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dInstitut Non Linéaire de Nice (INLN)-UNSA, UMR 6618 CNRS, 1361, route des Lucioles 06560 Valbonne - France

Abstract

This article attempts a unification of the two approaches that have dominated theoretical climate dynamics
since its inception in the 1960s: the nonlinear deterministic and the linear stochastic one. This unification,
via the theory of random dynamical systems (RDS), allows one to consider the detailed geometric structure
of the random attractors associated with nonlinear, stochastically perturbed systems. A high-resolution
numerical study of two highly idealized models of fundamental interest for climate dynamics allows one to
obtain a good approximation of their global random attractors, as well as of the time-dependent invariant
measures supported by these attractors; the latter are shown to be random Sinai-Ruelle-Bowen (SRB)
measures. The first of the two models is a stochastically forced version of the classical Lorenz model. The
second one is a low-dimensional, nonlinear stochastic model of the El Niño–Southern Oscillation (ENSO).

Keywords: Climate Dynamics, Dynamical Systems, El Niño, Random Dynamical Systems, Stochastic
Forcing

The geometric [1] and ergodic [2] theory of dynamical systems represents a significant achievement of the
last century. In the meantime, the foundations of the stochastic calculus also led to the birth of a rigorous
theory of time-dependent random phenomena. Historically, theoretical developments in climate dynamics
have been largely motivated by these two complementary approaches, based on the work of E. N. Lorenz [3]
and that of K. Hasselmann [4], respectively.

It now seems clear that these two approaches complement, rather than exclude each other. Incomplete
knowledge of small-, subgrid-scale processes, as well as computational limitations will always require one to
account for these processes in a stochastic way. As a result of sensitive dependence on initial data and on
parameters, numerical weather forecasts [5] as well as climate projections [6] are both expressed these days
in probabilistic terms. In addition to the intrinsic challenge of addressing the nonlinearity along with the
stochasticity of climatic processes, it is thus more convenient — and becoming more and more necessary —
to rely on a model’s (or set of models’) probability density function (PDF) rather than on its individual,
pointwise simulations or predictions.

We show in this paper that finer, highly relevant and still computable statistics exist for stochastic
nonlinear systems, which provide meaningful physical information not described by the PDF alone. These
statistics are supported by a random attractor that extends the concept of a strange attractor [3, 7] and of
its invariant measures [2] from deterministic to stochastic dynamics.

The attractor of a deterministic dynamical system provides crucial geometric information about its
asymptotic regime as t → ∞, while the Sinäı-Ruelle-Bowen (SRB) measure provides, when it exists, the
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statistics of the flow over this attractor [2, 8]. These concepts have been applied to climate dynamics —
across a full hierarchy of models, from conceptual “toy” models via so-called intermediate models and all
the way to high-resolution general circulation models (GCMs) — as well as to the related uncertainties
[9, 10, 11]. Recent applications of ergodic theory to the problem of climate sensitivity, in the context of
deterministic models of small and intermediate complexity, include [12, 13].

On the stochastic side, the crucial field of modeling subgrid-scale phenomena has been increasingly
moving towards stochastic “parameterizations” [14, 15]. Such parameterizations have been studied in terms
of their impact on the successful simulation of certain physical processes in GCMs, but not in terms of their
global impact on model behavior. At a more fundamental level, the climate system is an open system and
subject to variable forcing in time. The long-term effects of time-dependent forcing, whether deterministic or
stochastic, have only started to be studied; examples include Quaternary glaciations and their relationship
to orbital forcing [16, 17] or the interaction between the seasonal forcing and intrinsic variability in the
Tropical Pacific [18, 19].

During the past two decades, the mathematical theory of random dynamical systems (RDS) [20] and of
nonautonomous dynamical systems [21] has made substantial progress in describing the asymptotic behavior
of open systems, subject to time-dependent forcing. The pertinent mathematical literature, however, is fairly
technical and opaque. Its concepts and methods have, therefore, not become widely understood and applied
to the physical sciences in general and to climate dynamics in particular; see [22] and references therein.

The main objective of this paper is twofold: (i) to introduce the key concepts and tools of RDS theory
— from the point of view of ergodic theory [2, 8] — to a wider audience in the geosciences and macroscopic
physics; and (ii) to present novel results for two highly idealized models of fundamental interest for climate
dynamics. The first is a stochastically forced version of the Lorenz [3] model: We provide detailed geometric
structure and novel statistical information by using a highly accurate numerical approximation of its global
random attractor and of the invariant measures supported thereon; furthermore, these measures are shown to
be random SRB measures [23]. The second one is a low-dimensional, nonlinear stochastic El Niño–Southern
Oscillation (ENSO) model [24]; here we show how the information conveyed by its random attractor and
invariant measures allow one to better understand the qualitative behavior of this model and to refine its
physical interpretation.

In order to keep the presentation accessible to the intended audience, we refer for technical details to
L. Arnold [20] and H. Crauel [25]. For the sake of brevity, statements about the rigorous existence of the
mathematical objects being described are typically omitted.

1. Noise effect on model statistics: A change of paradigm

What is the the effect of random perturbations on a nonlinear deterministic system’s phase portrait?
To address this issue, especially in the case of a deterministically chaotic system, we introduce herewith the
appropriate framework.

1.1. The classical forward approach
To analyze the effect of the noise on the invariant measure supported by the deterministic system’s

attractor, the traditional stochastic approach is to seek the fixed point of the associated Markov semigroup,
i.e. to find stationary solutions of the Fokker-Planck equation. These solutions correspond precisely to the
system’s stationary measures. Numerically, it is most often easier to integrate the system forward in time,
perform ensemble or time averages and call the resulting object the “PDF.”

