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Abstract 13 

 14 

High-resolution gridded datasets are in high demand because they are spatially complete and 15 

include important fine-scale details.  Here, eight high-resolution gridded temperature datasets are 16 

assessed by comparing with Global Historical Climatology Network – Daily (GHCND) station 17 

data.  Previous assessments have focused on station-based datasets, which are generated by 18 

interpolating station data to a regular grid.  Another way to generate spatially complete historical 19 

data is to downscaling reanalysis to higher resolution.  This assessment includes six station-based 20 

datasets, one interpolated reanalysis, and one dynamically downscaled reanalysis.  California is 21 

used as a test domain because of its complex terrain and coastlines, features known to 22 

differentiate gridded datasets.  Not surprisingly, at stations, station-based datasets are found to 23 
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agree closely with each other and with GHCND station data.  However, away from the stations, 24 

spread among station-based datasets can exceed 6 °C.  Some of these datasets are very likely 25 

biased away from stations, due to invalid assumptions about how temperatures vary with 26 

elevation.  Meanwhile, reanalysis-based datasets have more freedom to differ from observations, 27 

and have systematic biases relative to station data.  Dynamically downscaled reanalysis is less 28 

biased than interpolated reanalysis, and has more realistic variability and trends.  Many station-29 

based datasets have large unphysical trends and non-climatic variations because they do not 30 

correct inhomogeneities in station data.  Station-based datasets could be improved through better 31 

quality control of station data and more realistic assumptions of how temperatures vary away 32 

from the stations. Reanalysis-based datasets are likely to improve from ongoing progress in 33 

global and regional climate modeling.  34 

 35 

1. Introduction 36 

 37 

High-resolution gridded temperature datasets are widely used because they are spatially 38 

complete and include fine-scale variations due to topography and other features. Such detail is 39 

important for many modeling applications in fields like hydrology, ecology, and agriculture 40 

(Thornton et al. 1997, Mote et al. 2005, Abatzoglou 2013, Stoklosa et al. 2015).  Gridded 41 

datasets are also used to compute historical trends (e.g. Hamlet and Lettenmaier 2005; Vose et al. 42 

2014), evaluate regional climate models (e.g. Caldwell et al. 2009, Walton et al. 2015) and train 43 

statistical models (e.g. Hidalgo et al. 2009, Pierce et a. 2014).    44 

 45 

There are a variety of approaches for generating high-resolution gridded temperature data.  One 46 

approach is to interpolate data from irregularly spaced stations to a regular grid.  Datasets 47 
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generated in this manner are termed station-based datasets. Some station-based datasets 48 

incorporate knowledge of physical processes into the interpolation method, essentially creating a 49 

simple model of temperature variations between station locations (e.g. Daly et al. 2008, Vose et 50 

al., 2014, Oyler et al. 2015). A challenge with station data is that changes in station siting, 51 

instrumentation, and time of observation add non-climatic artifacts to the data (Menne and 52 

Williams, 2009).  Some datasets correct for these inhomogeneities (e.g. Hamlet and Lettenmaier 53 

2005, Vose et al. 2014, Oyler et al. 2015), which makes them better suited for long-term trend 54 

analysis.  Some datasets include uncertainty or facilitate calculations of uncertainty.  For 55 

instance, Newman et al. (2015) have generated an ensemble of possible historical sequences, 56 

which can be used to determine uncertainty by calculating the ensemble variance. 57 

 58 

Differences in interpolation algorithms can lead to large differences in climatologies (Simpson et 59 

al. 2005, Daly 2006, Stahl et al. 2006, Daly et al. 2008, Mizukami et al. 2014).  For example, 60 

Daly et al. (2008) compared their dataset, PRISM, to Daymet (Thornton et al. 1997, Thornton et 61 

al. 2012) and WorldClim (Hijmans et al. 2005) over the continental United States.  PRISM 62 

determines temperatures on a local temperature-elevation relationship calibrated from nearby 63 

stations.  Stations are given higher weights if they are closer to the target grid cell, and if they 64 

have similar coastal proximity or topographic position (among other factors).  Daymet also uses 65 

stations to determine a local temperature-elevation relationship, but stations are weighted using a 66 

truncated Gaussian filter centered at the target grid cell.  Meanwhile, WorldClim fits a thin-plate 67 

spline to station data to generate a temperature surface.  Differences in climatology were found 68 

to be largest over complex terrain and coastal areas of the western United States.  January 69 

minimum temperatures (Tmin) in WorldClim and Daymet were found to be have cold biases of 70 
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3–4 °C in complex terrain, which Daly et al. concluded were due to failing to account for cold-71 

air pooling.  Meanwhile, along the central California coast, WorldClim and Daymet have biases 72 

in maximum temperature (Tmax) that likely result from poorly capturing the onshore marine 73 

layer, which complicates the relationship between temperature and elevation (Johnstone and 74 

Dawson 2010, Iacobellis and Cayan 2013).  In contrast, PRISM accounts for coastal proximity 75 

and topographic position, which could explain why it outperforms the others in complex terrain 76 

and along the coast.  77 

 78 

Oyler et al. (2015) compared PRISM and Daymet to TopoWx.  TopoWx is unique because it 79 

uses remotely-sensed land skin temperature (LST) as an auxiliary predictor. Oyler et al. 80 

compared the datasets over the complex terrain of Nevada, where cold air pooling causes the 81 

inversions in Tmin.  TopoWx had the strongest inversions, PRISM had similar but slightly 82 

weaker inversions, and Daymet has comparatively smooth temperature variations without 83 

inversions.  Oyler et al. found that elevation alone is weak predictor of Tmin, explaining only 6% 84 

of the variance in this region, while LST explained 77%.  This could explain why Daymet — 85 

which does not include any auxiliary predictors or use advanced station weights — is relatively 86 

smooth.  87 

 88 

Previous comparisons have found potential biases in station-based gridded datasets that use fixed 89 

lapse rates when accounting for elevation (Mizukami et al. 2014, Newman et al. 2015). Newman 90 

et al. (2015) compared their ensemble gridded data to Maurer et al. (2002; henceforth “Maurer”), 91 

and noted that Maurer is consistently colder at high elevations.  Newman et al. attribute this to 92 
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the use of a fixed 6.5 K km-1 lapse rate in Maurer.  Mizukami et al. (2014), also found Maurer to 93 

be relatively cold at high elevations. 94 

 95 

A second approach to creating a gridded temperature dataset is to run an atmospheric model that 96 

assimilates historical observations.  Datasets constructed in this way are referred to as reanalysis. 97 

There are many global or continental-scale reanalysis products that assimilate observations, (e.g. 98 

NARR, MERRA, NOAA-20CR, CERA-20C, ERA-20C; for details, see The Climate Data 99 

Guide: Atmospheric Reanalysis: Overview & Comparison Tables, available from 100 

https://climatedataguide.ucar.edu/climate-data/atmospheric-reanalysis-overview-comparison-101 

tables).  However, the resolutions of these datasets — ranging from 0.3 degrees to 5 degrees — 102 

are too low for many applications.  Thus, reanalysis is often downscaled to higher resolution 103 

(Cosgrove et al. 2003, Kanamitsu and Kanamaru 2007, Rasmussen et al. 2011, Stefanova et al. 104 

