Smooth Time Series - Applications

Dmitri Kondrashov

University of California, Los Angeles

Joint work with M. Ghil, and many others

http://www.atmos.ucla.edu/tcd
Spectral Analysis

\[S(f) \sim f^{-p} + \text{poles} \]

i.e. linear in log-log coordinates

For a 1st-order Markov process or “red noise” \(p = 2 \)

“Pink” noise, \(p = 1 \) (1/\(f \), flicker noise)

“White” noise, \(p = 0 \)

Main challenge for short and noisy geophysical time series to distinguish between poles and (red) noise.

\[\ddot{x} = -\omega^2 x \quad \text{vs.} \quad \dot{x} = -\lambda x \]

Tradeoff for spectral methods: resolution (smoothing, windowing) vs. spurious peaks & power leakage.
Q: *Is there a periodicity and what is its period?*

A: *What is the underlying noise “null hypothesis”?*
Classical Spectral Methods

Blakman-Tukey FFT (window 120)

AR(1)95%

Blakman-Tukey FFT (window 80)

AR(1)95%

MEM

Maximum Entropy Method (40)

MEM

Maximum Entropy Method (10)
- **Singular spectrum analysis (SSA)** and **Multi-taper method (MTM)**.

- detection of periodic signals: phase and amplitude modulation, intermittent behavior, large noise.

- use **data-adaptive** orthogonal basis in **frequency domain** (MTM) and **time domain** (SSA).

- significance tests for spectral peaks.
Right answer!
SSA Power Spectra & Reconstruction

A. Transform pair:

\[
X(t + s) = \sum_{k=1}^{M} a_k(t)e_k(s), e_k(s) - EOF
\]

For given window \(M\), \(e_k\)'s are adaptive filters (empirical orthogonal functions)

\[
a_k(t) = \sum_{s=1}^{M} X(t + s)e_k(s), a_k(t) - PC
\]

the \(a_k\)'s are filtered time series, principal components in time domain.

B. Power spectra

\[
S_X(f) = \sum_{k=1}^{M} S_k(f); \quad S_k(f) = \hat{R}_k(s); \quad R_k(s) \approx \frac{1}{T} \int_0^T a_k(t)a_k(t + s)dt
\]

C. Reconstruction

\[
X^K(t) = \frac{1}{M} \sum_{k \in K} \sum_{s=1}^{M} a_k(t - s)e_k(s);
\]

in particular: \(K = \{1, 2, \ldots, S\}\) or \(K = \{k\}\) or \(K = \{l, l + 1; \lambda_l \approx \lambda_{l+1}\}\)
SSA of Southern Oscillation Index (ENSO)

- **Powerful noise filter**: Break in slope of SSA spectrum distinguishes "significant" from "noise" EOFs.
- **Formal Monte-Carlo test** identifies 4-yr and 2-yr ENSO oscillatory modes (**SSA pairs**). A window size of $M = 60$ is enough to "resolve" these modes in a monthly SOI time series.
Filter "signal" and forecast with AR(M) model.

Cross-validation to find optimum number of "signal" components and error bars of the forecast.

Correlations are both advantage and limitations of empirical models.
IRI Multi-model forecast of Nino-34 index

UCLA-TCD: Kondrashov, D., S. Kravtsov, A. W. Robertson, and M. Ghil (2005), A hierarchy of data-based ENSO models, J. Climate, 18, 4425–4444. 495
Dealing with Missing Data
Historical records are full of “gaps”....

Annual maxima and minima of the water level at the nilometer on Rodah Island, Cairo.
... nowadays on Earth...

- SST (AMSR-E), daily 2x2, June 2002 – February 2007: 38.2% of missing points

- Wind (QuikSCAT), daily 2x2, July 1999 -- February 2007: 17.2% of missing points

- Gaps: satellite coverage, precipitation and clouds.
SSA gap-filling

1. Choose window M and set $K=1$. Flag fraction of dataset $X(t)(t=1:N)$ as “missing” for cross-validation.

2. Update mean and covariance, find leading K EOFs

$$D = \begin{pmatrix}
X(1) & X(2) & \ldots & X(M) \\
X(2) & X(3) & \ldots & X(M+1) \\
\vdots & \vdots & \ddots & \vdots \\
X(N'-1) & \ldots & \ldots & X(N-1) \\
X(N') & X(N'+1) & \ldots & X(N)
\end{pmatrix}$$

$$C_X = \frac{1}{N'} D^t D; C_X E_k = \lambda_k E_k$$

3. Reconstruct missing points using K EOFs

$$A_k(t) = \sum_{j=1}^{M} X(t + j - 1) E_k(j)$$

$$R_K(t) = \frac{1}{M_t} \sum_{k \in K} \sum_{j=L_t}^{U_t} A_k(t - j + 1) E_k(j);$$

4. If convergence for missing points, $K = K + 1$. Check cross-validation error, and Go to Step 2 if necessary.

Utilize (spatio) temporal correlations to iteratively compute self-consistent lag-covariance matrix => can be applied to very gappy data.

Follows expectation maximization (EM) procedure for finding maximum likelihood estimates of mean and covariance matrix.

A few K leading EOFs correspond to the “smooth” modes, while the rest is noise.

Provides both spectral analysis and estimates of missing data.

Synthetic I: Gaps in Oscillatory Signal

- Very good gap filling for smooth modulation; OK for sudden modulation.
Synthetic II: Gaps in Oscillatory Signal + Noise

\[x(t) = \sin\left(\frac{2\pi}{300}t\right) \times \cos\left(\frac{2\pi}{40}t + \frac{\pi}{2}\sin\frac{2\pi}{120}t\right) \]
1950-2004 IRI monthly SST dataset (10°x10°, 660x237 grid points)
- see improvement with **MSSA**; “random” pattern favors small M!
- Error is smaller in CE Pacific Sector where “signal” (ENSO) mode is dominant!
Synthetic IV: multivariate example (Prize!!!)

Dataset with 50% of missing data

Estimated smooth component

Original noisy dataset

Smooth component of full dataset
Filled-in Southern Ocean data

Gap-filling needs to respect physical limits
• Freeware ported to Sun, Dec, SGI, Linux, and Mac OS X: self-contained binary (~2-5Mb) depending on the Unix platform.
• http://www.atmos.ucla.edu/tcd/ssa/
• Needs external graphics package: Grace (free, default) is a part of standard Linux installation, may need compiling for other OS; IDL ($$)
• Includes Blackman-Tukey FFT, Maximum Entropy Method, Multi-Taper Method (MTM), SSA and M-SSA.
• Spectral estimation, decomposition, reconstruction, gap-filling
• Significance tests of “oscillatory modes” vs. “noise.”
- Data management with \textit{named vectors & matrices}.
- \textit{Default values}.

SSA-MTM Toolkit (cont’d)
Mac OS X: kSpectra Toolkit

- Project files
- SSA Forecasts
- Automated tasks
- Built-in plots
- Animations (QuickTime)
- Automation (Automator)
- www.spectraworks.com

• more at http://www.atmos.ucla.edu/tcd/ssa.

• Computer Lab: SOI (ENSO), “small signal”, gap-filling, multivariate example (time permitting)