When a deterministic system is perturbed by noise, it is often observed that the support of such a
numerically obtained PDF corresponds to a (small) phase-space neighborhood of the deterministic attractor;
in particular, the topological structure of the deterministic attractor becomes fuzzy. Such an approach
provides, therefore, purely statistical information, without a close link with the attractor’s geometry. Even
so, the effect of the noise can result in surprising changes, especially when the deterministic system is neither
hyperbolic [26] nor stochastically stable [8].

The RDS approach is based on a drastically different view. Its fundamental objects are the random
invariant measures of the dynamics rather than the stationary ones of the Markov semigroup. These invariant
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measures are supported by a well-defined attractor, as will be explained below. In this approach, instead
of integrating forward in time, the system is run from a distant point s in the past until the present time
t, where it is “frozen.” We refer to this as the pullback approach. Remarkably, by looking at the system
in this way, the topological structures related to the stochastic dynamics emerge naturally and, even more
surprisingly, there is no fuzziness in them. RDS theory thus reconciles the ergodic and geometric approaches
in the stochastic context. We explain next the pullback approach, what an RDS and a random attractor
are, and discuss the invariant measures such an attractor supports.

1.2. The pullback approach
This approach adopts a pathwise analysis, rather than the previous one, based on an ensemble of realiza-

tions. At first glance, this angle of attack may appear more laborious and less direct in providing statistical
information. In fact, it yields much more detailed insights, along with the PDF, as will be seen below.

To understand this relatively novel approach, we first explain heuristically the concept of pullback at-
tractor in the context of a deterministic, but nonautonomous dynamical system. For simplicity, we consider
a finite-dimensional system, written in the form,

ẋ = f(t,x), (1)

where the law f governing the evolution of the state x depends explicitly on time t.
A simple example from climate dynamics is given by the oceans’ wind-driven circulation [27]. The effect

of the atmosphere on the mid-latitude oceans at zero order would be modeled by a time-independent forcing
that yields an autonomous system [22]. At the next order, however, taking into account the seasonal cycle
in the winds, the forcing would become time periodic and the system thus nonautonomous [28]. As the
degree of realism increases — unless one were to switch to a fully coupled atmospheric-ocean model — the
time-dependent aspects would become more and more elaborate and involve not only the forcing but also
various coefficients, which eventually will include stochastic effects at some point. Another example that will
be illustrated in the numerical section of this paper is an ENSO model, in which wind bursts are modeled
stochastically; see e.g. [29, 30, 31].

Stochastic models, in particular, are nonautonomous, rough rather than smooth, and are indexed by the
realizations of the random processes involved.

For such models, we ask the following question:

Q: For a fixed realization ω, and at a fixed time t — the time at which the system is observed — how
does the “stochastic flow” transform the Lebesgue measure on the phase space, assuming we have started
the system in a remote past s << t?

It is this question that motivates and guides our exposition, and our subsequent results.
To study Q, we need to recall several concepts. First, let us denote by ϕ(s, t)x the solution of (1)

at time t, where x is the initial state at time s ≤ t, i.e. ϕ(s, s)x = x. In general, the operator ϕ(s, t)
generates a two-parameter semi-group that provides a two-time description of the system’s evolution, while
in the autonomous case a one-parameter semi-group suffices to entirely determine this evolution. In the
latter case, the system’s evolution is invariant with respect to translation in time, i.e. ϕ(s, t)x = ϕ(t− s)x,
while in the former, the time at which initial data are prescribed is of paramount importance. Thus, in the
nonautonomous case, the limiting behavior when s → −∞ and t is fixed may differ from the one obtained
in the forward situation, with t →∞ and s fixed, whereas in the autonomous case the two limits represent
the same asymptotic behavior, due to the translation invariance of ϕ(s, t) = ϕ(t− s).

To illustrate the fundamental character of this distinction, consider the simple scalar version of (1):
ẋ = −αx + σt, with α > 0, and σ ≥ 0. We denote again by ϕ(s, t)x0 the solution at time t, assuming that
x(s) = x0 at s ≤ t. The forward approach yields blow-up as t → +∞ for any x0, while an easy computation
shows that |ϕ(s, t)x0 −A(t)| → 0 as s → −∞, for all t and x0, with A(t) := σ(t− 1/α)/α.

It can be shown further that A(t) is invariant under the dynamics, i.e. ϕ(s, t)A(s) = A(t), for every
s ≤ t. We have therefore exhibited a family of limiting objects A(t), which exist in actual time t rather than
asymptotically in the future, and which convey the effect of the dissipation due to the term −αx. In this
example, A(t) is simply a time-dependent point that attracts all the initial data.
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More generally, in the forced-dissipative case, one obtains for all t, by letting s → −∞, a collection⋃
t∈RA(t) of objects A(t) that depend on time t; this collection is called a pullback attractor. Each A(t)

may be more complicated than a point, and attract some subsets of initial data taken in the asymptotic
past. In rigorous terms, a family of objects

⋃
t∈RA(t) in a finite-dimensional, complete metric phase space

X is a pullback attractor if it satisfies the two following conditions:

(i) For all t, A(t) is a compact subset of X and is invariant with respect to the dynamics, namely,

ϕ(s, t)A(s) = A(t), for every s ≤ t; and

(ii) for all t, pullback attraction occurs:

lim
s→−∞

dX(ϕ(s, t)B,A(t)) = 0, for all B ∈ B. (2)

In (2), dX denotes the Hausdorff semi-distance between two subsets in X, and B belongs to a collection B
of sets in X that may itself exhibit some time dependence [20, 21].