2012, Xia et al. 2012, Abatzoglou 2013, Walton et al. 2015, Walton et al. 2017).  One 105 

straightforward way to downscale reanalysis is with interpolation.  For example, the temperature 106 

forcings in the NLDAS-2 dataset (Xia et al. 2012) are derived by interpolating North American 107 

Regional Reanalysis (NARR; Mesinger et al. 2006) to 1/8 degree resolution. Reanalysis can also 108 

be downscaled with a regional climate model, a process referred to as dynamical downscaling.  109 

Under this method, a regional climate model is forced at the lateral and ocean surface boundaries 110 

by reanalysis.  For example, Kanamitsu and Kanamaru (2007) downscaled 200 km resolution 111 

NCEP-NCAR global reanalysis (Kalnay et al. 1996) to 10 km resolution over California with the 112 

Regional Spectral Model (Juang and Kanamitsu 1994).  Similarly, Walton et al. (2015) 113 

downscaled 32 km resolution NARR to 2 km resolution over the Los Angeles region with the 114 

Weather Research and Forecasting model (WRF, Skamarock et al. 2008), and used a similar 115 
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WRF setup to downscale NARR to 3 km resolution over the Sierra Nevada mountains (Walton et 116 

al. 2017).   117 

 118 

Previous assessments of gridded datasets have been limited in a variety of ways.  Some have 119 

only considered station-based datasets and excluded downscaled reanalysis (Daly et al. 2008, 120 

Newman et al. 2015, Oyler et al. 2015).  Many have compared only two or three datasets (Daly 121 

et al. 2008, Bishop and Beier 2013, Mizukami et al. 2014, Newman et al. 2015, Oyler et al. 122 

2015).  Behnke et al. (2016) performed one of the most comprehensive evaluations to date, 123 

which considered eight datasets, including interpolated reanalysis, but datasets were only 124 

evaluated at station locations.  Station-based datasets are constrained to match station data, so 125 

only evaluating them at station locations may give a misleading picture of their overall realism.  126 

Previous assessments of gridded datasets have excluded dynamically downscaled reanalysis.  127 

Dynamically downscaled reanalysis could have an advantage away from stations, to the extent 128 

that it realistically simulates physical processes that cause important spatial variations, such as 129 

onshore penetration of the marine layer in the coastal zone and cold-air pooling in complex 130 

terrain.  Station-based datasets either struggle to capture these processes (e.g. Daymet, 131 

WorldClim, Maurer) or attempt to model their effects through auxiliary predictors or weights 132 

(e.g. TopoWx, PRISM).  Interpolated reanalysis may also struggle in these areas since the native 133 

resolution of the original reanalysis is too low, and linear interpolation cannot recover these 134 

effects.   135 

 136 

One effect that hasn’t been explored in previous assessments is snow albedo feedback (SAF).  137 

Snow is highly reflective, and reductions in snow cover typically reveal surfaces that absorb 138 
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more solar radiation, leading to warmer temperatures and further reductions in snow cover 139 

(Cubasch et al. 2001, Holland and Bitz 2003).  Dynamically downscaling explicitly simulates 140 

SAF (Salathé et al. 2008, Letcher and Minder 2015, Walton et al. 2017), but it is unknown 141 

whether it is effects are captured by station-based datasets. Low station density at high elevations 142 

could make it challenging to capture the narrow bands of amplified temperatures associated with 143 

SAF (Walton et al. 2017).    144 

 145 

This study looks to answer the following questions about high-resolution temperature datasets: 146 

1. How do temperature climatologies, variability, and trends in these datasets differ? 147 

2. Can these differences be explained in terms of their methodological choices? 148 

3. Which datasets are most realistic? While this question can be answered at station 149 

locations by comparing with observed data, it is challenging to answer away from 150 

stations where there are no observations to rely on.  However, in some instances, there 151 

are physical arguments as to why some datasets are more realistic. 152 

4.  Does dynamically-downscaled reanalysis — which explicitly simulates relevant 153 

processes (however imperfectly) — corroborate the spatial and temporal variations in 154 

station-based datasets?  How convergent are these orthogonal approaches of creating 155 

high-resolution spatially complete temperature data? 156 

5.  Are dynamical downscaled reanalysis and interpolated reanalysis equally realistic? 157 

To answer these questions, this study compares eight high-resolution gridded datasets with 158 

station observations.  Station data come from the Global Historical Climatology Network – Daily 159 

stations (GHCND, Menne et al. 2012a,b) as made available by Behnke et al. (2016b) via the 160 

Dryad data package (http://dx.doi.org/10.5061/dryad.7tv80).  The comparison is performed over 161 
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California, which has coastal areas with maritime influence, complex terrain experiencing cold-162 

air pooling, and high-elevation mountains with significant seasonal snow cover.  The datasets 163 

used here are: 164 

� PRISM (Daly et al. 2008) 165 

� TopoWx (Oyler et al. 2015) 166 

� Daymet (Thornton et al. 1997) 167 

� Livneh (Livneh et al. 2013, Maurer et al. 2002) 168 

� Hamlet (an extension of Hamlet and Lettenmaier 2005) 169 

� Metdata (Abatzoglou 2013) 170 

� NLDAS-2 (Xia et al. 2012)  171 

� NARR dynamically downscaled with WRF (Walton et al. 2017) 172 

Together, these eight datasets represent the wide range of approaches to creating gridded 173 

temperature data discussed above. For a summary of their important features, see Table 1.   174 

 175 

This paper is structured as follows.  Section 2 provides detailed information about the eight 176 

gridded datasets.  Section 3 covers the methodology used to assess their climatologies, 177 

variability, and trends.  Results are given in Section 4.  Major findings are summarized and 178 

discussed in Section 5. 179 

 180 

 181 

2. Gridded datasets 182 

 183 

a. WRF historical simulation 184 
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 185 

The first dataset is a dynamical downscaling of 32 km resolution NCEP North American 186 

Regional Reanalysis (NARR; Mesinger et al. 2006) for the 1981–2015 period using the Weather 187 

Research and Forecasting model v3 (WRF; Skamarock et al. 2008) performed by Walton et al. 188 

(2017).  Under this setup, WRF is forced at the lateral and ocean surface boundaries by NARR. 189 

WRF is coupled to the NOAH-MP land surface model (Niu et al. 2011).  WRF is arranged in a 190 

one-way nested setup with a 27 km resolution domain covering the western U.S. and 191 

northeastern Pacific Ocean, a 9 km domain covering California, and 3 km domain covering the 192 

Sierra Nevada.  This study focuses on the 9 km domain covering California (Fig. 1a).  A cubic 193 

spline fit to WRF 3-hourly output is used to calculate daily Tmax and Tmin.   194 

 195 

b. PRISM 196 

 197 

The Parameter-elevation Relationships on Independent Slopes Model (PRISM; Daly et al., 1994, 198 

Daly et al., 2008) is a modeling system used to derive gridded temperature and precipitation data 199 

for the conterminous United States. At each grid cell, an elevation regression function is fit to 200 

station data using a moving window.  Stations are weighted depending on multiple physical 201 

factors that reflect their similarity to the target grid cell.  These factors include distance, cluster, 202 

elevation, coastal proximity, topographic facet, vertical layer, topographic position, and effective 203 

terrain height.  Multiple PRISM datasets are available, differing in temporal frequency (monthly 204 

or daily), resolution (2.5 min or 30 sec), and other factors.  Here we use the monthly dataset 205 

