Tmin (bottom row) based on linear regression
956	of monthly anomalies for all months in 1981–2010 time period. For GHCND, only anomalies
957	from non-missing months are used.
958	
959	Fig 6. Tmin anomalies (°C) at three grid cells where some datasets show inhomogeneities.
960	Locations of the three grid cells are shown on the left.
961	
962	Fig 7. Standard deviation (°C) of monthly Tmax and Tmin anomalies for all months in the period
963	1981-2010. For GHCND, only anomalies from non-missing months are used.
964	
965	Fig 8. Three largest Tmax EOFs and their associated PCs for each dataset for the period 1981-
966	2010. Percentages of explained variance are included in the upper right corner of each panel.
967	
968	Fig 9. Three largest Tmin EOFs and their associated PCs for each dataset for the period 1981-
969	2010. Percentages of explained variance are included in the upper right corner of each panel.
970	
971	Fig 10. Differences in (a) MODIS snow covered fraction (b) WRF SCF, and (c-j) daily average
972	temperatures (°C) for each dataset, computed as April 2007 minus April 2010.
973	
974	Fig 11. Local lapse rate (°C km ⁻¹) calculated at each grid cell as the negative slope determined by
975	linearly regressing TopoWx climatological (a) Tmax and (b) Tmin values onto elevation for all
976	grid cells whose x and y coordinates are each within 1 km. Cool colors indicate decreasing
977	temperature with height. Warm colors indicate increasing temperature with height (i.e. inverted

978 conditions). Grid cells whose neighbors range in elevation by less than 100 m are excluded from979 the calculations.

980

981	Fig 12. Topog	raphic disse	ction index	(TDI)	at each	California	COOP	station use	d by Livne	eh.

- Warm colors indicate stations located near topographic maxima. Cold colors indicate locations
 near topographic minima.
- 984

985	Fig 13. (a)	Elevation (m)	in the coastal	l mountains of No	orthern California.	(b)	Tmin climatology
-----	-------------	---------------	----------------	-------------------	---------------------	-----	------------------

986 difference between Livneh and station-based gridded dataset average. The topographic

987 dissection index (TDI, Holden et al. 2011a) is plotted at each COOP station (circles). Warm

988 colors indicate station is near topographic maxima. Cold colors indicate station is near

989 topographic minima. (c) Tmin difference (Livneh minus station-based gridded dataset average)

990 versus elevation at all grid cells within the coastal region shown in (a) and (b). Slope computed

- 991 using least-squares linear regression.
- 992
- 993
- 994
- 995
- 996
- 997
- 998

999

Figures

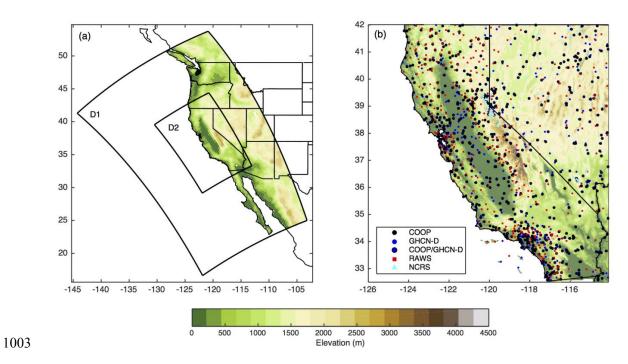


Fig 1. (a) Setup of 27 km resolution and 9 km resolution nested WRF domains. (b) Locations of
COOP stations used by Livneh, and GHCND, RAWS, and SNOTEL stations used by TopoWx.