A fundamental property of a system’s pullback attractor is that it may support physically interesting
invariant measures. In the present paper, this aspect is discussed in greater detail for stochastically perturbed
systems. We provide here a simple deterministic, but nonautonomous illustration.

Going back to ẋ = −αx + σt, one can show that every x−interval in R, taken at a time s < t, shrinks
onto A(t) as s → −∞. In terms of measure, one can say that the Dirac measure δA(t), supported by
A(t), “pullback attracts” at time t the Lebesgue measure on R. By invariance of A(t), δA(t) is thus a
globally stable, time-dependent, invariant measure of our scalar nonautonomous system, just as δ0 is for the
autonomous system ẋ = −αx, when σ = 0.

In general, the simplest and most fundamental measures that are invariant under the dynamics are
precisely these time-dependent invariant Dirac measures. For a nonautonomous system, they replace the
role played by fixed points for autonomous ones: time dependence usually prevents the system from being
at rest and traditional fixed points become the exception, rather than the rule.

It follows that, if a nonautonomous dynamical system involves dissipation, we may wish to consider
its asymptotic behavior in a pullback sense. Indeed, dissipative properties, coupled with time-dependent
forcing, lead to the existence of a dynamical object

⋃
t∈RA(t), rather than a static one; this pullback

attractor describes the asymptotic regime at time t, by considering the system initialized in the asymptotic
past. Furthermore, this object supports invariant measures that are time-dependent by nature. At this
stage, we have traveled half the road that leads to answering question Q. We need now to consider the
random case, in order to travel the other half.

1.3. The RDS approach
When the time-dependent forcing is random, the pullback attractor becomes a random pullback attractor

or random attractor for short. This concept, however, is subtler than its “deterministic cousin” just discussed,
and needs further clarification. In the 1980’s, Kunita [32], among others, took an important step toward a
geometrical description of “stochastic flows” by providing a pathwise two-parameter framework for describing
the stochastic flows generated by fairly general stochastic differential equations (SDEs).

Roughly speaking, this framework allows one to show that, for almost all realizations ω living in some
probability space Ω, the evolution in the phase space X of a stochastic system from time s < t to time t
is described by a two-parameter family of transformations ϕ(s, t;ω). It is tempting, therefore, to adopt the
pullback approach just described above in an ω-parameterized version, in order to introduce the analog of
a pullback attractor into the stochastic context. The problem with such a naive generalization is that the
resulting object

⋃
t∈RA(t;ω) does not exhibit any a priori relation between distinct realizations ω. As a

matter of fact, this is one of the reasons why traditional approaches consider only expectations, i.e. ensemble
means, rather than the stochastic flows.

The remedy to this problem comes from physical considerations. For an experiment to be repeatable,
one has to have a reasonable description of its random aspects. These aspects may change in time, and thus
the noise has to be modeled as a time-dependent stochastic process with certain known properties.
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Representing mathematically such a stochastic process starts with a probability space (Ω,F ,P), where
F is a σ-algebra of measurable subsets of Ω, called “events,” and P is the probability measure [20]. Parame-
terizing noise by time, or equivalently, parameterizing the probability space by time, means that we should
be able to connect the state ω of the random environment at time t = 0, say, with its state after a time t has
elapsed; we call this connection θtω and set, of course, θ0ω = ω. This set-up establishes a map θt : Ω 7→ Ω
for all times t.

In practice, one requires (t, ω) 7→ θtω to be measurable, and to satisfy the one-parameter group property
θs+t = θs ◦ θt for any s and t; along with θ0 = idΩ, these requirements lead to a time-dependent family {θt}
of invertible transformations of Ω that keeps track of the noise. Furthermore, one requires a stationarity
condition, namely that the statistics of the external noise are invariant under θt; mathematically, this means
that the probability measure P is preserved by θt, i.e. θtP = P.

No other properties are needed in general: even ergodicity of θt appears to be secondary [20]. A simple
example is given by the class of two-sided Wiener processes that are so pervasive in SDEs, where Ω = {W ∈
C0(R),W (0) = 0}, while θt is the shift operator that acts according to Ws(θtω) = Ws+t(ω) −Wt(ω), and
thus preserves the Wiener measure. In this particular case, ergodicity holds [20].

At this stage, we realize that the evolution of a stochastic system ϕ(s, τ ; ω) for τ > s can be derived from a
simpler description Φ(t, ω); this operator is parameterized by a single time variable t and it ascribes the state
of the system at any time t > 0, starting at time s = 0 and given a realization ω that characterizes the state
of the noise at time 0. Indeed, given the one-parameter mapping Φ(t, ω), it is easy to obtain the evolution
of the system from any time s to any time τ via the two-parameter mapping ϕ(s, τ ; ω) = Φ(τ − s, θsω).

This simplification allows one to understand why a pathwise approach to modeling the noise may be
reasonable: a system influenced by an external stochastic process for a single realization ω can be interpreted
via the driving system {θt} as wandering along a path θtω in Ω and thus may provide additional statistical
information to the modeler. For this to hold true, however, one must show that the system’s behavior can
be described in a self-consistent manner along such a path θtω; this is the case if the stochastic dynamics
Φ(t, ω) satisfies the so-called cocycle property, namely Φ(t+s, ω) = Φ(t, θsω)◦Φ(s, ω), [20, 22]. Remarkably,
RDS theory shows that the cocycle property comes for free for a very large class of stochastic systems that
includes standard SDEs; this result is mainly due to the group property of {θt} [20]. In short, fairly general
SDEs generate RDSs.