AN81m with 2.5 min (~4 km) resolution (PRISM Climate Group, Oregon State University, 206 

available from http://prism.oregonstate.edu, data created between 2013-6-9 and 2014-6-9). This 207 
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dataset uses stations from multiple networks to give the best estimate at any given time. 208 

Although station data are subjected to quality control procedures, no adjustments are made to 209 

ensure temporal homogeneity. PRISM incorporates data from ~10,000 stations spanning multiple 210 

networks, including COOP, RAWS, CDEC, Agrimet, NCRS, CIMIS and more.  For complete 211 

details about the station networks included in these datasets, see the PRISM Climate Group 212 

webpage (http://prism.oregonstate.edu).   213 

 214 

c. TopoWx 215 

 216 

TopoWx or “Topography Weather” is gridded dataset of daily Tmin and Tmax based on station 217 

data and remotely-sensed land skin temperature (Oyler et al. 2015; data was downloaded from 218 

http://www.scrimhub.org/resources/topowx/). TopoWx covers the conterminous United States at 219 

30 arcsec (~800 m resolution) for the period 1980–2015. TopoWx uses station data (Fig. 1b) 220 

from GCHND stations, National Resource Conservation Service (NRCS) snow telemetry 221 

(SNOTEL) and snow course sites, and US Forest Service and Bureau of Land Management 222 

(BLM) Remote Automatic Weather Stations (RAWS).  The homogenization algorithm of Menne 223 

and Williams (2009) is used to correct for inhomogeneities caused by changes in observation 224 

practices, siting, and instrumentation.  Missing values are filled by comparing with non-missing 225 

neighboring observations and applying spatial regression (Durre et al. 2010).  Daily gridded 226 

Tmax and Tmin are created in a two-step process.  The first step is to create gridded Tmax and 227 

Tmin climate normals for the 1981–2010 period using a regression-kriging framework.  228 

Predictors for the climate normals include latitude, longitude, and elevation, as well as 8-day 229 

average remotely-sensed land skin temperature (LST) from the Moderate Resolution Imaging 230 
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Spectroradiometer (MODIS) aboard the Aqua satellite (product MYD11A2; Dozier 1996, Wan 231 

2008).  The second step is to interpolate daily temperature anomalies.  This step is performed 232 

with a combination of moving-window geographically weighted regression and inverse distance 233 

weighting. The interpolated daily anomalies for the 1948–2015 period are then added to the 234 

1980–2010 normals to produce daily values.   235 

 236 

d. Daymet 237 

 238 

Daymet (Thornton et al. 1997) is a dataset of daily meteorological variables on a 1 km × 1 km 239 

grid covering North America for the period 1980–2016.  Version 3 (Thornton et al. 2016) is used 240 

here.  Monthly summaries of daily Tmax and Tmin were downloaded from the THREDDS 241 

server 242 

(http://thredds.daac.ornl.gov/thredds/catalogs/ornldaac/Regional_and_Global_Data/DAYMET_243 

COLLECTIONS/DAYMET_COLLECTIONS.html) on January 9, 2017.  Daymet interpolates 244 

data from GHCND stations to a 1 km × 1 km grid using a weighted average of nearby stations.  245 

Weights are determined by a truncated Gaussian filter centered at the target grid cell.  The radius 246 

of the Gaussian filter varies continuously throughout the domain to adjust for varying station 247 

density.  Tmax and Tmin values are adjusted for elevation using a linear temperature-elevation 248 

relationship.   249 

 250 

e. Livneh 251 

 252 

The Livneh et al. (2013) dataset (henceforth “Livneh”) contains station-based meteorological 253 
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variables and modelled hydrologic variables that covers the conterminous United States at 1/16° 254 

(~6 km) resolution for the period 1915–2011.  Linveh data was downloaded from 255 

ftp.hydro.washington.edu/pub/bLivneh/CONUS/.  Livneh is an extension and upgrade to the 256 

Maurer et al. (2002) dataset, which used a similar methodology but spanned the shorter 1950–257 

2000 period at a lower resolution of 1/8° (~12 km).  Livneh temperatures are created by gridding 258 

station data from National Weather Service (NWS) Cooperative Observer Program (COOP) 259 

weather stations over the conterminous United States. COOP station locations used by Livneh 260 

are shown in Fig. 1b. Only stations with at least 20 years of valid data were used. Gridding is 261 

performed on station temperature data via the synergraphic mapping system (SYMAP, Shepard, 262 

1984).  Under SYMAP, for a grid point, the temperature is calculated as a weighted average of 263 

the temperature at the four nearest stations.  The weights are determined by a combination of 264 

inverse distance weighting and down-weighting stations that are close to other stations. For a full 265 

description of the gridding procedure, the reader is referred to Livneh et al. (2013) and Maurer et 266 

al. (2002).  267 

 268 

f. Hamlet 269 

 270 

The original Hamlet and Lettenmaier (2005) dataset spans 1915–2003 at 1/8° (~12 km) 271 

resolution (data available from 272 

http://www.hydro.washington.edu/Lettenmaier/Data/gridded/index_hamlet.html). It has now 273 

been extended to cover 1915–2015, its resolution has been increased to 1/16° (~6 km), and 274 

temperatures are now adjusted so that 1971–2000 climate normals match PRISM.  This 275 

extension, henceforth “Hamlet”, was provided by Mu Xiao of UCLA.  Hamlet generally follows 276 
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the Maurer methodology of interpolating daily COOP station data using the SYMAP algorithm.  277 

The two major differences are that Hamlet temperatures are adjusted so 1971–2000 monthly 278 

normals match PRISM and low-frequency variability matches the quality controlled United 279 

States Historical Climatology Network (USHCN; Menne et al. 2009) stations.  The use of quality 280 

controlled stations to determine low-frequency variability is intended to make the Hamlet dataset 281 

suitable for trend analysis and long-term hydrologic simulations.  This extension appears to be 282 

similar to the extension created by Hamlet et al. (2010). 283 

 284 

g. NLDAS-2 285 

 286 

The retrospective forcing dataset for the North American Land Data Assimilation System 287 

(NLDAS; Cosgrove et al. 2003, Mitchell et al. 2004) includes temperature data with 1-hour 288 

temporal resolution and 1/8° spatial resolution.  It is intended to be used as forcing to the 289 

NLDAS project which runs land surface simulations using multiple land surface models.  The 290 

most recent version of the project, NLDAS-2 (Xia et al. 2012), constructs its temperature forcing 291 

data by linearly interpolating 32 km, 3-hourly NARR in space and time to achieve 1/8°, 1-hourly 292 

data, for the period 1979–2016.  So, like the WRF simulation, NLDAS-2 is a downscaling of 293 

NARR (a reanalysis product), but using linear interpolation instead of a regional climate model.  294 

Where interpolated NARR elevation differs with elevation of the 1/8° NLDAS-2 grid, 295 

temperatures are adjusted using a fixed lapse rate of 6.5 °C km-1. Data was downloaded using the 296 