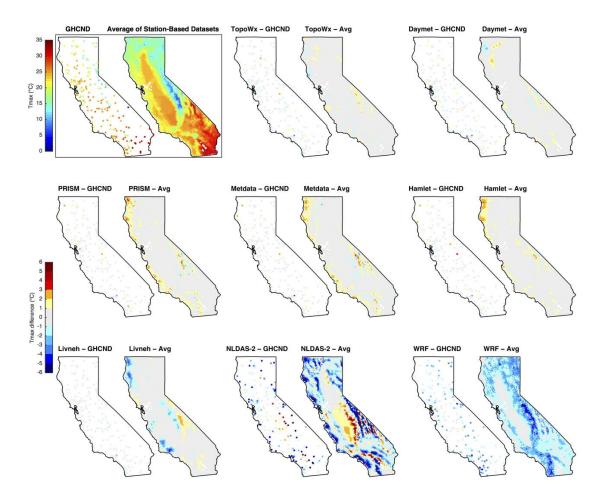
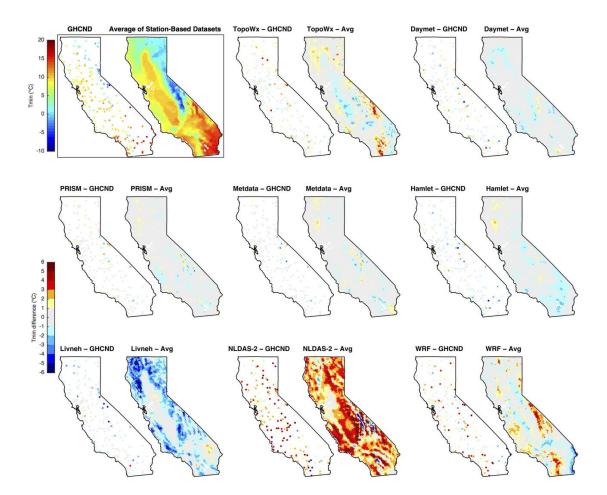


Fig 2. (top left) 1981–2010 Tmax annual-mean climatology at GHCND stations and averaged
over the station-based datasets (units: °C). (others) Differences in 1981–2010 annual-mean
Tmax climatology with GCHND station data and with the station-based dataset average (units:
°C). To adjust for the elevation differences between the GCHND stations and the nearest grid
cell, a lapse rate of 6.5 °C km⁻¹ was used.

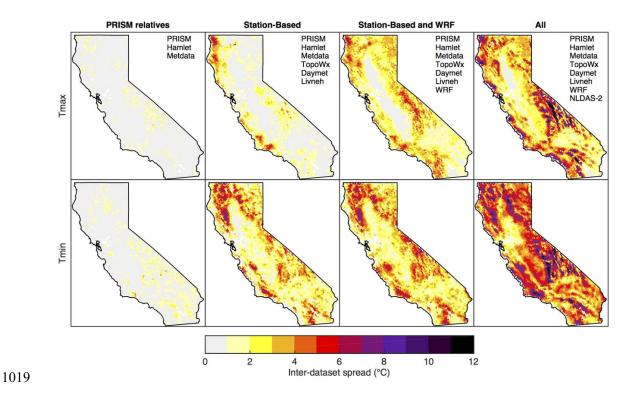


1014

1015 Fig 3. (top left) 1981–2010 Tmin annual-mean climatology at GHCND stations and averaged

1016 over the station-based datasets (units: °C). (others) Differences in 1981–2010 annual-mean

- 1017 Tmax climatology with GCHND station data and with the station-based dataset average (units:
- 1018 °C). Note: no elevation-based adjustments are made for Tmin.



1020 Fig 4. Inter-dataset spread (°C) in climatological Tmax (top row) and Tmin (bottom row)

- 1021 calculated for four different groups. Datasets included in each group are listed in the upper right
- 1022 corner of each panel.
- 1023
- 1024
- 1025

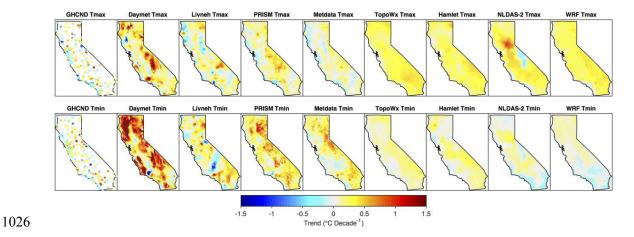
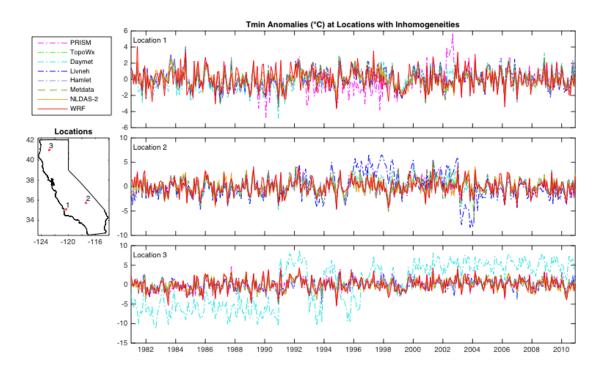
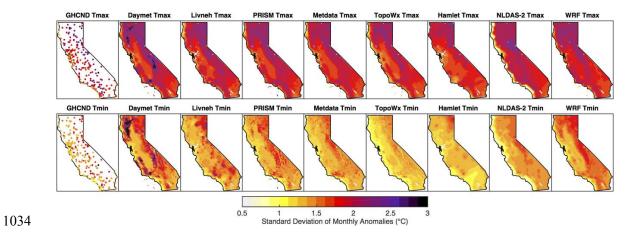


Fig 5. Trend (°C decade⁻¹) in Tmax (top row) and Tmin (bottom row) based on linear regression
of monthly anomalies for all months in 1981–2010 time period. For GHCND, only anomalies
from non-missing months are used.