The cocycle concept lies at the core of RDS theory, thus extending Kunita’s results [32]. It appears that
the system Θ(t) : (ω, x) 7→ (θtω, Φ(t, ω)x), also referred to as a skew product, is indeed a dynamical system
on the extended phase space Ω×X, i.e. (probability space)×(phase space). We can thus deal with a genuine
stochastic flow on this extended space, where Θ(t + s) = Θ(t) ◦ Θ(s) holds. The notion of stochastic flow
mentioned in question Q is therewith defined rigorously. One thus recovers much of the classical theory for
autonomous flows, although there is an additional difficulty. This difficulty arises because, in the extended
phase space Ω×X, one can only use measurability concepts on Ω, without any topological tools. The pair
(Φ, θ) is called an RDS [20].

1.4. Random attractor
With these concepts and tools in hand, we are now in a position to extend the notion of pullback attractor

to the stochastic context. To do so, consider first the classical Langevin equation,

dx = −αxdt + σdWt, with α > 0 and σ 6= 0. (3)

Using stochastic calculus, the properties of the Wiener process and the definition of θt as a shift introduced
above, it follows that |Φ(t, θ−tω)x− a(ω)| → 0 as t → +∞; here a(ω) := σ

∫ 0

−∞ exp(ατ)dWτ (ω) and Φ(t, ω)
as defined above. The random variable a is even invariant under the dynamics, i.e. Φ(t, ω)a(ω) = a(θtω),
for all t ≥ 0 and all ω ∈ Ω.

We have thus exhibited a family of random invariant objects — each of which is a single point a(ω) —
that describe the possible states that can be observed in the present, at t = 0, whatever the state it occupied
in the infinitely distant past, at t = −∞. This contraction of the Lebesgue measure under the stochastic
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flow results, once more, from the effect of the dissipation that is “experienced” by the system in a pullback
sense.

More generally, if a random subset A(ω) of X satisfies certain measurability conditions [20], and further-
more

(I’) A(ω) is a compact subset of X and Φ-invariant, i.e., for each t ≥ 0, Φ(t, ω)A(ω) = A(θtω); and

(II’) A(ω) is attracting in the pullback sense, i.e.,

lim
t→+∞

dX(ϕ(t, θ−tω)B(θ−tω),A(ω)) = 0, for all B ∈ B,

then
⋃

ω∈ΩA(ω) provides the complete picture of the only present states of the system that are likely to be
observed. The second condition holds almost surely, with respect to the measure P, while the B(ω) are now
random subsets of X; see [20] for further details.

The resulting random compact set
⋃

ω∈ΩA(ω) is called a random attractor; it is also called a strong
attractor since the convergence of remote initial data to the attractor holds almost surely for the Hausdorff
semi-metric of the phase space X [20, 33, 38, 39]. Moreover, when {θt} is ergodic, then knowing

⋃
t∈RA(θtω)

yields
⋃

ω∈ΩA(ω), and vice-versa. In other words, knowing the random attractor along one path ω yields
all the possible states of the attractor at a given t.

RDS theory also provides a natural link between the forward and pullback approach. Pullback attraction
involves convergence almost surely (see above) and it implies weak convergence forward, that is, convergence
in probability only. A weak attractor, as opposed to the strong one above, is defined similarly, except that
now one requires only that

lim
t→∞

dX(Φ(t, ω)B(ω),A(θtω)) = 0 in probability [33].

A strong attractor is always a weak attractor, but the converse is obviously wrong [20, 33]. The argument
runs as follows: {θt} is measure-preserving and thus one has P{ω : Φ(t, ω)x ∈ D} = P{ω : Φ(t, θ−tω)x ∈ D},
for any x ∈ X and D any measurable subset of X. If the limit of the right-hand side exists as t → +∞, then
the left-hand side converges as well; that is, Φ(t, ω)x converges, but only in probability. There is a duality
between fuzziness from the present into the future versus “determinism” from the past up to the present.
This duality arises from the asymmetric way in which time is addressed in the RDS approach, through the
concepts of past and future of an RDS; see Sec. 1.7 of [20].

1.5. Random invariant measures
So far, we have focused on the more appealing and intuitive aspects of RDS theory, with random

attractors playing the key role. The fundamental objects in RDS theory, though, are in fact the random
invariant measures; they are intimately linked to random attractors in forced-dissipative systems.

When a global random attractor A exists, it supports all the invariant measures µ, and hence µ(A) = 1;
this result is indeed similar to the deterministic situation. The invariant measures µ here are defined on the
product space Ω×X and invariance is with respect to the skew product Θ defined above, so that Θ(t)µ = µ
for all t [20, 25].

The invariant measures µ “lift” the probability measure P, defined on Ω, into the extended phase space
Ω×X, so that the projection of µ on Ω equals P. It is much more convenient, though, to work in the phase
space X, rather than in the product space. Invariance of µ in X corresponds to the use of random measures
ω 7→ µω on X called sample measures [23]; they are also known as factorized or disintegrated measures
[20, 25].

Under very general conditions, one can show there is a one-to-one correspondence between any µω on
X and any µ on the product space whose Ω–projection equals P; symbolically µ(dω, dx) = µω(dx)P(dω)
[20]. In particular, to say that µ(A) = 1 is equivalent to µω(A(ω)) = 1; i.e., each sample of A supports the
sample measure µω. The invariance of µ can now be written, since we take θt here to be invertible, as

Φ(t, ω)µω = µθtω, almost surely with respect to P.