NASA Earthdata Simple Subset Wizard (https://disc.gsfc.nasa.gov/SSW/). 297 

 298 

h. Metdata 299 
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 300 

Metdata (Abatzoglou 2013) is a hybrid dataset of meteorological forcings that combines the high 301 

temporal resolution (sub-daily) of NLDAS-2, with the spatial climatologies and monthly 302 

variability of PRISM.  Metdata is available for the 1979–2016 period at 4 km horizontal 303 

resolution and daily (and sub-daily) temporal resolution from 304 

http://metdata.northwestknowledge.net.  To create Metdata, first NLDAS-2 is linearly 305 

interpolated to 4 km resolution.  Next, interpolated NDLAS-2 sub-daily anomalies are calculated 306 

relative to monthly means.  The final step is to add the sub-daily anomalies from NLDAS-2 onto 307 

PRISM monthly means. Thus, Metdata has the daily (and sub-daily) variability of NLDAS-2, but 308 

the climatologies and monthly variability of PRISM.  Metdata is technically a hybrid dataset, but 309 

because monthly means are used in this assessment, and Metdata monthly climatologies and 310 

variability are derived from station-based PRISM, here it is grouped with the station-based 311 

datasets.  312 

 313 

 314 

3. Methods 315 

 316 

a. Regridding to the WRF 9 km grid 317 

 318 

To facilitate comparisons among the datasets, each dataset is regridded to the 9 km WRF grid.  319 

For TopoWx and Daymet, which have substantially higher resolution than WRF, regridding is 320 

performed using a moving window approach: averages are taken over all grid cells whose centers 321 

reside within the nearest WRF grid cell.  For all other datasets, regridding is performed bilinear 322 
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interpolation.  Only land areas are considered as some datasets don’t have data over oceans or 323 

lakes.  All analysis is performed over the 1981–2010 period.  For comparisons with GHCND 324 

station data, the nearest grid cell in the regridded dataset is used.  To adjust for elevation 325 

differences between GHCND station locations and the nearest WRF grid cell, a lapse rate of 6.5 326 

°C km-1 is used.  This adjustment is only made for Tmax.  No adjustment is made for Tmin, 327 

because Tmin differences were found to be only weakly correlated with elevation differences.   328 

 329 

b. Climatologies 330 

 331 

Annual climatologies are computed for each gridded dataset.  Climatologies are displayed two 332 

ways: as differences relative to the GHCND station data, and as differences relative to the 333 

average of the station-based gridded datasets.  Stations data are not without error, but collectively 334 

they represent one of our best sources of temperature observations.  Thus, if a gridded dataset has 335 

large differences with many GHCND stations, then the gridded dataset is probably biased.  336 

Meanwhile, differences with the average of the station-based gridded datasets do not necessarily 337 

indicate biases, but they do show how the gridded datasets compare to each other.  Importantly, 338 

these differences are spatially complete — unlike the differences with GHCND stations data — 339 

so they reveal how the datasets compare to each other away from the stations. 340 

 341 

To quantify range in climatologies among the datasets, inter-dataset spread is calculated at each 342 

grid cell.  Spread is calculated for different subgroups of datasets.  This allows us to see how 343 

including different datasets changes the spread.  The first subgroup is the PRISM relatives: 344 

PRISM, Hamlet, and Metdata.  This group is expected to have a small spread since Hamlet is 345 



 16 

adjusted to match PRISM’s climatology, and Metdata is constructed using PRISM’s monthly 346 

mean values.  The second subgroup is all station-based datasets.  The third is all station-based 347 

datasets and WRF.  The final group is all datasets (station-based, WRF, and NLDAS-2).  348 

 349 

c. Linear trends 350 

 351 

Linear trends are computed at each grid cell using least-squares linear regression on the full 352 

sequence of monthly anomalies (all 360 months in the 1981–2010 period).  This is too short a 353 

period to draw inferences about overall historical trends in temperatures.  Instead, this analysis is 354 

intended to highlight differences in trends between the datasets.  Important differences are 355 

expected as some datasets perform adjustments for inhomogeneities in the data, while others do 356 

not.  Linear trends are also computed for the GHCND station data, using all non-missing 357 

monthly anomalies. 358 

 359 

d. Variability 360 

 361 

To compare temperature variability, the standard deviation of the full sequence of monthly 362 

temperature anomalies is computed for the period 1981–2010 at each grid cell. Variability is also 363 

computed for GCHND station data, using all non-missing monthly anomalies.  For a deeper 364 

investigation into spatial covariability, empirical orthogonal function (EOF) analysis is 365 

performed on the full sequence of monthly anomalies.  EOFs (spatial patterns) represent the 366 

primary modes of spatial covariability within the domain.  The corresponding principal 367 
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components (PCs) are time series that represent how these patterns are scaled up and down in 368 

time.  The three leading EOFs are compared, along with their principal components.  369 

 370 

e. Snow albedo feedback  371 

 372 

To test for SAF, April temperature differences are computed between 2007, a warm year with 373 

low snow cover, and 2010, a cold year with high snow cover.  April snow cover differences 374 

between these years are also computed, but for WRF and remotely sensed data from the 375 

Moderate-resolution Imaging Spectroradiometer aboard the Terra satellite (MODIS/Terra Snow 376 

Cover Monthly L3 Global 0.05 CMG, Hall et al. 2006, data available from 377 

http://nsidc.org/data/MOD10CM).  Comparing temperature and snow cover differences will 378 

allows us to determine whether WRF and the other datasets have similarly amplified temperature 379 

differences due to SAF in narrow bands where snow cover is lost. 380 

 381 

f. Local lapse rates 382 

 383 

Coastal areas and complex terrain in California may be subject to inverted temperature profiles 384 

from penetration of the marine layer and cold-air pooling (Lundquist et al. 2008, Daly et al. 385 

2010).  If interpolation algorithms do not account for these complicated relationships between 386 

temperature and elevation, then they may produce errant temperature patterns. For instance, 387 

some datasets use fixed positive lapse rates throughout the domain, which could be problematic 388 

in areas experiencing inverted temperatures.  To diagnose the local relationship between 389 

temperature and elevation throughout the domain, we use TopoWx at its native 30 arcsec (800 390 
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m) resolution.  TopoWx has the highest native resolution of the datasets considered here and uses 391 

satellite LST as an auxiliary predictor for climate normals.  So, it is likely to provide the most 392 

accurate and detailed information for determining the relationship between temperature and 393 

elevation.   A local lapse rate is inferred at each grid cell by applying linear regression to 394 

temperature and elevation data from surrounding grid cells (defined as grid cells within two grid 395 

lengths (~1600 m) in the x or y direction).  Calculation of the local lapse rate should aid us in 396 

determining where fixed positive lapse rate assumptions are valid.   397 

 398 

In addition, the topographic dissection index (TDI; Holden et al. 2011) is used to determine 399 

where stations are located relative to local topographic minima and maxima. TDI is calculated as 400 

follows:  401 

    

��

TDI( x, y)  z(x, y)� zmin (i)
zmax (i)� zmin (i)i 1

n

¦
 

402 

where     

��

z(x, y)  is the elevation at the grid cell or station of interest, and     

��

zmax (i) and     

��

zmin (i) are the 403 

maximum and minimum elevation within the ith spatial window.  Here we use the TDI computed 404 

by Oyler et al. (2015) on the 800 m TopoWx grid, which uses five spatial windows (n = 5) with 405 

sizes 3, 6, 9, 12, and 15 km.  With this setup, TDI values range from 0 to 5, with 0 being a multi-406 

scale local minima and 5 being a multi-scale local maxima.  A station’s TDI is taken to be the 407 