1032 Fig 6. Tmin anomalies (°C) at three grid cells where some datasets show inhomogeneities.

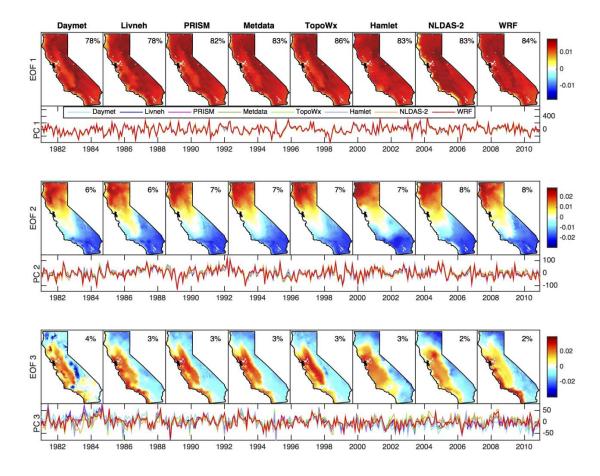
1033 Locations of the three grid cells are shown on the left.



1035 Fig 7. Standard deviation (°C) of monthly Tmax and Tmin anomalies for all months in the period

1036 1981-2010. For GHCND, only anomalies from non-missing months are used.

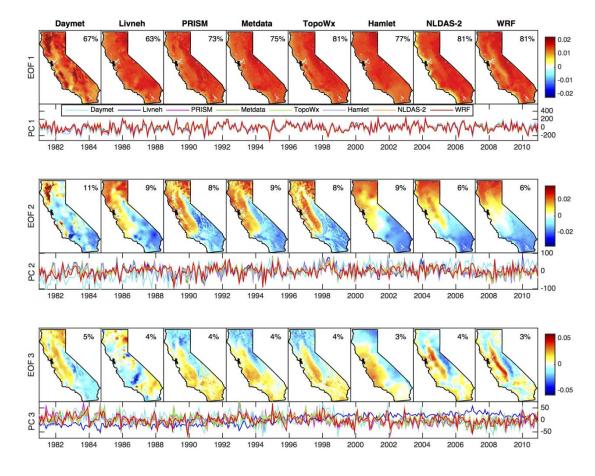
1037



1039

1040 Fig 8. Three largest Tmax EOFs and their associated PCs for each dataset for the period 1981-

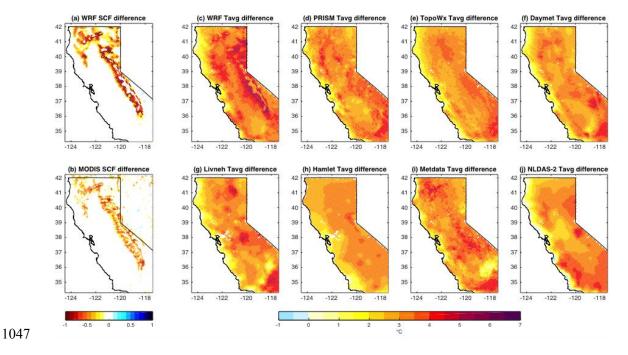
1041 2010. Percentages of explained variance are included in the upper right corner of each panel.



1043

1044 Fig 9. Three largest Tmin EOFs and their associated PCs for each dataset for the period 1981-

1045 2010. Percentages of explained variance are included in the upper right corner of each panel.



1048 Fig 10. Differences in (a) MODIS snow covered fraction (b) WRF SCF, and (c-j) daily average

1049 temperatures (°C) for each dataset, computed as April 2007 minus April 2010.