6



Note that the time-dependent solutions of the Fokker-Planck equation must not be confused with the time-
dependent sample measures µθtω discussed herein. The main difference is apparent by returning now to
question Q.

Indeed, the answer to our key question Q is now simply that the regions where the stochastic flow ends
up at time t — for a realization ω of the system’s random aspects — are determined by A(ω) and distributed
according to probabilities given by the invariant sample measure µω. A condition for this to hold is that the
measure be physical, i.e. that it satisfy almost surely (with respect to P) the key identity:

lim
t→∞

1
t

∫ t

0

G ◦ Φ(s, θ−sω)x ds =
∫

A(ω)

G(x)µω(dx), (4)

for almost every x ∈ X (in the Lebesgue sense), and for every continuous observable G : X → R. Equation
(4) is a direct generalization to the RDS framework of the concept of physical measure from the autonomous
deterministic setting [2, 8]. In the next section, we discuss a particular class of physical measures of interest,
namely random SRB measures. These measures are a sample version of the classical SRB measures found
in the autonomous context; see [23] and the next section here. We focus now on the simplest invariant
measures that are fundamental in RDS theory.

Going back to the Langevin equation (3), since the random point a(ω) = σ
∫ 0

−∞ exp(ατ)dWτ (ω) is the
global random attractor of that system, we get that the random Dirac δa(ω) supported by each point a(ω)
is a globally stable invariant measure, which pullback attracts the Lebesgue measure of the real line. This
result can be of course generalized to a higher-dimensional Langevin equation dx = Lx+dWt, where L has
good dissipative properties and where the random attractor A becomes the union of random vectors a(ω)
such that Φ(t, ω)a(ω) = a(θtω) for all t ≥ 0 and all ω ∈ Ω. For a more general RDS, a (measurable) random
variable a : Ω → X is called a random fixed point of the system when this last equality holds. These random
fixed points are the analogs of the steady states found in the autonomous setting.

When all the Lyapunov exponents are negative, then all the initial states are attracted to a single random
fixed point. This well-known phenomenon occurs for general RDSs and is not restricted to linear dynamics
with additive noise [35, 36]; it is sometimes called synchronization [20, 22]. When the random attractor is
more complex than a random point, one may observe intermittency: for each realization ω, two arbitrary
trajectories are either synchronized or not during variable time intervals. This on-off synchronization oc-
curs exponentially fast; see Fig. 6 of [42]. It appears that the ENSO model studied below exhibits such
intermittent behavior.

2. Numerical results and their RDS analysis

We consider here the Lorenz model [3] and the ENSO model of Timmerman and Jin [31]. The two
models have three degrees of freedom each and we perturb them by linear multiplicative white noise [20] for
the Lorenz model or by including white noise in the nonlinearity of the ENSO model.

2.1. A stochastically perturbed Lorenz model
In the deterministic context, geometric models were proposed in the 1970s [47] to interpret the dynamics

observed numerically by E. N. Lorenz in [3]. These geometric models attracted considerable attention and
it was shown that they possess a unique SRB measure [34, 46], i.e., a time-independent measure that is
invariant under the flow and has conditional measures on unstable manifolds that are absolutely continuous
with respect to Lebesgue measure [2]. This result has been extended recently to the Lorenz flow [3] itself,
in which the SRB measure is supported by a strange attractor of vanishing volume [48, 49].

Even though this result was only proven recently, the existence of such an SRB measure was suspected for
a long time and has motivated numerous numerical methods to compute a PDF associated with the Lorenz
model [3], by filtering out the stable manifolds; e.g. [44, 45] and references therein. The Lorenz attractor
is then approximated by a 2-dimensional manifold, called the branched manifold [47], which supports this
PDF. Based on such a strategy, the authors in [44] showed that the stationary solution of the Fokker-Planck
equation for the Lorenz model [3] perturbed by white noise possesses a density with two components: the

7



PDF of the deterministic system supported by the branched manifold and a narrow Gaussian distribution
transversal to that manifold.
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Figure 1: Snapshot of the Lorenz [3] model’s random attractor A(ω) and of the corresponding sample measure µω , for a given,
fixed realization ω. Each of the 3 equations of model [3] is perturbed by multiplicative noise, dx = s(y − x)dt + σxdWt,
dy = (rx − y − xz)dt + σydWt, dz = (−bz + xy)dt + σzdWt, where Wt is a Wiener process and σ > 0 the noise intensity;
we call the resulting model [SLM]. The figure corresponds to projection onto the (y, z) plane,

R
µω(x, y, z)dx. One billion

initial points have been used and the pullback attractor is computed for t = 40. The parameter values are the classical ones —
r = 28, s = 10, and b = 8/3 — while σ = 0.3 and δt = 5 · 10−3. The color bar to the right is on a log-scale and quantifies the
probability to end up in a particular region of phase space. Notice the interlaced filament structures between highly (yellow)
and moderately (red) populated regions.

It follows that, in the presence of noise, the resulting PDF looks very much like that of the unperturbed
system, only slightly fuzzier: the noise smoothes the small-scale structures of the attractor. More precisely,
this fuzziness appears only in the forward approach, which compresses a lot of information; this information,
to the contrary, comes into sharp focus in the pullback approach.

A quick look at Figs. 1, 2 and 3 is already enlightening. Figures 1 and 2 show two snapshots of the
invariant measure µω supported by the random attractor of our stochastic Lorenz model [SLM], for the
same realization ω but for two different noise intensities. The exact formulation of model [SLM] appears in
the caption of Fig. 1. Figure 3 provides four successive snapshots of the sample measure µθtω, for the same
noise intensity as in Fig. 2, but with t = t0 + kδt and k = 0, 1, 2, 3 for some t0.