TDI at the grid cell closest to that station.  Knowing a station’s TDI tells us whether a station’s 408 

nearby grid cells are generally above or below it, which is useful for understanding how lapse 409 

rates are applied. 410 

 411 

 412 

4. Results  413 
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 414 

a. Climatologies 415 

 416 

For Tmax, the station-based datasets are within 1 °C of station data at nearly all GHCND stations 417 

(Fig. 2).  The station-based datasets are also within 1 °C of the station-based gridded dataset 418 

average (henceforth, the average) for most of the domain.  As expected, PRISM, Metdata, and 419 

Hamlet have nearly identical climatologies.  This is no surprise because Metdata is built on 420 

PRISM monthly data, and Hamlet is adjusted to match PRISM normals for 1971–2000. These 421 

three datasets tend to have warmer than average Tmax values along the coast by up to 3 °C.  422 

Comparing with GHCND data, it appears that they may be slightly too warm in some locations 423 

along the coast.  Meanwhile, Livneh Tmax is colder than average in parts of the coastal 424 

mountains by up to 4 °C.  Interestingly, comparing at the station locations, there is little 425 

indication that Livneh diverges from the other datasets; it is only revealed through a spatially 426 

complete comparison.  This highlights the importance of comparing station-based datasets 427 

everywhere, not just at station locations. The reanalysis-based datasets are substantially cooler 428 

throughout the domain.  On average, NLDAS-2 and WRF differ from the station-based gridded 429 

average by -1.4 °C and -1.1 °C, respectively.  They are also consistently colder than GHCND 430 

data, so it’s likely that they have a cold bias.  Differences between WRF and the station-based 431 

dataset average are correlated with elevation (r = -0.67) and become increasingly negative by 432 

approximately 1.0 °C km-1 (based on least squares linear regression). NLDAS-2 shows dramatic 433 

differences with the other datasets along the edges of topographic features and along the coast, 434 

exceeding 6 °C in some cases.  Although both WRF and NLDAS-2 are derived by downscaling 435 
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NARR, they have large differences in their climatologies, indicating that the choice of 436 

downscaling technique is important. 437 

 438 

For Tmin, the station-based datasets agree closely with GHCND data (within 1 °C) at most 439 

stations (Fig. 3).  Differences are larger near strong terrain gradients, such as those along the 440 

western side of the Sierra Nevada.  These discrepancies could be due to elevation mismatches 441 

between the stations and the WRF grid, as no elevation adjustments were made to Tmin 442 

(adjustments were made only for Tmax).  TopoWx and Livneh are the station-based datasets the 443 

differ most from the average.  Unlike the others, TopoWx uses satellite LST as a predictor for 444 

Tmin, which could explain why it differs.  Livneh is clearly the most different and is colder than 445 

average by 2–6 °C in areas of complex topography, such as the coastal mountains of Northern 446 

California.  This likely is due to Livneh’s use of a fixed lapse rate, which is examined in more 447 

detail in Section 4e.  WRF agrees closely with the station-based dataset average over most of the 448 

domain (domain-average difference of +0.3 °C).  It does differ in a few areas: e.g. along the 449 

eastern California border with Arizona, where it is 3–4 °C colder; and on the lee sides of the 450 

several mountain complexes, where it is 2–5 °C warmer.  In contrast, NLDAS-2 has a strong 451 

warm bias throughout the domain when compared with GHCND data and is much warmer than 452 

the average (domain-average difference of +2.9 °C).  Thus, WRF is more realistic than NLDAS-453 

2 for Tmin.  454 

 455 

Inter-dataset spread varies dramatically based on which datasets are considered (Fig. 4). The 456 

spread in Tmax among PRISM relatives (PRISM, Hamlet, and Metdata) is small (domain 457 

average of 0.5 °C).  It becomes larger, especially in the coastal mountains, when all station-based 458 
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datasets are included (domain average of 1.3 °C).  When WRF is included, the domain-average 459 

spread increases to 2.3 °C, with greater spreads at high elevations. When NLDAS-2 is included, 460 

spreads increase further, to 3.5 °C.  A similar progression happens for Tmin: 0.8 °C for PRISM 461 

relatives, 2.5 °C for all station-based, 3.0 °C for station-based and WRF, and 4.8 °C for all 462 

datasets.  When all datasets are included, certain locations have extreme spreads (up to 12 °C), 463 

especially along strong topographic gradients, where NLDAS-2 differs sharply from the others.    464 

 465 

b. Trends 466 

 467 

Linear trends in Tmax and Tmin over the 1981–2010 period differ substantially among the 468 

datasets (Fig. 5).  There are clear differences in trends between those station-based datasets that 469 

do not correct for inhomogeneities and those that do.  Daymet, Livneh, PRISM, and Metdata do 470 

not correct inhomogeneities and have large trends, exceeding 1 °C decade-1 in some locations.  A 471 

comparison of time series at selected grid cells shows that these large trends are generally due to 472 

sudden jumps or shifts in temperature by up to 10 °C (Fig. 6).  It is likely that these irregularities 473 

are inhomogeneities due to changes in station location, measurement techniques or other factors, 474 

and are not representative of actual conditions.  Daymet and Livneh are the most strongly 475 

affected by inhomogeneities (Fig. 5).  PRISM and Metdata are also affected, but to a lesser 476 

extent.  In contrast, TopoWx and Hamlet correct for inhomogeneities and have smooth trends 477 

fields.  However, they may be too smooth.  For instance, along the coast, Tmax trends at 478 

GHCND stations are consistently negative.  It is unlikely that they so many stations would agree 479 

on a modest negative trend if it were not actually the case.  Yet, TopoWx and Hamlet have 480 
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universally positive Tmax trends along the coast and throughout California. Thus, it is probably 481 

the case that TopoWx and Hamlet miss real trends in some locations. 482 

 483 

c. Variability 484 

 485 

All datasets have greater temperature variability at higher elevations (Fig. 7). In most datasets, 486 

Tmax variability peaks in the high elevations of Sierra Nevada, in the range of 2–3 °C.  At lower 487 

elevations, Tmax variability is in the range of 1–2 °C. NLDAS-2 has much lower Tmax 488 

variability (0.5–1 °C) along a wider coastal strip than GHCND or any of the other gridded 489 

datasets.  Because NLDAS-2 differs so consistently from GHCND along the coast, it is almost 490 

definitely biased there.  Grid cells in this coastal strip likely reside between land and ocean grid 491 

cells in NARR.  Thus, when linear interpolation is applied, grid cells in this strip have 492 

temperatures with intermediate properties that are mixture between land and ocean.  Since 493 

temperature variability is reduced over the ocean, these grid cells are likely to have lower 494 

variability relative to their inland counterparts. 495 

 496 

Tmin variability is lower than Tmax variability in all datasets.  For most datasets, Tmin 497 

variability is generally in the 1–1.5 °C range at low elevations and in the 1.5–2 °C at higher 498 

elevations.  TopoWx and Hamlet have the least Tmin variability.  NLDAS-2 has lower Tmin 499 

variability along a wider coastal strip than the other datasets, just like it does for Tmax.  500 