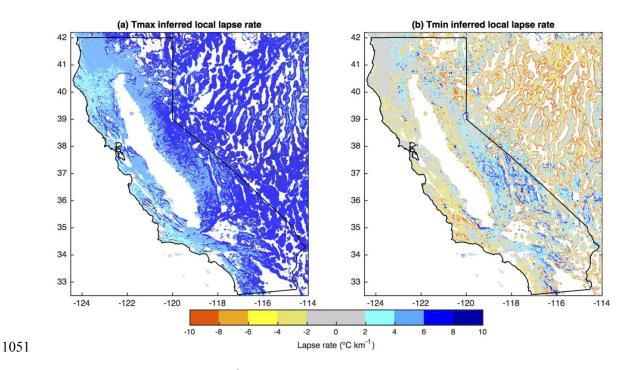
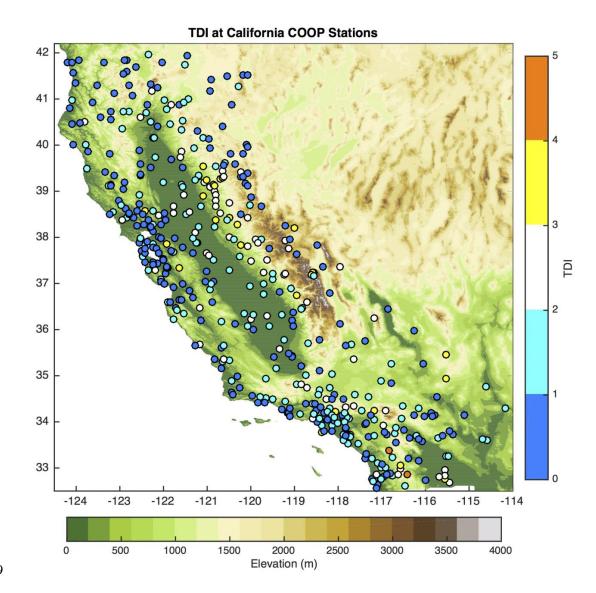


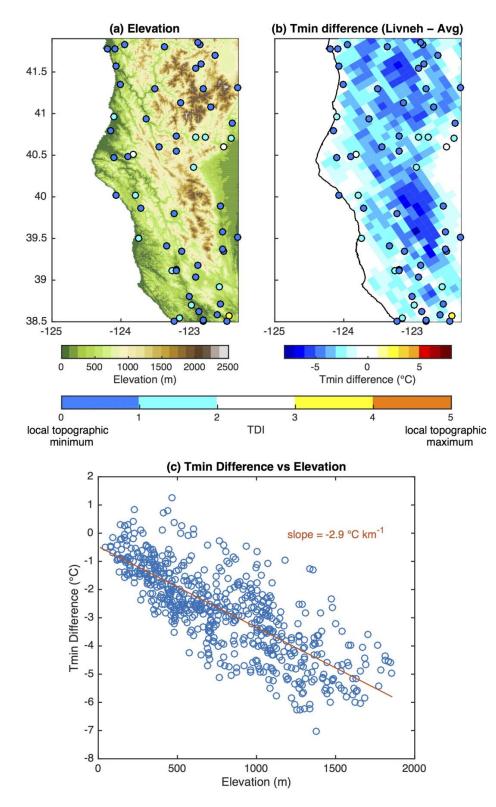
Fig 11. Local lapse rate (°C km⁻¹) calculated at each grid cell as the negative slope determined by linearly regressing TopoWx climatological (a) Tmax and (b) Tmin values onto elevation for all grid cells whose x and y coordinates are each within 1 km. Cool colors indicate decreasing temperature with height. Warm colors indicate increasing temperature with height (i.e. inverted conditions). Grid cells whose neighbors range in elevation by less than 100 m are excluded from the calculations.



1060 Fig 12. Topographic dissection index (TDI) at each California COOP station used by Livneh.

1061 Warm colors indicate stations located near topographic maxima. Cold colors indicate locations

- 1062 near topographic minima.



1067 Fig 13. (a) Elevation (m) in the coastal mountains of N	Northern California. ((b) Tmin	climatology
--	------------------------	----------	-------------

- 1068 difference between Livneh and station-based gridded dataset average. The topographic
- 1069 dissection index (TDI, Holden et al. 2011a) is plotted at each COOP station (circles). Warm
- 1070 colors indicate station is near topographic maxima. Cold colors indicate station is near
- 1071 topographic minima. (c) Tmin difference (Livneh minus station-based gridded dataset average)
- 1072 versus elevation at all grid cells within the coastal region shown in (a) and (b). Slope computed
- 1073 using least-squares linear regression.
- 1074