The sample measures in these three figures, and in the associated short video given in the SM, exhibit
amazing complexity, with fine, very intense filamentation; note logarithmic scale on color bars in the three
figures. There is no fuzziness whatsoever in the topological structure of this filamentation, which evokes the
Cantor-set foliation of the deterministic attractor [47]. Such a fine structure strongly suggests that these
measures are supported by an object of vanishing volume.

Much more can be said, in fact, about these objects. RDS theory offers a rigorous way to define
random versions of stable and unstable manifolds, via the Lyapunov spectrum, the Oseledec multiplicative
theorem, and a random version of the Hartman-Grobman theorem [20]. These random invariant manifolds
can support measures, like in the deterministic context. When the sample measures µω of an RDS have
absolutely continuous conditional measures on the random unstable manifolds, then µω is called a random
SRB measure.

We can prove rigorously, by relying on Theorem B of [23], that the sample measures of the discretized
stochastic system obtained from the [SLM] model share the SRB property. Indeed, it can be shown for
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Figure 2: Same as Fig. 1, for the same realization ω but with noise intensity σ = 0.5. Interlaced filament structures between
highly and moderately populated regions are now much more complex. Weakly populated regions cover an important part of
the random attractor and are, in turn, entangled with “zero-probability” regions (black).

Figure 3: Four snapshots of the random attractor and sample measure supported on it, for the same parameter values as in
Fig. 2. The time interval δt between two successive snapshots — moving from left to right and top to bottom — is δt = 0.0875.
Note that the support of the sample measure may change quite abruptly, from time to time; see the related short video in the
SM for details.
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our discretized [SLM] model that a Hörmander hypoellipticity condition is satisfied, thus ensuring that the
process has a smooth density p(t, y) [41]. Standard arguments [43] can be used to prove that the stationary
solution ρ of our system’s Fokker-Planck equation is in fact absolutely continuous with respect to Lebesgue
measure.

Since our simulations exhibit exactly one positive Lyapunov exponent, the absolute continuity of ρ implies
that the sample measures seen in Figs. 1–3 are, actually, good numerical approximations of a genuine random
SRB measure for our discretized [SLM], whenever δt is sufficiently small; see also the next section. In fact,
Theorem B of [23] is a powerful result, which clearly shows that — in noisy systems, and subject to fairly
general conditions — chaos can lead to invariant sample measures that are SRB.

Note that since the sample measures associated with the discrete [SLM] system are SRB here, they are
physical measures and can thus be computed at any time t by simply flowing a large set of initial data from
the remote past s ¿ t up till t, for a fixed realization ω; this is exactly how Figs. 1–3 were obtained. Given
the SRB property, the nonzero density supported on the model’s unstable manifolds delineates numerically
these manifolds; Figs. 1–3 provide therefore an approximation of the global random attractor of our stochastic
Lorenz system. Finally, these random measures are Markovian, in the sense that they are measurable with
respect to the past σ-algebra of the noise [20]. The last statement results directly from the fact that
these random measures are physical, cf. (4), and thus satisfy the required measurability conditions as a
pullback-limit object.

The evolution of the sample measures µθtω (see SM video) is quite complex, and two types of motion
are present. First, a pervasive “jiggling” of the overall structure can be traced back to the roughness of the
Wiener process and to the multiplicative way it enters into the [SLM] model. Second, there is a smooth
and quite regular low-frequency motion present in the evolution of the sample measures, which seems to
be driven by the deterministic system’s unstable limit cycles and is thus related to the well-known lobe
dynamics. The latter motion is clearly illustrated in Fig. 3.

Besides this low-frequency motion, abrupt changes in the global structure occur from time to time, with
the support of the sample measure either shrinking or expanding suddenly. These abrupt changes recur
frequently in the video associated with Fig. 3, which reproduces a relatively short sequence out of a very
long stochastic model integration; see SM.

As the noise intensity σ tends to zero, the sample-measure evolution slows down, and one recovers
numerically the measure of the deterministic Lorenz system (not shown). This convergence as σ → 0 may
be related to the concept of stochastic stability [8, 34]. Such a continuity property of the sample measures
in the zero-noise limit does not, however, hold in general; it depends on properties of the noise, as well as
of the unperturbed attractor [35, 36, 37].

As stated in the theoretical section, the forward approach is recovered by taking the expectation, E[µ•] :=∫
Ω

µωP(dω), of these invariant sample measures. In practice, E[µ•] is closely related to ensemble or time
averages that typically yield the previously mentioned PDFs. In addition, when the random invariant
measures are Markovian and the Fokker-Planck equation possesses stationary solutions, E[µ•] = ρ, where ρ
is such a solution. Subject to these conditions, there is even a one-to-one correspondence between Markovian
invariant measures and stationary measures of the Markov semigroup [20, 25]. The inverse operation of
µ 7→ ρ = E[µ•] is then given by ρ 7→ µω = limt→∞ Φ(−t, ω)−1ρ; the latter is in fact the pullback limit of ρ
due to the cocycle property [25].

It follows readily from this result that RDS theory “sees” many more invariant measures than those
seen by the Markov semi-group approach: non-Markovian measures appear to play an important role in
stochastic bifurcation theory [20].