Meanwhile, Daymet and Livneh have isolated regions with Tmin variability as high as 3 °C, 501 

which are likely due to the same uncorrected inhomogeneities that lead to large trends at these 502 

locations.   503 



 23 

 504 

Generally, the datasets have very similar spatial patterns (EOFs) and nearly identical time series 505 

(PCs) for the major modes of variability. For Tmax, EOF 1 explains between 78% and 86% of 506 

the variance, depending on the dataset (Fig. 8). EOF 1 is characterized by positive loadings over 507 

all of California, with larger loadings at high elevations. PC 1 (the time series representing how 508 

EOF 1 is scaled up or down each month) is nearly identical for each dataset.  One notable 509 

difference is that Livneh, Hamlet, and NLDAS-2 have EOFs that do not follow topographic 510 

contours as closely as the other datasets. NLDAS-2 is also has much weaker loadings along the 511 

coast, consistent with smaller variability found there (cf. Fig. 7).  EOF 2 explains 6–8% of the 512 

variance and has a very consistent dipole pattern with positive loadings in Northern California 513 

and negative loadings in Southern California.  Agreement among PC 2 time series is also high, 514 

although not as high as for PC 1. EOF 3 is another dipole mode, this time representing variability 515 

that is oppositely phased between coastal and inland locations (2–4% of the variance). The 516 

corresponding PC 3s agree less than PCs 1 or 2.  Daymet’s EOF 3 stands out for its irregular 517 

loading pattern, which could be related to uncorrected inhomogeneities.  However, PC 3 explains 518 

only a small fraction of the variability. 519 

 520 

For Tmin, EOFs and PCs differ somewhat more than Tmax (Fig. 9). EOF 1, characterized by all 521 

positive loadings, explains 63–81% of the variance, a wider range than for Tmax (77–86%).  522 

Daymet’s EOF spatial patterns differ considerably from the others.  They have much higher 523 

loadings in the same regions that have large, unphysical trends.  Daymet’s PC 1 and PC 2 time 524 

series show shifts from lower values in the 1980s to higher values in the 2000s that are not 525 

present in the other datasets, and are consistent with the inhomogeneities discussed earlier.  526 
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Inhomogeneities are also likely responsible for the unusual spatial pattern of Livneh’s EOF 3.  527 

These results suggest that uncorrected station inhomogeneities can contribute non-negligible 528 

artifacts to a station-based dataset’s variability.   529 

 530 

PRISM, Metdata, and TopoWx appear to have the most plausible variability.  Their main EOFs 531 

are free from artifacts and their PCs series don’t have noticeable jumps or trends.  Hamlet also 532 

has these qualities, but its EOFs are much smoother in space and appear to miss topographic 533 

effects.  Hamlet’s overly-smooth EOFs are a side-effect of the way it avoids inhomogeneities.  534 

Low-frequency variability is adjusted to match interpolated values from stations in the U.S. 535 

Historical Climatology Network, a small network of long-running stations with continuous 536 

temperature records (Menne et al. 2015).  While excluding other short term stations may help 537 

produce more realistic long-term trends, it has the side effect of lowering the effective resolution 538 

for low-frequency variability, resulting in overly-smooth EOFs.  Meanwhile, WRF does not rely 539 

directly on station data and is free of inhomogeneity-related artifacts, which is an advantage.   540 

Overall, WRF EOF spatial patterns are broadly similar to PRISM, TopoWx, and Metdata, but the 541 

smaller-scale details are different. WRF also has somewhat smoother Tmin spatial patterns, and 542 

does not have fine-scale variations (< 10 km) in complex terrain that the others do, likely 543 

because of its lower resolution.   544 

 545 

d. Effect of snow cover 546 

 547 

WRF disagrees considerably with the other datasets over the influence of snow albedo feedback 548 

(SAF) on temperature anomalies (Fig. 10). WRF simulates large differences in snow cover 549 
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between April 2007 and April 2010, which are supported by the MODIS/Terra satellite data. 550 

WRF temperature differences between these years can reach 7 °C at grid cells where snow cover 551 

is lost, versus 1–4 °C in the rest of the domain.  Meanwhile, the other datasets do not show 552 

substantially enhanced temperature differences at grid cells where MODIS/Terra indicates snow 553 

cover loss.  This disparity could be due to low station density at high elevations or overly 554 

simplistic relationships between temperature and elevation. An alternative possibility is that 555 

WRF’s SAF strength is unrealistically high and actual temperature differences are not amplified 556 

as much as WRF suggests. 557 

 558 

e. Local lapse rates 559 

 560 

Tmax lapse rates are positive throughout the domain (Fig. 11a).  They are 4–8 °C km-1 inland, 561 

but 2–4 °C km-1 for large portions of the coastal mountains.  Thus, Livenh’s use of a fixed 6.5 °C 562 

km-1 lapse rate could be suitable for Tmax inland, but not for portions of the coastal mountains.  563 

Meanwhile, a fixed 6.5 °C km-1 lapse rate is much less suitable for Tmin.  Tmin lapse rates are 564 

generally near zero or even negative for most of California (Fig. 11b).  Using a fixed lapse rate 565 

would have little effect if station density were high everywhere and all elevations were 566 

adequately sampled.  However, this is not the case: station density is low in many parts of the 567 

domain and stations are often located near topographic minima (Fig. 12).  Thus, many grid cells 568 

are far away from and at higher elevations than their nearest stations.  At these grid cells, 569 

temperatures are determined by extrapolating up from the stations, and using a suitable lapse rate 570 

is most important.  For example, in the coastal mountains of Northern California, station density 571 

is low and almost all stations are located near topographic minima (Fig. 13a).  Tmin lapse rates 572 
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in this area are typically near zero (Fig. 11b), which is substantially different from the fixed lapse 573 

rate of 6.5 °C km-1 used in Livneh.  This explains why Livneh is cold relative to the station-574 

based gridded datasets average here (Fig. 13b), and differences become increasingly negative 575 

with height by 2.9 °C km-1 (Fig. 13c).  576 

 577 

5. Summary and Discussion 578 

 579 

This study assesses temperature climatologies, trends, and variability in eight high-resolution 580 

gridded datasets over California. Each dataset gives a different spatially-complete picture of 581 

historical temperatures. Five are station-based datasets created by interpolating station data to a 582 

regular grid (PRISM, TopoWx, Daymet, Livneh, and Hamlet).  Two are created by downscaling 583 

reanalysis (NLDAS-2 and WRF).  Finally, one dataset, Metdata, combines monthly means from 584 

station-based PRISM with daily variability from reanalysis-based NLDAS-2. This study seeks to 585 

identify differences in these datasets, trace these differences back to the datasets’ methodologies, 586 

and determine which are the most realistic by comparing with station data.  In our analysis, 587 

particular attention is paid to how the WRF simulation compares with the others, as dynamically 588 

downscaled reanalysis has not been included in previous assessments of gridded datasets.  589 

 590 

As expected, when evaluated at station locations, station-based datasets all have similar 591 

climatologies that closely match GHCND station data.  Differences in station-based datasets are 592 

more pronounced away from stations, where interpolation algorithms have greater impact. For 593 

Tmax, the largest differences (up to 6 °C) occur in isolated parts of the coastal mountains.  For 594 