To summarize, one might say that the classical forward approach considers only expectations and PDFs,
whereas the RDS approach “slices” the statistics very finely: the former takes a hammer to the problem,
while the latter takes a scalpel. Clearly, distinct physical processes may lead to the same observed PDF:
the RDS approach and, in particular, the pullback limit are able to discriminate between these processes
and thus provide further insight into them.
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2.2. Numerical stability of the sample measures
In this subsection, we perform simple numerical tests on the stability of the sample measures µω computed

in the previous subsection. We keep the same parameter values as in Fig. 2 and perturb slightly the noise
intensity σ from its value σ0 = 0.5.

Let C be a fixed cube in R3 such that the support of the measures lie always in C. We discretize C over
a regular mesh with N3 nodes and obtain a brute-force numerical approximation µσ0,N

ω of the measures µσ0
ω .

We consider the L1−error δN,ε(t) :=
∫

C
|pσ0,N

θtω
− pσ0−ε,N

θtω
| dx, where pσ,N

θtω
(x) is the “probability density” of

the discrete sample measure µσ0,N
θtω

and the integral is evaluated on the N3-mesh.
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Figure 4: Numerical stability of the invariant sample measures of Fig. 2. The upper-left panel shows the L1−error δN,ε(t)
as a function of N for ε = 10−2 and three different sets of initial data; the number of points n in the latter is n = 503, 1003

and 3003 for the blue, red and black curves, respectively. The upper-right panel displays δN,ε(t) for t varying over 1.5 time
units, 40.5 < t < 42.0, while N = 600 and ε = 10−2. The lower-left panel plots a snapshot of the two sample measures that
correspond to noise intensity σ0 and σ0 − ε at the end of the time series of δN,ε(t) in the upper-right panel. The lower-right
panel shows δN,ε(t) as a function of ε for N = 900 and n = 2003; this error clearly converges to zero as ε → 0.

The upper-left panel of Fig. 4 shows the dependency of δN,ε(t) with respect to N for fixed t and ε = 10−2,
and for three different sets of initial data, with an increasing number n of points (see caption). There is very
little difference between the three curves, indicating that the number n is already large enough to guard
against sampling error. An error of less than 1% is achieved for meshes of size N ≥ 200.

The upper-right panel of Fig. 4 shows the evolution of δN,ε(t) for the same ε and N = 600. It shows
that, as the sample measures evolves with θt, they remain close to each other for all time; here 7.5 · 10−4 ≤
δN,ε(t) ≤ 11 · 10−4.

The lower-left panel shows an actual snapshot of the two measures at a fixed time t, at the end of the
time series plotted in the upper-right panel (same N and ε). Tiny differences become visible when zooming
in on the electronic file of the figure (see SM). As a matter of fact, for ε < 10−3, the two measures are no
longer distinguishable by eye for the N used.

The lower-right panel exhibits δN,ε(t) as a function of ε. Statistical stability is observed here, since the
difference between the two measures tends to zero as ε → 0, in the sense of weak convergence. We conclude
that the numerical results shown in this paper are very robust. Note that we cannot precisely estimate
the level of accuracy with which the sample measures are computed, although the results of this subsection
indicate they are quite good, due to the very large ensembles of initial states we used. Unfortunately,
statistical methods for improving PDF estimates, like kernel density estimation, require densities that are
at least twice differentiable, while the numerical evidence here is that the sample measures of our stochastic
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system are strongly suspect of not being even absolutely continuous with respect to Lebesgue measure; in
particular, they are not differentiable even once.

2.3. A stochastic ENSO model and its RDS analysis
In this subsection, we compute random invariant measures to obtain more detailed information on the

stochastic Timmermann and Jin [31] model (hereafter [STJ]). These measures enable us to understand at
a deeper level the interaction between noise and nonlinearity in this slightly more realistic climate model

Our theoretical laboratory is climate variability in the Tropical Pacific, which is characterized by the
interannual ENSO oscillation. A variety of modeling studies and observations strongly suggest that the
irregular, 2–7-year time scale of ENSO is produced by nonlinear ocean-atmosphere interactions in this
region [18, 19]. In addition, this variability is bracketed by high-frequency, intraseasonal noise due to
so-called “westerly wind bursts” in the surface winds, and by interdecadal changes in the global ocean
circulation [29].

Aside from global effects that act on interdecadal time scales, these time scales may also arise from
the interaction between noise and purely tropical effects [40]. Timmermann and Jin [31] argued, based
on a dynamical analysis of the Jin model [24], that long-term changes in ENSO activity may result from
perturbations of a homoclinic orbit specifically associated with the nonlinear advection terms in the model’s
sea surface temperature equation. Using the classical forward approach, they noted that such conclusions
are robust against the introduction of wind-generated noise in the model.

Our aim here is to show that a pullback approach is better suited to study and rigorously quantify
stochastic effects on the low-frequency dynamics than using merely a forward, PDF-type approach. We
believe that this statement is likely to be true for any problem involving noise and nonlinearity.

Recall first that, if the deterministic model’s variability is damped, adding even small-amplitude sto-
chastic forcing can easily result in significant nonlinear effects; see [29, 30] and references therein. Such
a noise-induced excitation of supercritical behavior at deterministically subcritical parameter values does
indeed occur in our numerical study of the [STJ] model (not shown). We were able to confirm the presence
of a Shil’nikov-type bifurcation to homoclinic orbits in the deterministic model, and show that the noise
helps trigger horseshoe-like behavior in phase space for parameter ranges in which the deterministic model
has only a stable limit cycle. All these noise-induced phenomena possess geometric features captured by the
random attractors.

For instance — in the damped regime, with the right amount of noise — the global random attractor
A(θtω) of our [STJ] model is a closed curve, whose length and location in phase space vary with time, i.e.,
a random periodic orbit [50] that pullback attracts the phase space’s Lebesgue measure. This random limit
cycle is associated with a broad spectral peak (not shown).

We proceed now to study the [STJ] model in a chaotic regime, i.e. when zonal advection is sufficiently
strong. In the absence of noise (not shown), we effectively observe that the model exhibits interdecadal
variability; this variability is due to the nearby presence in parameter space of a homoclinic orbit, whose
characteristic amplitude modulation can be seen in the time series of T2 (see Fig. 5). When including
the noise that models wind-stress bursts, the sample measures shown in the figure still possess a complex
structure.

The six sample measures µθtω shown in the bottom panels of Fig. 5, at interannual intervals of ∆t = 1.6
years, are even more obviously singular than those in Figs. 1–4: at every time t, the regions that are most
populated by the stochastic flow are confined mainly to filaments near the sharp peak (white + sign) that is
located in the upper-left corner of the (h− T2) plane. For the decadal time scale of 6× 1.6 ' 10 years, the
change in probability of occurrence of El Niño episodes, with warm T2, is clearly visible. The underlying
random attractor may, however, exhibit the same spectral signature as the random limit cycle does.

The distinction in behavior stems from the intermittency [42] that our [STJ] model exhibits in the
chaotic regime; this is clearly visible in the T2 time series in the upper-left panel of Fig. 5. The model’s
intermittency is encoded by the structure of its random attractor, which differs from that of the [SLM]
model shown in Figs. 1–3. In Fig. 5 we have a situation that lies in between a random point — as observed
in other ENSO models that are governed by linear dynamics with additive noise, cf. [51], for instance —
and a noisy chaotic model with strong mixing, like [SLM].
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Figure 5: The [STJ] model [31] is governed by the following three SDEs: Ṫ1 = −α(T1 − Tr) − (2εu/L)(T2 − T1), Ṫ2 =
−α(T2−Tr)− (w/Hm)(T2−Tsub(h)), and ḣ = r(−h− bLτ/2); here T1 and T2 are the sea surface temperatures in the western
and eastern Tropical Pacific, and h is the thermocline depth, while Tsub(h) = Tr− [(Tr−Tr0)/2][1−tanh(H +bLτ +h−z0)/h∗]
and τ = (a/β)(T1 − T2)(ξt − 1). Wind stress anomalies are given by τ , the equatorial upwelling by w/Hm = −βτ , the zonal
advection by u = βLτ/2, and Tsub is the subsurface temperature; please see [31] for other subsidiary variables and parameters.
Wind stress bursts are modeled as white noise ξt of variance σ, while ε measures the strength of the zonal advection and serves
as a bifurcation parameter in [31]. Intermittency is illustrated in the upper-left panel, for two different initial states at t = 0
(blue and red curves) and the same realization ω; only the red curve appears where the two are visually indistinguishable. Six
snapshots of the attractor and the sample measures µω they support are shown at regular, 1.6-year intervals in the bottom
panels; they are projected onto the (h − T2) plane, with T2 on the abscissa, and their timing corresponds to interannual
variability. The forward PDF is shown in the upper-right panel: it averages the sample measures µω .
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To summarize, the [STJ] model possesses two main types of random attractor: (i) a random limit
cycle in the deterministically damped regime; and (ii) a random attractor associated with intermittency in
chaotic regimes. The first one may be of interest in understanding certain features that are displayed by
fairly realistic models of the tropical ocean driven by surface winds [30], while the second one needs further
investigation, theoretically as well as practically. Both offer new perspectives in the understanding of ENSO
variability.

3. Concluding remarks

We have briefly motivated and outlined the main concepts and tools of RDS theory, in particular how
to rigorously define stochastic flows and random attractors, as well as the corresponding invariant random
measures. It appears from this outline that a stochastically perturbed system’s pullback, strong attractor
[33] provides much more detailed information on the system’s dynamics and statistics than its PDF.

Detailed computations of the invariant sample measures for the stochastic Lorenz model [SLM] reveal
the amazing complexity that underlies its PDF; see Figs. 1–3. The numerical results were shown to be quite
robust (Fig. 4) and suggest that the actual measures are Markovian random SRB measures [8] associated
with one positive Lyapunov exponent.

We saw, moreover, that other noisy systems with a positive Lyapunov exponent may exhibit random
attractors having a less striking geometry, which still support nontrivial sample measures and are associated
with intermittent synchronization. This was illustrated on the nonlinear stochastic ENSO model [STJ] of
[31]. We showed in Fig. 5 that the information conveyed by the sample measure’s evolution in time can
improve the physical interpretation of the dynamics.

Moving on to intermediate models, consider the numerical results of [52] obtained with a so-called hybrid
coupled model that couples an empirical atmospheric component to an oceanic GCM; see also [9, 27]. The
authors showed that noise can shift and broaden the model’s spectral peaks (see Figs. 6 and 8 there). Here
again, the RDS approach could provide deeper insights into this phenomenon.

On a longer, multidecadal time scale, the RDS approach could be combined with linear response theory
[53]. For hyperbolic deterministic systems, precise estimates exist for the response of their SRB measures
to perturbations [53, 54]. It appears feasible to extend such estimates to SRB sample measures [54]. In the
climate setting, the response of forward PDFs to deterministic perturbations has been studied in [12, 13];
climate response to stochastic perturbations should be next and provide, maybe, better climate projections.

A key question arises here, as for many other new mathematical concepts and tools, when first applied in
the climatic or, more generally, physical context. The question is how to extend these relatively novel ideas
to more detailed and realistic models and even to observational data sets [9, 55]. This question is under
investigation for certain intermediate ENSO models and results will be reported elsewhere.
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