Tmin, differences are large (2–6 °C) in complex terrain throughout the domain. The existence of 595 
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large differences away from the stations despite close agreement at stations, underscores the need 596 

to compare station-based datasets everywhere, not just at station locations.  Meanwhile, the 597 

reanalysis-based datasets, WRF and NLDAS-2, are not directly constrained to match station 598 

observations, and have some systematic biases relative to GHCND station data. WRF has a cold 599 

bias at high elevations for Tmax, but not for Tmin.  Meanwhile, NLDAS-2 has a dramatic cold 600 

bias (> 6 °C) along the edges of topographic contours for Tmax and a strong warm bias 601 

throughout the domain in Tmin.   602 

 603 

There are clearly large differences in climatology between these datasets, but away from the 604 

station locations, it is difficult to know definitively which dataset is most realistic.  It is possible, 605 

in some cases, to demonstrate that a dataset relies on a problematic assumption.  For example, 606 

Livneh uses a fixed lapse rate of 6.5 °C km-1 to adjust for elevation.  In contrast, the other 607 

datasets allow for the relationship between temperature and elevation to vary throughout the 608 

domain. Tmin lapse rates were found to be negative or near zero for much of the domain 609 

(inverted or neutral conditions). Thus, a fixed positive lapse rate of 6.5 °C km-1 is not suitable for 610 

Tmin and explains why Livneh is so cold at high elevations.  This finding is consistent with 611 

Mizukami et al. (2014) and Newman et al. (2015), who found that datasets with fixed positive 612 

lapse rates have cold biases at high elevations.   Based on these results, using a gridded dataset 613 

that accurately captures variable lapse rates is a necessity when studying daily minimum 614 

temperatures. 615 

 616 

Differences in trends are the result of choices made about which stations to include and whether 617 

to perform station homogenization. Daymet, Livneh, PRISM, and Metdata do not correct station 618 
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data for inhomogeneities and subsequently have large non-climatic trends near affected stations.  619 

In contrast, TopoWx, Hamlet, NLDAS-2, and WRF have smoother trend fields. TopoWx applies 620 

a homogenization algorithm that removes inhomogeneities by comparing a station with its 621 

neighbors.  This removes the obvious jumps in temperature due to non-climatic factors.  622 

However, our findings also suggest it may smooth out true, local trends, forcing the regional 623 

trend on each grid cell, a known side effect of homogenization algorithms (Pielke et al. 2007).  624 

Hamlet also accounts for inhomogeneities, but in a different way: by adjusting the low-frequency 625 

variability at all stations to match the small set of USHCN stations.  This leads to overly 626 

smoothed variability in Hamlet. WRF and NLDAS-2 appear to have realistic trends.  However, it 627 

is possible for reanalysis to suffer from non-climatic trends if inhomogeneities in the assimilated 628 

station data or changes in data coverage are not accounted for.  Interpolated reanalysis, such as 629 

NLDAS-2, will directly inherit any problems.  Dynamically downscaled reanalysis may be less 630 

affected since it generally receives input only at the lateral and ocean boundaries. Overall, users 631 

should be aware that certain gridded datasets have unphysical jumps or trends, while others may 632 

have overly smooth trends. 633 

 634 

Most datasets have broad agreement in the spatial patterns and the timing of the leading modes.  635 

Daymet and Livneh are the main exceptions.  Inhomogeneities strongly affect these datasets, 636 

causing prominent non-climatic artifacts in the spatial patterns and jumps in the associated time 637 

series.  These datasets also have unrealistically high variability in some locations.  NLDAS-2 is 638 

unusual because it has significantly reduced variability very near the coast.  639 

 640 
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While the WRF simulation has important disagreements with station-based datasets, it still 641 

broadly similar in most aspects considered here.  WRF’s most glaring issue is a cold bias in 642 

Tmax at high elevations.  But, for Tmin, it is within the range of station-based datasets.  WRF’s 643 

temporal variability is highly correlated with the most plausible station-based datasets.  Its spatial 644 

patterns of the leading modes are qualitatively similar to the most plausible station-based 645 

datasets.  WRF’s variability is clearly more realistic than some station-based datasets, such as 646 

Daymet, which is strongly affected by inhomogeneities. Its trends are most similar to TopoWx 647 

and Hamlet, the two datasets that correct for inhomogeneities. These results suggest that 648 

dynamical downscaled reanalysis can produce a spatially complete picture of the historical 649 

temperatures on par with the station-based datasets in many aspects.  In fact, it could potentially 650 

be a valuable, complementary perspective to station-based dataset in snow covered areas, as it 651 

explicitly simulates the of snow cover anomalies on temperature.  However, further research is 652 

needed to determine if WRF’s snow-albedo feedback strength is realistic. 653 

 654 

Although WRF and NLDAS-2 are both downscalings of NARR, NLDAS-2 is less realistic in 655 

most aspects considered here.  NLDAS-2 has large biases in both Tmax and Tmin.  NLDAS-2 656 

has less realistic variability especially very near the coast, which could be due to interpolation 657 

between grid cells across the land-sea interface.  Thus, at least in this case, dynamical 658 

downscaling is found to add value over linear interpolation in downscaling historical reanalysis. 659 

 660 

Large differences between gridded datasets indicate gridded dataset choice is a considerable 661 

source of uncertainty.  Uncertainty in station-based datasets could be reduced with 662 

straightforward fixes, like making variable lapse rates and station homogenization standard 663 



 30 

practice.  Further reductions could come from identifying best-performing interpolation 664 

algorithms.  This could be done by running cross-validation tests on a standardized set of 665 

stations.  Improving realism in downscaled reanalysis is less straightforward.  Improvements are 666 

likely to come from ongoing progress in improving atmospheric models and regional climate 667 

models used to generate and downscale reanalysis. 668 

 669 

It is important that users of gridded datasets are aware of their limitations. Often station-based 670 

gridded datasets are treated as ground truth, without acknowledging either the problems with 671 

station data or the assumptions needed to generate a spatial complete temperature field from 672 

point measurements.  This often plays out in the context of climate model evaluation, where 673 

models are compared against a station-based gridded dataset, and any differences are attributed 674 

to model deficiencies.  In fact, a model may not be wrong just because it differs from a single 675 

station-based dataset, especially if the station-based dataset has known problems.  More 676 

generally, it is recommended that users employ two or more independent gridded datasets to test 677 

the sensitivity of their results to dataset choice.  Note that selecting closely related datasets, like 678 

PRISM and Metdata, could dramatically underestimate this important source of uncertainty.  679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 
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 934 

Figure Captions 935 

 936 

Fig 1. (a) Setup of 27 km resolution and 9 km resolution nested WRF domains. (b) Locations of 937 

COOP stations used by Livneh, and GHCND, RAWS, and SNOTEL stations used by TopoWx.  938 

 939 

Fig 2. (top left) 1981–2010 Tmax annual-mean climatology at GHCND stations and averaged 940 

over the station-based datasets (units: °C).   (others) Differences in 1981–2010 annual-mean 941 

Tmax climatology with GCHND station data and with the station-based dataset average (units: 942 

°C). To adjust for the elevation differences between the GCHND stations and the nearest grid 943 

cell, a lapse rate of 6.5 °C km-1 was used. 944 

 945 

Fig 3. (top left) 1981–2010 Tmin annual-mean climatology at GHCND stations and averaged 946 

over the station-based datasets (units: °C).   (others) Differences in 1981–2010 annual-mean 947 

Tmax climatology with GCHND station data and with the station-based dataset average (units: 948 

°C). Note: no elevation-based adjustments are made for Tmin. 949 

 950 

Fig 4.  Inter-dataset spread (°C) in climatological Tmax (top row) and Tmin (bottom row) 951 

calculated for four different groups.  Datasets included in each group are listed in the upper right 952 

corner of each panel. 953 

 954 
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Fig 5. Trend (°C decade-1) in Tmax (top row) and Tmin (bottom row) based on linear regression 955 

of monthly anomalies for all months in 1981–2010 time period.  For GHCND, only anomalies 956 

from non-missing months are used. 957 

 958 

Fig 6. Tmin anomalies (°C) at three grid cells where some datasets show inhomogeneities.  959 

Locations of the three grid cells are shown on the left.    960 

 961 

Fig 7. Standard deviation (°C) of monthly Tmax and Tmin anomalies for all months in the period 962 

1981-2010. For GHCND, only anomalies from non-missing months are used.   963 

 964 

Fig 8. Three largest Tmax EOFs and their associated PCs for each dataset for the period 1981-965 

2010. Percentages of explained variance are included in the upper right corner of each panel. 966 

 967 

Fig 9. Three largest Tmin EOFs and their associated PCs for each dataset for the period 1981-968 

2010. Percentages of explained variance are included in the upper right corner of each panel. 969 

 970 

Fig 10.  Differences in (a) MODIS snow covered fraction  (b) WRF SCF, and (c-j) daily average 971 

temperatures (°C ) for each dataset, computed as April 2007 minus April 2010.  972 

 973 

Fig 11. Local lapse rate (°C km-1) calculated at each grid cell as the negative slope determined by 974 

linearly regressing TopoWx climatological (a) Tmax and (b) Tmin values onto elevation for all 975 

grid cells whose x and y coordinates are each within 1 km.  Cool colors indicate decreasing 976 

temperature with height.   Warm colors indicate increasing temperature with height (i.e. inverted 977 
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conditions). Grid cells whose neighbors range in elevation by less than 100 m are excluded from 978 

the calculations.   979 

 980 

Fig 12. Topographic dissection index (TDI) at each California COOP station used by Livneh.  981 

Warm colors indicate stations located near topographic maxima.  Cold colors indicate locations 982 

near topographic minima.  983 

 984 

Fig 13. (a) Elevation (m) in the coastal mountains of Northern California.  (b) Tmin climatology 985 

difference between Livneh and station-based gridded dataset average.  The topographic 986 

dissection index (TDI, Holden et al. 2011a) is plotted at each COOP station (circles).  Warm 987 

colors indicate station is near topographic maxima.  Cold colors indicate station is near 988 

topographic minima.  (c) Tmin difference (Livneh minus station-based gridded dataset average) 989 

versus elevation at all grid cells within the coastal region shown in (a) and (b).  Slope computed 990 

using least-squares linear regression. 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

 1000 
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Figures 1001 

 1002 

 1003 

Fig 1. (a) Setup of 27 km resolution and 9 km resolution nested WRF domains. (b) Locations of 1004 

COOP stations used by Livneh, and GHCND, RAWS, and SNOTEL stations used by TopoWx.  1005 

 1006 
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 1007 

Fig 2. (top left) 1981–2010 Tmax annual-mean climatology at GHCND stations and averaged 1008 

over the station-based datasets (units: °C).   (others) Differences in 1981–2010 annual-mean 1009 

Tmax climatology with GCHND station data and with the station-based dataset average (units: 1010 

°C). To adjust for the elevation differences between the GCHND stations and the nearest grid 1011 

cell, a lapse rate of 6.5 °C km-1 was used. 1012 

 1013 
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 1014 

Fig 3. (top left) 1981–2010 Tmin annual-mean climatology at GHCND stations and averaged 1015 

over the station-based datasets (units: °C).   (others) Differences in 1981–2010 annual-mean 1016 

Tmax climatology with GCHND station data and with the station-based dataset average (units: 1017 

°C). Note: no elevation-based adjustments are made for Tmin. 1018 
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 1019 

Fig 4.  Inter-dataset spread (°C) in climatological Tmax (top row) and Tmin (bottom row) 1020 

calculated for four different groups.  Datasets included in each group are listed in the upper right 1021 

corner of each panel. 1022 

 1023 

 1024 

 1025 
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 1026 

Fig 5. Trend (°C decade-1) in Tmax (top row) and Tmin (bottom row) based on linear regression 1027 

of monthly anomalies for all months in 1981–2010 time period.  For GHCND, only anomalies 1028 

from non-missing months are used. 1029 

 1030 

 1031 

Fig 6. Tmin anomalies (°C) at three grid cells where some datasets show inhomogeneities.  1032 

Locations of the three grid cells are shown on the left.    1033 
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 1034 

Fig 7. Standard deviation (°C) of monthly Tmax and Tmin anomalies for all months in the period 1035 

1981-2010. For GHCND, only anomalies from non-missing months are used.   1036 

 1037 

 1038 



 55 

 1039 

Fig 8. Three largest Tmax EOFs and their associated PCs for each dataset for the period 1981-1040 

2010. Percentages of explained variance are included in the upper right corner of each panel. 1041 

 1042 



 56 

 1043 

Fig 9. Three largest Tmin EOFs and their associated PCs for each dataset for the period 1981-1044 

2010. Percentages of explained variance are included in the upper right corner of each panel. 1045 

 1046 
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 1047 

Fig 10.  Differences in (a) MODIS snow covered fraction  (b) WRF SCF, and (c-j) daily average 1048 

temperatures (°C ) for each dataset, computed as April 2007 minus April 2010.  1049 

 1050 
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 1051 

Fig 11. Local lapse rate (°C km-1) calculated at each grid cell as the negative slope determined by 1052 

linearly regressing TopoWx climatological (a) Tmax and (b) Tmin values onto elevation for all 1053 

grid cells whose x and y coordinates are each within 1 km.  Cool colors indicate decreasing 1054 

temperature with height.   Warm colors indicate increasing temperature with height (i.e. inverted 1055 

conditions). Grid cells whose neighbors range in elevation by less than 100 m are excluded from 1056 

the calculations.   1057 

 1058 



 59 

 1059 

Fig 12. Topographic dissection index (TDI) at each California COOP station used by Livneh.  1060 

Warm colors indicate stations located near topographic maxima.  Cold colors indicate locations 1061 

near topographic minima.  1062 

 1063 

 1064 

 1065 



 60 

 1066 



 61 

Fig 13. (a) Elevation (m) in the coastal mountains of Northern California.  (b) Tmin climatology 1067 

difference between Livneh and station-based gridded dataset average.  The topographic 1068 

dissection index (TDI, Holden et al. 2011a) is plotted at each COOP station (circles).  Warm 1069 

colors indicate station is near topographic maxima.  Cold colors indicate station is near 1070 

topographic minima.  (c) Tmin difference (Livneh minus station-based gridded dataset average) 1071 

versus elevation at all grid cells within the coastal region shown in (a) and (b).  Slope computed 1072 

using least-squares linear regression. 1073 

 1074 

 1075 


